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Abstract

In this survey paper, we first present the main properties of sequentially Cohen–Maca
ulay modules. Some basic examples are provided to help the reader with quickly gett
ing acquainted with this topic. We then discuss two generalizations of the notion of
sequential Cohen–Macaulayness which are inspired by a theorem of Jürgen Herzog
and the third author.
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Introduction
This survey note, which is dedicated to the work of Jürgen Herzog on the topic, cannot
possibly be complete: thenotionof sequentiallyCohen–Macaulaymodulehas been central
in many papers in the literature from the late 90’s, starting maybe with [20]. On the other
hand, in the late 90’s Herzog’s research activity was feverish as he counted very many
visitors and collaborators. At the same time, the distribution of preprints in the form of
postscript files over the internet expedited the dissemination of mathematical ideas. We
thus must apologize in advance that our reference list is doomed to be incomplete.
It is in 1997 that Herzog, together with who would become his top co-author, Takayuki

Hibi, published a paper on simplicial complexes [26], immediately followed by another
series of papers of the two authors together with Annetta Aramova [5–7], where numer-
ical problems about simplicial complexes were addressed through the study of Hilbert
functions, Gröbner bases techniques and generic initial ideals, see also [3,4,19]. In 1999,
another influential paper authored by Herzog and Hibi, is published, [27]: they intro-
duce and study a new class of ideals, called componentwise linear. Componentwise linear
Stanley–Reisner ideals I� are characterized as those for which the pure i-th skeleton of
the Alexander dual of� is Cohen–Macaulay for every i. Thanks to [20], thismeans that I�
is componentwise linear if and only its Alexander dual is sequentially Cohen–Macaulay,
see also [30]. In this way, the authors were also able to generalize a well-known result of
Eagon and Reiner, which says that the Stanley–Reisner ideal of a simplicial complex has a
linear resolution if and only if its Alexander dual is Cohen–Macaulay. All the ideas behind
the proofs of these facts led also to another fundamental result, which is the main theo-
rem of [31] and provides a somewhat unexpected characterization of graded sequentially
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Cohen–Macaulay modules over a polynomial ring R in terms of the Hilbert function of
the local cohomology modules:

Theorem 1 Let M be a finitely generated graded R-module, and let M ∼= F/U a free
graded presentation of M. Then, F/U is sequentially Cohen–Macaulay if and only if
Hilb(Hi

m(F/U )) = Hilb(Hi
m(F/Gin(U ))) for all i � 0.

Here, Gin(U ) denotes the generic initial module of U with respect to the degree reverse
lexicographic order.
This paper is organized as follows. In the first section, we introduce the definition of

sequentially Cohen–Macaulay modules according to Stanley [37], and discuss some basic
properties and examples. In Sect. 2, we present some of the main characterizations, or
equivalent definitions, of sequential Cohen–Macaulayness, by recalling Schenzel’s results
on the dimension filtration of amodule, cf. Propositions 3, 5 andTheorem 2, and Peskine’s
characterization in terms of deficiency modules, cf. Theorem 3. In Sect. 3, we recollect
the definition of partial sequential Cohen–Macaulayness introduced by the third and the
fourth author in [35], by requiring that only the queue of the dimension filtration is a
Cohen–Macaulay filtration, see Definition 5 and some basic properties in the graded case
in Lemmata 2 and 3. The next two results, Lemma 4 and Proposition 8, are dedicated to
filling a gap in the proof of a fundamental lemma in [35], and we present the first of our
generalizations of Theorem 1 in Theorem 4. We start Sect. 4 by recalling the definition
of E-depth, as introduced by the first and second author in [12], see Definition 7. E-depth
measures howmuch depth the deficiency modules of a finitely generated standard graded
module M have altogether, and sequential Cohen–Macaulayness can be detected by E-
depth as observed in Remark 10. Some interesting homological properties of E-depth,
especially in connection with strictly filter regular elements, are shown in Proposition 9.
In Definition 9, we introduce the other crucial notion for the following, what wemight call
partial generic initial ideal, making use of a special partial revlex order. Finally, by means
of Proposition 11, we prove in Theorem 7 the main result of this section, which can be
seen as another generalization of Theorem 1.
To Jürgen Herzog, a bright example of mathematician and teacher.

1 Sequentially Cohen–Macaulaymodules
Throughout the paper, let (R,m, k) denote either a Noetherian local ring with maximal
ideal m and residue field k = R/m, or a standard graded k-algebra R = ⊕

i�0 Ri, with
R0 = k andm = ⊕

i>0 Ri. In the second case, every R-module we consider will be a graded
R-module, and homomorphisms will be graded of degree zero.
One of the features that makes the Cohen–Macaulay property significant is its char-

acterization in terms of the vanishing and non-vanishing of local cohomology: for a d-
dimensional finitely generated moduleM with t = depthM, it holds thatHi

m(M) = 0 for
all i < t and i > d; also, Ht

m(M) �= 0 and Hd
m(M) �= 0. These results are originally due

to Grothendieck, cf. [10], Theorem 3.5.8, Corollary 3.5.9, Corollary 3.5.11.a) and b). As a
consequence,M is a Cohen–Macaulay module if and only if Hi

m(M) = 0 for all i �= d.
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Let dim(R) = n. When R is Cohen–Macaulay and has a canonical module ωR, by
duality, the above conditions can be checked on the Matlis dual of the local cohomology
modules, i.e., on the modules Extn−i

R (M,ωR). With the above notation, we then have that
Extn−t

R (M,ωR) and Extn−d
R (M,ωR) are nonzero, and furthermore that ExtiR(M,ωR) = 0

for all i < n − d and all i > n − t. Moreover, M is Cohen–Macaulay if and only if
Extn−i

R (M,ωR) = 0 for all i �= d. Often in the literature, the modules Extn−i
R (M,ωR),

i = 0, . . . , n, are called the deficiency modules of M, since they also measure how far a
module is from being Cohen–Macaulay.
We now introduce the class of sequentially Cohen–Macaulay modules, following [37],

recalling their main properties, and in the next section, we discuss some of its equivalent
definitions. Our main references here are [31] and [36].

Definition 1 A finitely generated R-moduleM is called sequentially Cohen–Macaulay if
it admits a filtration of submodules 0 = M0 � M1 � . . . � Mr = M such that each quo-
tient of the filtrationMi/Mi−1 is Cohen–Macaulay and dim(Mi/Mi−1) < dim(Mi+1/Mi)
for all i. In this case, we say that the above filtration is a sCM filtration forM.

Example 1 (1) It is clear from the definition that ifM �= 0 is aCohen–Macaulaymodule,
then it is sequentially Cohen–Macaulay. In fact,M = M1 � M0 = 0.

(2) Any one-dimensional module M is sequentially Cohen–Macaulay; if M is not
Cohen–Macaulay, one can takeM1 = H0

m(M) andM2 = M.
(3) A domain R is sequentially Cohen–Macaulay if and only if it is Cohen–Macaulay.

In fact, any nonzero submodule of R will have dimension d = dim(R), and the only
possible sCM filtration for R is 0 = M0 � M1 = R.

(4) On the other hand, if M has a Cohen–Macaulay submodule M1 such that M/M1
is sequentially Cohen–Macaulay with a filtration 0 = M1/M1 � N1/M1 � . . . �

Ns/M1 = M/M1, and dimM1 < dimN1/M1, then 0 � M1 � N1 � . . . � Ns = M
is a sCM filtration ofM.

The notion of sequentially Cohen–Macaulay modules appears for the first time in the
literature in [37] in the graded setting, in connection with the theory of Stanley–Reisner
rings and simplicial complexes. Later on and independently, in [36], the notion of Cohen–
Macaulay filtered modules has been introduced in the local case; in the same paper, it is
proven that the two notions coincide. Since then, sequentially Cohen–Macaulay modules
have been extensively studied especially in connection with shellability and graph theory,
see for instance [1,2,22,25,40], and the definition has been extended in other directions,
see [14], [33]. Sections 3 and 4 are devoted to two such extensions, due to the third and
fourth author and the first two authors, respectively.

Example 2 Let M be a sequentially Cohen–Macaulay module with sCM filtration 0 =
M0 � M1 � · · · � Mr = M and let di = dim(Mi/Mi−1) for all i.

(1) LetN be another sequentially Cohen–Macaulay; then,M⊕N is sequentially Cohen–
Macaulay. To see this, let 0 = N0 � N1 � . . . � Ns = N be a sCM filtration of
N and let δi = dim(Ni/Ni−1). For convenience, also let d0 = δ0 = −1. Then, a
filtration whose terms are of the formMi ⊕Nj , where either di = max{da | da � δj}
or δj = max{δa | δa � di}, is a sCM filtration ofMr ⊕ Ns = M ⊕ N .
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(2) The completion M̂ of M at the maximal ideal m is a sequentially Cohen–Macaulay
R̂-module. To this end, let M′

i = Mi ⊗R R̂, and by flatness of R̂, we have that 0 =
M′

0 � M′
1 � . . . � M′

r is a sCM filtration ofM ⊗R R̂ ∼= M̂.
(3) It can be proven in general that being sequentially Cohen–Macaulay is preserved

by faithfully flat base changes; with some extra effort, one can derive that M is a
sequentially Cohen–Macaulay R-module if and only ifM[|x|] is sequentially Cohen–
Macaulay as an R[|x|]-module, cf [36, Theorem 6.2].

Remark 1 In the above example Part (1), the converse also holds, cf. [16, Proposition 4.5],
[39, Proposition 3.2] or Corollary 4.
In Part (2) of the same example, the vice versa does not hold in general, see for instance
[36, Example 6.1]. It is true thoughwhenR is a homomorphic image of a Cohen–Macaulay
ring, see [23, Corollaries 2.8] and [23, Corollaries 2.9], where it is proved that in such a
case M is a sequentially Cohen–Macaulay R-module if and only if M̂ is a sequentially
Cohen–Macaulay R̂-module.

Proposition 1 Let M be a sequentially Cohen–Macaulay R-module with sCM filtration
0 = M0 � M1 � . . . � Mr = M. Also let di = dim(Mi/Mi−1), for all i ∈ {1, . . . , r}, then:
(1) for all j ∈ Z, we have that Hj

m(M) �= 0 if and only if j ∈ {d1, . . . , dr}, and
Hdi
m (M) ∼= Hdi

m (Mi) ∼= Hdi
m (Mi/Mi−1);

(2) for all i ∈ {1, . . . , r} and j < i, the modules Mi and Mi/Mj are sequentially Cohen–
Macaulay.

Proof For Part (1), using the short exact sequences 0 → Mi−1 → Mi → Mi/Mi−1 → 0
one inductively shows that dim(Mi) = di for all i ∈ {1, . . . , r}, since di−1 < di. The
induced long exact sequences on local cohomology

· · · → Hj−1
m (Mi/Mi−1) → Hj

m(Mi−1) → Hj
m(Mi) → Hj

m(Mi/Mi−1)

→ Hj+1
m (Mi−1) → · · ·

together with the fact thatMi/Mi−1 is Cohen–Macaulay of dimension di, imply that

Hdi
m (Mi) ∼= Hdi

m (Mi/Mi−1), Hj
m(Mi) ∼= Hj

m(Mi−1) if j < di,

and Hj
m(Mi) = 0 otherwise.

In particular,Hj
m(M) = 0 for all j > dr , andH

j
m(M) = Hj

m(Mi) for all j � di. In conclusion,
we have shown that

Hj
m(M) =

⎧
⎨

⎩

Hdi
m (Mi) = Hdi

m (Mi/Mi−1) if j = di for some i,

0 otherwise.

Part (2) is clear once we notice that 0 = M0 � M1 � . . . � Mi and 0 = Mj/Mj �

Mj+1/Mj � . . . � Mi/Mj are sCM filtrations. 	


Example 3 Suppose that x is an M-regular element and that M/xM is sequentially
Cohen–Macaulay; it is not true in general that M is sequentially Cohen–Macaulay, as
observed after [38, Proposition 2.2]—the statement of [36, Theorem 4.7] is not correct. As
a counterexample, one can take a two-dimensional not Cohen–Macaulay local domain R
of depth 1, which is not sequentially Cohen–Macaulay by Example 1 (3). For instance, take
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R = Q[|a4 , a3b, ab3, b4|] ∼= Q[|z1, z2, z3, z4]/(z2z3 − z1z4 , z23 − z2z24 , z1z
2
3 − z22z4 , z

3
2 − z21z3).

On the contrary, every 0 �= x ∈ R is regular, R/(x) is a one-dimensional R-module and,
therefore, always sequentially Cohen–Macaulay by Example 1 (2).

In the rest of this section, let S = k[x1, . . . , xn], with the standard grading. Given a
monomial ideal I ⊂ S, we let G(I) denote the monomial minimal system of generators of
I andm(I) = max{i | xi divides u for some u ∈ G(I)}.
An important class of sequentially Cohen–Macaulay modules is given by rings defined

by weakly stable ideals.

Definition 2 Amonomial ideal I ⊆ S is said to beweakly stable if for all monomials u ∈ I
and all integers i, j with 1 � j < i � n, there exists t ∈ N such that xtj u/x�

i ∈ I , where � is
the largest integer such that x�

i divides u.

Observe that the condition of the previous definition is verified if and only if it is verified
for all u ∈ G(I). In the literature, weakly stable ideals are also called ideals of Borel type,
quasi-stable ideals, or ideals of nested type, see [8,11,28]. It is easy too see from the
definition that stable, strongly stable, and p-Borel ideals are weakly stable. In particular,
no matter what the characteristic of the field is, Borel fixed ideals are weakly stable, see
also [28, Theorem 4.2.10] and, thus, generic initial ideals are always weakly stable.
Observe that the saturation I sat of a weakly stable ideal I is I : m∞ = I : x∞

n , see [28,
Proposition 4.2.9]; thus, I sat is again weakly stable and xn does not divide any u ∈ G(I sat).

Proposition 2 Let I be a weakly stable ideal of S = k[x1, . . . , xn]. Then, S/I is sequentially
Cohen–Macaulay.

Proof We prove the statement by induction on m(I). If m(I) = 1, then I = (xr1) for
some positive integer r and S/I is Cohen–Macaulay. Assume now that S/J is sequentially
Cohen–Macaulay for every weakly stable ideal J for whichm(J ) < m(I).
Let S′ = k[x1, . . . , xm(I)] and I ′ = I ∩ S′. Since S/I ∼= S′/I ′ ⊗k k[xm(I)+1, . . . , xn] and a

sCM filtration of S′/I ′ is easily extended into one of S/I , it is sufficient to prove that S′/I ′

is sequentially Cohen–Macaulay. Therefore, without loss of generality, we may assume
that m(I) = n, and that S/I sat is sequentially Cohen–Macaulay. Now, I sat/I is a non-
trivial Artinian module, and the first nonzero module of a sCM filtration of S/I sat has
positive dimension, see Proposition 1. We may thus conclude that S/I is sequentially
Cohen–Macaulay, cf. Example 1 (4). 	

Remark 2 By [8, Proposition 3.2], see also [28, Proposition 4.2.9] and [11, Chap. 4], a
monomial ideal I is weakly stable if and only if all its associated primes are generated by
initial segments of variables, i.e., are of type (x1, . . . , xi) for some i. Since being sequentially
Cohen–Macaulay is independent of coordinates changes on S, the above proposition
shows that whenever the associated primes of a monomial ideal I ⊆ S are totally ordered
by inclusion, then S/I is sequentially Cohen–Macaulay.

Example 4 Let I = (x41 , x
2
1x

2
2 , x

3
1x3, x

2
1x2x3, x

2
1x2x4) ⊆ S = k[x1, x2, x3, x4]. It is easy to

verify that I is a weakly stable ideal which is not strongly stable, by checking the definition
or by computing its associated primes, by using the previous remark; thus, S/I is sequen-
tially Cohen–Macaulay by Proposition 2. We can construct an explicit sCM filtration
proceeding as in its proof. We have m(I) = 4, and I sat = I : x∞

4 = (x41 , x
2
1x2, x

3
1x3).
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This means that the first nonzero module of our filtration will be (x41 , x
2
1x2, x

3
1x3)/I .

Now, we consider I ′ = (x41 , x
2
1x2, x

3
1x3) as an ideal of k[x1, x2, x3] and compute its sat-

uration I ′′ = I : x∞
3 = (x31 , x

2
1x2). Hence, the second nonzero module of the filtration

is (x31 , x
2
1x2)/I . Proceeding in this way, we obtain the filtration 0 ⊆ (x41 , x

2
1x2, x

3
1x3)/I ⊆

(x31 , x
2
1x2)/I ⊆ (x21)/I ⊆ (1)/I = S/I , and it is easily seen that it is a sCM filtration of S/I .

Example 5 For the caseM = R = S/I , when I = I� is the Stanley–Reisner ideal of a sim-
plicial complex�, there is a beautiful characterization of sequential Cohen–Macaulayness
due to Duval, [20, Theorem 3.3]. Given a simplicial complex �, let �(i) be the pure i-th
skeleton of�, i.e., the pure subcomplex of � whose facets are the faces of � of dimension
i. Then, S/I� is sequentially Cohen–Macaulay if and only if S/I�(i) is Cohen–Macaulay for
all i. Another important result in this context is that I� is componentwise linear if and only
if the Stanley–Reisner ring of its Alexander dual �∗ is sequentially Cohen–Macaulay, see
[27, Theorem 2.1] and [28, Theorem 8.2.20]. Moreover, it is known that if � is (nonpure)
shellable, then S/I� is sequentially Cohen–Macaulay, see [28, Corollary 8.2.19].

Example 6 Another class of examples of sequentially Cohen–Macaulay modules is given
by pretty clean modules, which have been introduced by Herzog and Popescu in [29]
in order to characterize shellability of multicomplexes. A pretty clean module M is a
module that admits a pretty clean filtration, i.e., a prime filtration of M by submodules
0 = M0 � M1 � . . . � Ms = M such that each quotientMi/Mi−1 is isomorphic to S/pi,
for some prime ideals pi, with the following property: if pi � pj , then i > j. For example,
if M = S/I with I weakly stable, cf. [29, Proposition 5.2], or is such that Ass(M) is a
totally ordered set, cf. [29, Proposition 5.1] or Remark 2, then M is pretty clean. By [29,
Theorem 4.1], pretty clean modules are sequentially Cohen–Macaulay, provided every
prime pi appearing in the pretty clean filtration is such that S/pi is Cohen–Macaulay.

2 Characterizations of sequentially Cohen–Macaulaymodules
The goal of this section is to present two characterizations of sequentially Cohen–
Macaulay modules, due to Schenzel, see Theorem 2 and Peskine, see Theorem 3. As
in the previous section, we let (R,m, k) be either a Noetherian local ring or a standard
graded k-algebra with maximal homogeneous ideal m; we let dim(R) = n. In the second
case, modules will be graded and homomorphisms homogeneous of degree 0.

2.1 Schenzel’s characterization

Our main reference here is [36]. By convention, the dimension of the zero module is set
to be −1. Let M be a finitely generated (graded) R-module of dimension d. Since R is
Noetherian, for all i = 0, . . . , d, we can consider the largest (graded) submodule of M of
dimension � i, and denote it by δi(M). By maximality, in this way, one obtains a filtration
M : 0 ⊆ δ0(M) ⊆ δ1(M) ⊆ . . . ⊆ δd(M) = M, called the dimension filtration of M.
Evidently, such a filtration is unique.
Given a set X of prime ideals of R, we denote by Xi = {p ∈ X : dimR/p = i}. Similarly,

we define X�i and X>i.

Remark 3 Observe that M has a nonzero submodule of dimension i if and only if
Ass(M)i �= ∅. In fact, if p ∈ Ass(M)i, then R/p is a nonzero submodule ofM of dimension
i. Conversely, if N is a nonzero submodule of M of dimension i, then there must exist a
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minimal prime p of N such that dim(R/p) = dim(N ) = i. Since N ⊆ M, we must also
have that p ∈ Ass(M), as desired. In particular, we have that δi(M) = 0 if and only if
Ass(M)�i = ∅.

Notice that δ0(M) = H0
m(M); the other modules inM can be described similarly, with

the help of the minimal primary decomposition of 0 as a submodule of M. In fact, let
Ass(M) = {p1, . . . , pm} and, for all i = 0, . . . , d, consider the set Ass(M)�i. We set

ai =

⎧
⎪⎨

⎪⎩

∏

p∈Ass(M)�i

p if Ass(M)�i �= ∅,

R otherwise.

Now, let us consider an irredundant primary decomposition 0 = ⋂m
j=1Nj inside M,

where eachM/Nj is a pj-primary module.

Proposition 3 [36, Proposition 2.2] Let M be a finitely generated R-module of dimension
d. With the above notation, for all i = 0, . . . , d we have that

δi(M) = H0
ai (M) =

⋂

{j | pj∈Ass(M)>i}
Nj,

where we let the intersection over the empty set be equal to M.

Proof We start with the first equality and assume that δi(M) = 0. By Remark 3, we have
that Ass(M)�i = ∅ and in this case ai = R. Thus, H0

ai (M) = H0
R(M) = 0 = δi(M).

Now, assume that δi(M) �= 0, and observe that every associated prime of δi(M) has
dimension � i and, therefore, Ass(δi(M)) ⊆ Ass(M)�i. Thus, there is a power of ai
which annihilates δi(M), and we get that δi(M) ⊆ H0

ai (M). On the other hand, there is a
power of ai which annihilatesH0

ai (M) and, thus, dim(H0
ai (M)) � dim(R/ai) � i. From the

maximality of δi(M), it follows that H0
ai (M) ⊆ δi(M), as desired.

For the second equality, observe that Nj :M p∞
j = M and Nj :M x∞ = Nj for any x /∈ pj ,

with j ∈ {1, . . . , m}, sinceM/Nj is pj-primary. Also notice that

H0
ai (M) = 0 :M a∞

i =
⎛

⎝
m⋂

j=1
Nj

⎞

⎠ :M a∞
i =

m⋂

j=1
(Nj :M a∞

i ).

Now, if pj ∈ Ass(M)�i, then M ⊇ Nj :M a∞
i ⊇ Nj :M p∞

j = M, forcing equality
everywhere. Next, assume that pj /∈ Ass(M)�i. Then, p � pj for every p ∈ Ass(M)�i
since, otherwise, we would have dim(R/pj) � dim(R/p) � i and, thus, pj ∈ Ass(M)�i. In
this case, by choosing x ∈ ai and x /∈ pj , we have that Nj ⊆ Nj :M a∞

i ⊆ Nj :M x∞ = Nj,
and equalities hold. Summing up, we conclude that

H0
ai (M) =

⋂

{j | pj /∈Ass(M)�i}
Nj =

⋂

{j | pj∈Ass(M)>i}
Nj.

	

Note that this is consistent with our convention that the intersection over the empty set
is equal to M; in fact, for i = d, we have that Ass(M)�d = Ass(M) and Ass(M)>d = ∅.
This agrees with the fact that H0

ad
(M) = H0√

0
(M) = M.

Proposition 4 [[36], Corollary 2.3] Let M be a finitely generated R-module of dimension
d; then, for all i = 0, . . . , d,
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(1) Ass(δi(M)) = Ass(M)�i;
(2) Ass(M/δi(M)) = Ass(M)>i;
(3) Ass(δi(M)/δi−1(M)) = Ass(M)i.

Proof It is well-known that Ass(M) = Ass(H0
a(M)) 
 Ass(M/H0

a(M)), for any ideal a of
R. Also notice that Ass(H0

a(M)) = Ass(M) ∩ V (a), for all a.
Since δi(M) = H0

ai (M) by Proposition 3, the first equality descends from Remark 3 and
the above observation.
For (2), consider the short exact sequence 0 −→ δi(M) −→ M −→ M/δi(M) −→ 0.

By Proposition 3, one has that Ass(M) = Ass(δi(M)) 
 Ass(M/δi(M)), which is equal to
Ass(M)�i 
 Ass(M)>i by (1), and the second equality follows.
Finally, consider the short exact sequence 0 → δi−1(M) → δi(M) → δi(M)/δi−1(M) →

0 and observe that Ass(δi(M)/δi−1(M)) ⊆ Ass(M/δi−1(M)). We also have Ass(δi(M)/
δi−1(M)) ⊆ Ass(δi(M)) since δi−1(M) = H0

ai−1 (M) = H0
ai−1 (δi(M)). Thus, by (1) and (2),

we have necessarily that Ass(δi(M)/δi−1(M)) ⊆ Ass(M)i. On the other hand, by (1), if
p ∈ Ass(M)i, then p /∈ Ass(Mi−1), and therefore p ∈ Ass(δi(M)/δi−1(M)). 	

As a corollary of Propositions 3 and 4, one can obtain another characterization of the
dimension filtration, cf. [29, Proposition 1.1].

Corollary 1 Let M be a d-dimensional R-module. A filtration of M by submodules 0 ⊆
M0 ⊆ . . . ⊆ Md = M is the dimension filtration of M if and only if Ass(Mi/Mi−1) =
Ass(M)i, for all i.

The following definition was introduced in [36, Definition 4.1].

Definition 3 Let M be a d-dimensional finitely generated R-module, and M : 0 ⊆
δ0(M) ⊆ . . . ⊆ δd(M) = M be its dimension filtration. Then, M is called Cohen–
Macaulay filtered if for all i ∈ {0, . . . , d} the module δi(M)/δi−1(M) is either zero or
Cohen–Macaulay.

Notice that from the definition, it immediately follows that if δi(M)/δi−1(M) �= 0, then it
has dimension i.
ACohen–Macaulay filteredmoduleM is sequentially Cohen–Macaulay. In fact, wemay

let i1 denote the smallest integer such that δi1 (M) �= 0 and set M1 = δi1 (M). Then, if ij
is the smallest integer such that δij−1(M) � δij (M), we let Mj = δij (M). The resulting
filtration 0 = M0 � M1 � . . . � Mr = M is clearly a sCM filtration ofM.
A filtration 0 = C−1 ⊆ C0 ⊆ C1 ⊆ . . . ⊆ Cd = M such that each of its quotients

Ci/Ci−1 is either zero or Cohen–Macaulay of dimension i is called a CM filtration of M.
To see that the notions of sequentially Cohen–Macaulay and Cohen–Macaulay filtered
modules coincide, we need the following result, which shows that if a CM filtration of a
module exists, then it is unique, and it is equal to its dimension filtration.

Proposition 5 [[36], Proposition 4.3] Let M be a d-dimensional finitely generated R-
module. If M has a CM filtration 0 = C−1 ⊆ C0 ⊆ C1 ⊆ . . . ⊆ Cd = M, then Ci = δi(M)
for every i ∈ {0, . . . , d}.

Proof We proceed by induction on d. If d = 0, then C0 = M = δ0(M) and this case is
complete. Assume henceforth that d > 0, so that by induction, we have thatCi = δi(Cd−1)
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for all i < d. Since for i < d we have that δi(M) = δi(δd−1(M)), it suffices to show that
δd−1(M) = Cd−1.
Observe that Ass(C0) ⊆ Ass(M)�0 and, for all p ∈ Ass(Ci/Ci−1), we have dimA/p = i

if Ci �= Ci−1. With this information, we can inductively show that dimCi � i and,
accordingly Ci ⊆ δi(M) for all i; in particular, Cd−1 ⊆ δd−1(M). If Ass(M)�d−1 = ∅, then
δd−1(M) = 0 by Remark 3, and the desired equality is trivial. Otherwise, we let a = ad−1 =
∏

p∈Ass(M)�d−1
p and we claim that H0

a(M/Cd−1) = 0. This is obvious if M/Cd−1 = 0.
Thus, assumeCd−1 �= M and observe that a contains a regular element ofM/Cd−1. To see
the latter, assume that a ⊆ ⋃

p∈Ass(M/Cd−1) p; then, by prime avoidance, we can find p ∈
Ass(M/Cd−1) such thata ⊆ p and, therefore,p contains aprimep′ ∈ Ass(M)�d−1.This is a
contradiction, since it would imply d = dim(M/Cd−1) = dim(R/p) � dim(R/p′) � d−1.
Finally, consider the short exact sequence 0 −→ Cd−1 −→ M −→ M/Cd−1 −→ 0.
By Proposition 3, we have that δd−1(M) = H0

a(M) = H0
a(Cd−1) ⊆ Cd−1. Thus, Cd−1 =

δd−1(M), and we are done. 	


Theorem 2 (Schenzel) Let M be a finitely generated R-module; then M is sequentially
Cohen–Macaulay if and only if M is Cohen–Macaulay filtered. Moreover, if M is sequen-
tially Cohen–Macaulay, then its sCM filtration is unique.

Proof Weonly need to show that the “only if” part. LetM : 0 = M0 � M1 � . . . � Mr =
M be any sCM filtration ofM, with d = dim(M), d0 = −1 and di = dim(Mi/Mi−1). For
j ∈ {−1, 0, . . . , d}, we also let i(j) be the largest integer i such that di � j, and we set Cj =
Mi(j). In this way, we have constructed a filtration C : 0 = C−1 ⊆ C0 ⊆ . . . ⊆ Cd = M,
which is a CM filtration of M. By Proposition 5, we may conclude that Ci = δi(M), and
that C is the unique dimension filtration ofM. Thus,M is Cohen–Macaulay filtered.
Observe that one can reconstructM from C; it follows that themodulesMi only depend

onM as well, andM is also unique. 	


Notice that by the above theorem and Proposition 4, ifM is sequentially Cohen–Macaulay
with sCM filtrationM, then Ass(M) = 
i Ass(Mi/Mi−1). The comparison between sCM
filtrations and dimension filtrations has also the following useful consequences.

Corollary 2 Let M be a d-dimensional finitely generated R-module. The following are
equivalent:

(1) M is sequentially Cohen–Macaulay;
(2) The modules δi(M) and M/δi(M) are sequentially Cohen–Macaulay for all i ∈

{0, . . . , d};
(3) There exists i ∈ {0, . . . , d} such that δi(M) and M/δi(M) are sequentially Cohen–

Macaulay.

In particular,M is sequentially Cohen–Macaulay if and only ifM/H0
m(M) is sequentially

Cohen–Macaulay.

Proof Observe that given any i ∈ {0, . . . , d}, we have that δj(M) = δj(δi(M)) for every
j � i, and δj(M/δi(M)) = δj(M)/δi(M) for every j � i. It follows that 0 ⊆ δ0(M) ⊆ . . . ⊆
δi(M) and 0 = δi(M)/δi(M) ⊆ δi+1(M)/δi(M) ⊆ . . . ⊆ δd(M)/δi(M) are the dimension
filtrations of δi(M) andM/δi(M), respectively. This yields all the assertions at once. 	
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Recall now that a finitely generated R-moduleM is unmixed if dim(R/p) = dim(M) for
all p ∈ Ass(M).

Corollary 3 Let M be a finitely generated unmixed R-module. Then, M is sequentially
Cohen–Macaulay if and only if M is Cohen–Macaulay.

Proof One direction is clear. Let d = dim(M); in view of Remark 3, the fact that M is
unmixed guarantees that δi(M) = 0 for all i < d. By Theorem 2, M is Cohen–Macaulay
filtered, and thus δd(M)/δd−1(M) = M is Cohen–Macaulay. 	


2.2 Peskine’s characterization

We will always assume that R has a canonical module ωR. In our setup, this assumption
is not too restrictive: it is always the case when R is standard graded, and it is true for
instance if R is complete local, cf. Remark 1.

Proposition 6 Let R be an n-dimensional Cohen–Macaulay ring with canonical module
ωR and M be sequentially Cohen–Macaulay, with sCM filtration 0 = M0 � M1 � . . . �

Mr = M; also let di = dimMi/Mi−1, for i = 1, . . . , r. Then,

(1) for all i = 1, . . . , r, one has that Extn−di
R (M,ωR) � Extn−di

R (Mi/Mi−1,ωR) is Cohen–
Macaulay and has dimension di;

(2) Extn−j
R (M,ωR) = 0 whenever j /∈ {d1, . . . , dr};

(3) Extn−di
R (Extn−di

R (M,ωR),ωR) � Mi/Mi−1 for i = 1, . . . , r.

Proof In the graded case, (1) and (2) follow immediately from Proposition 1, graded local
duality [10, Theorem 3.6.19] and [10, Theorem 3.3.10 (c) (i)]. In the local case, local duality
yields (1) and (2) for the completion M̂ of M as an R̂-module, see Example 2 (2). Since
ωR̂

∼= ω̂R ∼= ωR ⊗R R̂ and ExtiR̂(N̂ ,ωR̂) ∼= ExtiR(N,ωR) ⊗R R̂ for any finitely generated
R-module N , we conclude by faithful flatness of R̂ that (1) and (2) hold also in the local
case.
Finally, by [10, Theorem 3.3.10 (c) (iii)], we have that N ∼= Extn−d

R (Extn−d
R (N,ωR),ωR)

for any Cohen–Macaulay module N of dimension d and, thus, the last statement follows
immediately from (1). 	


Remark 4 LetM be as in the above proposition.

(1) By Parts (2) and (3) of the previous proposition, we have an isomorphism

M1 ∼= Extn−t
R (Extn−t

R (M,ωR),ωR),

where t = depthM and M1 is t-dimensional and Cohen–Macaulay. We will show
an extension of this fact in Lemma 1.

(2) Notice that if M is sequentially Cohen–Macaulay with depth(M) = 0, then in par-
ticular,M1 = H0

m(M). In fact, using [10, Theorem 3.3.10 (c) (iii)] and the short exact
sequence 0 −→ H0

m(M) −→ M −→ M/H0
m(M) −→ 0, we get that

M1 ∼= ExtnR(Ext
n
R(M,ωR),ωR) ∼= ExtnR(Ext

n
R(H

0
m(M),ωR),ωR) ∼= H0

m(M).

We recall now the following crucial lemma, see [31, Lemma 1.5].
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Lemma 1 Let R be a Cohen–Macaulay n-dimensional ring with canonical module ωR
and M be a finitely generated R-module.
Let also depth(M) = t and assume that Extn−t

R (M,ωR) is Cohen–Macaulay of dimension
t. Then, there is a natural monomorphism α : Extn−t

R (Extn−t
R (M,ωR),ωR) −→ M such

that

Extn−t (α) : Extn−t
R (M,ωR) −→ Extn−t

R (Extn−t
R (Extn−t

R (M,ωR),ωR)ωR)

is an isomorphism.

Proof We only give a proof in the graded case; the local one is handled similarly.Without
loss of generality, we may assume that R is a polynomial ring, as we show next. We write
R = S/I , where S is a standard graded polynomial ring of dimension m over a field k
and I ⊆ S is homogeneous. Let m and n denote the graded maximal ideals of R and S,
respectively. By graded Local Duality [10, Theorem 3.6.19], we have that Extm−i

S (M,ωS) ∼=
HomS(Hi

n(M), ES(k)) and Extn−i
R (M,ωR) ∼= HomR(Hi

m(M), ER(k)). By Base Independence,
Hi
n(M) ∼= Hi

m(M) for all i. Thus, byHom−⊗ adjointness and [10, Lemma3.1.6], we obtain

HomS(Hi
n(M), ES(k)) ∼= HomR(Hi

m(M),HomS(R, ES(k))) ∼= HomR(Hi
m(M), ER(k)).

Inparticular,wehave shown thatExtn−t
R (M,ωR) ∼= Extm−t

S (M,ωS) and thatwemayassume
that R is a polynomial ring.
Let now F• : 0 −→ Fn−t −→ . . . −→ F1 −→ F0 −→ 0 be the minimal graded free

resolution ofM; applying the functor HomR(−,ωR), we obtain the dual complex

F∗• : 0 −→ F∗
n−t −→ . . . −→ F∗

1 −→ F∗
0 −→ 0,

with H0(F∗) = Extn−t
R (M,ωR). Observe that F∗• is a complex of free modules, since ωR ∼=

R(−n). If we also let G• denote the minimal graded free resolution of Extn−t
R (M,ωR), then

there is amap of complexes φ• : F∗• −→ G• which lifts the identitymap of Extn−t
R (M,ωR).

Since the last one isCohen–Macaulay of dimension t, the length ofG• is the same as that of
F∗• , namely n− t. Applying the functor HomR(−,ωR) to φ•, we obtain a map of complexes
φ∗• : G∗• −→ F∗∗• which, in turn, gives a map on the zeroth cohomology:

α = H0(φ∗• ) : Extn−t
R (Extn−t

R (M,ωR),ωR) = H0(G∗• ) → H0(F∗∗• ) ∼= H0(F•) = M.

Applying again the functor HomR(−,ωR), this time to φ∗• , we obtain a map of complexes
φ∗∗• : F∗∗∗• → G∗∗• and, thus, a map

H0(φ∗∗• ) : H0(F∗∗∗• ) ∼= H0(F∗• ) ∼= Extn−t
R (M,ωR)

−→ Extn−t
R (Extn−t

R (Extn−t
R (M,ωR),ωR),ωR) = H0(G∗∗• ),

which coincides with the map Extn−t (α). The canonical isomorphism ψ : G∗∗• −→G•,
together with the fact that Extn−t

R (M,ωR) is Cohen–Macaulay of dimension t, gives an
isomorphismH0(ψ) : Extn−t

R (Extn−t
R (Extn−t

R (M,ωR),ωR),ωR) −→ Extn−t
R (M,ωR), and one

can verify that

H0(ψ) ◦ H0(φ∗∗• ) = H0(φ•) = idExtn−t
R (M,ωR).

Note that H0(ψ) is the inverse of the isomorphism of [10, Theorem 3.3.10 (c) (iii)], and
this implies that H0(φ∗∗• ) = Extn−t (α) is the natural isomorphism of the same theorem.
To conclude the proof, it remains to be shown that α is a monomorphism.
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Let N = Extn−t
R (Extn−t

R (M,ωR),ωR). We show that α is injective once we localize at every
associated prime of N and then we are done, since, if ker(α) �= 0, its associated primes
would be contained in those of N .
Let p ∈ Ass(N ); since N is Cohen–Macaulay of dimension t, we have that dim(R/p) = t
and dim(Rp) = n − t. By replacing R with Rp, M with Mp, and ωR with (ωR)p ∼= ωRp ,
the proof will be complete once we show that α is injective in the case t = 0. To this
end observe that as in Remark 4, the short exact sequence 0 → H0

m(M) → M →
M/H0

m(M) → 0 and [10, Theorem 3.3.10 (c) (iii)] yield

ExtnR(Ext
n
R(M,ωR),ωR) ∼= ExtnR(Ext

n
R(H

0
m(M),ωR),ωR) ∼= H0

m(M),

and α composed with this isomorphism becomes just the inclusion ofH0
m(M) insideM. 	


The equivalence between the first two conditions in the next theorem was announced
in [37] without a proof, but citing a spectral sequence argument due to Peskine. Here, we
give another proof of this fact, see also [36, Theorem 5.5] where the equivalence with the
third condition is proved.

Theorem 3 (Peskine) Let R be a Cohen–Macaulay ring of dimension n with canonical
module ωR, and M be a finitely generated d-dimensional R-module. Then, the following
are equivalent:

(1) M is sequentially Cohen–Macaulay;
(2) Extn−i

R (M,ωR) is either 0 or Cohen–Macaulay of dimension i for all i ∈ {0, . . . , d};
(3) Extn−i

R (M,ωR) is either 0 or Cohen-Macaulay of dimension i for all i ∈ {1, . . . , d − 1}.

Proof The implication (1) ⇒ (2) follows at once by Proposition 6, and clearly (2) implies
(3).
Now assume (3); we proceed by induction on d − t, where t = depth(M). If t = d,

then M is Cohen–Macaulay, and hence sequentially Cohen–Macaulay. Assume that
t < d. If t = 0, then 0 �= ExtnR(M,ωR) has finite length, and hence it is Cohen–
Macaulay. Either way, thanks to our assumption we have that 0 �= Extn−t

R (M,ωR) is
t-dimensional and Cohen–Macaulay. By Lemma 1, there is an injective homomorphism
α : Extn−t

R (Extn−t
R (M,ωR),ωR) −→ M. Since the first module is t-dimensional Cohen–

Macaulay by [10, Theorem 3.3.10 (c)], then so is its image, sayM1, which is a submodule
ofM. It follows that depth(M1) = dim(M1) = t = depth(M) < d = dim(M).
Consider the short exact sequence 0 −→ M1 −→ M −→ M/M1 −→ 0 and the

induced sequence in cohomology obtained by applying the functor HomR(−,ωR). We
then have isomorphisms ExtjR(M/M1,ωR) ∼= ExtjR(M,ωR) for all j �= n − t, n − t + 1 and
the exact sequence

0 → Extn−t
R (M/M1,ωR) → Extn−t

R (M,ωR)
β→ Extn−t

R (M1,ωR)

→ Extn−t+1
R (M/M1,ωR) → 0.

By Lemma 1 we know that the map Extn−t (α) is an isomorphism, and therefore β is an
isomorphism as well. It follows that ExtjR(M,ωR) ∼= ExtjR(M/M1,ωR) for every j �= n − t,
while Extn−t

R (M/M1,ωR) = 0.
This shows in particular that depth(M/M1) > t; since dim(M/M1) = d, we may apply
induction and obtain that M/M1 is sequentially Cohen–Macaulay. Let 0 = M1/M1 �
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M2/M1 � . . . � Mr/M1 = M/M1 be a sCM filtration. Since M1 is Cohen–Macaulay of
dimension t and depth(M2/M1) = depth(M/M1) > t by Example 1 (4) , we deduce that
0 = M0 � M1 � M2 � . . . � Mr = M is a sCM filtration and, thus M is sequentially
Cohen–Macaulay. 	


Corollary 4 Let R be Cohen–Macaulay with canonical module ωR, and M, N be finitely
generated R-modules. Then, M and N are sequentially Cohen–Macaulay if and only if
M ⊕ N is sequentially Cohen–Macaulay.

Proof Let n = dimR. We have already showed in Example 2 (1) that, if M and N are
sequentially Cohen–Macaulay, then so is M ⊕ N . This also follows immediately from
Theorem 3, since if Extn−i

R (M,ωR) and Extn−i
R (N,ωR) is either zero or Cohen–Macaulay

of dimension i, then so is Extn−i
R (M,ωR) ⊕ Extn−i

R (N,ωR) ∼= Extn−i
R (M ⊕ N,ωR). For the

converse, it suffices to observe that if the direct sum of two modules is zero or Cohen–
Macaulay of a given dimension, then so is each of its summand. 	


Remark 5 We remark that sequential Cohen–Macaulayness behaves well with respect
to localization; see for instance [16, Proposition 4.7] or [15, Proposition 2.6]. For any
sequentially Cohen–Macaulay R-module M and p ∈ Supp(M), one has that Mp is a
sequentially Cohen–Macaulay Rp-module and, in fact, one can recover its dimension
filtration from that of M. Let s = dim(R/p) and consider the quotients δi(M)/δi−1(M)
of the dimension filtration of M. If not zero, they are i-dimensional Cohen–Macaulay,
and their localization is either zero or Cohen–Macaulay of dimension i − s. Now let
Ni = (δi+s(M))p for all i � 0 such that i + s � d = dim(M), i.e., for i = 0, . . . , d − s,
and observe that 0 ⊆ N0 ⊆ . . . ⊆ Nd−s = Mp is a CM filtration of Mp, with quotients
Ni/Ni−1 � (δi+s(M)/δi+s−1(M))p. IfR is Cohen–Macaulay, the fact thatMp is sequentially
Cohen–Macaulay for all p ∈ Supp(M) is also a consequence of Theorem 3. See [39] for
other results about localization and sequentially Cohen–Macaulay modules.

We now recall some definitions needed to state the next result, and that we will use
frequently in the next sections. Given an R-module N , we let Ass◦(N ) = Ass(N ) � {m}.

Definition 4 LetM �= 0 be a finitely generated graded R-module.

(1) A homogeneous element 0 �= y ∈ m is filter regular forM if y /∈ ⋃
p∈Ass◦(M) p.

A sequence of homogeneous elements y1, . . . , yt ∈ m is a filter regular sequence for
M if yi+1 is a filter regular element forM/(y1, . . . , yi)M for all i ∈ {0, . . . , t − 1}.

(2) A homogeneous element 0 �= y ∈ m is strictly filter regular for M if y /∈
⋃

p∈Ass◦(X(M)) p, where X(M) = ⊕
i∈N ExtiR(M,R).

A sequence of homogeneous elements y1, . . . , yt ∈ m is a strictly filter regular
sequence for M if yi+1 is a strictly filter regular element for M/(y1, . . . , yi)M for
all i ∈ {0, . . . , t − 1}.

Remark 6 Regular sequences are clearly filter regular sequences. Moreover, strictly filter
regular sequences are filter regular by the graded version of [9, Corollary 11.3.3]. When
the field k is infinite, by Prime Avoidance any sequence of general forms is strictly filter
regular.
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We conclude this section with the following result, which clarifies how sequential
Cohen–Macaulayness behaves with respect to quotients, cf. Example 3; it will also be
useful later on.

Proposition 7 Let R be a Cohen–Macaulay ring of dimension n with canonical module
ωR; letM be a d-dimensional finitely generated R-module, and x ∈ R a strictly filter regular
element for M. Then,

(1) If M is sequentially Cohen–Macaulay, thenM/xM is sequentially Cohen–Macaulay.
(2) The converse holds if x is regular for all nonzero Extn−i

R (M,ωR) with i > 0.

Proof Assume that M is sequentially Cohen–Macaulay. Since x is strictly filter regular,
it is filter regular by Remark 2.17, L = 0 :M x has finite length and Extn−i

R (M,ωR) ∼=
Extn−i

R (M,ωR) for all i > 0, where M = M/L. Then, the long exact sequence obtained
by applying the functor HomR(−,ωR) to the short exact sequence 0 −→ M ·x−→ M −→
M/xM −→ 0 gives a long exact sequence

. . .
·x−→ Extn−i

R (M,ωR) −→ Extn−(i−1)
R (M/xM,ωR) −→ Extn−(i−1)

R (M,ωR) → . . .

. . .
·x−→ Extn−1

R (M,ωR) −→ ExtnR(M/xM,ωR) −→ ExtnR(M,ωR) −→ 0.

ByTheorem3,wehave that eachnonzeroExtn−i
R (M,ωR) isCohen–Macaulay of dimension

i, and in this case x is Extn−i
R (M,ωR)-regular when i > 0. For i > 1, we then have short

exact sequences

0 −→ Extn−i
R (M,ωR)

·x−→ Extn−i
R (M,ωR) −→ Extn−(i−1)

R (M/xM,ωR) −→ 0,

and it follows that Extn−(i−1)
R (M/xM,ωR) ∼= Extn−i

R (M,ωR) ⊗R R/(x) is Cohen–Macaulay
of dimension i−1 for all i > 1.We conclude thatM/xM is sequentially Cohen–Macaulay
using the implication (3) ⇒ (1) of Theorem 3.
For the converse, the fact that x is regular for all nonzero Extn−i

R (M,ωR) with i > 0 shows
that the above long exact sequence of Ext modules breaks into short exact sequences

0 −→ Extn−i
R (M,ωR)

·x−→ Extn−i
R (M,ωR) −→ Extn−(i−1)

R (M/xM,ωR) −→ 0.

for all i > 1. By Theorem 3, we have that Extn−(i−1)
R (M/xM,ωR) is either zero or Cohen–

Macaulay of dimension i − 1, and thus Extn−i
R (M,ωR) is either zero or Cohen–Macaulay

of dimension i for all i > 1. Since x is assumed to be regular on Extn−1
R (M,ωR), and

dim(Extn−1
R (M,ωR)) � 1, we have that Extn−1

R (M,ωR) is either zero, or Cohen–Macaulay
of dimension 1. It follows again from the implication (3) ⇒ (1) of Theorem 3 that M is
sequentially Cohen–Macaulay. 	

Remark 7 There are many other interesting results about sequentially Cohen–Macaulay
modules and their characterizations which do not find space in this note. For instance, in
[14, Theorem5.1], it is proven that amodule is sequentially Cohen–Macaulay if and only if
each module of its dimension filtration is pseudo Cohen–Macaulay. In [18, Theorem 1.1],
the sequential Cohen–Macaulayness ofM is characterized in terms of the existence of one
good system of parameters ofM which has the property of parametric decomposition; see
also Theorems 3.9 and 4.2 in [14] for other characterizations which involve good systems
of parameters and dd-sequences.
Moreover, in [15], it is investigated how the sequential Cohen–Macaulay property

behaves in relation to taking associated graded rings and Rees algebras, see also [38]
for more results of this type.



Caviglia et al. Res Math Sci            (2022) 9:40 Page 15 of 27    40 

3 Partially sequentially Cohen–Macaulaymodules
We are going to study next the notion of partially sequentially Cohen–Macaulay module,
as introduced in [35], which naturally generalizes that of sequentially Cohen–Macaulay
modules. Thanks to Schenzel’s Theorem 2, the definition can be given in terms of the
dimension filtration of the module. Throughout this section, we let R = k[x1, . . . , xn] be a
standard graded polynomial ring over an infinite field k with homogeneous maximal ideal
m = (x1, . . . , xn). Recall that, in this case, R has a graded canonical module ωR ∼= R(−n).
We consider finitely generated graded R-modules M; when M = 0, we set depth(M) =
+∞ and dim(M) = −1, as usual. We let d = dim(M).

Definition 5 Let i ∈ {0, . . . , d} and let {δj(M)}j be the dimension filtration of M; M
is called i-partially sequentially Cohen–Macaulay, i-sCM for short, if δj(M)/δj−1(M) is
either zero or Cohen–Macaulay for all i � j � d.

By definition and Corollary 2, a moduleM is 0-sCM if and only ifM sequentially Cohen–
Macaulay if and only ifM is 1-sCM.

Example 7 (1) Let M be a sequentially Cohen–Macaulay module. The simplest way of
constructing an i-sCMmodulewhich is not sequentiallyCohen–Macaulay is perhaps
taking a non-sequentially Cohen–Macaulay module N of dimension strictly smaller
than i, and consider their direct sumM ⊕ N , cf. Example 2 (1).

(2) LetM = R/I , where I = (x1) ∩ (x2, x3) ∩ (x21 , x4 , x5) ⊂ R = k[x1, x2, x3, x4 , x5]. With
the help of Proposition 3, we can construct the dimension filtration 0 = δ−1 = δ0 =
δ1 ⊆ δ2 = ((x1) ∩ (x2, x3))/I ⊆ δ3 = (x1)/I ⊆ δ4 = R/I of M. Then, δ4/δ3 and
δ3/δ2 are Cohen–Macaulay of dimension 4 and 3, respectively, but 0 �= δ2/δ1 is not
Cohen–Macaulay. Hence,M is an example of a 3-sCM which is not 2-sCM.

Remark 8 Observe that M is i-sCM if and only if M/δi−1(M) is sequentially Cohen–
Macaulay. This follows at once recalling that the dimension filtration {γj}j ofM/δi−1(M)
is such that γj = δj(M)/δi−1(M) for j � i and γj = 0 otherwise. Notice that, since γj = 0
for all j � i − 1, ifM is i-sCM then Hj

m(M/δi−1(M)) = 0 for all j � i − 1, by Proposition
1.

Given a graded free presentation of M ∼= F/U , we denote by {e1, . . . , er} a graded basis
of F . We consider R together with the pure reverse lexicographic ordering > such that
x1 > . . . > xn; recall that > is not a monomial order on R, but by definition it agrees with
the reverse lexicographic order that refines it on monomials of the same degree.
We extend > to F in the following way: given monomials uei and vej of F , set

uei > vej if
(
deg(uei) > deg(vej)

)
, or

(
deg(uei) = deg(vej) and u > v

)

or
(
deg(uei) = deg(vej), u = v and i < j

)
.

We shall consider this order until the end of the section, and denote by Gin(U ) the
generic initial module of U with respect to >. Since the action of GLn(k) on R as change
of coordinates can be extended in an obvious way to F , Gin(U ) simply results to be the
initial submodule in>(gU ) where g is a general change of coordinates.
We prove next some preliminary facts which are needed later on. Given a graded sub-

module V ⊆ F with dim(F/V ) = d, for all j ∈ {−1, . . . , d}, we denote by V 〈j〉 the
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R-module such thatV 〈j〉/V = δj(F/V ). Several results contained in the next two lemmata
can be found in [22], where they are proved in the ideal case.

Lemma 2 With the above notation,

(1) Gin(U 〈j〉) ⊆ Gin(U )〈j〉;
(2) U 〈j〉 = (U 〈j〉)〈j〉;
(3) if V is a graded submodule of F such that U ⊆ V , then U 〈j〉 ⊆ V 〈j〉;
(4) Gin(U 〈j〉)〈j〉 = Gin(U )〈j〉.

Proof (1) Notice that Gin(U 〈j〉)/Gin(U ) and U 〈j〉/U have the same Hilbert series,
hence the same dimension, which is less than or equal to j. Since Gin(U )〈j〉/Gin(U ) =
δj(F/Gin(U )), we have the desired inclusion.
(2) Since U ⊆ U 〈j〉, one inclusion is clear. Now, consider the short exact sequence

0 −→ U 〈j〉/U −→ (U 〈j〉)〈j〉/U −→ (U 〈j〉)〈j〉/U 〈j〉 −→ 0.

Since the dimensions ofU 〈j〉/U and (U 〈j〉)〈j〉/U 〈j〉 are less than or equal to j, it follows that
also dim((U 〈j〉)〈j〉/U ) � j and, hence, (U 〈j〉)〈j〉 ⊆ U 〈j〉.
(3) Since U ⊆ U 〈j〉 ∩ V , we have that dim((U 〈j〉 + V )/V ) � dim(U 〈j〉/U ) � j, which
implies U 〈j〉 ⊆ U 〈j〉 + V ⊆ V 〈j〉.
(4) Since U ⊆ U 〈j〉, it immediately follows from (1) that Gin(U ) ⊆ Gin(U 〈j〉) ⊆ Gin(U )〈j〉

and, accordingly, Gin(U )〈j〉 ⊆ Gin(U 〈j〉)〈j〉. On the other hand, by Parts (1) and (2), the
latter is contained in (Gin(U )〈j〉)〈j〉 = Gin(U )〈j〉. 	


We denote the Hilbert series of a graded R-moduleN by Hilb(N ) = Hilb(N, z). We also
let hj(N ) = Hilb(Hj

m(N )).

Lemma 3 Let M ∼= F/U, with dimension filtration {δj}j ; then, the following holds:
(1) M is i-sCM if and only if M/H0

m(M) is i-sCM.
(2) If M is i-sCM, then Hj

m(M) ∼= Hj
m(δj) ∼= Hj

m(δj/δj−1) for all j � i.
(3) If M is i-sCM, then (z − 1)jhj(M) = (1 − z)j Hilb(δj/δj−1) for all j � i.
(4) Let {γj}j be the dimension filtration of F/Gin(U ); if M is i-sCM, thenHilb(δj/δj−1) =

Hilb(γj/γj−1) for all j � i.

Proof Since H0
m(R) = δ0, the dimension filtration of M/H0

m(R) is {δj/δ0}j , which shows
the first part. The long exact sequence in cohomology induced by 0 → δj−1 → δj →
δj/δj−1 → 0 and the Cohen–Macaulayness of δj/δj−1 for all j � i easily imply (2).
Let us fix j � i and prove (3). If j = 0 the assertion is clear; thus we may assume j > 0
and by way of Part (2) that δj/δj−1 is j-dimensional Cohen–Macaulay. Let x be a (δj/δj−1)-
regular element of degree one; then, the short exact sequence given by multiplication by
x induces a short exact sequence in cohomology

0 −→ Hj−1
m

(
δj/δj−1

x(δj/δj−1)

)

−→ Hj
m(δj/δj−1)(−1) −→ Hj

m(δj/δj−1) −→ 0

together with (2) imply that hj−1((δj/δj−1)/(x(δj/δj−1)) = (z − 1) hj(δj/δj−1) = (z −
1) hj(M).
Thus, one can easily prove that h0((δj/δj−1)/(x(δj/δj−1))) = (z − 1)j hj(M), where x

is a (δj/δj−1)-maximal regular sequence. Since dim((δj/δj−1)/(xδj/δj−1)) = 0, we also
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have h0((δj/δj−1)/(xδj/δj−1)) = Hilb((δj/δj−1)/(xδj/δj−1)) = (1 − z)j Hilb(δj/δj−1), and
the proof of (3) is complete.
Finally, to prove (4), we show that Hilb(U 〈j〉/U 〈j−1〉) = Hilb(Gin(U )〈j〉/(Gin(U )〈j−1〉))
holds for all j � i. Actually, we prove more, i.e., that Hilb(U 〈j〉) = Hilb(Gin(U )〈j〉) for all
j � i; since Gin(U 〈j〉) ⊆ Gin(U )〈j〉 by Lemma 2 (1) for all j, the last equality is equivalent
to proving that Gin(U 〈j〉) = Gin(U )〈j〉 for all j � i, and this is what we do.
Consider now, for all j, the short exact sequences 0 → U 〈j〉/U 〈j−1〉 → F/U 〈j−1〉 →

F/U 〈j〉 → 0; we see inductively that depth(F/U 〈j〉) � j + 1 for all j � i. For j = d
and if U 〈j〉/U 〈j−1〉 = 0, this is obvious; otherwise, since M is i-sCM, U 〈j〉/U 〈j−1〉 is j-
dimensional Cohen–Macaulay for all j � i, and by [10, Proposition 1.2.9], we get that
depth F/U 〈j−1〉 � min{j, j + 1} = j.
For all graded submodules V ⊆ F , it is well-known that depth(F/Gin(V )) = depth(F/V )
and that F/Gin(V ) is sequentially Cohen–Macaulay. Thus, j + 1 � depth(F/Gin(U 〈j〉))
by what we proved above, and Proposition 1 together with Theorem 2 imply that the latter
is also equal to the smallest integer t such that Gin(U 〈j〉) � Gin(U 〈j〉)〈t〉. Therefore, we
have shown that Gin(U 〈j〉) = Gin(U 〈j〉)〈j〉 for all j � i. Now, the conclusion follows from
Lemma 2 (4). 	


Definition 6 LetM be a finitely generated graded R-module. We let δ(M) = 0 ifM = 0,
andwe let δ(M) be the largest gradedR-submodule ofM of dimension atmost dim(M)−1
otherwise. Given j � 0, we also define the module δj(M) inductively by letting

δ0(M) = M, δ1(M) = δ(M), and δj(M) = δ(δj−1(M)).

Since δi(M) is the largest submodule of M of dimension at most i, it is easy to see that
for all i ∈ {0, . . . , d} there exists j = j(i) � 0 such that δi(M) = δj(M). In particular,
δd−1(M) = δ(M) = δ1(M).
In the following remark, we collect two known facts which are useful in the following.

Remark 9 Recall that in our setting R ∼= ωR(n). It is a well-known fact that for a d-
dimensional graded R-moduleM it holds that dim Extn−i

R (M,ωR) � i for all i.

(1) Given a graded submodule N ⊆ M such that dim(N ) < dim(M) = d, we have
that N = δ(M) if and only if M/N is unmixed of dimension d, i.e., dim(R/p) =
dim(M/N ) = d for all p ∈ Ass(M/N ). This is a straightforward application of
Proposition 3.

(2) A d-dimensional finitely generated graded R-module M is unmixed if and only if
dim(Extn−j

R (M,R)) < j for all j ∈ {0, . . . , d−1}. In fact, if p ∈ Ass(M) were a prime of
height n−j for some j < d, wewould have that Extn−j

R (M,R)p ∼= Extn−j
Rp (Mp, Rp) �= 0,

since the latter is, up to shift, the Matlis dual ofH0
pRp (Mp) which is not zero because

depth(Mp) = 0 by [10, Proposition 1.2.13]. It follows that p ∈ Supp(Extn−j
R (M,R))

and, thus, dim(Extn−j
R (M,R)) � j, contradiction. The converse is analogous, observ-

ing that if Extn−j
R (M,R) has dimension at least j and, hence, necessarily equal to j,

then it must have a prime of height n − j in its support.

The following lemma can be regarded as an enhanced graded version of [17, Proposition
4.16].
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Lemma 4 Let M be a finitely generated graded R-module. For a sufficiently general
homogeneous element x ∈ m and for all j � 0 there is a short exact sequence 0 →
δj(δ(M)/xδ(M)) → δj+1(M/xM) → Lj → 0, where Lj is a module of finite length.

Proof Let d = dim(M). The case d � 1 is trivial; therefore, we will assume that d � 2
and proceed by induction on j � 0.
First assume that j = 0; let M = M/δ(M), and observe that M is unmixed of posi-
tive depth and dimension d. In particular, ExtnR(M,R) = 0 and, by Remark 9, we have
dim(Extn−�

R (M,R)) < � for all 0 < � < d.
For x sufficiently general, we have that x isM-regular and, thus, δ(M)∩xM = x(δ(M) :M

x) = xδ(M);moreover, either dim(δ(M)/xδ(M)) � 0 or dim(δ(M)/xδ(M)) = dim(δ(M))−
1 < d − 1 = dim(M/xM) = dim(M/xM). If we let T = δ(M)+ xM, then δ(M)/xδ(M) ∼=
T/xM ⊆ δ(M/xM), and therefore, we have an exact sequence 0 → δ(M)/xδ(M) ϕ→
δ(M/xM). Moreover, we have that coker(ϕ) ∼= δ((M/xM)/(T/xM)) ∼= δ(M/T ). Since
M/T ∼= M/xM, we then have a short exact sequence

0 −→ δ(M)/xδ(M) ϕ−→ δ(M/xM) −→ δ(M/xM) −→ 0.

Since x is sufficiently general, by Remark 6, wemay assume that x is also strictly filter regu-
lar forM.We then have that either dim(Extn−�

R (M,R)⊗RR/(x)) = dim(Extn−�
R (M,R)) � 0

or dim(Extn−�
R (M,R)⊗R R/(x)) = dim(Extn−�

R (M,R))− 1 < � − 1 for all 0 < � < d. Since
x is strictly filter regular forM, from the short exact sequences

0 −→ Extn−�
R (M,R) ⊗R R/(x) −→ Extn−(�−1)

R (M/xM, R)

−→ 0 :Extn−(�−1)
R (M,R) x −→ 0

it also follows that dim(Extn−(�−1)
R (M/xM, R)) = dim(Extn−�

R (M,R)⊗R R/(x)) < � − 1 for
all 0 � � − 1 < d − 1. Thus, by Remark 9, it follows thatM/xM is unmixed of dimension
d − 1 and that L0 = δ(M/xM) is necessarily δ0(M/xM) = H0

m(M/xM), which has finite
length.
Now suppose that the statement of the lemma is proved for j−1, so that we have a short

exact sequence 0 → δj−1(δ(M)/xδ(M)) → δj(M/xM) → Lj−1 → 0, with Lj−1 of finite
length.
It is clear from the definition of δ that there is an exact sequence 0 −→

δj(δ(M)/xδ(M))
ϕj−→ U −→ Lj −→ 0, wherewe letU = δj+1(M/xM) andLj = coker(ϕj).

If U has finite length we are done, so let us assume that dim(U ) > 0. In this case, we nec-
essarily have that h = dim(δj(M/xM)) > 0, and since Lj−1 has finite length we conclude
that dim(δ(M)/xδ(M)) = h. Again because Lj−1 has finite length, we can find p � 0 such
thatmpU ⊆ δj−1(δ(M)/xδ(M)). Moreover, dim(mpU ) � dim(U ) < h, and thereforempU
is contained in δj(δ(M)/xδ(M)). This shows thatmpLj = 0, and thus Lj has finite length. 	

In [35], it is claimed that if x ∈ R isM-regular, it is possible to prove thatM is i-sCM if

and only ifM/xM is (i− 1)-sCM following the same lines of the proof [36, Theorem 4.7],
which is not utterly correct, as we already pointed out in Example 3. The claim is indeed
false: if x isM-regular andM/xM is (i − 1)-sCM, thenM is not necessarily i-sCM, as the
following example shows.

Example 8 Let R be a 2-dimensional domain which is not Cohen–Macaulay, cf. Example
3. For all 0 �= x ∈ R, we have that R/(x) is 0-sCM, but R is not even 2-sCM.
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In the following proposition, we show that the claimed result holds true under some
additional assumption.

Proposition 8 Let i be a positive integer, and M be a finitely generated graded R-module
with depth(M) > 0. Also assume that depth(Extn−�

R (M,R)) > 0 for all � � i − 1. For a
sufficiently general x ∈ R, if M/xM is (i − 1)-sCM, then M is i-sCM.

Proof Since a module is 0-sCM if and only if it is 1-sCM, cf. Definition 5 and Corollary 2,
when i = 1, 2 the statement follows immediately from Proposition 7; therefore, we may
let 3 � i � d = dim(M). Let j be the smallest integer such that δi−1(M) = δj(M), and let
N = M/δj(M). Observe that depth(N ) > 0 by Proposition 4. By Remark 8, it is enough to
prove that N is sequentially Cohen–Macaulay, and this is what we do.
Observe that since dim(δj(M)) � i − 1, we have that Extn−�

R (M,R) ∼= Extn−�
R (N, R) for

all � � i, and there is an injection 0 → Extn−(i−1)
R (N, R) → Extn−(i−1)

R (M,R). In particular,
from our assumptions, we get that

depth(Extn−�
R (N, R)) > 0 for all � � i − 1.

By a repeated application of Lemma 4, there exists a short exact sequence

0 −→ δj(M)/xδj(M) ϕ−→ δj(M/xM) −→ L −→ 0,

where L is amodule of finite length. Now, either dim(δj(M/xM)) = dim(δj(M)/xδj(M)) =
dim(δj(M)) − 1, or dim(δj(M/xM)) � 0, and in both cases, we have that dim(δj(M/xM))
� i − 2. By minimality of j, we have that dim(δj−1(M)) > i − 1 and applying iteratively
Lemma 4 as we did above, we also obtain dim(δj−1(M/xM)) = dim(δj−1(M))− 1 > i− 2;
thus, we may conclude that

δj(M/xM) = δi−2(M/xM).

Since L = coker(ϕ) and x is regular for N = M/δj(M), we have (M/xM)/(δj(M)/xδj(M))
∼= M/(δj(M) + xM) ∼= N/xN , and the above yields a short exact sequence 0 → L →
N/xN → (M/xM)/δi−2(M/xM) → 0.
Since L has finite length, the associated long exact sequence of Ext-modules yields that

Extn−�
R (N/xN, R) ∼= Extn−�

R ((M/xM)/δi−2(M/xM), R) for all� �= 0.

In particular, being M/xM a (i − 1)-sCM module by assumption, Remark 8 and Peskine
Theorem 3 imply that Extn−�

R (N/xN, R) is either zero or Cohen–Macaulay of dimension
� for all � �= 0. Remark 8 together with local duality also imply that

Extn−(�−1)
R (N/xN, R) = 0 for all 1 � � − 1 � i − 2.

Wemay assume that x, which isN -regular, is also Extn−�
R (N, R)-regular for all � � i− 1,

for we proved above that all these modules have positive depth. For � � i, we thus have
short exact sequences 0 → Extn−�

R (N, R) ·x−→ Extn−�
R (N, R) → Extn−(�−1)

R (N/xN, R) → 0,
from which it follows that Extn−�

R (N, R) is either zero or Cohen–Macaulay of dimension �

for all � � i.
From the above, we also have that for all 2 � � � i − 1 the maps Extn−�

R (N, R) ·x−→
Extn−�

R (N, R) are isomorphisms, and by graded Nakayama’s Lemma that Extn−�
R (N, R) = 0

for all 2 � � � i−1. Finally, we also have an injection 0 → Extn−1
R (N, R) ·x−→ Extn−1

R (N, R),
which implies that Extn−1

R (N, R) is Cohen–Macaulay of dimension one by Remark 9.
Applying Peskine’s Theorem 2.9, we have thus showed that N is sequentially Cohen–

Macaulay, that is,M is i-sCM. 	
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The next theoremprovides a characterization of partially sequentially Cohen–Macaulay
modules. It was proved for the first time in [35, Theorem 3.5] in the ideal case. Here, we
generalize the result to finitely generated modules and fix the gap in the original proof
thanks toProposition8.We letR[n−1] = k[x1, . . . , xn−1] ∼= R/xnR anddenotebyN[n−1] the
R[n−1]-module N/xnN � N ⊗R R/xnR by restriction of scalars. We let x ∈ R be a general
linear formwhich,without loss of generality,wemaywrite as l = a1x1+· · ·+an−1xn−1−xn
and consider the map gn : R → R[n−1], defined by xi �→ xi for i = 1, . . . , n − 1 and
xn �→ a1x1 + · · · + an−1xn−1. Then, the surjective homomorphism F/U → F[n−1]/gn(U )
has kernel (U + xF )/U and induces the isomorphism

F
U + xF

∼= F[n−1]
gn(U )

. (1)

Moreover, the image of Gin(U ) in F[n−1] via the mapping xn �→ 0 is Gin(U )[n−1]. With
this notation, the module version of [24, Corollary 2.15] states that

Gin(gn(U )) = Gin(U )[n−1]. (2)

Theorem 4 Let M be a finitely generated graded R-module of dimension d, and let M ∼=
F/U be a free graded presentation of M. The following conditions are equivalent:

(1) F/U is i-sCM;
(2) hj(F/U ) = hj(F/Gin(U )) for all i � j � d.

Proof (1) ⇒ (2) is a direct consequence of Lemma 3 (3) and (4), since also F/Gin(U ) is
i-sCM.
We prove the converse by induction on d. If d = 0, F/U is Cohen–Macaulay and
sequentially Cohen–Macaulay. Therefore, without loss of generality we may assume
that F/U and F/Gin(U ) have positive dimension and, by Lemma 3 (1), also positive
depth. Since F/Gin(U ) is sequentially Cohen–Macaulay, Peskine’s Theorem 3 implies
that there exists a linear form l ∈ R which is F/Gin(U )-regular and also regular
for all non-zero Extn−j

R (F/Gin(U ),ωR) with j > 0. Starting with the exact sequence

0 → F/Gin(U )(−1) ·l→ F/Gin(U ) → F/(Gin(U ) + lF ) → 0, by the above and local
duality, we obtain the short exact sequences

0 −→ Hj−1
m (F/(Gin(U ) + lF )) −→ Hj

m(F/Gin(U ))(−1)
·l−→ Hj

m(F/Gin(U )) −→ 0,

from which it follows that hj−1(F/(Gin(U ) + lF )) = (z − 1)hj(F/Gin(U )) for all j.
Consider now a sufficiently general linear form x ∈ R. For all j, there are exact sequences

0 −→ B(j) −→ Hj−1
m (F/(U + xF )) −→ Hj

m(F/U )(−1) −→ Hj
m(F/U ) −→ C (j) −→ 0

for someR-modulesB(j) andC (j), and these imply thathj−1(F/(U+xF )) = (z−1)hj(F/U )+
Hilb(B(j)) + Hilb(C (j)) for all j. By (1) and (2), we obtain

(z − 1)hj(F/U ) � (z − 1)hj(F/U ) + Hilb(B(j)) + Hilb(C (j))

= hj−1(F/(U + xF )) = hj−1(F[n−1]/gn(U ))

� hj−1(F[n−1]/Gin(gn(U ))) = hj−1(F[n−1]/Gin(U )[n−1])

= hj−1(F/(Gin(U ) + lF )) = (z − 1)hj(F/Gin(U )).

Thus, from our hypothesis, it follows that the above inequalities are equalities for all j � i,
that means that Hilb(B(j)) = Hilb(C (j)) = 0, i.e., B(j) = C (j) = 0 for j � i. Moreover, since
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C (i−1) = B(i) = 0, it follows that x is regular for all nonzero Extn−j
R (F/U,ωR) with j � i−1,

which thus have positive depth.
From the above equalities we also get that hj(F[n−1]/gn(U )) = hj(F[n−1]/Gin(gn(U ))) for
all j � i − 1; by induction, this implies that F/(U + xF ) ∼= F[n−1]/gn(U ) is (i − 1)-sCM.
The conclusion follows now by a straightforward application of Proposition 8. 	


As a corollary, we immediately obtain Theorem 1.

Theorem 5 Let M be a finitely generated graded R-module, and let M ∼= F/U a free
graded presentation of M. Then, F/U is sequentially Cohen–Macaulay if and only if
hi(F/U ) = hi(F/Gin(U )) for all j � 0.

One can wonder whether the equality hi(F/U ) = hi(F/Gin(U )) is enough to imply that
F/U is i-sCM; however, this is not the case.

Example 9 (1) Consider a gradedCohen–Macaulay k[x1, . . . , xn]-moduleM1 of dimen-
sion i and a graded non-sequentially Cohen–Macaulay k[xi+2, . . . , xn]-module N .
Let M2 = N ⊗k k[x1, . . . , xi+1] and take M = M1 ⊕ M2. Then, x1, . . . , xi+1
is a strictly filter-regular sequence for M2, and it follows from Proposition 7
(1) that M2 is not sequentially Cohen–Macaulay. By Corollary 4 also M is not
sequentially Cohen–Macaulay. On the other hand, since depth(M2) > i, we have
that Hi

m(M) ∼= Hi
m(M1). If we write M1 ∼= F1/U1 and M2 ∼= F2/U2, where

F1 and F2 are graded free R-modules and U1, U2 are graded submodules, then
M1 ⊕ M2 ∼= F/U where F = F1 ⊕ F2 and U = U1 ⊕ U2, and it follows that
Gin(U ) = Gin(U1) ⊕ Gin(U2). Since M1 is Cohen–Macaulay, hence sequentially
Cohen–Macaulay, and depth(F2/Gin(U2)) = depth(M2) > i, we therefore conclude
by Theorem 5 that hi(F/U ) = hi(F1/U1) = hi(F1/Gin(U1)) = hi(F/Gin(U )).

(2) The following is another explicit example of such instance in the ideal case.
Consider the polynomial ring R = k[x1, x2, x3, x4 , x5, x6, x7] and the monomial ideal
I = (x31 , x

2
1x2x4 , x1x5, x1x6, x2x5, x2x6, x

2
2x

2
7 , x3x5, x3x6, x3x7, x4x5, x4x6, x4x7, x

3
7).Then,

one can check that depth(R/I) = 0 and dim(R/I) = 3; moreover, hj(R/I) =
hj(R/Gin(I)) for j = 0, 3, and hj(R/I) �= hj(R/Gin(I)) for j = 1, 2. By Theorem
4, this means that R/I is 3-sCM but not 2-sCM and, a fortiori, not 1-sCM.

On the other hand, if I lex is the lexicographic ideal associated with I , then the equality
hi(R/I) = hi(R/I lex) ensures the i-partial sequential Cohen–Macaulayness of R/I . Notice
that this is a stronger condition, though, since hi(R/I) � hi(R/Gin(I)) � hi(R/I lex), coef-
ficientwise, see [34, Theorems 2.4 and 5.4]. Actually, in [35, Theorem 4.4], the following
result is proved.

Theorem 6 Let i be a positive integer and I a homogeneous ideal of R; then, the following
conditions are equivalent:

(1) hi(R/I) = hi(R/I lex);
(2) hi(R/Gin(I)) = hi(R/I lex);
(3) hj(R/I) = hj(R/I lex) for all j � i.

If any of the above holds, then I is i-sCM.
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We conclude this section by observing that the conditions in the previous theorem
are still equivalent if we replace Gin(I) with Gin0(I), the zero-generic initial ideal of I
introduced in [13]. We also remark that the equivalence between conditions (2) and (3)
is not true if we replace the Hilbert series of local cohomology modules with graded Betti
numbers, see [32, Theorem 3.1].

4 E-depth
As in the previous section, k will denote an infinite field, R = k[x1, . . . , xn] a standard
graded polynomial ring and m = (x1, . . . , xn) its homogeneous maximal ideal. As before,
whenM = 0, we let dim(M) = −1 and depth(M) = ∞. We start with the main definition
of this section.

Definition 7 Given a nonzero finitely generated graded Z-moduleM and a nonnegative
integer r, we say that M satisfies condition (Er) if depth(ExtiR(M,R)) � min{r, n − i} for
all i ∈ Z. We let

E-depth(M) = min
{
n, sup{r ∈ N | M satisfies (Er)}

}
.

Remark 10 Observe that a nonzero module M is sequentially Cohen–Macaulay if and
only if it satisfies condition (Er) for all r � 0, see Theorem 3. It is therefore clear that
a sequentially Cohen–Macaulay R-module has E-depth equal to n. The converse is also
true, since if E-depth(M) = n, then depth(ExtiR(M,R)) � n− i; as dim(ExtiR(M,R)) � n− i
always holds, cf. Remark 9, this implies the claim.

Lemma 5 Let M �= 0 be a finitely generated Z-graded R-module with positive depth and
E-depth, and let � be a linear form which is a strictly filter regular for M; then, the graded
short exact sequence 0 −→ M(−1) ·�−→ M −→ M/�M −→ 0 induces graded short exact
sequences

0 −→ ExtiR(M,R) ·�−→ ExtiR(M,R)(1) −→ Exti+1
R (M/�M,R) −→ 0, for all i < n,

and

0 −→ Hi−1
m (M/�M) −→ Hi

m(M)(−1) ·�−→ Hi
m(M) −→ 0, for all i > 0.

Proof Consider the induced long exact sequence of Ext modules

. . . ExtiR(M,R) ·� ExtiR(M(−1), R) Exti+1
R (M/�M,R) . . . ,

and observe that ExtiR(M(−1), R) ∼= ExtiR(M,R)(1). Our assumption that E-depth(M) > 0
guarantees that depth(ExtiR(M,R)) > 0 for all i < n. Since � is strictly filter regular forM,
the multiplication by � is injective on ExtiR(M,R) for all i < n, and the long exact sequence
breaks into short exact sequences, as claimed, and the graded short exact sequences of
local cohomology modules are obtained by graded Local Duality. 	


Proposition 9 Let M �= 0 be a finitely generated Z-graded R-module.

(1) E-depth(M) = E-depth(M/H0
m(M)).

(2) Assume that E-depth(M) > 0 and � is homogeneous strictly filter regular for M; then,
either E-depth(M/(H0

m(M) + �M)) = E-depth(M) = n, or E-depth(M/(H0
m(M) +

�M)) = E-depth(M) − 1.
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Proof We first prove (1); clearly, we may assume that H0
m(M) �= 0. Applying the functor

HomR(−, R) to the short exact sequence 0 −→ H0
m(M) −→ M −→ M/H0

m(M) −→ 0
we get a long exact sequence of Ext modules, from which we obtain that Extn−i

R (M,R) ∼=
Extn−i

R (M/H0
m(M), R) for all i �= 0 because H0

m(M) has finite length; the first statement is
now clear, since depth(ExtnR(H0

m(M), R)) = 0 .
For the proof of (2), let N = M/H0

m(M); by (1), M and N have same E-depth and
ExtiR(M,R) ∼= ExtiR(N, R) for all i �= n. First assume that M is sequentially Cohen–
Macaulay, i.e., E-depth(M) = n. Then, N is sequentially Cohen–Macaulay by Remark
10 or by Corollary 2, and since � is filter regular for M by Remark 2.17, � is N -regular. It
follows from Proposition 7 thatM/(H0

m(M)+ �M) is sequentially Cohen–Macaulay and,
therefore, has E-depth equal to n.
Now assume that 0 < E-depth(N ) = E-depth(M) = r < n; from an application
of Lemma 5, we obtain short exact sequences 0 → ExtiR(N, R)

·�→ ExtiR(N, R)(1) →
Exti+1

R (N/�N, R) → 0 and, therefore, Exti+1
R (N/�N, R) ∼= ExtiR(M,R)(1)/�ExtiR(M,R) for

all i < n. It follows that depth(Exti+1
R (N/�N, R)) = depth(ExtiR(M,R)) − 1 for all i < n,

which clearly implies E-depth(N/�N ) = E-depth(M) − 1, as desired. 	

We now introduce a special grading on a polynomial ring which refines the standard

grading, and that can be further refined to the monomial Zn-grading.

Definition 8 Let r be a positive integer, A be a Z-graded ring and S = A[y1, . . . , yr] a
polynomial ring overA. For i ∈ {0, . . . , r} let ηi ∈ Zr+1 be the vector whose (i+1)-st entry
is 1, and all other entries equal 0. We consider S as a Z × Zr-graded ring by letting

degS(a) = degA(a) · η0, for all a ∈ A and degS(yi) = ηi, for i ∈ {1, . . . , r}.

Bymeans of the previous definition, wemay consider R = k[x1, . . . , xn] as aZ×Zr-graded
ring for any0 � r � n−1by lettingdegR(xi) = η0 for all 1 � i � n−r anddegR(xi) = ηi for
all n−r+1 � i � n. Observe that an element f ∈ R is graded with respect to such grading
if and only if f can be written as f = f · u, where f ∈ k[x1, . . . , xn−r] is homogeneous with
respect to the standard grading, and u is a monomial in k[xn−r+1, . . . , xn]. In particular,
when r = 0 this is just the standard grading on R, while for r = n − 1, it coincides with
the monomial Zn-grading.

Remark 11 We can extend in a natural way such a grading to free R-modules F with a
basis by assigning degrees to the elements of the given basis. Accordingly, any R-module
M is Z × Zr-graded if and only if M ∼= F/U , where F is a free Z × Zr-graded R-module
and U is a Z × Zr-graded submodule of F .

We see next that the grading just introduced is very relevant to the purpose of estimating
the E-depth of a module; the following can be seen as a refinement of Proposition 2.

Proposition 10 Let R = k[x1, . . . , xn], and M be a finitely generated Z × Zr-graded R-
module such that xn, . . . , xn−r+1 is a filter regular sequence for M. Then, xn, . . . , xn−r+1 is
a strictly filter regular sequence for M, and E-depth(M) � r.

Proof Write M as M = F/U , where F is a finitely generated Z × Zr-graded free R-
module, and U is a Z × Zr-graded submodule of F . Since U is Z × Zr-graded, xn is
Z × Zr-homogeneous and filter regular, U sat = U :F x∞

n is also Z × Zr graded and,
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accordingly M/H0
m(M) ∼= F/U sat is too. If F/U sat = 0, then M has dimension zero and,

thus, is sequentially Cohen–Macaulay; then E-depth(M) = n � t, and every sequence of
non-zero elements of (x1, . . . , xn) is a strictly filter regular sequence for M. In particular,
xn, . . . , xn−r+1 is a strictly filter regular sequence forM.
Now suppose that F/U sat �= 0. By assumption, xn is filter regular forM, and thus regular

for F/U sat. Since the latter isZ×Zr-graded, we have that F/U sat ∼= F/U⊗k k[xn] for some
Z × Zr−1-graded R = k[x1, . . . , xn−1]-module F , and some Z × Zr−1-graded submodule
U of F such that F/U can be identified with the hyperplane section F/U sat ⊗R R/(xn).
Thus, for i < n, we have

ExtiR(M,R) ∼= ExtiR(M/H0
m(M), R) ∼= ExtiR(F/U sat , R) ∼= ExtiR(F/U, R) ⊗k k[xn].

It follows that xn is a nonzero divisor on ExtiR(M,R) for all i < n, and thus E-depth(M) > 0.
Since ExtnR(F/U, R) has finite length it also follows that xn is a strictly filter regular element
forM. Now we can consider F/U , and an iteration of this argument will imply the desired
conclusion. 	


Wenow introduce aweight order onR. Given integers 0 � r � n, consider the following
r × nmatrix

r,n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 . . . 0 0 0 0 . . . 0 −1
0 0 . . . 0 0 0 0 . . . −1 0
...

...
...

...
...

... . .
. ...

...

0 0 . . . 0 0 0 −1 . . . 0 0
0 0 . . . 0 0 −1 0 . . . 0 0
0 0 . . . 0 −1 0 0 . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and let ωi be its i-th row; then, this induces a “partial” revlex order revr on R by declaring
that a monomial xa = xa11 · · · xann is greater than a monomial xb = xb11 · · · xbnn if and only
if there exists 1 � j � r such that ωi · a = ωi · b for all i � j and ωj+1 · a > ωj+1 · b.

Remark 12 Observe that revn coincides with the usual revlex order on R = k[x1, . . . , xn].

Give a graded free R-module F with basis {e1, . . . , es}, we can write any f ∈ F uniquely
as a finite sum f = ∑

ujeij , where uj are monomials, and we assume the sum has minimal
support. We let the initial form inrevr (f ) of f written as above be the sum of those ujeij for
which uj is maximal with respect to the order revr introduced above.

Definition 9 Let F be a finitely generated graded free R-module, and U be a graded
submodule; let also M = F/U . We say that the r-partial general initial submodule of U
satisfies a given property P if there exists a non-empty Zariski open set L of r-uples of
linear forms such that F/inrevr (g�(U )) satisfies P for any � = (�n−r+1, . . . , �n) ∈ L, where
g� is the automorphism on F induced by the change of coordinates of R which sends
�i �→ xi and fixes the other variables.

With some abuse of notation, we denote any partial initial submodule inrevr (g�(U ))
which satisfies P the r-partial general submodule of U , and denote it by ginr(U ).

Proposition 11 Let F be a finitely generated graded free R-module, and U ⊆ F be a
graded submodule. For every 0 � r � n, we have that E-depth(F/ ginr(U )) � r.
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Proof For a sufficiently general change of coordinates, we have that xn, . . . , xn−r+1 form
a filter regular sequence for F/(g�(U )). Since inrevr (U ) :F xn = inrevr (U :F xn), see [21,
15.7], we have that xn, . . . , xn−r+1 also form a filter regular sequence for F/inrevr (g�(U )),
and hence for F/ ginr(U ). By construction, the module F/ ginr(U ) is Z × Zr-graded, and
the claim now follows from Proposition 10. 	


Theorem 7 Let F be a finitely generated graded free R-module, and U ⊆ F be a graded
submodule. For every 0 � r � n, we have that E-depth(F/U ) � r if and only if hi(F/U ) =
hi(F/ ginr(U )) for all i ∈ N.

Proof After performing a sufficiently general change of coordinates, we may assume that
V = inrevr (U ) has the sameproperties as ginrevr (U ), and that xn, . . . , xn−r+1 form a strictly
filter regular sequence for F/U . By using again that inrevr (U :F xn) = inrevr (U ) :F xn,
and because strictly filter regular sequences are filter regular by Remark 6, we have that
xn, . . . , xn−r+1 form a filter regular sequence for F/V . Since V is Z×Zr-graded, it follows
from Proposition 10 that xn, . . . , xn−r+1 is a strictly filter regular sequence for F/V . By
[21, 15.7], we also have that

V sat = inrevr (U ) :F x∞
n = inrevr (U :F x∞

n ) = inrevr (U sat),

and

V sat + xnF = inrevr (U sat) + xnF = inrevr (U sat + xnF ).

Viewing F/(U sat + xnF ) as a quotient of a free S = k[x1, . . . , xn−1]-module F by a graded
submodule U , we see that V sat + xnF can be identified with a submodule V ⊆ F , with
V = inrevr−1 (U ) and V has the same properties of ginrevt−1 (U ), see [12, Lemma 3.4] and
the proof of [12, Theorem 3.6] for more details.
First assume that E-depth(F/U ) � r, and we prove equality for the Hilbert series of

Hi
m(F/U ) and Hi

m(F/V ) for all i ∈ N by induction on r � 0. The base case is trivial since
inrev0 (U ) = U . By Proposition 9, we have that E-depth(F/U sat) � r > 0 and, accordingly,
E-depth(F/(U sat + xnF )) � r − 1. By induction, we have that Hi

m(F/(U sat + xnF )) =
Hi
m(F/(V sat + xnF )). Since xn is strictly filter regular for both F/U sat and F/V sat, and

these have positive E-depth, by Lemma 5, we have graded short exact sequences for all
i > 0:

0 Hi−1
m (F/(U sat + xnF )) Hi

m(F/U sat)(−1)
·xn Hi

m(F/U sat) 0,

(3)

and

0 Hi−1
m (F/(V sat + xnF )) Hi

m(F/V sat)(−1)
·xn Hi

m(F/V sat) 0.

(4)

Since the first modules in both sequences have the same Hilbert series, a straightforward
computation shows that hi(F/U sat) = hi(F/V sat). Since Hi

m(F/U sat) ∼= Hi
m(F/U ) and

Hi
m(F/V sat) ∼= Hi

m(F/V ) for all i > 0, the equality between Hilbert series is proved for
i > 0. Finally, since Hilb(F/U ) = Hilb(F/V ) and Hilb(F/U sat) = Hilb(F/V sat), we have
that

h0(F/U ) = Hilb(U sat/U ) = Hilb(V sat/V ) = h0(F/V ).
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Conversely, assume that the local cohomology modules of F/U and F/V have the same
Hilbert series. If r = 0 there is nothing to show, otherwise it is enough to prove that
E-depth(F/U sat) � r.
Since xn is a filter regular element for F/V , it is strictly filter regular for F/V , being the

latter Z × Zr-graded, and hence it is filter regular for F/V sat. Thus, the sequence (4) is
exact for i > 0. On the other hand, suppose by way of contradiction that the sequence (3)
is not exact for some i ∈ Z, and let i be the smallest such integer, so that we still have an
exact sequence

0 Hi−1
m (F/(U sat + xnF )) Hi

m(F/U sat)(−1) ·xn Hi
m(F/U sat).

Counting dimensions in such a sequence, and comparing them to those obtained from
(4) we obtain that hi−1(F/(U sat + xnF ))j > hi−1(F/(V sat + xnF ))j . However, by upper
semi-continuity, we know that the reverse inequality always holds, which gives a con-
tradiction. Thus, the sequence (3) is exact for all i ∈ N. By induction we have that
E-depth(F/(U sat + xnF )) � r − 1. If E-depth(F/(U sat + xnF )) = n, by Proposition 9,
we see that E-depth(F/U ) = n � r, as desired. Otherwise, again by Proposition 9, we
have that E-depth(F/U ) = E-depth(F/(U sat + xnF )) + 1 � r. 	

Recalling Remark 12, Theorem 7 can be viewed as another extension of Theorem 1.
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