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1 Introduction

The Standard Model (SM) is an exceptionally powerful theory in describing most of the

observed phenomena in particle physics. The experimental measurements at the Large

Hadron Collider (LHC) following the discovery of the Higgs boson [1, 2] continue to confirm

it to be the valid theory for the larger and larger scales of energy. At the same time

we know that the SM has to be just an effective field theory, since it cannot provide

explanations to various experimental observations such as the existence of neutrino masses

and oscillations, the existence of dark matter and the large baryon asymmetry present in

the Universe. Moreover, fine tuning arguments such as the naturalness of the electroweak

(EW) scale, the large hierarchy among the Yukawa couplings of the SM fermions and the

non observation of charge-parity (CP) violation effects in strong interactions also seem to

suggest that an ultraviolet completion of this theory is needed. In particular, in the SM the

Higgs mass parameter responsible for EW symmetry breaking is quadratically sensitive to

any heavy new physics (NP) contribution. This hints to a relative low energy scale where

new dynamic degrees of freedom should be present, unless one is willing to accept a large

level of fine tuning in the EW sector. This paradigm has motivated in the last decades a

huge experimental effort for the direct search for NP at and beyond the EW scale. The

null results so far obtained have however almost ruled out the vanilla new physics models,

except in some corners of their parameter space.

– 1 –



J
H
E
P
0
4
(
2
0
1
9
)
0
7
5

In view of this, precision studies of all the possibile deformations from the SM due to

new states not directly accessible at current collider energies become a crucial task for the

present and future experimental program. The language of the SM Effective Field Theory

(SMEFT) provides a well defined organizing principle for characterizing the various devi-

ations from the SM Lagrangian, given the (at least moderate) mass gap existing between

the EW scale and the NP scale Λ. As well known in this language the new interactions are

expressed as a series of higher dimensional operators so that the effective Lagrangian can

be written as

LSMEFT = LSM + L6 + . . . (1.1)

where Li =
∑

i
ciOi
Λi−4 and ci are the Wilson Coefficients of the operators Oi, built out from

SM fields. The expression in eq. (1.1) is valid under the assumption of lepton number con-

servation, so that the first corrections to the SM only appear at the order of dimension six

operators, order for which a complete basis has been identified long ago in [3, 4]. One of the

main goals of the current and High-Luminosity program of the LHC (HL-LHC), as well as

of future High-Energy options (HE-LHC), is the precise determination of the ci coefficients.

The main objective of this paper is the study for the measurement of two dimension six

operators affecting the triple gauge coupling among EW gauge bosons, namely

O3W = − 1

Λ2

g

3!
εabcW

a,µνW b
νλW

cλ
µ O3W̃ = − 1

Λ2

g

3!
εabcW̃

a,µνW b
νλW

cλ
µ (1.2)

where g and Wµν are the SU(2)L gauge coupling constant and the field strength tensor and

W̃µν its dual, W̃µν = 1
2ε
αβµνWαβ . It is well known that the measurement of the Wilson

coefficient of the two operators of eq. (1.2) is extremely challenging since the interference

between the SM and NP contributions to diboson production in 2 → 2 scattering is sup-

pressed in the high-energy regime as a consequence of certain helicity selection rules [5, 6].

This makes it hard to precisely determine the magnitude of the c3W and c̃3W Wilson co-

efficients, as well as to measure their sign and to differentiate amongst their two different

contributions to the scattering amplitudes. Based on the fact that the helicity selection

rules of [6] are only valid for 2→ 2 scattering, various observables built out from the decay

products of the diboson final states have been recently proposed [7, 8]. These observables

help to overcome the non interference problem ensuring a larger sensitivity to the Wilson

coefficient of the operators of eq. (1.2).

In this paper we update previous analyses by considering both the pp → WZ and

pp→Wγ diboson processes with the inclusion of the O3W̃ operator and carefully treat-

ing QCD next-to-leading-order (NLO) effects, which we find to be important since they

partially restore the interference between the SM and BSM amplitudes (for the previous

studies of the NLO effects in the presence of the higher dimensional operators see [9–11]).

By closely following existing experimental analyses targeting diboson final states, we

provide combined bounds in the c3W − c̃3W plane showing the potentiality of the HL-

and HE-LHC options in testing these higher dimensional operators. Interestingly we find

that some of the selection cuts which are necessary to suppress reducible QCD back-

ground processes automatically lead to a partial restoration of the interference also at LO,

an effect extremely relevant for experimental analyses and which was overlooked in the

previous literature.
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We also compare our findings for the O3W̃ operator with the limits arising from the

non observation of neutron and electron electric dipole moments (EDM). We find that

the HL-LHC sensitivity on the CP odd operator becomes stronger than the bounds from

neutron EDM but not than the ones from the electron EDM, which are one order of

magnitude stronger.

The paper is organized as follows. In section 2 we give a review of the methods recently

proposed in the literature to restore the interference of the operators of eq. (1.2). We then

present our analyses for the WZ and Wγ processes in section 3 and section 4. Limits from

EDMs are discussed in section 5 while prospect for the HE option of the LHC at 27 TeV

are shown in section 6. We conclude in section 7.

2 Interference suppression and its restoration

In this section we will review the main results regarding the interference suppression from

the helicity selection rules [6] and the possible strategies to overcome it recently proposed

in [7, 8]. The reader familiar with the topic can directly skip to the next section.

Generically, the scattering cross section for any 2→ 2 process in the presence of higher

dimensional beyond the SM (BSM) operators can be written as

σ∼
g4

SM

E2

[ SM2︷ ︸︸ ︷(
aSM

0 +aSM
1

M2

E2
+. . .

)
+

BSM6×SM︷ ︸︸ ︷
E2

Λ2

(
aint

0 +aint
1

M2

E2
+. . .

)
+

BSM6
2︷ ︸︸ ︷

E4

Λ4

(
aBSM

0 +aBSM
1

M2

E2
+. . .

)]
,

(2.1)

where E is the typical energy of the scattering process, M is the mass of the SM particles

and ellipses stand for the smaller terms in the
(
M2

E2

)
expansion The interference terms

between the SM and BSM as well as a pure BSM terms are indicated explicitly. In the

high energy limit E � M the leading contribution comes from the aSM,int,BSM
0 terms

in the brackets corresponding to the zero mass limit of the SM particles. In [6] it was

shown that aint
0 (the leading contribution to the interference term) is equal to zero for all

of the processes containing transversely polarized vector bosons. This effect comes from

the fact that the SM and NP amplitudes contain transverse vector bosons in the different

helicity eigenstates, for which the interference vanishes. Dramatically, this interference

suppressions implies that the high energy measurements of the Wilson coefficients will not

benefit from the usual growth of the amplitudes with the energy expected from dimension

six operators. This negatively affects the possibilities of high-energy hadron colliders, where

the strongest bounds can usually be obtained by exploiting the relative enhancement of

the NP contribution compared to the SM one in the high energy distribution tails [12–23].

2.1 Modulation from azimuthal angles: ideal case

For concreteness let us consider the process qq → VTVT , where V = W±, Z, γ and we will

always work in the high energy limit, E � mV . In the SM then the only amplitudes that

will be generated at leading order in energy are ASM(qq̄ → VT,±VT,∓), where the helicities

of the final state vector bosons are explicitly indicated. At the same time the dimension six

– 3 –
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operators in eq. (1.2) generate only the amplitudes ABSM(qq̄ → VT,±VT,±). Clearly, there

is no interference between the BSM and SM contributions. This is the core of the above

mentioned helicity selection rules. However note that at least one of the vector bosons in

the final sate is not stable. Hence the physical process is not a 2 → 2 but instead a 2→ 3

or 2→ 4 scattering. For simplicity let us consider the case of qq̄ →WTγ with a leptonically

decaying W . The differential cross section can then be schematically written as

dσ(qq̄ → γ+l−ν̄+)

dLIPS
=

1

2s

∣∣∣∑i(MSM
qq̄→γ+Wi

+MBSM
qq̄→γ+Wi

)MWi→l−ν̄+

∣∣∣2
(k2
W −m2

W )2 +m2
ZΓ2

W

, (2.2)

where the sum runs over the intermediate W polarizations, with the W assumed to be

on-shell, and where dLIPS ≡ (2π)4δ4(
∑
pi− pf )

∏
i

d3pi
2Ei(2π)3

is the Lorentz Invariant Phase

Space. In the narrow width approximation the leading contribution to the interference, i.e.

the cross term SM× BSM in eq. (2.2), is given by:

π

2s

δ(s−m2
W )

ΓWmW
MSM

qq̄→γ+WT−

(
MBSM

qq̄→γ+WT+

)∗
MWT−→l−ν̄+M

∗
WT+

→l−ν̄+ + h.c., (2.3)

where we have ignored the contributions to the longitudinal polarizations in the SM. A

simple calculation shows that

MWT−→l−ν̄+M
∗
WT+

→l−ν̄+ ∝ e
−2iφ (2.4)

where φ is the angle spanned by the plane of the W decay products and the Wγ scattering

plane. As explicitly shown in [8], the phase of the expressionMSM
qq̄→γ+WT−

(
MBSM

qq̄→γ+WT+

)∗
can be identified using the optical theorem and its properties under CP transformations.

Let’s consider an arbitrary amplitude A(a→ b). Then the optical theorem (if there are no

strong phases, i.e. contributions of nearly on-shell particles) fixes

A(a→ b) = A∗(b→ a). (2.5)

At the same time the transformation under CP implies

A(a→ b) = ηCPA(b→ a) (2.6)

where ηCP = 1(−1) for interactions respecting (violating) CP symmetry. By combining

eq. (2.5) and eq. (2.6) we can infer

A(a→ b)∗ = ηCPA(a→ b). (2.7)

Applying this result to the qq →Wγ process we obtain that

MSM
qq̄→γ+WT−

(
MBSM

qq̄→γ+WT+

)∗
= ηCP(BSM)

[
MSM

qq̄→γ+WT−

(
MBSM

qq̄→γ+WT+

)∗]∗
. (2.8)

By using the results in the eq. (2.8) and eq. (2.4) we can see that the differential cross

sections from the SM × BSM interference arising from the insertion of the O3W and O3W̃

operators have the following form

O3W : MWT−→l−ν̄+M
∗
WT+

→l−ν̄+ + h.c. ∝ cos(2φW )

O3W̃ : MWT−→l−ν̄+M
∗
WT+

→l−ν̄+ − h.c. ∝ sin(2φW ). (2.9)

– 4 –
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Similar arguments can be applied to the case of WZ production. There, since only one

pair of the intermediate vector bosons have opposite helicities, the modulation factorizes

into a sum of two independent terms and reads

O3W : ∝ cos(2φW ) + cos(2φZ)

O3W̃ : ∝ sin(2φW ) + sin(2φZ). (2.10)

The take home message is that by exploiting the modulations of eq. (2.9) and eq. (2.10)

is possible to increase the precision on the determination of the Wilson coefficients associ-

ated with the O3W and O3W̃ operators by overcoming the suppression of the interference

terms of the cross section, suppression that is recovered with no ambiguity by performing

a complete integration over the φi angles.

2.2 Modulation from azimuthal angles: real case

In the previous section we have discussed an ideal situation, assuming that the azimuthal

angles between the plane spanned by the vector bosons decaying products and the scatter-

ing plane can be exactly determined. However the azimuthal angle determination suffers

from a twofold degeneracy as pointed out in [8]. Let us recall the definitions of the φ angles

which can be used experimentally. First we define two normals

n̂idecay ‖ ~pli,+ × ~pli,−
n̂iscat. ‖ ẑlab. × ~pV i (2.11)

where the index i refers to the first or the second vector boson, li are the leptons from its

decay and ± indicate the lepton helicities. The azimuthal angle φ between the two planes

orthogonal to the normals is thus defined as

φV = sign
[
(n̂iscat. × n̂idecay)· ~pV i

]
arccos(n̂iscat.· n̂idecay). (2.12)

Note that in the case of the Z boson, since its coupling to left- and right-handed

charged leptons are approximately equal, we cannot unanbiguosly identify the helicities of

the final state leptons. As a consequence the normal vector n̂Zdecay is defined only up to an

overall sign. By using the definition of eq. (2.12), this translates into an ambiguity

φZ ↔ φZ − π. (2.13)

None of the modulations of the eq. (2.10) are however affected by this ambiguity, since

they are functions of 2φZ . Now let us look at the azimuthal angle of the leptons from the

W boson decay. Differently than for the Z boson, in this case the helicities of the final

state leptons are fixed by the pure left-handed nature of the EW interactions. However

in this case the azimuthal angle determination suffers from a twofold ambiguity on the

determination of the longitudinal momentum of the invisible neutrino, arising from the

quadratic equation determining the on-shellness of the W boson. All together for boosted

W bosons this leads to the approximated ambiguity

φW → π − φW . (2.14)

– 5 –
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Figure 1. Parton level values of the φW angle defined in eq. (2.12) built assuming a randomly

chosen pνz solution against the same angle where the real, but experimentally unaccessible, value of

pνz has been used. The ambiguity φW → π − φW is manifest.

This is illustrated in figure 1, where we plot the φW angle constructed assuming a randomly

chosen pνz solution against the same angle where the real, but experimentally unaccessible,

value of pνz has been used. The ambiguity of eq. (2.14) clearly washes away the sin 2φW
modulations of eq. (2.9) and eq. (2.10).

Before concluding this section a comment is in order. Our definition of the diboson

scattering plane of eq. (2.11) strictly assumes a 2 → 2 scattering process, where the two

vector bosons are produced back to back in the center of mass frame of the initial partons.

In the case of real radiation emission, as in the case of the presence of initial state radiation

jets, the diboson scattering plane has to be defined directly through the momenta of the

two vector boson. However in the case of the WZ and Wγ processes the determination

of this plane will be again affected by the neutrino reconstruction ambiguities. We then

decide to use the definition of eq. (2.11) when building the azimuthal angles of eq. (2.12)

throughout our analysis. This is a good approximation, since only processes with a hard jet

emissions, which are kinematically suppressed, can lead to a significant differences between

the planes orientations.

3 pp → WZ process

We begin by studying the fully leptonic pp → WZ process at the LHC. Before doing so

we wish to describe to simulation environment which will also be used for the analysis of

the fully leptonic pp→Wγ process discussed in section 4.

3.1 Details on the event simulation

We simulate the hard scattering fully leptonic pp→WZ process via the MadGraph5 aMCNLO

platform [24] using the HELatNLO UFO model that have been implemented in the FeynRules

package [25] and exported under the UFO format [26] by the authors of [27].1 We perform

1We thank the authors of [27] for sharing their NLO model files with the addition of the CP-even and

CP-odd operators of eq. (1.2) previous to the publication of their paper.

– 6 –
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Order Hard-scattering Parton Shower Jet Merging

LO

MadGraph5 aMCNLO PYTHIA8

/

NLO PYTHIA8

NLO+j PYTHIA8+FxFx

Table 1. Summary of the tools used for the event generations at each order in the QCD perturbative

expansion.

our study at NLO in QCD commenting, when relevant, the differences with respect to

the results obtained at leading-order as well as NLO with an extra jet radiation in the

matrix-element (hereafter NLO+j), which partially mimics the next-to-next-to-leading-

order (NNLO) accuracy. Parton showering and hadronization of partonic events has been

performed with PYTHIA8 [28]. Matching and merging between hard-scattering and parton

shower have been performed through PYTHIA8 for the NLO case and PYTHIA8 + FxFx algo-

rithm as described in [29] for the NLO+j case. We report in a compact way in table 1 the

summary of the tools used for each level of the perturbative expansions. When analyzing

the events, jets have been reconstructed via the anti-κT algorithm [30] with ∆R = 0.4

and a pT threshold of 20 GeV through the MadAnalysis5 package [31] as implemented in

MadGraph5 aMCNLO.

While our event generation has been performed at the partonic level, we wish to mimic

(at least partially) detector smearing effects when building the angular variables used for

our analysis, without performing a dedicated detector simulation for all our event samples.

We do so as follows. We choose one event sample and compare, on an event by event basis,

the values of the φZ and φW variables before and after having applied detector effects,

which we have evaluated through the Delphes 3 package [32]. We build the distributions

of the ∆φsmear
Z,W = φparton

Z,W − φdetector
Z,W difference and construct the corresponding probability

distribution function. We approximate the latter with a three rectangles shape and dress

the parton level values of the azimuthal angles with a ∆φsmear
Z,W evaluated with the computed

probability. For concreteness we use the following functions2

φsmear
Z = φZ ±∆φsmear

Z , ∆φsmear
Z =

{
[0, 0.2] with probability 0.68

[0.2, π/2] with probability 0.32,

φsmear
W = φW ±∆φsmear

W , ∆φsmear
W =

{
[0, π/4] with probability 0.66

[π/4, π/2] with probability 0.34.
(3.1)

3.2 Comparison of perturbative expansions for the SM

Before proceeding to the study of the sensitivity on the O3W and O3W̃ operators we wish

to validate our simulation framework against the existing literature for the case of the SM.

We consider the pp→ WZ processes separately for the two W boson charge signs at LO,

2We define the change of the angle due to the smearing to be in the interval [−π
2
, π
2

] due to the 2φ

periodicity of the modulation terms of eq. (2.10) in the cross section.

– 7 –
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Figure 2. Differential distributions in function of the transverse momentum of the lepton arising

from the W+ (left) and W− (right) decay at the LO, NLO and NLO+j accuracy for the SM

fully leptonic pp → W±Z process. In the lower panels we show the NLO/LO and NLO+j/NLO

differential cross section ratios.

NLO and NLO+j order for the LHC with a center of mass energy of 14 TeV. We force the

Z boson to decay into a muon pair and the W boson into an electron and the associated

neutrino. By applying only a 20 GeV cut on the transverse momenta of all visible leptons

we obtain a cross section value at NLO and LO of 37.8 fb and 18.0 fb for the W+ case

and of 26.7 fb and 11.2 fb for the W− case. The addition of an extra jet in the matrix

element increases these value of an extra ∼ 10%. These findings nicely agree with the

latest results of [33], computed for
√
s = 13 TeV. For the same processes we then compare

the differential cross sections in function of the transverse momentum of the charged lepton

from the W decay shown in figure 2, and also reported in [33] for
√
s = 8 TeV. By taking

into account the parton luminosity rescaling factor between our and their center of mass

energy (which is ∼ 2 for the qq̄ scattering of proton’s valence quarks for
√
ŝ = 300 GeV)

we find an overall good agreement in the distributions shapes between our LO and NLO

results and the ones of [33], thus further validating our simulation framework. Again, we

observe that there is a small difference between the NLO and NLO+j calculations. Given

the larger computation time needed for the latter simulation, we will present our results

only at NLO accuracy in QCD commenting however, where relevant, what could be the

effect of the extra real radiation on the processes under consideration.

3.3 Sensitivity to the BSM operators

We now turn on the BSM operator O3W and O3W̃ defined in eq. (1.2) and simulate LO

and NLO events with the same strategy as for the SM case described in section 3.2, and

– 8 –
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Figure 3. Differential distribution for the NLO/LO, NLO+j/LO and NLO+j/NLO ratios of σint

(left panel) and σBSM1 (right panel) in function of the WZ transverse mass.

applying a final combinatorial factor to take into account all possibile final state flavor

configurations involving the first two generation lepton flavor. We generate events with

only the CP-even or CP-odd operator different from zero, as well as events where both the

operators are present, so as to determine the contribution to the cross section due to the

interference of the two deformations. We closely follow the ATLAS experimental analysis

of [34] and we define our signal region imposing the following sets of cuts: peT > 20 GeV,

pµT > 15 GeV, |ηµ,e| < 2.5, ∆R(`, `) > 0.2, ∆R(`, j) > 0.4, where ` = e, µ and the pT
threshold for jets is 20 GeV. We further require that the same flavor opposite charge

lepton pair reconstruct the Z boson asking |mµ+µ− −mZ | < 20 GeV and we impose a cut

of 30 GeV on the W boson transverse mass.3 We then bin our events with respect to the

WZ system transverse mass, which we define as

(mT
WZ)2 =

√m2
W +

∑
i=x,y

(pei +/pi)
2+

√
m2
Z+

∑
i=x,y

(pµ
+

i +pµ
−

i )2

2

−
∑
i=x,y

(pei +/pi+p
µ+

i +pµ
−

i )2,

(3.2)

where /pi is the i-th component of the missing transverse momentum of the event. We

finally build the φZ and φW azimuthal angles as defined in eq. (2.12) and categorize the

events with respect to φZ and φW , both defined in the range 0 to π.

Now we can proceed to the analysis of the various BSM contributions. Generically the

production cross section in the presence of the operators of eq. (1.2) is given by

σ = σ0 + σintc3W + σ̃intc̃3W + σBSM1c2
3W + σBSM2 c̃2

3W + σBSM3c3W c̃3W . (3.3)

We firstly compare in figure 3 the LO, NLO and NLO+j interference, σint, (left) and

quadratic, σBSM1 , (right) terms of the cross section in presence of the CP-even operator

O3W in the angular region φZ ∈ [π4 ,
3π
4 ] in function of the mT

WZ . We observe that for the

pure BSM term the κ-factor between NLO and LO is ∼ 1.3, only mildly growing with the

partonic energy of the process, and that the addition of an extra jet in the matrix element

only provide a small increase, around 5%, with respect to the NLO process, similarly to

3The W boson transverse mass is defined in the next section in eq. (4.1).
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what has been found for the inclusive process in the SM case. On the other side, for the

interference case, the κ-factor shows a slightly decreasing pattern with the energy of the

system, reaching a value of ∼ 2 for mT
WZ ∼ 1 TeV. Furthermore helicity selection rules are

not applicable at NLO level leading to a mild restoration of the interference effects between

the SM and BSM contributions [7, 11]. Additionally the off-shellness of the vector bosons

also leads to the restoration of the interference, with the strength of the effect scaling as

g2 [35], similarly to the effect of the one loop electroweak corrections, which we ignore

in the present study. We can notice that the statistical error in the determination of the

NLO+j/LO and NLO+j/NLO ratios for σint can be quite large, almost around 50%, due

to bigger uncertainties in the analysis of the interference at NLO+j accuracy. However,

these statistical fluctuations do not affect the precision on the results we will show for the

c3W and c̃3W bounds: they are obtained at NLO, without an extra jet emission, and at

such level the uncertainty on the interference is smaller, around 10%.

We now proceed in setting the bounds on the c3W and c̃3W Wilson coefficients as

follows. We categorize our events with respect to four angular φZ and two φW bins, equally

spaced in the range 0 to π, and with respect to the WZ system transverse mass, with mT
WZ

bins between [0,1000] GeV in steps of 100 GeV, [1000,1200] GeV and [1200,1500] GeV. We

consider only the SM irreducible WZ background, which is the main source of background

for this process [34], and we impose a global efficiency of 0.6 for reconstructing the final state

for all lepton flavor combinations. Then, by assuming a Poissonian distributed statistics,

we perform a Bayesian statistical analysis estimating the systematical error through one

nuisance parameter (see [7] for more details). We find that the binning in φW has a marginal

impact on the limits determination, which is due to the large smearing on the φW variable

with respect to Z decay products azimuthal angles. Binning our events with respect to

φZ , φW and mT
WZ , we obtain the 95% posterior probability limits4 on c3W and c̃3W shown

in figure 4. The limits are shown in function of the maximum mT
WZ bin value used for the

computation of the bounds and for an integrated luminosity of 3000 fb−1, i.e. at the end

of the high luminosity phase of the LHC, assuming a systematic error of 5%.

We then fix a maximum value of 1500 GeV for the mT
WZ bin considered and we show

in figure 5 the 68% and 95% limits in the c3W − c̃3W plane assuming the SM (left panel)

or a signal injection with c3W = c̃3W = 0.4 TeV−2, again with a systematic uncertainty of

5% and an integrated luminosity of 3000 fb−1. There the black and red curves correspond

to the probability contours with and without the binning in the φZ and φW angles and the

shaded areas in the left panel correspond to the bounds derived from the non observation

of a neutron (dark blue) and electron (light blu) EDM, discussed in section 5.

We observe that the use of the azimuthal variables marginally improves on the limits

when the SM is assumed. This comes out from the combination of three different effects.

Firstly, we are considering both the linear and the quadratic term in the EFT expansion,

where the latter is not affected from the helicity selection rules cancellation. Secondly

the helicity selection rules are violated by QCD NLO effects. Lastly, the imposition of

kinematic cuts to select the analysis signal region have also the effect of restoring the

4These limits are obtained by marginalizing on the value of the other Wilson coefficient.
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Figure 4. 95% bound on the c3W and c̃3W Wilson coefficients computed with four and two equally

spaced angular bins for φZ and φW respectively, in function of the largest WZ system transverse

mass bin used for the 14 TeV LHC with 3000 fb−1 of integrated luminosity. A systematic error of

5% has been assumed.

interference between the SM and the BSM amplitude. Indeed, we have checked that some

of the cuts lead to a partial selection of the azimuthal angles. We postpone the discussion of

this effect to section 4.1 when we discuss the Wγ process, since the effect is much stronger

and the smaller number of final state particles makes it easier to understand the kinematic

origin of this behavior. We notice however that the use of the azimuthal angles is crucial in

the case of a signal discovery at the LHC. As illustrated in the right panel of figure 5 this

variable can in fact be used to disentangle the contribution of the O3W and O3W̃ operators

as well as to measure the sign of the Wilson coefficients.

At last we would like to comment on the importance of the linear terms in the expansion

of the cross section in eq. (3.3). We can see that the binning in the azimuthal angles

increases the sensitivity on the O3W̃ by a factor ∼ 4, while it has a marginal improvement

on O3W , due the modulation from cuts effect discussed in the section 4.1. Comparing the

“linear” and “quadratic” bounds we can see that the former are roughly factor of two worse

for both the O3W and the O3W̃ operators. This means that our analysis can be applied

only to the UV completions where the contribution of the dimension eight operators is

smaller than both the quadratic and linear dimension six terms. Anticipating the results

of the section 4 and section 6, we find that for Wγ analysis at 14 and 27 TeV and for WZ

analysis at 27 TeV the bounds are dominated by the linear terms.

4 pp → W±γ process

We next turn to another process which can be used to test the CP-Even and CP-Odd

operators of eq. (1.2): pp→W±γ. As for theWZ case, also here we consider a fully leptonic

final state which, despite having a smaller branching ratio and the presence of an invisible

neutrino, is generally a cleaner channel with respect to the hadronic counterpart. Having

validated our simulation framework for the WZ case, we do not perform a comparison of

the LO and higher orders samples for the Wγ process, and we consider from the beginning

of our discussion the event samples generated at NLO accuracy.
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Figure 5. 68% (dashed) and 95% (solid) posterior probability contours for the analysis with (black)

and without (red) the binning in the φZ and φW angles, see main text for more details. The left

and right hand upper plots are obtained assuming the SM and a BSM signal with c3W = c̃3W = 0.4,

both represented by a green star. The light and dark shaded blue correspond to the limits obtained

by the non observation of a neutron and electron EDM discussed in section 5. On the lower plot

for illustration purposes we present the exclusion contours assuming only the linear terms in the

EFT expansion. Only events with mT
WZ < 1.5 TeV are used.

4.1 Modulation from cuts

Before proceeding with the analysis, we comment here on the partial restoration of the

interference between the SM and the BSM amplitudes arising from the imposition of certain

kinematic cuts, which we anticipated in section 3.3. Let’s consider for example the cut on

the W boson transverse mass which is imposed in the experimental analysis [36] and which

is defined as

(MT
W )2 = (peT + /pT )2 − (~peT + /~pT )2 (4.1)
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where /~pT ≈ ~pνT . By looking at the dependence of the azimuthal angle φW with respect

to the transverse mass MT
W illustrated in the two panels of figure 6 we observe that there

is a strong correlation between the two variables. In the left panel all events within the

detector kinematic acceptance are shown, while in the right panel we additionally impose

pγT > 100 GeV. In both plots we see that a small MT
W is in correspondence with a value

of 0 or π for φW . On the other side, for large pγT , a cut on the W boson transverse mass

automatically selects events in the azimuthal bin [π/4, 3π/4]. These two behaviors can

easily be understood analytically.

Let’s consider first the MT
W ∼ 0 case. In this limit the transverse momenta of the

decay products of the W boson are parallel:

MW
T = 0 ⇒ ~peT ‖ ~pνT ‖ â (4.2)

where â is a unit vector in the transverse plane. The momenta of the W boson and the

charged lepton can be decomposed in a transverse and longitudinal part as

~pW = αW â+ βW ẑ

~pe = αeâ+ βeẑ (4.3)

where ẑ is a unit vector parallel to the beam line and αW,e and βW,e are two real coefficients.

Then eq. (4.2) fixes the normals to the scattering plane and the decay planes, see eq. (2.11),

to be parallel

~ndecay ∝ ~pν × ~pe ∝ ~pW × ~pe ‖ â× ẑ (4.4)

~nscat. ∝ ~pW × ẑ ‖ â× z

so that the azimuthal angle can only take the values of 0 or π. In the high energy regime we

can also understand the correlation shown in the right panel of figure 6 in the MW
T ∼MW

limit. Indeed let us assume that the W boson is strictly on shell. Then the condition

MW
T = MW leads to

|~peT |
|~pνT |

= −p
e
z

pνz
. (4.5)

Let us consider the limit pWT � pWz , which is equivalent to requiring pγT � pγz . This limit

in combination with the condition in eq. (4.5) forces pe,νT � pe,νz . Hence in this case the

normal to the decay plane will be always along the ẑ direction, so that the azimuthal angle

will take a value equal to π/2. All together we see that a high MW
T cut, together with

the requirement of a large photon transverse momentum, lead to the automatic selection

of a preferred azimuthal angle bin. In the analysis that we describe in the next section we

will bin the events in function of the transverse mass of the Wγ system, for analogy with

what has been done for the WZ case, where we have used the mT
WZ variable of eq. (3.2).

However for a 2→ 2 scattering there is a one to one correlation between the W boson and

the photon transverse momenta. Hence, by selecting bins with high MT
Wγ we automatically

select events with high pγT which, as shown above, lead to the selection of events where

φW ∼ π/2.
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Figure 6. Distribution of the azimuthal angle φW vs transverse mass of the W bososn MT
W . Left

— no other cuts are imposed, right additional cut on the pγT > 100 GeV is required.

It is important to stress that a cut on the W boson transverse mass that we have

discussed is imposed in the experimental analysis that we consider [36]. This kinematic

selection is used to suppress backgrounds arising from processes without genuine miss-

ing transverse momentum, such as the overwhelming QCD γj background where a jet

is misidentified as a lepton. Hence this modulation from cuts behavior is always present

when performing a real experimental analysis. This is an important effect which has been

overlooked in similar studies in the previous literature and that leads to an enhanced sensi-

tivity with respect to what is naively expected. A similar effect also occurs in WZ channel

process discussed in section 3.3 and the plots on figure 5 reflect this property. However

quantitatively we find it to be less important than in the Wγ case.

4.2 Sensitivity to the BSM operators

We now proceed to the analysis of the Wγ final state closely following the 7 TeV CMS

results reported in [36], where a measurement of the Wγ inclusive cross section has been

performed. As a first step we generate fully leptonic Wγ events for a center of mass energy

of 7 TeV and we apply the same cuts enforced in the considered CMS search. In particular

CMS required the presence of a lepton with pT > 35 GeV and |η| < 2.5 and of a photon

with pT > 15 GeV and |η| < 2.1 and asked for a separation ∆R(`, γ) > 0.7. A cut on

MW
T > 70 GeV is also applied that, as mentioned, strongly suppresses the backgrounds

from processes without genuine missing transverse energy. Then by comparing our NLO

predictions with the results of [36] we extract the efficiencies for reconstructing the `γ final

state, which we quantify to be 0.45 for the electron and 0.7 for the muon. We then use the

same efficiency values for the case of the 14 TeV LHC.5 In order to estimate the detector

effects on the determination of the azimuthal angle we follow exactly the same procedure

as for the WZ process (see eq. (3.1)) and we find the following smearing function

φsmear
W = φW ±∆φsmear

W , ∆φsmear
W =

{
[0, 0.4] with probability 0.63

[0.4, π/2] with probability 0.37.
(4.6)

5We have imposed in this case a 20 GeV cut pγT at generator level.
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Figure 7. 95% bound on the c3W and c̃3W Wilson coefficients computed with angular φW bins

(defined in the text) in function of the largest Wγ system transverse mass bin used for the 14 TeV

LHC with 3000 fb−1 of integrated luminosity. A systematic error of 5% has been assumed.

We notice that in the case of the Wγ process the irreducible SM background makes only

∼ 50% of the total event rate [36]. For this reason in our analysis we consider an equal yield

for the irreducible and reducible background.6 Clearly the reducible background does not

interfere with the BSM operators under study, while the irreducible one is again computed

at NLO QCD accuracy as done for the WZ case. We then bin our events with respect

to two angular φW bins, defined as φ ∈ [π/4, 3π/4] and φ ∈ [0, π/4] ∪ [3π/4, π], and with

respect to the Wγ system transverse mass defined as

(
mT
Wγ

)2
=

√m2
W +

∑
i=x,y

(pei + /pi)
2 + pγT

2

−
∑
i=x,y

(
pei + /pi + pγi

)2
, (4.7)

with mT
Wγ bins between [0,1000] GeV in steps of 100 GeV, [1000,1200] GeV and [1200,1500]

GeV. We have chosen this variable for the binning in order to make the comparison with

the WZ analysis as clear as possible. By adopting this procedure we obtain the results

illustrated in figure 7 and figure 8. In figure 7 the bounds are shown in function of the

maximum mT
Wγ bin value used for the computation and for an integrated luminosity of

3000 fb−1 assuming a systematic error of 5%. We can see that the dependence on the

maximum mT
Wγ is different for the CP-even and CP-odd operators. This is due to the fact

that we can only restore the interference for the CP-even operator, due to the ambiguity

in the W boson decay azimuthal angle, see eq. (2.14). We have also checked that for the

obtained bounds with mT
Wγ . 1 TeV the yields for the CP-even operator are dominated by

the interference terms. On the other side at higher energies the quadratic terms start to

dominate and the constraints on both the CP-even and CP-odd operators become similar.

Then in figure 8 we have fixed a maximum value of 1500 GeV for mT
Wγ and we show the

68% and 95% confidence level limits. There the black and red curve are computed by

binning in the φW angle or inclusive in it respectively and where the left and right hand

plot correspond assuming the SM or a BSM signal with c3W = −c̃3W = 0.3 and we again

6This has been practically done by multiplying by a factor of two the σ0 coefficients of the eq. (3.3)

without touching the interference terms.
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Figure 8. 68% (dashed) and 95% (solid) posterior probability contours for the analysis with (black)

and without (red) the binning in then φW angle, see main text for more details. The left and right

hand upper plots are obtained assuming the SM and a BSM signal with −c3W = c̃3W = 0.3, both

represented by a green star. The light and dark shaded blue correspond to the limits obtained by

the non observation of a neutron and electron EDM discussed in section 5. On the lower plot for

illustration purposes we present the exclusion contours assuming only the linear terms in the EFT

expansion. Only events with MWγ
T < 1.5 TeV are used.

show the bounds from the neutron and electron EDM non observation. As for the WZ

case, we can see that for the SM like signal the binning in the φW angle practically does

not change the results. This is a consequence of modulation from cuts effect described

in the previous section, since the hard cut on the MW
T in combination with a high pT of

the photon automatically select the value of the W decay azimuthal angle to be close to

π/2. Moreover we can see on the right panel of figure 8 that even in the case of assuming

an injected signal, the results remain the same with and without the azimuthal angle

binning unlike in the WZ case. As expected from eq. (2.9) and eq. (2.14) the analysis can
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differentiate the sign of the CP-even interaction c3W but it is insensitive to the sign of the

CP-odd c̃3W coupling. In the lower panel of the figure 8 we can show the bounds obtained

by including only the linear term in the production cross section eq. (3.3). As expected

the bounds are blind to c̃3W but for c3Wwe can see that the bounds are similar to the ones

obtained by the “quadratic” analysis.

5 Bounds from EDMs

The CP-odd operator Õ3W of eq. (1.2) gives also a one-loop contribution to the neutron

and electron EDMs. Since there are strong constraints from the non observation of EDMs

of elementary particles, these null measurements can potentially lead to tight bounds on

c̃3W . In particular the effective operator

Oγ = ie
λ̃γ
M2
W

W+
λµW

−,µ
ν F̃ νλ (5.1)

generates the EDM operator for a fermion ψ

OEDM =
df
2
ψ̄σµνF̃

µνψ, (5.2)

where

df =
g2eλ̃γ

64π2M2
W

mψ (5.3)

see i.e. [37, 38]. For the case of the neutron we use the form factors of [39] and we obtain

dn ' (1.77dd − 0.48du − 0.01ds) ' 1.3λ̃γ × 10−23e cm. (5.4)

By using the latest result reported in the particle data group [40], namely |dn| < 0.3 ×
10−25 e cm at 90% CL, we obtain a limit

|λ̃γ | . 0.0023 (5.5)

which translates in ∣∣∣∣ c̃3W

TeV2

∣∣∣∣ . 0.36

TeV2 (5.6)

which is of the same order with the bounds attainable at the end of the HL-LHC phase

from the precision measurements of the Wγ and WZ processes. On the other side the

experimental limit on the electron EDM is much stronger than the one of the neutron,

|de| < 0.87 × 10−28e cm at 90% CL [40]. This leads to a much stronger constraint on the

Wilson coefficient of the CP violating triple gauge coupling operator. Namely we obtain

|λ̃γ | . 8.3× 10−5, (5.7)
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Figure 9. 95% bound on the c3W and c̃3W Wilson coefficients computed with four and two equally

spaced angular bins for φZ and φW respectively, in function of the largest WZ system transverse

mass bin used for the 27 TeV LHC with 3 ab−1 (solid) and 15 ab−1 (dashed) of integrated luminosity.

A systematic error of 5% has been assumed.

which implies ∣∣∣∣ c̃3W

TeV2

∣∣∣∣ . 0.013

TeV2 (5.8)

which is far beyond the reach of current and future collider experiments.

We stress however that these bounds can potentially be relaxed in presence of addi-

tional new physics contribution affecting the OEDM operator of eq. (5.2) and cancelling

against the one-loop contribution arising from O3W̃ . We don’t discuss this possibility any

further, stressing again that the limits arising from the non observation of an electron EDM

are potentially more constraining that the ones arising from direct LHC measurements.

6 High Energy LHC

By the end of 2035 the LHC experiments ATLAS and CMS will have collected ∼ 3 ab−1 of

integrated luminosity each, ending the HL phase of the CERN machine. Various collider

prototypes have been proposed in the recent years for the post LHC era. These include

leptonic machines such as ILC and CLIC ideal for performing precision measurements of the

Higgs couplings, and hadronic machines, as the FCC-hh, a 100 TeV proton-proton collider,

with huge potentiality for the discovery of resonant new physics above the TeV scale, that

however requires enormous efforts, among which a new ∼ 100 Km tunnel. Hence in the

last years a lot of attention has been given to the possibility of building a higher energy

proton collider within the LHC tunnel. Thanks to new techniques with which it would be

possible to build 16 T magnets, a centre of mass energy of 27 TeV can be envisaged. This

doubling of energy with respect to the LHC can offer great physics opportunities [41] both

for on-shell particle productions, but also for indirect measurements as the ones discussed

in this paper.

We then show in this section the prospects for measuring the c3W and c̃3W Wilson

coefficients by applying analyses similar to the ones discussed in section 3 and section 4.

We focus on two benchmark of integrated luminosites: 3 ab−1 and 15 ab−1. The results are

shown in figures 9–12, in complete analogies with the figures of the previous sections.
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Figure 10. 68% (dashed) and 95% (solid) posterior probability contours for the WZ at 27 TeV

analysis with (black) and without (red) the binning in the φZ and φW angles, see main text for

more details. Only events with mT
WZ < 1.5 TeV are used. The upper and lower panels correspond

to the limits obtained with and without the inclusion of the quadratic term in the EFT expansion

respectively.

For the WZ analysis we can see that the relative improvement from the binning in

φZ and φW angles increases compared to the 14 TeV analysis, since we are getting closer

to the values of the Wilson coefficients when the interference term dominates the cross

section. Similar effects hold for the Wγ process. The effect of the modulation from cuts

becomes less important since for the same values of the mT
Wγ variable, larger values of the

longitudinal momentum are expected at higher collision energies, so that the φW ∼ π/2

bin selection becomes less strong, see discussion in the section 4.1.
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Figure 11. 95% bound on the c3W and c̃3W Wilson coefficients computed with two equally spaced

angular φW bins in function of the largest Wγ system transverse mass bin used for the 27 TeV LHC

with 3 ab−1 (solid) and 15 ab−1 (dashed) of integrated luminosity. A systematic error of 5% has

been assumed.
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Figure 12. 68% (dashed) and 95% (solid) posterior probability contours for the Wγ at 27 TeV

analysis with (black) and without (red) the binning in the φW angle, see main text for more details.

Only events with MWγ
T < 1.5 TeV are used. The upper and lower panels correspond to the limits

obtained with and without the inclusion of the quadratic term in the EFT expansion respectively.
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Channel Energy Luminosity
λZ [×10−3] λ̃Z [×10−3]

68% 95% 68% 95%

WZ

14 TeV 3 ab−1 [-2.1, 1.2] [-2.9, 1.7] [-1.7, 1.7] [-2.4, 2.4]

27 TeV
3 ab−1 [-1.4, 0.7] [-2.2, 1.2] [-1.5, 1.3] [-2.0, 1.8]

15 ab−1 [-0.7, 0.4] [-1.2, 0.6] [-0.9, 0.8] [-1.3, 1.2]

Wγ

14 TeV 3 ab−1 [-1.2, 0.9] [-2.0, 1.6] [-2.2, 2.1] [-3.0, 2.9]

27 TeV
3 ab−1 [-0.7, 0.4] [-1.2 0.8] [-1.8, 1.7] [-2.5, 2.4]

15 ab−1 [-0.4, 0.2] [-0.6, 0.3] [-1.3, 1.2] [-1.7, 1.5]

Table 2. Summary of the results for the various channels in terms of the CP-even and CP-odd

anomalous triple gauge couplings. Only events with mT
WZ,Wγ < 1.5 TeV are used.

7 Summary

We have analyzed the diboson production, pp→WZ and pp→Wγ at NLO QCD order in

the presence of the dimension six operators of eq. (1.2), paying a particular attention to the

effects related to the interference between the SM and BSM contributions. We have found

that NLO QCD effects mildly affects the results of the analogous LO analysis [7], since the

helicity selections rules do not apply at NLO. For both the pp→WZ and pp→WZ,Wγ

processes the observables related to the azimuthal angles lead to an enhancement of the

interference providing a better sensitivity to the new physics interactions. In order to

estimate the LHC possibilities on measuring these interaction we have closely followed

available experimental studies of diboson production [34, 36]. Interestingly we have found

that some of the kinematic selection cuts needed to suppress the reducible backgrounds in

realistic analyses are partially performing an azimuthal angular bin selection. This effect

turns out to be particularly important for the pp → Wγ processes where the strong cut

on the MT
W forces the azimuthal angle to be close to π/2, making a further binning in

the azimuthal angle φW less important with respect to what is naively expected. The

prospects of the bounds at the HL and HE phases of the LHC are presented. This leads to

a sensitivity ∼ 10−3 on the triple gauge couplings λZ and λ̃Z at HL-LHC.7 The HE phase

of the CERN machine can further improve the bounds by factor of ∼ 2− 5. These results

are summarized in table 2.

Acknowledgments

We would like to thank J. Elias-Miro for the collaboration on the initial stages of the

project and K Mimasu and B. Fuks for providing us help with the model HELatNLO UFO.

7The coefficient λZ is normalized as OλZ = λZ
ig

m2
W
W+µ2
µ1

W−µ3
µ2
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