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Abstract. We consider the volume constrained fractional mean curvature flow of a nearly
spherical set, and prove long time existence and asymptotic convergence to a ball. The
result applies in particular to convex initial data, under the assumption of global existence.
Similarly, we show exponential convergence to a constant for the fractional mean curvature
flow of a periodic graph.
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1. Introduction

We recall the definition of fractional perimeter and fractional mean curvature of a set, as
introduced by Caffarelli, Roquejoffre and Savin in [5]. Let s ∈ (0, 1); for a set A ⊆ R

n, with
C1,1 boundary, we let

Pers(A) :=

∫

A

∫

Rn\A

1

|x− y|n+s
dydx =

1

s

∫

A

∫

∂A

(y − x) · ν(y)
|x− y|n+s

dHn−1(y)dx

Hs
A(x) :=

∫

Rn\A

1

|x− y|n+s
dy −

∫

A

1

|x− y|n+s
dy =

2

s

∫

∂A

(y − x) · ν(y)
|x− y|n+s

dHn−1(y),

where the integrals are intended in the principal value sense, and ν(x) denotes the exterior
normal to A at x ∈ ∂A.

Key words and phrases. Fractional mean curvature flow, nearly spherical sets, long time behavior, Alexan-
drov theorem.
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The fractional mean curvature flow starting from an initial set E0 ⊆ R
n is a family of sets

Et, parametrized by t > 0 and defined by the geometric evolution law

(1.1) ∂txt · ν(xt) = −Hs
Et
(xt) xt ∈ ∂Et.

Similarly, the volume preserving fractional mean curvature flow is defined by the equation

(1.2) ∂txt · ν(xt) = −Hs
Et
(xt) +Hs

Et
xt ∈ ∂Et,

where Hs
Et

is the average fractional mean curvature, defined as

(1.3) Hs
Et

= −
∫

∂Et

Hs
Et
(y)dHn−1(y).

If Et is a smooth solution to (1.2), then the volume of Et is constant in time, and the fractional
perimeter Ps(Et) is strictly decreasing unless Et is a ball.

A short time existence result for smooth solutions of both (1.1) and (1.2) starting from
compact C1,1 initial sets was recently provided in [21]. On the other hand, existence of weak
solutions has been obtained by different authors, see [6,9,20]. In [10] the authors showed that
the flow (1.1) is convexity preserving, also in the presence of a time dependent forcing term.

Concerning the long time behavior of solutions, in [12] it has been proved that smooth
convex solutions to (1.2) converge to a ball, up to suitable translations possibly depending on
time. In [8] the authors discuss the long time behavior of entire Lipschitz graphs evolving under
(1.1), showing that asymptotically flat graphs and periodic graphs converge to hyperplanes
uniformly in C1 .

In this paper we shall mainly consider the long time behavior of the volume preserving flow
(1.2), with initial data E0 which are nearly spherical, according to the following definition:

Definition 1.1 (Nearly spherical set). Let Bm ⊂ R
n the n-dimensional ball centered at 0 and

with volume m > 0. A nearly spherical set E is defined as follows:

(1.4) E := {rx, x ∈ ∂Bm, r ∈ [0, 1 + u(x)]}
where u : ∂Bm → R is a C1,1 function with ‖u‖C1 < 1. (In the sequel we may extend the
function u to R

n \ {0} by letting u(x) := u(x/|x|).)

In particular, in Theorem 3.3 we show that, if the initial set is nearly spherical with ε
sufficiently small, then the volume preserving flow exists smooth for all times and converges
exponentially fast in C∞ to a translate of the reference ball. This result provides an im-
provement of the result in [12] discussed above, see Corollary 3.5, ruling out the possibility of
indefinite translations and giving the exponential rate of convergence. Similar results in the
local setting date back to [19] for the case of convex initial sets, to [1, 16] for nearly spherical
initial sets, and more recently to [22] in dimension 2 for weak solutions starting from a general
bounded set of finite perimeter.

The main technical tool used in the proof is a quantitative Alexandrov type estimate for
nearly spherical sets, proved in Theorem 2.2. In [4, 13] a fractional analog of the classical
Alexandrov theorem was established, namely that the boundary of a bounded smooth set with
constant fractional mean curvature is necessarily a sphere. More generally, in [13] it is proved
that the Lipschitz constant of the fractional mean curvature of a set with smooth boundary
controls linearly its C2-distance from a single sphere. On the other hand, the Alexandrov type

estimate (2.4) provides a linear control on the H
1+s
2 distance from the reference sphere of a
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nearly spherical set, in terms of the L2 deficit of the fractional curvature, so giving a stability
results for nearly spherical sets.

The inequality (2.5) in Theorem 2.2 can be interpreted as a Łojasiewicz-Simon inequality
(see [11]) for the energy functional Pers(E). Indeed, it bounds the difference in energy between
the ball, which is a critical point of the fractional perimeter, and a nearly spherical set in terms
of L2 norm of the first variation of the energy, that is, the the L2 deficit of the fractional mean
curvature. The idea of using these inequalities for proving convergence of solutions to parabolic
equations goes back to the seminal paper of Simon [28], and has been used for geometric flows
in different contexts, see for instance [24] and references therein.

After this work was completed, we were informed that an Alexandrov type inequality similar
to the one in Theorem 2.2 has been independently established in [14], where the authors prove
the existence of flat flows for the fractional volume preserving mean curvature flow, and
characterize the long time behaviour of its discrete-in-time approximation in low dimension
(since in higher dimension it is missing an Alexandrov type theorem for non smooth sets in
the fractional case). In particular, they show that the discrete flow starting from a bounded
set of finite fractional perimeter converges exponentially fast to a single ball.

Finally, we observe that the case of entire periodic graphs evolving by (1.1) presents some
analogies with the flow of nearly spherical sets by the volume preserving mean curvature flow.
In particular, in the last section of the paper we establish a similar Łojasiewicz-Simon inequal-
ity for periodic graphs, which allows us to improve the long time convergence to hyperplanes
proved in [8], getting exponential convergence in C∞, see Corollary 4.4.

Acknowledgments. The authors are members of INDAM-GNAMPA. The second author was
supported by the PRIN Project 2019/24.

2. An Alexandrov type estimate for nearly spherical sets

In this section we show that if E is a nearly spherical set, the H
1+s
2 -distance of ∂E to

the reference sphere is linearly bounded in terms of the L2-deficit of Hs
E with respect to its

average, whenever ∂E is a sufficiently small perturbation of the sphere. The analogous result
of Theorem 2.2 in the case of the classical mean curvature has been proved in [23, Theorem
1.10] and [26, Theorem 1.2].

First of all we observe that, via a simple rescaling argument, we may reduce to the case of
volume 1. Indeed, it is clear that the results we are going to prove can also be stated for sets
parametrized over a ball Bm with volume m, with constants depending on m. The dependence
of such constants on m can be made uniform as m varies on bounded intervals.

We introduce the (squared) fractional Gagliardo seminorm of u:

(2.1) [u]21+s
2

:=

∫

∂B

∫

∂B

(u(x)− u(y))2

|x− y|n+s
dHn−1(y)dHn−1(x).

Moreover we will indicate with ‖u‖22 the squared L2(∂B) norm of u, that is
∫

∂B
u2(x)dHn−1(x).

We will endow the fractional Sobolev space H
1+s
2 (∂B) with the norm given by the square root

of

‖u‖2L2(∂B) + [u]21+s
2

.
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We introduce the hypersingular Riesz operator on the sphere, which is defined (up to constants
depending on s and n) as

(2.2) (−∆)
1+s
2 u(x) = 2

∫

∂B

u(x)− u(y)

|x− y|n+s
dHn−1(y).

Note that

(2.3) [u]21+s
2

=

∫

∂B

u(x)(−∆)
1+s
2 u(x)dHn−1(x).

We recall the following results on the asymptotics of these norms (see [2], [25]) and of the
curvatures ([7]), as s → 0, 1.

Theorem 2.1. Let u ∈ H1(∂B). There exist dimensional constants c(n), k(n) > 0 such that

lims→1−(1 − s)‖u‖21+s
2

= c(n)‖∇u‖22 and lims→0+ s‖u‖21+s
2

= k(n)‖u‖22. Let E ⊆ R
n be a

bounded set with C1,1 boundary. Then there exist dimensional constants c(n), k(n) > 0 such

that lims→1−(1 − s)Hs
E(x) = c(n)HE(x), uniformly in x ∈ ∂E, where HE(x) is the classical

mean curvature, and lims→0+ sHs
E(x) = k(n)|E| uniformly for x ∈ ∂E.

We now state the main result of this section. For the case in which s = 1, we refer to
[23, Theorem 1.10] and [26, Theorem 1.2].

Theorem 2.2. Assume that E is a nearly spherical set such that |E| = |B| and the barycenter

of E is the same as B, that is,
∫

E
xdx = 0. Then there exist positive constants C(n, s) > 0

and ε0(n, s) ∈ (0, 1) such that if ‖u‖C1 < ε0 there holds

(2.4) [u]21+s
2

+ ‖u‖22 6 C(n, s)‖Hs
E −Hs

E‖2L2(∂E).

Moreover there exists a positive constant K(n, s) > 0 depending on n, s such that

(2.5) Pers(E)− Pers(B) 6 K(n, s)‖Hs
E −Hs

E‖2L2(∂E).

First of all we observe that it is sufficient to prove (2.4), since (2.5) is a consequence of (2.4)
and of the rigidity inequality

(2.6) Pers(E)− Pers(B) 6 c(n)[u]21+s
2

which was proved in [15, Theorem 6.2].
In order to show (2.4) we need some preliminary computations. We first compute the

fractional mean curvature of E in spherical coordinates. We fix a point x̄ on ∂E. Then
x̄ = (1 + u(x))x for some x ∈ ∂B. We rewrite the curvature Hs

E(x̄) as defined in (1.1) as
an integral over ∂B, by using the area formula. Observe that if ȳ = (1 + u(y))y ∈ ∂E with

y ∈ ∂B, then ν(ȳ) = (1+u(y))y−∇u(y)√
|1+u(y)|2+|∇u(y)|2

where ∇u is the tangential gradient of u. Moreover

the tangential jacobian (see e.g. [23, Lemma 4.1]) is given at a point ȳ = (1 + u(y))y by
√

|1 + u(y)|2 + |∇u(y)|2(1 + u(y))n−2.
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So by the area formula the curvature Hs
E(x̄) coincides with

Hs
E(x(1 + u(x))

=
2

s

∫

∂B

(y − x+ yu(y)− xu(x)) · [(1 + u(y))y −∇u(y)]

|y − x+ yu(y)− xu(x)|n+s
(1 + u(y))n−2dHn−1(y)

=
2

s

∫

∂B

u(y)− u(x)

|y − x+ yu(y)− xu(x)|n+s
(1 + u(y))n−1dHn−1(y)(2.7)

+
1

s

∫

∂B

(u(x) + 1)|x − y|2
|y − x+ yu(y)− xu(x)|n+s

(1 + u(y))n−1dHn−1(y)(2.8)

+
2

s

∫

∂B

(1 + u(x))(x− y) · ∇u(y)

|y − x+ yu(y)− xu(x)|n+s
(1 + u(y))n−2dHn−1(y),(2.9)

where we used that ∇u(y) · y = 0, (y − x) · y = |y−x|2

2 = 1− x · y .
We start with some integral estimates of the difference between the curvature of E (ex-

pressed in spherical coordinates) and the curvature of the ball. By using the definition (1.1)

and the fact that (y − x) · y = |y−x|2

2 for all x, y ∈ ∂B, we get that the curvature of the ball
Hs

B is constant and coincides with

(2.10) Hs
B =

1

s

∫

∂B

1

|x− y|n+s−2
dHn−1(y).

Lemma 2.3. Let E be a nearly spherical set as in Definition 1.1. For every x ∈ ∂B, we denote

with Hs
E(x(1+u(x))) the fractional mean curvature of E at the point x(1+u(x)) ∈ ∂E. Then

there holds
∫

∂B

(Hs
E(x(1 + u(x))−Hs

B) = −n+ s

2
[u]21+s

2

(1 +O(‖u‖C1)− sHs
B

∫

∂B

u(x)

+
s(s+ 1)

2
Hs

B‖u‖22(1 +O(‖u‖C1),(2.11)
∫

∂B

u(x)(Hs
E(x(1 + u(x))−Hs

B) =
(

[u]21+s
2

− sHs
B‖u‖22

)

(1 +O(‖u‖C1)),(2.12)

where O(‖u‖C1) denotes a function f(x) such that |f(x)| 6 C‖u‖C1 for all x ∈ ∂B, for some

C > 0.
Moreover, if |E| = |B| we may rewrite (2.11) as

(2.13)

∫

∂B

(Hs
E(x(1 + u(x)))−Hs

B) = −n+ s

2

(

[u]21+s
2

− sHs
B‖u‖22

)

(1 +O(‖u‖C1)).

Proof. We first notice that

(1 + u(y))n−1 = 1 + (n− 1)u(y) +
(n − 1)(n − 2)

2
u2(y) +O(‖u‖3C1)

1

|y − x+ yu(y)− xu(x)|n+s
=

1

|y − x|n+s
− n+ s

2|x− y|n+s
(u(x) + u(y)) +

+
(n+ s)(n+ s+ 2)

8|x− y|n+s
(u2(y) + u2(x)) +

(n+ s)2

4|x− y|n+s
u(x)u(y)

− n+ s

2|x− y|n+s

|u(y)− u(x)|2
|x− y|2 +

1

|x− y|n+s
O(‖u‖3C1),
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Putting together the previous expansions we conclude that

(1 + u(y))n−1

|y − x+ yu(y)− xu(x)|n+s
=

1

|x− y|n+s
− n+ s

2|x− y|n+s

|u(y)− u(x)|2
|x− y|2

+
n− 1

|x− y|n+s
u(y)− n+ s

2|x− y|n+s
(u(x) + u(y))

+
(n− 1)(n − 2)

2|x− y|n+s
u2(y)− (n− 1)(n + s)

2|x− y|n+s
u(y)(u(x) + u(y))

+
(n+ s)(n+ s+ 2)

8|x− y|n+s
(u2(y) + u2(x)) +

(n+ s)2

4|x− y|n+s
u(x)u(y)

+
1

|x− y|n+s
O(‖u‖3C1).(2.14)

We shall compute
∫

∂B
Hs

E(x(1 + u(x))dHn−1(x) and
∫

∂B
u(x)Hs

E(x(1 + u(x))dHn−1(x) by
considering separately the three terms in (2.7), (2.8), (2.9).

First term (2.7). We use the Taylor expansion (2.14) in the term in (2.7) and we integrate
it on ∂B with respect to x: We get

(2.15)
2(n − 1)

s

∫

∂B

∫

∂B

(u(y)− u(x))u(y)

|y − x|n+s
[1 +O(‖u‖C1)] dHn−1(y)

=
(n− 1)

s

∫

∂B

∫

∂B

(u(y)− u(x))2

|y − x|n+s
[1 +O(‖u‖C1))] dHn−1(y)dHn−1(x) =

n− 1

s
[u]21+s

2

(1+O(‖u‖C1)).

We multiply now the term in (2.7) by u(x) and integrate, also using the Taylor expansion and
we get

(2.16)
2

s

∫

∂B

∫

∂B

(u(y)− u(x))u(x)

|y − x|n+s
[1 +O(‖u‖C1)] dHn−1(y) = −1

s
[u]21+s

2

(1 +O(‖u‖C1)).

Second term (2.8). We use the Taylor expansion (2.14) in the term in (2.8) and we integrate
it on ∂B with respect to x recalling (2.10): We get

∫

∂B

Hs
BdH

n−1(x)− n+ s

2s
[u]21+s

2

(1 +O(‖u‖C1))(2.17)

− sHs
B

∫

∂B

u(x)dHn−1(x)(1O(‖∇u‖2C0)

+
n2 − 4n+ s2 + 2s+ 4

4
Hs

B

∫

∂B

u2(x)dHn−1(x)(1 +O(‖u‖C1))

+
s2 − n2 − 4 + 4n

4s

∫

∂B

∫

∂B

u(x)u(y)

|x− y|n+s−2
dHn−1(x)dHn−1(y)(1 +O(‖u‖C1)).

We multiply the term (2.8) by u(x) and integrate and we get, recalling (2.10),

Hs
B

∫

∂B

u(x)dHn−1(x) + [u]21+s
2

O(‖u‖C1) +
2− n− s

2
Hs

B

∫

∂B

u2(x)(1 +O(‖u‖C1))dHn−1(x)

+
n− 2− s

2s

∫

∂B

∫

∂B

u(x)u(y)

|x− y|n+s−2
dHn−1(y)dHn−1(x).(2.18)
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Third term (2.9). Integrating (2.9) on ∂B with respect to x and using the Taylor expansion
(2.14) (with n− 1 in place of n) we get

2

s

[

1− n+ s

2

]
∫

∂B

∫

∂B

u(x)(x − y) · ∇u(y)

|x− y|n+s
(1 +O(‖u‖C1)) dHn−1(y)dHn−1(x)(2.19)

−n+ s

s

∫

∂B

∫

∂B

(x− y) · ∇u(y)

|x− y|n+s

|u(y)− u(x)|2
|x− y|2 (1 +O(‖u‖C1))dHn−1(y)dHn−1(x).

In order to rewrite the two terms in (2.19), we are going to use the divergence theorem on

∂B. Let us fix x ∈ ∂B and consider the map T (y) = (u(y)−u(x))(y−x)
|x−y|n+s for y ∈ ∂B. We compute

the Jacobian of T :

JT (y) =
u(y)− u(x)

|x− y|n+s

[

δij − (n+ s)
y − x

|y − x| ⊗
y − x

|y − x|

]

+
∇u(y)⊗ (y − x)

|x− y|n+s

so that

(2.20) divT (y) = −s(u(y)− u(x))

|x− y|n+s
+

∇u(y) · (y − x)

|x− y|n+s
.

Recalling that ∇u(y) · y = 0, and that y · (y − x) = |y−x|2

2 we have that

yJT (y) · y =
u(y)− u(x)

|x− y|n+s
− n+ s

4

u(y)− u(x)

|x− y|n+s−2

and so we get that the tangential divergence of T is given by

divτT (y) = −(s+ 1)
u(y) − u(x)

|x− y|n+s
+

(u(y)− u(x))(n + s)

4|x− y|n+s−2
+

∇u(y) · (y − x)

|x− y|n+s
.

By the divergence theorem on ∂B, we have that (recalling that the curvature of B is n− 1)

−(s+1)

∫

∂B

u(y)− u(x)

|x− y|n+s
+
n+ s

4

∫

∂B

(u(y)− u(x))

|x− y|n+s−2
+

∫

∂B

∇u(y) · (y − x)

|x− y|n+s
=

n− 1

2

∫

∂B

u(y)− u(x)

|x− y|n+s−2
.

Multiplying by u(x) and integrating on the sphere we get

(2.21)

∫

∂B

∫

∂B

u(x)(x− y) · ∇u(y)

|x− y|n+s
=

s+ 1

2
[u]21+s

2

+
n− s− 2

4
sHs

B

∫

∂B

u2(x)

+
s+ 2− n

4

∫

∂B

∫

∂B

u(x)u(y)

|x− y|n+s−2
.

Repeating the same kind of computations for S(y) = (u(y)−u(x))3(y−x)
|x−y|n+s+2 we get that

divτS(y) = −(s+3)
(u(y)− u(x))3

|x− y|n+s+2
+
(u(y)− u(x))3(n+ s+ 2)

4|x− y|n+s
+3

|u(y)− u(x)|2∇u(y) · (y − x)

|x− y|n+s+2
.

Now we use the the divergence theorem on ∂B, to get
∫

∂B

divτS(y) =
n− 1

2

∫

∂B

(u(y)− u(x))3

|x− y|n+s

and integrating again on ∂B, we obtain

(2.22)

∫

∂B

∫

∂B

(x− y) · ∇u(y)

|x− y|n+s

|u(y)− u(x)|2
|x− y|2 dHn−1(y)dHn−1(x) = 0.
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We use (2.21) and (2.22) in (2.19) and we get

(2.23)
(s+ 1)(2 − n− s)

2s
[u]21+s

2

(1 +O(‖u‖C1)) +
s2 − (n− 2)2

4
Hs

B

∫

∂B

u2(x)

+
(n− 2)2 − s2

4s

∫

∂B

∫

∂B

u(x)u(y)

|x− y|n+s−2
.

If we multiply by u(x) the term in (2.9) and integrate, recalling the Taylor expansion and
using (2.21), we get

s+ 1

s
[u]21+s

2

(1 +O(‖u‖C1))(2.24)

+
n− s− 2

2
Hs

B

∫

∂B

u2(x) +
s+ 2− n

2s

∫

∂B

∫

∂B

u(x)u(x)

|x− y|n+s−2
.

By using (2.15), (2.17) and (2.23) we conclude (2.11). By using (2.16), (2.18) and (2.24)
we conclude (2.12).

Finally the volume condition reads

|B| =
∫

E

dx =

∫

∂B

(1 + u(y))n

n
dHn−1(y).

So, recalling that n|B| =
∫

∂B
dHn−1(y), and performing a Taylor expansion we get

(2.25)

∫

∂B

u(y)dHn−1(y) = −n− 1

2

∫

∂B

u2(y)(1 +O(‖u‖C1))dHn−1(y).

If we substitute in (2.11), we conclude (2.13).
�

Proof of Theorem 2.2. As discussed above it is sufficient to prove the validity of (2.4). The
proof of this estimate is divided in two main steps. In the first step, using Lemma 2.3 and
a Poincarè type inequality, we prove that there exist ε0 = ε0(n, s) > 0 and C(n, s) > 0
depending on n, s such that if ‖u‖C1 < ε0 there holds

(2.26) [u]21+s
2

+ ‖u‖22 6 C(n, s)‖Hs
E −Hs

B‖2L2(∂B).

In the second step, by a rescaling argument and by the area formula we deduce (2.4) from
(2.26).

Along the proof, C(n, s) will indicate a constant depending on n, s which may change from
line to line.
First Step: proof of (2.26).

We follow [17, Section 2], where it is provided the fractional counterpart of the classical
estimates of Fuglede on nearly spherical sets, see [18]. We introduce the L2(∂B) orthonormal
basis Y i

k of spherical harmonics of degree k = 0, 1, . . . . Of course we have that Y0 = 1√
n|B|

,

Y i
1 = xi√

|B|
for i = 1 . . . , n.

We will denote with λs
k the k-order eigenvalue of the operator (2.2), so there holds that

(−∆)
1+s
2 Y i

k = λs
kY

i
k . It is possible to show (we refer to [17, Proposition 2.3] and references

therein) that λs
k > λs

k−1 for all k > 1 and that

(2.27) λs
0 = 0, λs

1 = sHs
B, λs

2 =
2n

n− s
λs
1 > 2λs

1.
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We write u as a Fourier serie with respect to the spherical harmonics, up to degree 2:

u(x) = aY0+

n
∑

i=1

bi ·Y i
1 +R(x) =

1

n|B|

∫

∂B

u(y)dHn−1(y)+
1

|B|

∫

∂B

u(y)y ·xdHn−1(y)+R(x)

where R is orthogonal to the harmonics of degree 0, 1, that is
∫

∂B
R(y)dHn−1(y) = 0 and

∫

∂B
yiR(y)dHn−1(y) = 0 for all i. We compute

(2.28)

‖u‖22 =

∫

∂B

u2(x)dHn−1(x) =
1

|B|

(
∫

∂B

u(y)dHn−1(y)

)2

+
1

|B|

∣

∣

∣

∣

∫

∂B

u(y)ydHn−1(y)

∣

∣

∣

∣

2

+‖R‖22.

and moreover, recalling the relation (2.3), there holds

(2.29) [u]21+s
2

= λs
1

1

|B|

∣

∣

∣

∣

∫

∂B

u(y)ydHn−1(y)

∣

∣

∣

∣

2

+ [R]21+s
2

.

Since R is orthogonal to the harmonics of degree 0 and 1, by the monotonicity of the
eigenvalues and by (2.27), there holds a fractional Poincaré type inequality

(2.30) [R]21+s
2

> λs
2‖R‖22 =

2n

n− s
λs
1‖R‖22 =

2n

n− s
sHs

B‖R‖22.

Therefore

(2.31) λs
1‖R‖22 6

n− s

2n
[R]21+s

2

6
1

2
[R]21+s

2

.

We rewrite the H
1+s
2 norm of u as follows:

‖u‖22 + [u]21+s
2

=
1

|B|

∣

∣

∣

∣

∫

∂B

u(y)dHn−1(y)

∣

∣

∣

∣

2

+
1 + λs

1

|B|

∣

∣

∣

∣

∫

∂B

yu(y)dHn−1(y)

∣

∣

∣

∣

2

+ ‖R‖22 + [R]21+s
2

6
1

|B|

∣

∣

∣

∣

∫

∂B

u(y)dHn−1(y)

∣

∣

∣

∣

2

+
1 + λs

1

|B|

∣

∣

∣

∣

∫

∂B

yu(y)dHn−1(y)

∣

∣

∣

∣

2

+

(

1 +
1

2λs
1

)

[R]21+s
2

.(2.32)

We are going to estimate each term appearing on the left hand side.
First of all we observe that by exploiting the barycenter condition

∫

E
xi = 0, rewriting the

integral in polar coordinates we get for all i = 1, . . . , n, 0 =
∫

E
xi =

∫

∂B

yi(1+u(y))n+1

n+1 dHn−1(y).

Now, using a Taylor expansion and recalling that
∫

∂B
yidH

n−1(y) = 0 we get
∣

∣

∣

∣

∫

∂B

yiu(y)dH
n−1(y)

∣

∣

∣

∣

= n

∫

∂B

yiu
2(y)(1 + εO(1))dHn−1(y) 6 n‖u‖22(1 + εO(1))

from which we deduce

(2.33)

∣

∣

∣

∣

∫

∂B

yu(y)dHn−1(y)

∣

∣

∣

∣

2

6 n‖u‖42(1 + εO(1)) = ε‖u‖22O(1).

Now, by (2.28) and (2.29) and by (2.33), we get

(2.34) [u]21+s
2

− λs
1‖u‖22 + λs

1

1

|B|

∣

∣

∣

∣

∫

∂B

u(y)dHn−1(y)

∣

∣

∣

∣

2

= [R]21+s
2

− λs
1‖R‖22 >

1

2
[R]21+s

2

.



10 A. CESARONI, M. NOVAGA

Recalling that λs
1 = sHs

B and using (2.12) to substitute [u]21+s
2

− λs
1‖u‖22 in the previous

inequality we get
∫

∂B

u(x)(Hs
E(x(1 + u(x))−Hs

B)dH
n−1(x) +

sHs
B

|B|

∣

∣

∣

∣

∫

∂B

u(y)dHn−1(y)

∣

∣

∣

∣

2

>
1

2
[R]21+s

2

from which, by Hölder inequality, we conclude that

(2.35)
1

2
[R]21+s

2

6
sHs

B

|B|

∣

∣

∣

∣

∫

∂B

u(y)dHn−1(y)

∣

∣

∣

∣

2

+ ‖u‖2‖Hs
E −Hs

B‖L2(∂B).

Observe that by (2.11) and Hölder inequality we get

√

n|B|‖Hs
E −Hs

B‖L2(∂B) >

∣

∣

∣

∣

∫

∂B

(Hs
E(x(1 + u(x))−Hs

B)dH
n−1(x)

∣

∣

∣

∣

>
sHs

B

2

∣

∣

∣

∣

∫

∂B

u(x)dHn−1(x)

∣

∣

∣

∣

− n+ s

2
[u]21+s

2

(1 + εO(1)) − sHs
B‖u‖22(1 + εO(1)).

In particular this implies that for some constant C(n, s) > 0 depending on n, s there holds

(2.36)

∣

∣

∣

∣

∫

∂B

u(x)dHn−1(x)

∣

∣

∣

∣

2

6 C(n, s)
[

‖Hs
E −Hs

B‖2L2(∂B) + ([u]21+s
2

+ ‖u‖22)2(1 + εO(1))
]

.

By using (2.30), (2.33), (2.35), (2.36), we get that there exists a constant C(n, s) > 0 such
that

‖u‖22 +[u]21+s
2

6 C(n, s)
[

‖Hs
E −Hs

B‖2L2(∂B) + ‖Hs
E −Hs

B‖L2(∂B)‖u‖2
]

+ εO(1)(‖u‖22 +[u]21+s
2

).

By Young inequality, we conclude (2.26).

Second step: proof of (2.4).
First of all note that by area formula and by the estimate (2.13) we get that

Hs
E =

1

Per(E)

∫

∂B

Hs
E(x(1 + u(x)x)

√

(1 + u(x))2 + |∇u(x)|2(1 + u(x))n−2dHn−1(x)

=
Per(B)

Per(E)
Hs

B(1 + εO(1)) − n+ s

2Per(E)
([u]21+s

2

− sHs
B‖u‖22)(1 + εO(1))

= Hs
B +

Per(E)− Per(B)

Per(E)
Hs

B − n+ s

2Per(E)
([u]21+s

2

− sHs
B‖u‖22)(1 + εO(1)).

By the area formula and a linearization argument (see [26]) we get that 0 6 Per(E)−Per(B) 6
C(n)‖u‖2

H1(∂B). Therefore we conclude that there exists λ ∈ R with |λ| 6 C(n, s)ε for some

constant C(n, s) only depending on n, s such that

Hs
E = Hs

B(1 + λ).

We define Eλ = (1 + λ)
1
sE, that is Eλ is the nearly spherical set associated with the function

uλ = (1 + λ)
1
s − 1 + (1 + λ)

1
su. Note that Hs

Eλ
= Hs

B and by (2.26) applied to uλ we get

[uλ]
2
1+s
2

+ ‖uλ‖22 6 C(n, s)‖Hs
Eλ

−Hs
Eλ

‖2L2(∂B) =
C(n, s)

(1 + λ)2
‖Hs

E −HEs‖2L2(∂B).
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Observing that [uλ]
2
1+s
2

= (1 + λ)
2
s [u]21+s

2

we get for ε sufficiently small

[u]21+s
2

6 2C(n, s)‖Hs
E −HEs‖2L2(∂B).

Finally, we recall the Poincaré type inequality (2.34)

[u]21+s
2

> λs
1‖u‖22 − λs

1

1

|B|

∣

∣

∣

∣

∫

∂B

u(y)dHn−1(y)

∣

∣

∣

∣

2

and the fact that, by the volume condition |E| = |B|, there holds (see (2.25))
∣

∣

∣

∣

∫

∂B

u(y)dHn−1(y)

∣

∣

∣

∣

2

6 C‖u‖42.

Therefore we obtain

[u]21+s
2

+ ‖u‖22 6 C(n, s)‖Hs
E −Hs

E‖2L2(∂B).

Finally we observe that, if ‖u‖C1 6 ε0, there exists a constant depending on the dimension
such that

(2.37) C(n)−1‖Hs
E −HEs‖L2(∂E) 6 ‖Hs

E −HEs‖L2(∂B) 6 C(n)‖Hs
E −HEs‖L2(∂E).

Using this estimate and the previous inequality, we obtain (2.4). �

3. Volume preserving flow of nearly spherical sets

In this section we consider the long long time behavior of the volume preserving mean
curvature flow (1.2) starting from nearly spherical sets. In particular we will show that if E0

is a nearly spherical set sufficiently close to a sphere Bm, then the flow Et exists for all times
and converges exponentially fast to the reference sphere Bm, eventually translated by some
vector b̄, as t → +∞. This result will be obtained by using the short time existence result
in [21], the Alexandrov theorem for the fractional mean curvature proved in [13], [4] and the
quantitative inequality (2.5) obtained in Theorem 2.2, which can be regarded as a Łojasiewicz-
Simon inequality for the geometric functional Pers(E) − Pers(Bm). Similar arguments have
been used in [28], see also [24], to provide full convergence of geometric gradient flows. We
refer to [1], [16] (see also [19]) for an analogous result in the local case.

First of all we observe that we may restrict without loss of generality to the case in which
the reference ball has volume m = 1. Indeed the general case can be obtained via a simple
rescaling argument.

We start recalling the fractional analogue of the classical Alexandrov theorem:

Theorem 3.1 ([4],[13]). If Ω is a bounded open set with boundary of class C1,s and Hs
Ω is

constant on ∂Ω, then ∂Ω is a sphere.

Short time existence of a smooth solution to (1.2) has been proved in [21] for compact initial
data with C1,1 boundary, by parametrizing the flow using the height function over a smooth
reference surface and by exploiting a fixed point argument.

Theorem 3.2 ([21]). Let α ∈ (0, 1− s), and Σ be a smooth compact surface and assume that

the initial datum ∂E0 can be written as the graph of a function u0 on Σ, which is called the

height function.
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Then there exists δ0 > 0, T0 > 0 and Ck > 0 for k > 2 such that if ‖u0‖C1,s+α(Σ) 6 δ0 then

(1.2) has a unique classical solution Et for t ∈ [0, T0) starting from E0, moreover ∂Et is the

graph of a smooth function u(x, t) on the surface Σ which satisfies

sup
t∈[0,T0)

‖u‖C1,α+s 6 2δ0

and for every k > 1

sup
t∈[0,T0)

tk!‖u‖Ck 6 Ck.

Since for every compact set E0 with C1,1 boundary there exists a reference smooth surface
Σ such that ∂E0 can be written as a graph on Σ of a function with ‖u0‖C1,s+α(Σ) 6 δ and
‖u‖C0(Σ) 6 ε(δ) < δ the theorem implies short time existence of smooth solutions to (1.2)

with compact C1,1 initial datum.
We restrict now the class of initial data of the flow to nearly spherical sets, in which therefore

the reference surface is given by ∂B. We parametrize the flow in terms of the height function
on the reference surfaces ∂B, see [27] and [21]. Let E0 be a nearly spherical set according to
Definition 1.1. Then the external normal of E0 at a point p = (1 + u0(x))x, with x ∈ ∂B can
be expressed as

(3.1) ν(p) =
(1 + u0(x))x−∇u0(x)

√

(1 + u0(x))2 + |∇u0(x)|2

and as long as Et = {p = rx : x ∈ ∂B, r ∈ [0, 1 + u(x, t)]}, then u(x, t) satisfies

(3.2)

{

ut(x, t) = −
[

Hs
Et
(x(1 + u(x, t)) −Hs

Et

]

√
(1+u(x,t))2+|∇u(x,t)|2

1+u(x,t) t ∈ (0, T )

u(x, 0) = u0(x).

Also viceversa, if u is a solution to (3.2) in [0, T ), then the set defined as Et = {p = rx : x ∈
∂B, r ∈ [0, 1 + u(x, t)]} is a solution to the flow (1.2) in [0, T ).

We state now our main result, which gives that the volume preserving flow starting from
a set which is sufficiently close to the ball in C1 norm smoothly converges to the ball itself
(eventually translated by a fixed vector).

Theorem 3.3. Let E0 be a nearly spherical set on a given ball B, according to Definition

1.1, with |E0| = |B|. Let C = ‖u0‖C1,1(∂B), then there exists ε = ε(C) > 0 such that if

‖u0‖C1 < ε, then the flow Et of (1.2) starting from E0 exists smooth for every time t and

moreover Et − b̄ → B in C∞, for some b̄ ∈ R
n. Moreover, there exists a constant C(n, s)

depending on n, s such that

Pers(Et)− Pers(B) 6 C(n, s)(Pers(E0)− Pers(B))e−C(n,s)t ∀t > 0

and for all m > 1 there exists a constant C(m,n, s) > 0

‖u(x, t)− (b̄ · x)x‖Cm(∂B) 6 C(m,n, s)(Pers(E0)− Pers(B))e−C(m,n,s)t ∀t > 0.

Proof. Along the proof, C(n) will indicate a dimensional constant which may change from line
to line, and C(n, s) will indicate a constant depending on n, s which may change from line to
line.

By interpolation inequality, we get that for α ∈ (0, 1 − s), ‖u0‖C1,s+α 6 C ′ε1−s−α, where
C ′ > 0 depends on C, s, α. So, if ε is sufficiently small such that C ′ε1−s−α 6 δ0, where δ0 is
as in Theorem 3.2, then the flow Et exists smooth for t ∈ [0, T0), and we have that Et is a
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nearly spherical set on ∂B with height function u(·, t) with supt∈[0,T0) ‖u‖C1+α+s 6 2δ0 and

for every k > 1, supt∈[0,T0) t
k!‖u‖Ck 6 Ck.

Note that in particular

(3.3) sup
t∈[0,T0)

‖u(·, t)‖C1 6 2δ0.

Moreover u is a solution to (3.2) in [0, T0) and in particular, recalling also (2.37), we get

‖ut‖2L2(∂B) =

∫

∂B

u2t (x, t) =

∫

∂B

[

Hs
Et
(x(1 + u(x, t))−Hs

Et

]2
(

1 +
|∇u(x, t)|2

(1 + u(x, t))2

)

(3.4)

6 ‖Hs
Et

−Hs
Et
‖2L2(∂B)(1 + δ0O(1)) 6 C(n, s)‖Hs

Et
−Hs

Et
‖2L2(∂Et)

.

We recall the evolution law of some geometric quantities associated with the flow (1.2) (see
[12, Section 2]). First of all it is easy to check that the flow preserves the volume of the set
Et since d

dt
|Et| = −

∫

∂Et
(Hs

Et
(y)−Hs

Et
)dHn−1(y) = 0, moreover

(3.5)
d

dt
Pers(Et) = −

∫

∂Et

(Hs
Et
(y)−Hs

Et
)Hs

Et
(y)dHn−1(y) = −‖Hs

Et
−Hs

Et
‖2L2(∂Et)

.

In particular this implies that Pers(Et) 6 Pers(E0), for all t ∈ (0, T0).
We compute the barycenter of Et, by using polar coordinates:

bEt =
1

|Et|

∫

Et

ydy =
1

|B|(n + 1)

∫

∂B

x(1 + u(x, t))n+1dHn−1(x).

Assuming that δ is sufficiently small, and recalling (3.3) we may perform a Taylor expansion
getting

bEt =
1

|B|

∫

∂B

x
[

u(x, t) +
n

2
u2(x, t)(1 + δO(1))

]

dHn−1(x)

where O(1) is a generic bounded function on ∂B, so that |bEt | 6 C(n)‖u‖L2(∂B) for some
dimensional constant C(n). In particular this implies that Et − bt is a nearly spherical set on
∂B with height function ũ(x, t) := u(x, t)− (bEt · x)x which still satisfies

sup
t∈[0,T0)

‖ũ‖C1 6 C(n)δ0

for some C(n) > 0 dimensional constant. This implies that, eventually choosing a smaller δ0,
we may apply the quantitative Alexandrov inequality (2.5) obtained in Theorem 2.2 to the
set Et − bEt . Recalling that the fractional perimeter and the fractional mean curvatures are
independent by spatial translations, this inequality reads as follows:

(3.6) Pers(Et)− Pers(B) 6 K(n, s)‖Hs
Et

−Hs
Et
‖2L2(∂Et)

.

We define the function

H(t) = [Pers(Et)− Pers(B)]
1
2 .

Obvioulsy, by (3.5), H(t) is decreasing in time and H(t) 6
√

Pers(E0)− Pers(B). Using (3.5)
and (3.6), and recalling (3.4), we get the following

d

dt
H(t) = −1

2

1

H(t)
‖Hs

Et
−Hs

Et
‖2L2(∂Et)

6 − 1

2
√

K(n, s)
‖Hs

Et
−Hs

Et
‖L2(∂Et)(3.7)

6 − 1

2
√

K(n, s)C(n, s)
‖ut‖L2(∂B).
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Let us fix 0 6 t1 < t2 < T0, and integrate (3.7) between t1 and t2. For some constant
C(n, s) > 0 depending on n, s, we have that

(3.8) H(0) > H(t1)−H(t2) > C(n, s)

∫ t2

t1

‖ut‖L2(∂B) > C(n, s)‖u(·, t2)− u(·, t1)‖L2(∂B)

where we used that for a smooth function f : ∂B × [t1, t2] → R there holds
∫ t2
t1

‖f‖L2(∂B) >
∥

∥

∥

∫ t2
t1

f
∥

∥

∥

L2(∂B)
, see e.g. [24, proof of Theorem 1.2].

We recall now the Fuglede type inequality (2.6) provided in [15, Theorem 6.2] which gives

H(0) =
√

Pers(E0)− Pers(B) 6
√

K(n, s)[u0]21+s
2

6 C(n, s)ε.

So, (3.8) implies for all t < T0,

‖u(·, t)‖L2(∂B) 6 C(n, s)‖u(·, t)− u0(·)‖L2(∂B) + ‖u0‖L2(∂B) 6 (C(n, s) + 1)ε.

By Gagliardo-Nirenberg-Sobolev inequality, for k > m > 2 we get

‖u(·, t)‖Hm(∂B) 6 C(n)‖u(·, t)‖1−
m
k

L2(∂B)
‖u(·, t)‖

m
k

Hk(∂B)

for all t ∈ (T0/2, T0), which in turns, by the previous estimate and by Theorem 3.2, since
‖u(·, t)‖Hk(∂B) 6 C(n)‖u(·, t)‖Ck(∂B),

‖u(·, t)‖Hm(∂B) 6 C(n, s)T
−m(k−1)!
0 C

m
k

k ε1−
m
k .

By Sobolev embedding, taking m sufficiently large, we conclude that

‖u(·, t)‖C1,s+α 6 C(n, s)T
−m(k−1)!
0 C

m
k

k ε1−
m
k .

Observe that we may choose ε > 0 sufficiently small in order to have that ‖u(·, t)‖C1,s+α < δ0
and so, we may apply again Theorem 3.2, to extend the solution on a time interval [0, 2T0).
By iterating the argument, we conclude that the solution exists smooth for all t > 0.

Note that by using (3.6) and (3.7), we have also that for all t > 0

d

dt
H(t) 6 − C(n, s)

2K(n, s)
H(t),

which implies that H(t) 6 H(0)e−C(n,s)t and so in particular

0 6 Pers(Et)− Pers(B) 6 (Pers(E0)− Pers(B))e−2C(n,s)t.

Moreover, the estimate on H(t) implies, through (3.8), that u(·, t) is a Cauchy sequence in
L2(∂B) as t → +∞, that is for all t2 > t1

‖u(·, t2)− u(·, t1)‖L2(∂B) 6 C(n, s)H(0)e−C(n,s)t1

and by the same argument as before based on Gagliardo-Nirenberg-Sobolev inequality, and
Sobolev embedding, it is also a Cauchy sequence in Cm(∂B) as t → +∞ for all m > 1.
This implies that u converges to some limit function ū : ∂B → R as t → +∞ in Cm(∂B).
Therefore, Ē = {rx, r ∈ [0, 1 + ū(x)], x ∈ ∂B} is a regular set which solves Hs

Ē
(y) = Hs

Ē
for

all y ∈ ∂Ē. So, by Theorem 3.1 we conclude that Ē = B + b̄ for some b̄ ∈ R
n. �
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We conclude observing that the previous argument gives also an improvement of a result
on the long time behavior of the flow (1.2) obtained in [12] for convex initial sets E0 under
the assumption that the flow exists smooth for all times. More precisely in [12] it is assumed
the following regularity condition:

Assumption 3.1. If Hs
Et

is bounded on Et for all t ∈ [0, T0) for some T0 6 T , where T is the

maximal time of existence of the flow (1.2), then the C2,β norm of ∂Et, up to translations,

is also bounded for some β > s by a constant only depending on the supremum of Hs. In

addition either T = T0 = +∞ or T0 < T .

A particular case in which assumption (3.1) has been proven to hold for the fractional mean
curvature flow (1.1) is the case the initial set is the subgraph of a Lipschitz continuous function
and has bounded fractional curvature, see [8].

We recall the result in [12].

Theorem 3.4 ([12]). Let E0 be a smooth compact convex set. Let Et be a solution to (1.2) in

[0, T ), where T is the maximal time of existence, and assume that (3.1) holds. Then the flow

Et is defined for all times t ∈ [0,+∞), Et is smooth and convex, and there exist bt ∈ R
n such

that Et − bt converges in C2 as t → +∞ to a ball with volume |E0|.

Our argument provide a refinement of the previous result, ruling out the translations in
time:

Corollary 3.5. Under the assumption of Theorem 3.4, then Et converges exponentially fast

in C∞ as t → +∞ to a ball with volume |E0|.

Proof. Without loss of generality we assume that |E0| = |B|. By Theorem 3.4, we have that for
ε > 0, there exists tε, btε such that Etε − btε is a C2 set with supx∈((Etε−btε )∆B d(x, ∂B) 6 Cε

and |νEtε−btε
(y)− y| 6 Cε for all y ∈ ∂(Etε − btε). Then Etε − btε can be written as a nearly

spherical set on B, with height function uε with ‖uε‖C1 6 Cε. We apply now Theorem 3.3 to
the flow starting from Etε − btε and we conclude that if we choose ε > 0 sufficiently small, we
obtain that Et − btε − b̄ → B in C∞, as t → +∞, for some b̄ ∈ R

n with exponential rate of
convergence. �

4. Evolution of periodic graphs

In this last section we show that similar arguments as for nearly spherical sets can be used
also to provide the exponential convergence to an hyperplane of entire periodic graphs in R

n,
evolving by the fractional mean curvature flow (1.1). More precisely we consider the geometric
flow (1.1) under the additional assumption that the boundary of the initial datum E0 can be
written as a periodic entire graph on an hyperplane, that is, there exists e ∈ R

n, such that
ν(x) · e > 0 for every x ∈ ∂E0. By monotonicity of the flow it is possible to show that the
evolution Et maintains this property for all positive times t > 0, that is, ν(xt) · e > 0 for every
xt ∈ ∂Et.

Note that, without loss of generality, we may assume that e = en, up to a rotation of
coordinates.

So, let us consider a set E0 which is given by the subgraph of a Lipschitz continuous,
periodic function u0. Without loss of generality, we will assume that the periodicity cell of u0
is [0, 1]n−1, so u0 is Z

n−1 periodic.
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It is standard to show (see [8]) that if E0 = {(x, z) : z 6 u0(x), x ∈ R
n−1}, then the

solution Et of (1.1) coincides with {(x, z) : z 6 u(x, t), x ∈ R
n−1}, where u solves the

following nonlocal quasilinear system:

(4.1)

{

ut(x, t) = −Hs
Et
(x, u(x, t))

√

1 + |∇u(x, t)|2
u(x, 0) = u0(x).

Moreover if the initial datum u0 is Lipschitz continuous, and Z
n−1 periodic, then by compar-

ison arguments we get that u(·, t) is Lipschitz continuous (with Lipschitz norm bounded by
the Lipschitz norm of u0) and Z

n−1 periodic.
We recall a result about existence of a smooth solution to (1.1) and long time behavior

obtained in [8, Theorem 3.3, Proposition 6.1].

Theorem 4.1 ([8]). Assume that E0 = {(x, z) : z 6 u0(x), x ∈ R
n−1}, and that the function

u0 is Z
n periodic and satisfies u0 ∈ C1,s+α(Rn−1) with ‖u‖C1,s+α(Rn−1) 6 C for some α > 0.

Then the flow Et = {(x, z) : z 6 u(x, t), x ∈ R
n−1} of (1.1) starting from E0 exists smooth

for every time t > 0, with norms bounded in R
n−1 × [t0,+∞) by constants depending on t0,

C. Moreover there exists c ∈ R such that u(x, t) → c as t → +∞ uniformly in C1(Rn−1).

In order to improve this convergence result to exponential convergence in C∞, we need first
of all to derive an analog of the inequality (2.5) obtained in Theorem (2.2) for a C1,1 function
u0 : R

n−1 → R, which is Z
n−1 periodic and satisfies ‖u0‖C1 6 ε, for ε > 0 sufficiently small.

For a set E which is given by the subgraph of a periodic function u, we define the peri-
odic fractional perimeter as follows, by considering the localized version of (1.1) on the set
[0, 1]n−1 × R:

Perps(E) :=

∫

E∩([0,1]n−1×R)

∫

Rn\E

1

|x− y|n+s
dydx

=

∫

[0,1]n−1

∫

Rn−1

∫ +∞

u(y)

∫ u(x)

−∞

1

(|x− y|2 + (w − z)2)
n+s
2

dwdzdydx.(4.2)

We recall that ∂E = {(x, u(x)), : x ∈ R
n−1}, and for p ∈ ∂E, where p = (x, u(x)) for some

x ∈ R
n−1, the exterior normal to E is given by ν(p) = (−∇u(x),1)√

1+|∇u(x)|2
. So, for p = (x, u(x)) ∈ ∂E

we have that Hs
E(x, u(x)) as defined in (1.1) coincides with

Hs
E(x, u(x)) =

2

s

∫

Rn−1

(y − x, u(y)− u(x)) · (−∇u(y), 1)

(|y − x|2 + (u(x)− u(y))2)
n+s
2

dy

=
2

s

∫

Rn−1

u(y)− u(x) + (x− y) · ∇u(y)

(|y − x|2 + (u(x)− u(y))2)
n+s
2

dy.

We introduce the (squared) fractional Gagliardo seminorm of u (recalling that the period-
icity cell of u is [0, 1]n−1) which is defined as

(4.3) [u]21+s
2

:=

∫

[0,1]n−1

∫

Rn−1

(u(x) − u(y))2

|x− y|n+s
dxdy.

Moreover we will indicate with ‖u‖22 the squared L2 norm of u on its periodicity cell, that
is

∫

[0,1]n−1 u
2(x)dx. We recall the following Poincarè type inequality, see [3]: there exists a
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dimensional constant such that if u is a periodic function with
∫

[0,1]n−1 u(x)dx = 0, there holds

(4.4) [u]21+s
2

>
C(n)

1− s
‖u‖22.

We prove now a rigidity type result in the same spirit of (2.6).

Lemma 4.2. Assume that E is the subgraph E of a periodic function u ∈ C1,1(Rn−1). Let

Hc be the hyperplane {(x, z) x ∈ R
n−1, z 6 c}. Then there holds

1

2(1 + 4‖∇u‖2∞)
n+s
2

[u]21+s
2

6 Perps(E) − Perps(Hc) 6
1

2
[u]21+s

2

.

Proof. Recalling the definition (4.2) and using the periodicity of u, we observe that

Perps(E)− Perps(Hc) =
1

2

∫

[0,1]n−1

∫

Rn−1

∫ +∞

u(y)

∫ u(x)

−∞

1

(|x− y|2 + (w − z)2)
n+s
2

dwdzdydx

+
1

2

∫

[0,1]n−1

∫

Rn−1

∫ +∞

u(x)

∫ u(y)

−∞

1

(|x− y|2 + (w − z)2)
n+s
2

dwdzdydx

−
∫

[0,1]n−1

∫

Rn−1

∫ +∞

c

∫ c

−∞

1

(|x− y|2 + (w − z)2)
n+s
2

dwdzdydx.

Observe that
∫ a

−∞

∫ +∞

b

+

∫ b

−∞

∫ +∞

a

=

∫ b

−∞

∫ +∞

b

+

∫ a

b

∫ +∞

b

+

∫ a

−∞

∫ +∞

a

+

∫ b

a

∫ +∞

a

=

∫ b

−∞

∫ +∞

b

+

∫ a

−∞

∫ +∞

a

+

∫ b

a

∫ b

a

.

So, substituting in the previous formula with u(x) = a, u(y) = b, we get

Perps(E)− Perps(Hc) =
1

2

∫

[0,1]n−1

∫

Rn−1

∫ u(y)

u(x)

∫ u(y)

u(x)

1

(|x− y|2 + (w − z)2)
n+s
2

dwdzdydx.

So, it is immediate to check that

Perps(E) − Perps(Hc) 6
1

2

∫

[0,1]n−1

∫

Rn−1

∫ u(y)

u(x)

∫ u(y)

u(x)

1

|x− y|n+s
dwdzdydx

=
1

2

∫

[0,1]n−1

∫

Rn−1

(u(x)− u(y))2

|x− y|n+s
dxdy =

1

2
[u]21+s

2

.

On the other hand, by a simple change of variables

Perps(E)− Perps(Hc) =
1

2

∫

[0,1]n−1

∫

Rn−1

∫
u(y)−u(x)

|x−y|

0

∫
u(y)−u(x)

|x−y|

0

|x− y|2

|x− y|n+s(1 + (w − z)2)
n+s
2

dwdzdydx

>
1

2(1 + 4‖∇u‖2∞)
n+s
2

∫

[0,1]n−1

∫

Rn−1

∫
u(y)−u(x)

|x−y|

0

∫
u(y)−u(x)

|x−y|

0

|x− y|2
|x− y|n+s

dwdzdydx

=
1

2(1 + 4‖∇u‖2∞)
n+s
2

∫

[0,1]n−1

∫

Rn−1

(u(x) − u(y))2

|x− y|n+s
dxdy.

�
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We introduce the fractional Laplacian of order 1+s , which can be defined (up to constants
depending on s and n) as

(4.5) (−∆)
1+s
2 u(x) = 2

∫

Rn−1

u(x)− u(y)

|x− y|n+s
dy.

By periodicity of u there holds
∫

[0,1]n−1

∫

Rn−1
u(x)(u(x)−u(y))

|x−y|n+s dydx =
∫

Rn−1

∫

[0,1]n−1
u(x)(u(x)−u(y))

|x−y|n+s dydx,

therefore we get

(4.6) [u]21+s
2

=

∫

[0,1]n−1

u(x)(−∆)
1+s
2 u(x)dx.

Lemma 4.3. Let E be the subgraph of a periodic function u ∈ C1,1(Rn−1), with ‖∇u‖C0 6 1.
Then there holds

(4.7)

∫

[0,1]n−1

u(x)Hs
E(x, u(x))dx = [u]21+s

2

(1 +O(‖∇u‖C0)).

Moreover there exists ε0 = ε0(n) ∈ (0, 1) and C(n) > 0 such that if ‖∇u‖C0 < ε0, and
∫

[0,1]n−1 u(x) = 0, there holds

‖Hs
E‖2L2([0,1]n−1) > C(n)[u]21+s

2

.

Finally by Lemma 4.2 we also have

(4.8) ‖Hs
E‖2L2([0,1]n−1) > 2C(n)(Perps(E)− Perps(Hc))

for every hyperplane Hc = {(x, z) x ∈ R
n−1, z 6 c}.

Proof. We write the following Taylor expansions, where O(‖∇u‖C0) is any function f such
that |f(x)| 6 C‖∇u‖C0 for all x ∈ R

n−1:

1

(|y − x|2 + (u(x)− u(y))2)
n+s
2

=
1

|x− y|n+s
− n+ s

|x− y|n+s

(u(x)− u(y))2

|x− y|2 (1 +O(‖∇u‖2C0),

and so, substituting in the previous formula for Hs
E we get

Hs
E(x, u(x)) =

2

s

∫

Rn−1

u(y)− u(x) + (x− y) · ∇u(y)

|x− y|n+s
(1 +O(‖∇u‖2C0)dy.

Now, we fix x ∈ [0, 1]n−1 and we define T (y) = (u(y)−u(x))(y−x)
|x−y|n+s for y ∈ R

n−1. We observe that,

by the same computations as in (2.20), we have

divT (y) = −(s+ 1)(u(y) − u(x))

|x− y|n+s
+

∇u(y) · (y − x)

|x− y|n+s
.

It is easy to check that
∫

Rn−1 divT (y)dy = limR→+∞

∫

B(x,R) divT (y)dy = 0 and so we get that
∫

Rn−1

(x− y) · ∇u(y)

|x− y|n+s
dy = −(s+ 1)

∫

Rn−1

u(y)− u(x)

|x− y|n+s
dy.

Therefore, we conclude that the fractional mean curvature is given by Hs
E we get

Hs
E(x, u(x)) = −2

∫

Rn−1

u(y)− u(x)

|x− y|n+s
(1 +O(‖∇u‖2C0)dy.

This implies the conclusion (4.7), by recalling the periodicity of u.
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Now, assume that u has zero average. We apply Hölder inequality to (4.7) and we get,
recalling also the Poincarè inequality (4.4) and choosing ε0 sufficiently small

‖u‖2‖Hs
E‖2 >

∫

[0,1]n−1

u(x)Hs
E(x, u(x))dx

>
1

2
[u]21+s

2

>
1

4
[u]21+s

4

+
C(n)

4(1− s)
‖u‖22.

We fix δ = C(n)/2 and we conclude by Young inequality that

1

C(n)
‖Hs

E‖22 =
1

2δ
‖Hs

E‖22 >
1

4
[u]21+s

2

+

(

C(n)

4(1− s)
− δ

2

)

‖u‖22

=
1

4
[u]21+s

2

+
C(n)s

4(1− s)
‖u‖22

which implies the conclusion. �

We are ready to prove the exponential convergence which improve Theorem 4.1.

Corollary 4.4. Assume that E0 = {(x, z) : z 6 u0(x), x ∈ R
n−1}, where u0 ∈ C1,s(Rn−1) is

Z
n−1 periodic with ‖u‖C1,s(Rn−1) 6 C. Then the flow Et = {(x, z) : z 6 u(x, t), x ∈ R

n−1}
of (1.1) starting from E0 exists smooth for every time t > 0, and moreover there exists c̄ ∈ R

such that for all m > 1 there exists a constant C(m,n, s) > 0 such that

‖u(x, t) − c̄‖Cm 6 C(m,n, s)
√

[u0]
2
1+s
2

e−C(m,n,s)t ∀t > 0.

Proof. By Theorem 4.1, we know that the solution exists smooth for all times, and moreover
u → c̄ uniformly in C1 as t → +∞. So, for every ε > 0 there exists tε such that ‖∇u(·, t)‖C0 6

ε for all t > tε. Let mt =
∫

[0,1]n−1(u(x, t) − c̄)dx. If ε > 0 is sufficiently small, I may apply to

u(x, t) − c̄ −mt the results in Lemma 4.3 for all t > tε. In particular (4.8) reads as follows,
observing that the fractional mean curvature and the fractional perimeter are independent by
translations,

‖Hs
Et
‖2L2([0,1]n−1) > 2C(n)(Perps(Et)− Perps(Hc)).

We proceed as in the proof of Theorem 3.3. First of all by using (4.1) we have that, for
ε > 0 small, and t > tε,

‖ut‖2L2([0,1]n−1) =

∫

[0,1]n−1

(Hs
Et
(x, u(x, t)))2(1 + |∇u(x, t)|2)dx 6 2‖Hs

Et
‖2L2([0,1]n−1).

We define H(t) =
√

Perps(Et)− Perps(Hc), so that, by using the previous inequalities and
denoting C(n) a dimensional constant, which may change from line to line

d

dt
H(t) =

1

2H(t)

d

dt
Perps(Et) = − 1

2H(t)

∫

∂Et

(Hs
Et
(x))2dHn−1(x)

6 − 1

2H(t)
‖Hs

Et
‖2L2([0,1]n−1) 6 −

√

2C(n)

2
‖Hs

Et
‖L2([0,1]n−1) 6 −C(n)‖ut‖L2([0,1]n−1).

Moreover by the same computation we have that d
dt
H(t) 6 −C(n)H(t), so H(t) 6 H(tε)e

−C(n)(t−tε)

for all t > tε.
As in the proof of Theorem 3.3, we deduce that ‖u(·, t)− c̄‖L2([0,1]n−1) is a Cauchy sequence

as t → +∞, and moreover, by the estimate in Theorem 4.1 and Sobolev embedding, ‖u(·, t)−
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c̄‖Cm([0,1]n−1) is a Cauchy sequence as t → +∞ for all m > 1, with exponential rate of
convergence. This gives the thesis. �
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