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Abstract: Hydrogen sulfide (H2S), known for many decades exclusively for its toxicity and the
smell of rotten eggs, has been re-discovered for its pleiotropic effects at the cardiovascular and
non-cardiovascular level. Therefore, great attention is being paid to the discovery of molecules able
to release H2S in a smart manner, i.e., slowly and for a long time, thus ensuring the maintenance of
its physiological levels and preventing “H2S-poor” diseases. Despite the development of numerous
synthetically derived molecules, the observation that plants containing sulfur compounds share the
same pharmacological properties as H2S led to the characterization of naturally derived compounds
as H2S donors. In this regard, polysulfuric compounds occurring in plants belonging to the Alliaceae
family were the first characterized as H2S donors, followed by isothiocyanates derived from veg-
etables belonging to the Brassicaceae family, and this led us to consider these plants as nutraceutical
tools and their daily consumption has been demonstrated to prevent the onset of several diseases.
Interestingly, sulfur compounds are also contained in many fungi. In this review, we speculate about
the possibility that they may be novel sources of H2S-donors, furnishing new data on the release of
H2S from several selected extracts from fungi.
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1. Introduction

Hydrogen sulfide (H2S) has been known for many decades for its toxicity and the
smell of rotten eggs. Hydrogen sulfide poisoning usually occurs by inhalation; local
irritant effects result in direct irritation to the eyes, causing conjunctival injection initially
and corneal injury eventually. When inhaled, it leads to pulmonary injury presenting as
hemorrhagic pulmonary edema. Hydrogen sulfide inhibits mitochondrial cytochrome
oxidase by making a complex bond to the ferric moiety of the protein, therefore arresting
aerobic metabolism. Once it enters the bloodstream and passes the blood–brain barrier,
neurotoxic effects can be seen, namely dizziness, seizure, coma, and ultimately death. In
brief, hydrogen sulfide is a known pulmonary irritant and asphyxiant that primarily causes
respiratory and neurological clinical manifestations when inhaled. High concentrations
(more than 700 ppm) have the potential to cause sudden death [1,2].

However, in the last twenty years, it has been discovered as the third endogenously
produced gasotransmitter, in addition to nitric oxide and carbon monoxide [3].

The importance of characterizing and discovering new sources to be used as supple-
ments of H2S or developing new chemical entities endowed with H2S-donor properties is
due to the pleiotropic role of this gaseous molecule. Indeed, H2S is involved in the regu-
lation of numerous pathophysiological functions: it intervenes in the anti-inflammatory
process [4], in oxidative stress [5], neuro-modulation [6], vaso-regulation [7], protection
from ischaemia/reperfusion damage after myocardial infarction [8] and insulin resis-
tance [9]. Furthermore, recent studies have shown that an abnormal metabolism and
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altered pathways of H2S are related to the development of various cardiovascular and
non-cardiovascular diseases (Figure 1) [10–12].
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Numerous synthetically derived molecules have been developed, and the discovery
of new interesting scaffolds able to release H2S in biological environments, including
thioureas [13], isothiocyanates [14–16], thiazolydindione [17], arylthioamide [18], and
imminothioether derivatives [19], have highlighted the concrete usefulness of using these
molecules for the treatment of several pathological conditions. Moreover, H2S-donor
moieties have also been used for developing hybrid drugs upon merging the chemical
portion able to release H2S to drugs already used in the clinic [20–27]. This strategy allows
us to exploit the beneficial effect of H2S and the well characterized pharmacological effect
of the native drug.

In addition to synthetic molecules, the observation that plants containing sulfur com-
pounds share the same pharmacological properties with H2S led to characterize naturally
derived compounds as H2S donors. Polysulfuric compounds occurring in plants belong-
ing to the Alliaceae family were the first to be characterized as H2S donors, followed by
isothiocyanates derived from vegetables belonging to the Brassicaceae family [28,29]. This
important discovery paved the way to consider these plants as nutraceutical tools and their
daily consumption has been demonstrated to prevent the onset of several diseases [30].
Sulfur compounds are also contained in many fungi. However, to date no data about their
possible H2S releasing properties have been reported.

This review aims to describe the pharmacological effects of sulfur compounds present
in plants belonging to the Alliaceae and Brassicaceae families and provide new data on the
H2S-releasing properties of fungi extracts.

2. Hydrogen Sulfide Endogenous Production

In mammals, the endogenous production of this gasotransmitter is ensured by several
enzymes, that are differently expressed in tissues, suggesting its crucial role in the control
of homeostasis in numerous systems. Recently, H2S has been reported to modulate target
proteins through S-sulfhydration reactions, which are a post-translational modification of
the hydrosulfuryl groups of cysteine residues responsible for the activation/inhibition of
specific proteins [31,32].



Int. J. Mol. Sci. 2023, 24, 11886 3 of 16

H2S is mainly bio-synthetized using two cytosolic enzymes: cystathionine γ-lyase (CSE)
and cystathionine β-synthase (CBS), and one mitochondrial enzyme: 3-mercaptopyruvate
sulfur-transferase (MST), using a shared substrate, the amino acid L-cysteine [33]. Interest-
ingly, CBS is mainly but not exclusively expressed in the central nervous system (CNS),
while CSE is recognized as the enzyme responsible for the endogenous production of H2S
in the cardiovascular system. More recently, additional/alternative biosynthetic pathways
have been described; indeed, H2S can be generated by cysteinyl-tRNA-synthetase enzyme
and by selenium-binding protein 1, although their contribution is still unclear [34]. The
wide distribution of biosynthetic pathways for the endogenous production of H2S accounts
for its ubiquitous and pleiotropic behavior.

With regards to metabolic processes, H2S can follow different pathways: firstly, H2S
is a reducing molecule, and it is involved in reducing reactive oxygen species (ROS).
Oxidation of H2S represents the main catabolic function at the mitochondrial level, where
H2S is quickly metabolized to sulfite and sulfate species due to the involvement of quinone
oxidoreductase, rhodanese, and sulfur dioxygenase [32].

3. Overview of Hydrogen Sulfide and Its Therapeutic Potential in Oxidative
Stress-Based Pathologies
3.1. Oxidative Stress

It is well-known that oxygen is an indispensable molecule, but because of its structure,
it can lead to the generation of highly unstable intermediates known as ROS [35]. When the
ROS level exceeds the neutralizing capability of endogenous anti-oxidant systems, the tissue
is exposed to oxidative stress. The accumulation of ROS is implicated in mitochondrial
dysfunction of the cells due to oxidation of mitochondrial lipids leading to a decrease in
the membrane potential and finally apoptosis [36]. In this regard, the nuclear transcription
factor erythroid 2 (Nrf-2) is the main regulator of the anti-oxidant defense mechanisms
within the cell. Nrf-2 modulates the gene expression of anti-oxidant and cytoprotective
enzymes and is inhibited by Kelch-like ECH-associated protein 1 (Keap1). For this reason,
Nrf-2 represents a possible promising pharmacological target to decrease cellular oxidative
stress [37].

Although many studies have demonstrated direct H2S scavenging action, the physio-
logical concentration of H2S is in the low nanomolar range, significantly lower than that
of other endogenous anti-oxidant molecules [38]. Consequently, the anti-oxidant effects
described for H2S comprise the up-regulation of anti-oxidant defense systems [39].

H2S is known for its ability to protect from oxidative stress by inducing an S-sulfhydration
reaction of the Keap1 protein, in cysteine-151 residue (Figure 2B). This reaction induces
a conformational change in Keap1 and its consequent dissociation from Nrf-2, which
translocates into the nucleus. Here, Nrf-2 binds to promoters containing the anti-oxidant
response element (ARE) gene sequence, favoring the expression of ARE-dependent genes
encoding for major anti-oxidant enzymes, such as glutathione reductase, Catalase (CAT),
Superoxide dismutase (SOD), and for non-enzymatic anti-oxidants, such as glutathione
(GSH) and Thioredoxin 1 (Trx-1) [40].
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Figure 2. The figure schematically shows the main pharmacological activities of hydrogen sulfide,
(A) H2S and inflammation: through the sulfhydration of IKkB, H2S inhibits the dissociation between
Nf-kB and IkB, impeding the translocation of Nf-kB into the nucleus and promoting anti-inflammatory
effects. (B) H2S and oxidative stress: H2S sulfhydrates Keap1 allowing the dissociation of Nrf-2 which
translocates into the nucleus and promotes the expression of anti-oxidant species. Furthermore, H2S
acts as a direct scavenger of ROS. (C) H2S and vasodilation: H2S induces the opening of potassium
channels and inhibits PDE5, leading to hyperpolarization of vascular cells and increase in NO
levels. (D) H2S and immune system: H2S facilitates the differentiation in M2 polarized macrophages,
which produce anti-inflammatory mediators. (E) H2S and metabolism: H2S sulfhydrates PPAR-
γ, increasing insulin sensitivity and lipid synthesis. Abbreviations: Nf-kB: nuclear factor kappa-
light-chain-enhancer of activated B cells; IkB: IkappaB kinase; IKkB: inhibitor of nuclear factor
kappa-B kinase subunit beta; P: phosphate; Nrf-2: Nuclear factor erythroid 2-related factor 2; Keap1:
Kelch-like ECH-associated protein 1; ARE: anti-oxidant responsive elements; KATP: ATP-sensitive
potassium channel; Kv7: voltage-gated potassium channels; PDE5: Phosphodiesterase Type 5; PPAR—
γ: Peroxisome proliferator-activated receptor gamma.

3.2. Inflammation

H2S promotes a significant anti-inflammatory effect mainly by inhibiting the pro-
inflammatory transcription factor Nuclear factor kappaB (NF-kB) and preventing mast cell
degranulation [41,42]. In a model of induced inflammatory response in pulmonary artery
endothelial cells, H2S inhibits the inhibitor of κβ kinase (IKκβ) enzyme activity through
S-sulfhydration of the Cysteine 179 residue, thereby preventing NF-kB translocation into
the nucleus [43,44] (Figure 2A).

H2S also plays a regulatory role in macrophages, which are traditionally classified
into two subgroups: M1, which are classically activated macrophages, are differentiated by
the action of Th1 cytokines, and M2, which are alternatively activated macrophages, are
differentiated by the action of Th2 cytokines, such as IL-4 or IL-13 [45].

M1s produce pro-inflammatory cytokines, and are important for antibacterial defense,
while M2 macrophages mainly produce anti-inflammatory mediators and are involved
in the anti-inflammatory and repair response [46]. H2S promotes the polarization of
macrophages toward M2, thus involving an anti-inflammatory effect (Figure 2D) [47].

3.3. Immune System

H2S is also involved in the regulation of the immune system, playing a pivotal role in
the regulation of neutrophils. Interestingly, neutrophils express all three major enzymes
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responsible for H2S production, although recent studies have failed to measure detectable
activity of CBS in the homogenate of human neutrophils [48]. Even if the mechanisms
are complex, research data suggest that H2S inhibits the adhesion of neutrophils [48]. The
molecular mechanisms by which H2S reduces leukocyte migration and adhesion in various
experiments are different: activation of different classes of potassium channels [49], induc-
tion of heme oxygenase-1 [50], and downregulation of CD11b expression [51]. However,
in the presence of a strong pro-inflammatory stimulus, H2S stimulates neutrophil tissue
adhesion and infiltration [52] through the upregulation of adhesion receptors, such as
intercellular adhesion molecule 1 (ICAM-1) and P-selectin [53]. It is not contradictory
with data reported earlier: under a septic condition, an increase in leukocyte infiltration is
desirable since the organism is compromised.

Studies performed under microbial infection conditions showed that inhibition of
H2S biosynthesis increased the capacity for bacterial migration (and thus reduced the
rate of killing) as fewer mycobacteria were internalized in the acidic vesicles of the
macrophages [54]. This suggests that the biosynthesis of H2S by the host organism is
necessary for proper macrophage activity. In fact, when neutrophils were co-cultured with
E. coli HB101 in the presence of H2S for 24 h, the elimination of bacteria was more efficient
than in the absence of H2S [32].

3.4. Cardiovascular and Metabolic Systems

At the vascular level, H2S induces most of its effects by S-sulfhydration of proteins,
such as ion channels, enzymes, and receptors, which thereby undergo a conformational
change responsible for their activation or inhibition [55,56].

One of the first reported mechanisms of action underlying H2S-induced vasodilation
consists of the activation of ATP-sensitive potassium (KATP) channels with the subsequent
hyperpolarization of vascular smooth muscle cells [57]. Subsequently, it was shown that
another important mechanism of action responsible for H2S-induced vasodilation is the
activation of voltage-dependent potassium channels belonging to the Kv7 family [58]. H2S
is also able to inhibit 5-phosphodiesterase (5-PDE) enzyme and has also been described as
an endothelium-derived hyperpolarizing factor (EDHF) (Figure 2C) [59]. Several studies
shed light on the cardioprotection played by this gasotransmitter against several kinds
of damage, including the ischemia-reperfusion, diabetic cardiomyopathy, myocardial
infarction, and drug-induced cardiotoxicity [60,61]. Although, multiple targets seem to be
implicated, among which the regulation of nitric oxide (NO) levels [62], the up-regulation
of 5’ adenosine monophosphate-activated protein kinase (AMPK) and Nrf-2 [63], the
stimulation of mitochondrial ATP-sensitive potassium (mitoKATP) channels has been
probably the most investigated target [64].

Moreover, H2S is considered a master regulator of systemic metabolism, indeed
through the S-sulfhydration of the insulin receptor substrate 1 (IRS-1), it may maintain
insulin sensitivity and, upon direct S-sulfhydration at the cysteine139 site, it may increase
peroxisome proliferator-activated receptor γ (PPARγ) activity, thereby changing glucose
into triglyceride storage in adipocytes (Figure 2E) [65,66].

Based on the numerous beneficial effects that can be mediated by this gasotransmitter,
great attention is being paid to the discovery of molecules able to release H2S in a smart
manner, i.e., slowly and for a long time, thus ensuring the maintenance of its physiological
levels and preventing “H2S-poor” diseases.

4. Naturally Derived H2S-Donors
4.1. Polysulfides from the Alliaceae Family

Traditional medicine suggests daily consumption of garlic (Allium sativum L.) to
maintain the physiological values of systolic and diastolic pressure, and several stud-
ies support the effects of garlic extracts and its polysulfides as cardiovascular-protective
compounds [67–69]. The most abundant polysulfides present in garlic and in other edi-
ble species from the Alliaceae family, such as chives, onion, and shallot, are allyl sulfide
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derivatives, including diallyl disulfide and diallyl trisulfide, produced by the cleavage of
odorless molecules, including S-alk(en)yl cysteine sulphoxide precursors due to the activity
of alliinase enzyme. These secondary metabolites are S-methyl cysteine sulphoxide, S-allyl
cysteine sulphoxide (known as alliin), S-propyl cysteine sulphoxide, and S-transprop-1-
enyl cysteine sulphoxide [70]. Consequently, after the disruption of cells (upon cutting or
cooking), alliinase enzyme, present in vacuoles, it is released and the reaction responsible
for the formation of typical polysulfides occurs (Figure 3). The enrichment in organosulfur
compounds is closely correlated with the aging of the vegetable; interestingly, it has been
reported that reactive organosulfur compounds, such as allicin, are converted to their stable
isoforms, such as S-allyl cysteine [71].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 17 
 

 

derivatives, including diallyl disulfide and diallyl trisulfide, produced by the cleavage of 
odorless molecules, including S-alk(en)yl cysteine sulphoxide precursors due to the 
activity of alliinase enzyme. These secondary metabolites are S-methyl cysteine 
sulphoxide, S-allyl cysteine sulphoxide (known as alliin), S-propyl cysteine sulphoxide, 
and S-transprop-1-enyl cysteine sulphoxide [70]. Consequently, after the disruption of 
cells (upon cutting or cooking), alliinase enzyme, present in vacuoles, it is released and 
the reaction responsible for the formation of typical polysulfides occurs (Figure 3). The 
enrichment in organosulfur compounds is closely correlated with the aging of the 
vegetable; interestingly, it has been reported that reactive organosulfur compounds, such 
as allicin, are converted to their stable isoforms, such as S-allyl cysteine [71]. 

 
Figure 3. Schematic representation of the biosyntethic reactions leading to the formation of 
allylsulfur compounds in Alliaceae vegetables. 

H2S release is the main mechanism accounting for the vascular effects of polysulfides. 
The vasorelaxant effects following the administration of garlic extract in rat aortic rings 
were associated with a release of H2S in the isolated organ bath [72]. Finally, the exact 
mechanism through which H2S is released from polysulfides has also been described. 

Figure 3. Schematic representation of the biosyntethic reactions leading to the formation of allylsulfur
compounds in Alliaceae vegetables.

H2S release is the main mechanism accounting for the vascular effects of polysulfides.
The vasorelaxant effects following the administration of garlic extract in rat aortic rings
were associated with a release of H2S in the isolated organ bath [72]. Finally, the exact
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mechanism through which H2S is released from polysulfides has also been described. They
demonstrated that the functional group present in organic thiols, such as L-cysteine or
glutathione, can promote a nucleophilic attack on the carbon atom in α-position to the allyl
group and then trigger the rupture of the molecule, ultimately favoring the release of H2S
(Figure 4) [72].
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The reaction is triggered by a nucleophilic attack of organic thiols (here represented by glutathione
(GSH)) that promotes the formation of H2S and perthiols, which generate another molecule of H2S
and glutathione disulfide (GSSG).

In addition, other beneficial effects of garlic are related to the release of H2S, including
metabolic ones. Garlic shows potential beneficial effects in T2D [73–75]; this vegetable, and
its derivatives are endowed with antihyperglycemic effects in genetic animal models of
diabetes and in humans, thus preventing cardiovascular complications [76]. Consistently,
garlic improves insulin sensitivity and the associated metabolic syndrome in animal models,
and its derivatives reduce both insulin resistance and blood glucose in streptozotocin- and
alloxan-induced diabetes [77].

Based on the putative targets identified for H2S, it has been hypothesized that the
contribution of garlic in the maintenance of glucose homeostasis or lipid profile is due—
at least in part—to the release of H2S, and several putative targets have been identified.
Interestingly, polysulfides upregulated and S-sulfhydrated PPARγ and sirtuin 3 (SIRT-3) in
cardiomyocytes and such a mechanism was relevant for assuring a prevention of diabetic
cardiomyopathy in murine model [78].

4.2. Isothiocyanates from the Brassicaceae Family

The discovery about the H2S releasing properties of the Alliaceae family paved the way
for a great breakthrough in the research on plant species containing sulfur compounds,
as a nutraceutical approach to be employed at early stages of several diseases. In this
scenario, the Brassicaceae family is rich in glucosinolates and sulfur compounds that are
metabolized into isothiocyanates because of the activation of myrosinase when these plants
are cut or shredded [79]. Since there is an overlap between physio/biological effects
evoked by isothiocyanates and those exerted by H2S (as reported above), the H2S-releasing
properties of some natural isothiocyanates were evaluated [29]. Most of the compounds
generated appreciable release of H2S following incubation with cysteine. This behavior
is due to the nucleophilic reaction of the thiol group of L-cysteine with the isothiocyanate
moiety. This characteristic makes these molecules “smart H2S donors” since they can
donate the gaseous transmitter only in a biological environment. Recently, the chemical
mechanism explaining the generation of H2S from isothiocyanates has been clarified: the
reaction between L-cysteine and isothiocyanates resulted in the generation of H2S due to
the generation of dithiocarbamic derivatives between L-cysteine and the isothiocyanate
moiety. Intramolecular cyclization leads to the generation of dihydrothiazole derivatives
and the formation of H2S (Figure 5) [80].
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by cysteine) and leads to the formation of an instable intermediate, that spontaneously decomposes
in H2S and aminic derivatives.

Currently, isothiocyanates are attracting increasing interest mainly for their pharma-
cological effects at the cardiovascular level. In this regard, a recent study evaluated the
vascular effects of erucin related to its H2S-donating properties. In this study, the authors
demonstrated that erucin releases H2S in human aortic smooth muscle cells (HASMCs) in
a concentration-dependent manner. Furthermore, a significant antihypertensive effect was
reported in spontaneously hypertensive rats after erucin intraperitoneal administration,
recording systolic pressure values similar to normotensive rats [81].

Moreover, erucin also promotes protective effects in oxidative stress and LPS-induced
damage in endothelial and vascular cells, and at cardiac level [82–84].

Finally, an emerging role of H2S is the regulation of glucose metabolism: several
studies have been performed on Brassicaceae as a possible nutraceutical approach in an
early stage of diabetes or combination with standard therapy. Consumption of Alliaceae
and Brassicaceae can significantly improve blood glucose control in patients with diabetes,
concluding that edible plants that contain sulfur compounds could be useful for treat-
ing type 2 diabetes (T2D). Furthermore, supplementation with edible plants containing
sulfur compounds could significantly enhance the effect of standard therapy on glucose
control [85].

Male balb/c mice fed for 10 weeks with a high-fat diet and supplemented with an
extract obtained from the seeds of Eruca sativa Mill., rich in glucoerucin, showed a reduction
in the body weight gain and improvement of glucose homeostasis. Interestingly, a decrease
in white adipose tissue and the size of adipocytes was also observed. In addition, the extract
improved adipocyte metabolism by enhancing the activity of citrate synthase and reducing
triglyceride levels in mice fed a high-fat diet. Worthy of note, a diet rich in Brassicaceae
has no adverse effects: the most common adverse events are mild gastrointestinal issues
(heartburn, flatulence, stomach discomfort, increased defecation) and hot flashes [85].
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Another isothiocyanate capable of releasing H2S is moringin. This molecule derives
from Moringa oleifera Lam., a plant belonging to the Moringaceae family that is widely used
in the traditional medicine for the treatment of stomach pain, ulcers, vision defects, joint
pain and as a digestive [86]. Specifically, the authors analyzed changes in the content of
glucosinolates and isothiocyanates in different moringa tissues and measured the H2S-
releasing properties with the lead acetate assay, a method that takes advantage of the
high affinity of divalent lead with H2S to form a black precipitate of lead sulfide (PbS).
The authors showed that moringa seeds and leaves had a significant amount of total
glucosinolates that can be converted to isothiocyanates (mainly benzyl isothiocyanate) by
the action of myrosinase [82].

4.3. Organosulfur Compounds Present in Mushrooms

Edible mushrooms have been widely used in cooking, but in recent years, their con-
sumption for their medical benefits has increased. In this regard, similar to Alliaceae and
Brassicaceae vegetables, the main areas of use are cardio-metabolic disorders and the regula-
tion of the immune system. A recent systematic review highlights that the consumption
of mushrooms—as part of a healthy dietary pattern—is associated with a reduced risk of
mortality for cardiovascular diseases, suggesting benefits on cardiovascular and metabolic
systems. It has been proposed that these benefits are correlated to hypolipidemic and
hypoglycemic effects and anti-oxidants and anti-inflammatory activities [87–90]. More
recently, a putative role in slowing down aging has also been considered and associated
with the ability to influence the expression of hallmarks of senescence, including Nrf-2
and FOXOs [91]. Moreover, some authors supposed the role of supplementation with
mushrooms to support the treatment of the early stages of neurodegenerative diseases
or anti-cancer because of the high anti-oxidant and anti-inflammatory capacities [92–94].
Finally, with regard to the regulation of immune system, mushrooms are reported to stimu-
late cell surface receptor activity, enhancing the activity of natural killer cells, neutrophils
and macrophages, responsible for anti-viral and anti-tumor responses [94].

Undoubtedly in these properties, an important contribution is due to the presence of
polysaccharides (including β-glucans), enzymes, nucleic acids and other bioactive com-
pounds, including ergosterol and monacolin k [92–94]; indeed, usually, the phyto-complex
is considered to be responsible for a wide spectrum of beneficial effects; nevertheless today
investigations on the mechanisms of action are poor, and a deeper exploration seems to
be necessary.

Exploring further bioactive compounds endowed with putative healthy properties, a
peculiar characteristic of these vegetables is their distinctive flavor, and the scent is critical
in the determination of their quality and popularity. Indeed, a wide variety of volatile
organic compounds has been described, and their content, along with non-volatile organic
compounds, renders each edible mushroom unique, but at the same time, it can influence
medicinal properties. Interestingly, among the volatile organic compounds, organic sulfur
compounds have been described [95]. Their recognized precursors are L-cysteine and
methionine, which can be converted into thioheterocycles, thioethers, thiols and thiophenes
in enzymatic and non-enzymatic ways [96]. A peculiar organic sulfur compound typical
of mushrooms and not present in other kinds of vegetable and nonvegetable cells is
ergothioneine, an amino acid bearing a cyclized thioureidic group that participates in the
health-promoting activity of mushrooms [97].

One of the most studied mushrooms is Lentinula edodes (well-known as shiitake). It
is rich in sulfurs; indeed, the unique aroma of the mushroom is due to the presence of
lenthionine (1,2,3,5,6-pentathiepane), a cyclic sulfur compound [98,99]. In addition to its
sensorial properties, lenthionine is endowed with biological effects, including antibiotic
and anti-aggregation properties [100]; therefore, great attention has been paid to it.

From a biosynthetic perspective, lenthionine derives from lentinic acid in a two-
step enzymatic reaction. In particular, lentinic acid is activated upon the elimination of
its γ-glutamyl moiety due to the action of γ-glutamyl transpeptidase, producing an L-



Int. J. Mol. Sci. 2023, 24, 11886 10 of 16

cysteine sulfoxide derivative, which then undergoes α,β-elimination, catalyzed by cysteine
sulfoxide lyase (better known as alliinase, present in Alliaceae vegetables), resulting in a
highly reactive sulfenic acid intermediate. The sulfenic acid is then rapidly condensed
to form thiosulfinate, which is often further transformed into other sulfur compounds,
including lenthionine [101]. Drying conditions, probably due to the Maillard reaction,
may deeply influence the organic volatile composition, particularly the content of organic
sulfur compounds. The concentration of organic sulfur compounds in shiitake increased
in the early stages of drying (about 0.5–1.5 h), and the most representative compounds
were dimethyl trisulfide, thioanisole, and lenthionine [102]. In the middle stages of drying
the organic sulfur compounds increased with the esters; while in the final stages (4–12 h)
their concentration decreased. Interestingly, the sulfur perception as a negative impression
of food was hypothesized; nevertheless, it could be interesting from a health point of
view [103].

Currently, to the best of our knowledge, no organic sulfur compounds described
in shiitake have been described as H2S donors; on the other hand, poor information is
currently available on the content of organic sulfur compounds in other edible mushrooms.
Interestingly, our preliminary studies suggest it is a potentially new source of sulfur
compounds endowed with H2S-donor properties.

5. Analysis of H2S Release from Mushroom Extracts

Using an amperometric approach [13,104], we screened a few extracts of mushrooms
(listed in Table 1) to explore their ability to release H2S.

Table 1. Maximum H2S release after the incubation of the mushroom extracts or ergothioneine
and lenthionine.

Tested Item Ergothioneine Content
(µg/g)

H2S Release in the Presence of
L-Cys 4 mM (µM)

H2S Release in the
Absence of L-Cys (µM)

Ganoderma lucidum 39.1 ± 0.2 2.1 ± 0.2 n.d.
Hericum erinaceus 184.6 ± 0.9 1.2 ± 0.2 1.2 ± 0.3
Lentinula edodes 348.3 ± 1.2 2.5 ± 0.1 n.d.
Grifola frondose 205.1 ± 3.4 1.1 ± 0.2 1.0 ± 0.2
Polyporus umbellatus 25.7 ± 0.8 2.0 ± 0.6 n.d.
Auricularia auricola 4.24 ± 0.1 n.d. n.d.
Inonotus obliquus 0.3 ± 0.0 1.8 ± 0.1 n.d.
Agaricus subrufescens 479.3 ± 4.6 1.6 ± 0.4 n.d.
Poria cocos 5.4 ± 0.3 n.d. n.d.
Pleurotus ostreatus 477.7 ± 2.7 n.d. n.d.
Coprinus comatus 450.2 ± 4.8 n.d. n.d.
Cordyceps sinensis 5.9 ± 0.1 1.2 ± 0.4 n.d.
Ergothioneine n.d. n.d. n.d.
Lenthionine n.d. 32 ± 4.3 n.d.

Abbreviations: L-Cys: L-Cysteine; n.d.: not detected.

Surprisingly, the extracts of Lentinula edodes Berk., Ganoderma lucidum Curtis and
Polyporus umbellatus, tested using an amperometric method at a concentration of 1 mg/mL
in the presence and absence of L-cysteine (4 mM), showed a cysteine-dependent release of
H2S. In detail, in the presence of this amino acid, Lentinula edodes was able to release about
2.5 µM of H2S, while Ganoderma lucidum released 2.1 µM of H2S after 30 min incubation
and Polyporus umbellatus 2 µM. In the absence of cysteine, there was no increase in the
concentration of H2S (Table 1 and Figure 6).
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Ganoderma lucidum (b) and Polyporus umbellatus (c) 1 mg/mL in the presence or absence of L-Cysteine.
Data are expressed as mean ± SEM.

Three other extracts showed an H2S cysteine-mediated release but reached lower H2S
levels: Inonotus obliquus P. Karst., which showed a release of 1.8 µM, Agaricus subrufescens
Peck., with a release of 1.6 µM and Cordyceps sinensis Berk. with a release of 1.2 µM. For
these extracts, the release of H2S in the absence of cysteine did not reach the instrument
detection threshold (Table 1).

A further group could be identified using extracts with thiol-independent H2S-donor
properties: Grifola frondosa Dicks. which, both in the presence and absence of cysteine,
reached values of approximately 1.1 µM and Hericum erinaceus Bull. which reached values
of approximately 1.2 µM (Table 1).

Finally, the last group could be identified by including those extracts devoid of H2S-
donor properties, either in the presence or absence of cysteine: the extracts of Pleurotus
ostreatus Jacq., Coprinus comatus O.F. Müll., Auricularia auricula Hook. f., Poria cocos F.A.
Wolf and Phellinus igniarius L. did not reach the threshold of instrumental detectability for
the release of H2S.

Based on quantitative analysis, all mushroom extracts contained significant levels of
ergothioneine. Agaricus subrufescens Peck., Pleurotus ostreatus Jacq., Coprinus comatus O.F.
Müll., Lentinula edodes Berk., and Grifola frondosa Dicks. appear to be the extracts with the
highest ergothioneine content, far exceeding 200 µg per gram of extract. Nevertheless,
the levels of the amino acid detected did not correlate with the release of H2S; therefore,
we supposed that it did not significantly contribute to this property. Furthermore, using
amperometric analysis, commercial ergothioneine incubated at a concentration of 1 mM in
the presence and absence of cysteine showed a very modest release of H2S, amounting to
0.38 µM. This result suggests that despite the molecule’s chemical–physical potential, it is
not capable of donating H2S, probably because cyclic thiourea does not exhibit the same
reactivity as the previously tested thioureas [13].

The other organosulfur compound previously described in mushrooms is lenthionine.
Therefore, we evaluated the release of H2S by testing the isolated compound at a concen-
tration of 1 mM. In the presence of cysteine, the release of H2S from lenthionine reached
very high concentrations (approximately 30 µM after 30 min of incubation) (Table 1). In
contrast, in the absence of cysteine, lenthionine showed no release of H2S, suggesting that
the cysteine-derived thiols can interact with lenthionine, thus leading to the hydrolysis of
the molecule and release of H2S. Although this compound has already been described in
the literature, this is the first time it has been identified as an H2S donor. Based on these
results, it is possible to hypothesize that Lentinula edodes owes H2S-donor properties—at
least in part—due to the presence of lenthionine. However, to our knowledge, this sulfur
compound has not been identified in the other mushroom extracts that emerged from
our screening as potential novel sources of H2S; therefore, it might be challenging to fur-
ther characterize the content of organosulfur compounds in mushroom extracts that have
been tested.
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6. Conclusions

Alliaceae and Brassicaceae families were confirmed to be the main natural sources of
organosulfur compounds, endowed with pleiotropic beneficial effects that reflect—under
numerous aspects—those exerted by H2S.

In addition, among the vegetables in the Alliaceae and Brassicaceae families, mushrooms
emerged as a new putative source of organosulfur compounds endowed with H2S-donor
properties, and this hypothesis paves the way for a re-analysis of the health benefits of these
vegetables and for the exploration of a new field of study in which the gasotransmitter
is implicated.

These original data presented in this review represent a novelty in the scenario of
research on naturally derived H2S donors. In this regard, a qualitative and quantitative
analysis of the organosulfur compounds contained in the selected mushroom extracts
will have to be carried out in order to associate the release of H2S with specific chemical
entity/ies. It will be the first step in discovering new natural sources of H2S and studying
further medicinal or nutraceutical applications of these vegetables.
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