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function of the energy of the leptons in the laboratory frame. A special case is represented
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precision measurement of MW . We find that half of the resonance mass is a special value of

the lepton energy, since the probability density function at this point is in general not ana-

lytic for a narrow-width resonance. In particular, the higher-order derivatives of the density

function are likely to develop singularities, such as cusps or poles. A finite width of the reso-
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points. The quest for such points offers a handle to estimate the resonance mass with much

reduced dependence on the underlying production and decay dynamics of the resonance.
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1 Introduction

The problem of estimating the mass M of a resonance that partially decays into unde-

tectable particles often arises in collider experiments. For example, it occurs when some of

the decay products of the resonance interact too weakly with the detector to produce a sig-

nal, or when they are measured with insufficient precision. If the kinematics of the collision

event can be closed by other means, for example by using energy-momentum conservation,

the problem has an obvious solution, otherwise it is under-constrained.

The loss of information due to the unobserved particles, which prevents M from being

unambiguously determined on an event-by-event basis, can be statistically recovered if the

dymanics of both production and decay of the resonance are known. When such a prior

knowledge is available, the probability density function (p.d.f.) of the visible particle mo-

menta {p`}, denoted by σ−1dσ/d{p`}, can be computed by marginalizing the unobserved

degrees of freedom. This marginal p.d.f. depends on the unknown resonance mass through

the kinematics of the visible decay products. In general, the multi-dimensionality of the

observable space makes the analytic calculation of this function of paramount complexity.

The problem is then best tackled by the use of Monte Carlo (MC) simulations of the pro-

cess of interest, resulting in a discrete set of MC templates σ−1MC dσ
MC(Mi)/d{p`} generated
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at different trial values of M . With these templates at hand, a numerical evaluation of

the likelihood function of the data is possible, and the standard theory of likelihood-based

estimators can be then used for estimating the unknown mass [1]. By construction, such an

approach is model-dependent, as it relies on theoretical assumptions (in fact, the complete

S-matrix for the process of interest) for relating σ−1dσ/d{p`} to M . There are indeed

examples where model uncertainties represent the limiting factor to the experimental ac-

curacy. The determination of the W boson mass at hadron colliders represents perhaps

the most remarkable of such cases [2–4].

An alternative approach, which allows the aforementioned limitation to be partly over-

come, consists in exploiting singularities in the phase-space of the visible observables [5],

i.e. special points where the tangent plane to the phase-space manifold is aligned with one

of the invisible particle directions. The position of such pointed features in the spectra of

kinematic variables can be related to the unknown mass, or, more generally, to combina-

tion of masses when there is more than one resonance in the decay chain [6]. Besides being

ideally independent from the details of the underlying dynamics, the main advantage of the

phase-space singularity method is that a multi-dimensional problem is recast into a search

for striking features, like sharp edges or cusps, on univariate distributions. A study of the

phase-space singularity method in the context of the W boson mass measurement at hadron

colliders has been documented in ref. [7]. Not surprisingly, the optimal of such singular-

ity variables is highly correlated with the usual transverse mass which, being a function

of the transverse hadronic recoil, is affected by other well-known sources of experimental

uncertainty [4].

Motivated by the need of reducing the model-dependence in the measurement of the W

boson mass without having to rely on the hadronic recoil, we will concentrate hereafter on

the special case of a spin-1 resonance that decays into a pair of massless leptons, of which

one is assumed to be measured with high precision, whereas the other is undetected. It has

been pointed out in ref. [8] that a two-body decay kinematics of this type features an obvi-

ous, yet subtle, invariance under boosts. Indeed, the mass of the mother particle plays a spe-

cial role in the distribution of energy E of the visible daughter particle. In particular, it can

be proved that M/2 is a local maximum of the energy distribution σ−1dσ/dE, if the mother

particle is produced unpolarized. In this case, one can just measure M by locating the point

in the observed energy spectrum featuring the largest density. An application of this tech-

nique in the context of the top-quark mass measurement has been documented in ref. [9].

The argument leading to the identity argmax[dσ/dE] = M/2 relies on the assumption

that the resonance is unpolarized. Instead, we would like to be as agnostic as possible with

respect to the mechanism of production and decay of the resonance. In this spirit, we will

study the mathematical properties of the p.d.f. of the lepton energy in full generality by

deriving exact results in the approximation of a narrow-width resonance. Strictly speak-

ing, any unstable resonance has a finite width Γ > 0. In practice, the latter has to be

compared with the experimental resolution σE on the visible particle energy, which sets

the minimum granularity at which differential properties of the p.d.f. σ−1dσ/dE can be

defined. The case Γ/σE � 1, is then mathematically equivalent to treating the resonance

in the narrow-width approximation. We will then validate the results against selected toy
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examples of production and decay dynamics. The results of this study motivate the us-

age of stationary points in the higher-order derivatives of the energy p.d.f., in particular

of the second derivative, as an estimator of the resonance mass. Finally, we will study

this method in the context of the W boson mass measurement at the LHC using a MC

simulation of the reaction pp → W±X, W± → µ±νµ in proton-proton (pp) collisions at a

center-of-mass energy
√
s = 13 TeV. Quantitative estimates of the statistical and of the

dominant theoretical uncertainty affecting the newly proposed method of measurement are

also provided.

2 Kinematics in the laboratory frame

Let E (E∗) be the lepton energy in the laboratory (center-of-mass) frame, and c∗ ≡ cos θ∗

the cosine of the polar angle in the center-of-mass frame with respect to the mother particle

velocity β in the laboratory. We also define E0 = M/2 and introduce the dimensionless

parameters x = E/E0, y = E∗/E0, and z = E/E∗ = x/y. The lepton energy in the

laboratory is related to E∗ and c∗ via a Lorentz transformation that depends only on the

boost factor γ = (1− β2)−
1
2 , with β = |β|, namely:

E = γE∗ (1 + βc∗) . (2.1)

The distribution of energies in the center-of-mass frame is assumed to be described by a

Breit-Wigner function:

h(y) =
1

π

∆

(y − 1)2 + ∆2
, (2.2)

where ∆ = Γ/2M . Since we are mostly concerned with narrow-width resonances, i.e.

∆� 1, we can safely neglect the fact that the function h in eq. (2.2) should be truncated

at y = 0 to prevent the center-of-mass energy from becoming negative. In fact, eq. (2.2)

coincides with the more correct relativistic Breit-Wigner distribution [10] only when y ≈ 1

(although it is somehow simpler for the calculations to use the non-relativistic version of

eq. (2.2), the results presented here do not depend on this assumption). Finally, we remark

that this p.d.f. converges to the Dirac delta function in the limit ∆ → 0.

From eq. (2.1), the domain of z is found to be:

z ∈
[
γ −

√
γ2 − 1, γ +

√
γ2 − 1

]
(2.3)

where the relation γ2β2 = γ2−1 has been used. If γ 6= 1, eq. (2.1) can be inverted yielding:

c∗ =
1√
γ2 − 1

(
E

E∗
− γ
)
→ dE =

√
γ2 − 1E∗dc∗, (2.4)

which implies a linear relation between c∗ and E at a fixed value of γ and E∗.

In the center-of-mass frame of a spin-1 resonance decaying to a pair of spin-1/2 parti-

cles, the cosine of the polar angle of the decaying lepton with respect to a given quantization

axis is described by a p.d.f. of the form [11]:

1

σ

dσ

dc∗
=

3

8

[(
1 +

A0(γ)

2

)
+A4(γ)c∗ +

(
1− 3

2
A0(γ)

)
c∗2
]
, (2.5)

– 3 –



J
H
E
P
0
5
(
2
0
1
9
)
0
4
4

where the angular coefficients A0,4 have been introduced as arbitrary dimensionless func-

tions of the boost factor γ. The A0 coefficient controls the fraction of longitudinal polar-

ization (f0) and satisfies the requirement 0 ≤ A0 ≤ 2, whereas A4 regulates the fractions of

left (fL) and right (fR) transverse polarization. For a pure V −A interaction, the angular

coefficients are related to the polarization fractions f0,L,R, relative to the direction of flight

of the resonance, by the linear relations:

f0 =
A0

2
, fL =

1

4
(2−A0 ±A4) , fR =

1

4
(2−A0 ∓A4) , (2.6)

where the choice of sign depends on the lepton charge. Special cases of eq. (2.6) are the

values (A0, A4) = (0,±2), which corresponds to a purely left/right polarized resonance, and

(2/3, 0), which corresponds to an unpolarized resonance. By combining eqs. (2.4)–(2.5),

we obtain the conditional p.d.f. of E:

1

σ

dσ

dE
(E | γ,E∗) =

1

σ

dσ

dc∗

∣∣∣∣dc∗dE
∣∣∣∣ (2.7)

=
3

8E∗
1√
γ2−1

(1+
A0

2

)
+A4

(
E/E∗−γ√
γ2−1

)
+

(
1− 3

2
A0

)(
E/E∗−γ√
γ2−1

)2
 ,

where the explicit dependence of the angular coefficients on γ has been omitted for sim-

plicity. Multiplying both sides of eq. (2.7) by the constant E0, we obtain:

dσ

dx
(x | γ, y) =

3

8y

[
1 + A0

2

(γ2 − 1)
1
2

+
A4

(γ2 − 1)

(
x

y
− γ
)

+
1− 3

2A0

(γ2 − 1)
3
2

(
x

y
− γ
)2
]
, (2.8)

× I
(
γ −

√
γ2 − 1 ≤ x

y
≤ γ +

√
γ2 − 1

)
,

where I(·) = 1 if the argument is true, 0 otherwise. The p.d.f. of x can be now obtained

by marginalizing both γ and y. We assume γ ∼ g(γ) independently of y, which is usually

appropriate for a narrow-width resonance. Under this assumption, we can write:

f(x) =

∫
dy

y
h(y)

∫ +∞

1
2

(
x
y
+ y

x

) dγ g(γ) (2.9)

× 3

8

[
1 + 1

2A0(γ)

(γ2 − 1)
1
2

+
A4(γ)

(γ2 − 1)

(
x

y
− γ
)

+
1− 3

2A0(γ)

(γ2 − 1)
3
2

(
x

y
− γ
)2
]

The p.d.f. g is positive-definite and normalized to unity:
∫∞
1 dγ g(γ) = 1. We first consider

the case that g is an analytic function everywhere, in particular at γ = 1 (the alternative

case will be discussed later). Under this assumption, it can be replaced by its Taylor series

centered at γ = 1:

g(1 + κ) = g(0) + g(1)κ+ . . . , (2.10)

where κ ≡ γ − 1 ≥ 0. Likewise, we assume that A0,4(γ) are analytic at γ = 1 such that:

A0,4(1 + κ) = A
(0)
0,4 +A

(1)
0,4κ+ . . . . (2.11)
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We now move to study the behavior of f when x ≈ 1. To this purpose, we expand the

right-hand side of eq. (2.9) in terms of a small parameter ε, such that x = 1 + ε. In this

limit, we have:

1

2

(
x+

1

x

)
= 1 +

ε2

2
+O(ε4),

(
γ2 − 1

)− k
2 ≈ 2−

k
2 κ−

k
2 (2.12)

where k is an integer.

2.1 The narrow-width approximation

We first consider the case of a narrow-width resonance, i.e. we set h(y) = δ(1 − y). After

integrating-out y, the right-hand side of eq. (2.9) can be rewritten symbolically as:

f(1 + ε) =

∫ δ

ε2/2
dκPol2

(
ε ; κ , g(k) , A

(k)
0,4

)
+

∫ +∞

δ
dκPol2 (ε ; κ , g(κ), A0,4(κ)) , (2.13)

where Pol2(ε ; ·) stands for a second-order polynomial in ε. In eq. (2.13), the integration

region has been split into two disjoint intervals: [ε2/2, δ], where the cut-off δ is sufficiently

small that the approximations in eq. (2.10)–(2.11) are valid to first order, and the comple-

mentary interval [δ,+∞]. The first integral provides the contribution inside a neighborhood

of x = 1 from the phase-space region γ ≈ 1, i.e. when the decaying particle is almost at

rest; the second integral accounts for the contribution stemming from larger boost val-

ues. By virtue of the spin-1 assumption, the integrand function within both integrals is a

quadratic polynomial in ε, hence it has vanishing derivatives beyond the second order. We

can now compute explicitly the first integral at the right-hand side of eq. (2.13). After a

straightforward integration, we get:∫ δ

ε2/2
dκ
(
g(0)+g(1)κ

)[
1+

1

2

(
A

(0)
0 +A

(1)
0 κ

)]
2−

1
2κ−

1
2 (2.14a)

=−g(0)
(

1+
A

(0)
0

2

)
|ε|− 1

6

[
g(0)

2
A

(1)
0 +g(1)

(
1+

A
(0)
0

2

)]
|ε|3+Kδ+O(ε5)∫ δ

ε2/2
dκ
(
g(0)+g(1)κ

)(
A

(0)
4 +A

(1)
4 κ

)
2−1

(
−1+εκ−1

)
(2.14b)

=
1

2

[
g(0)A

(0)
4 lnδ+δ

(
g(0)A

(1)
4 +g(1)A

(0)
4

)
+

1

4
g(1)A

(1)
4 δ2

]
ε+

−g(0)A(0)
4 ε ln |ε|+ g(0)

4
A

(0)
4 ε2− 1

4

(
g(0)A

(1)
4 +g(1)A

(0)
4

)
ε3+K ′δ+O(ε3)∫ δ

ε2/2
dκ
(
g(0)+g(1)κ

)[
1− 3

2

(
A

(0)
0 +A

(1)
0 κ+. . .

)]
2−

3
2κ−

3
2
(
κ2−2εκ+ε2

)
(2.14c)

=−
√

2g(0)
(

1− 3

2
A

(0)
0

)
δ

1
2 ε+g(0)

(
1− 3

2
A

(0)
0

)
|ε|+g(0)

(
1− 3

2
A

(0)
0

)
|ε|ε[

−δ
− 1

2

√
2
g(0)

(
1− 3

2
A

(0)
0

)
+

1√
2

(
−3

2
g(0)A

(1)
0 +g(1)

(
1− 3

2
A

(0)
0

))
δ

1
2

]
ε2+

− 1

2

[
−3

2
g(0)A

(1)
0 +g(1)

(
1− 3

2
A

(0)
0

)
+

1

6
g(0)

(
1− 3

2
A

(0)
0

)]
|ε|3+K ′′δ +O(ε3)
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where Kδ are constants that depend only on the cut-off δ. By rearranging the various

terms in eq. (2.14), we finally obtain:

f(1 + ε) ≈ A+Bε+ C|ε|+Dε2 + E|ε|ε+ Fε3 +G|ε3|+Hε ln |ε|+O(ε3), (2.15)

where the constants A, . . . ,H are independent of ε. There are terms in this expansion

which are not analytic at ε = 0. They are proportional to the constants:

C = −2g(0)A
(0)
0 (2.16a)

E = g(0)
(

1− 3

2
A

(0)
0

)
(2.16b)

G =
2

3

(
g(0)A

(1)
0 + g(1)A

(0)
0

)
− g(0)

12

(
1− 3

2
A

(0)
0

)
− 2

3
g(1) (2.16c)

H = −g(0)A(0)
4 . (2.16d)

As a consequence of eq. (2.15), the higher-order derivates of f can develop various

types of singularity at x = 1: kinks or cusps (from |ε| terms), discontinuities (from sign(ε)

terms), delta functions (from the derivatives of the latter), and poles (from the derivative

of the ε ln |ε| term). This non-regular behavior should not come as a surprise: even if g,

A0, and A4 are smooth functions, the transformation in eq. (2.4) becomes singular in the

limit γ → 1+. When convoluted with a continuous spectrum of boosts, this primordial

singularity is weighted by an infinitesimal cross section g(1)dx, but still percolates to

the final p.d.f., in a way that depends on how the phase-space (γ, c∗) gets populated.

We anticipate that the appearance of a singularity in a strict mathematical sense is a

consequence of treating the resonance in the narrow-width approximation. Within this

approximation, however, its existence is a robust result, as discussed later.

The nature of such singularity is, to some extent, akin to the phase-space singularity

discussed in ref. [5]. Indeed, for a fixed value γ > 1, the variable x has two wall singularities

associated with the decay of the visible particle collinear or anti-collinear with the velocity

of the resonance. These configurations correspond to edges of the phase-space. When

γ = 1, a singularity of higher degree appears because the dimensionality of the phase-

space shrinks from a line to a point. The singularity studied here has, however, a richer

phenomenology compared to the algebraic singularity of ref. [5], because it depends not just

on the geometry of the phase-space manifold, but also on how the dynamics of production

and decay distributes events across the phase-space.

It is interesting to consider some limiting cases of eq. (2.16). As expected, an unpo-

larized resonance gives rise to a p.d.f. of the form f(x) = A + C|x − 1| + O((x − 1)2),

implying that x = 1 is a local maximum of the density (in particular, it is a cusp if g(0) > 0

and a stationary point otherwise). This is in agreement with the result obtained in ref. [8].

Whenever the boost p.d.f. has a vanishing amplitude in the neighborhood of γ = 1, i.e.

g(k) = 0 for the first k derivatives, the coefficients in eq. (2.16) are also vanishing. A special

case is when there is a minimum momentum threshold on the production of the resonance,

such that g(γ) ≡ 0 for γ ≤ γthr. (in this case, all the derivatives at x = 1 are formally

zero). The expansion of eq. (2.15) thus contains only terms of order εk, with k = 0, 1, 2: in

– 6 –



J
H
E
P
0
5
(
2
0
1
9
)
0
4
4

the neighborhood of x = 1, the energy p.d.f. is proportional to a parabola. Equation (2.3)

can be then used to express E0 in terms of the lower (E−) and upper (E+) edges of the

interval in which f(x) ∝ Pol2(x), as:

E0 =
√
E−E+. (2.17)

We now briefly consider the possibility that either of the functions in the integrand is

not analytic at γ = 1, such that the Taylor expansion of eq. (2.10)–(2.11) are not defined.

To fix the ideas, we consider the case g(γ) ∼ (γ − 1)α, with α > 0, for which γ = 1 is a

cusp point. As we will see later, this choice of p.d.f. finds at least one remarkable physical

application. In this case, eq. (2.14) gets modified by the appearance of terms like |ε|2α+m,

where m = 1, 2, 3, . . . is an integer, which, for arbitrary values of α, gives rise to the same

phenomenology of non-regularity on f .

2.2 Finite-width effects

The regularity of laboratory energy p.d.f. is restored by integrating over a continuous

spectrum of center-of-mass energies. Indeed, in the limit γ → 1+, the laboratory frame

coincides with the center-of-mass frame, i.e. f(x) = h(x), which is a smooth function. In

the case of a finite width, eq. (2.13) applies with the replacement:

ε→ ε′ = z − 1 =
x

y
− 1 ≡ 1 + ε

y
− 1, (2.18)

where ε is again defined as ε = x− 1. Equation (2.13) thus becomes:

f(1 + ε) ≈
∫
dy

y
h(y) f

(
1 + ε

y

)
. (2.19)

Consider for example a term like |ε′| in the expansion of f . Upon integration over y, its

first derivative calculated at x = 1 gives:

d

dε

[∫
dy

y
h(y)

∣∣∣∣1 + ε

y
− 1

∣∣∣∣]
ε=0

=

∫
dy

y2
h(y) sign(1− y) = O(∆2), (2.20)

hence the new minimum/maximum of f gets displaced from x = 1 by an amount of O(∆2).

Notice that if the k-th order derivative has a kink such that | limx→1+ f
(k)| 6= | limx→1− f

(k)|,
the integration over y smears this singularity into a stationary point whose position depends

not just on ∆, but also on g and A0,4, which determine the left and right slopes of f (k).

In the latter case, nothing can be said a priori about E0, unless that it must be close to

the stationary point. For example, in the case of a symmetric kink in the second-order

derivative, such a displacement is of O(Γ2/M) and could be in principle subtracted from

the measured stationary point, if Γ were also known. In general, by knowing the width

of the resonance and by relying on some theory prior on the coefficients of eq. (2.15), the

measured stationary point can be calibrated to recover an unbiased estimator of E0.
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2.3 An explicit example

We now discuss the case of W boson production at the LHC which allows us to specialize

some of the generic formulas derived before.

By using the fact that dγ2 = d(|q|2/M2), we can write

lim
γ→1+

g(γ) ∝ lim
γ→1+

dσ

d|q|2
= lim

γ→1+

∫
dq2T dq

2
z

d2σ

dq2T dq
2
z

δ(|q|2 − q2T − q2z)

= lim
γ→1+

∫ |q|2
0

dq2T
d2σ

dq2T dq
2
z

= lim
γ→1+

∫ |q|2
0

dq2T
1

2E
√
|q|2 − q2T

d2σ

dq2Tdy
(2.21)

≈
[
d2σ

dq2Tdy

]
0

|q|
M

∫ 1

0
dζ

1√
1− ζ

∝
√
γ2 − 1,

with ζ = qT/|q|. Hence, g(1) = 0. Furthermore, since g ≈
√
γ2 − 1, the boost spectrum is

not analytic at γ = 1. The finiteness of the double-differential cross section
[
d2σ/dq2Tdy

]
0
,

where y is the rapidity of the W boson, is a general result that arises from the small

transverse momentum behavior of cross sections in hard processes [12]:

dσ

dq2T
(qT | y) = σ0 + σ1q

2
T + . . . (2.22)

Similarly, the differential cross section dσ/dy at y = 0 is finite because it is proportional to

the product of the partonic densities evaluated at x1,2 = M/
√
s, where

√
s is the proton-

proton center-of-mass energy. By using a complete Monte Carlo simulation of this reaction,

discussed in section 4, we also find that the ∼ (γ − 1)
1
2 rise is limited to a tiny region of

phase-space, typically γ−1 . 5×10−4, corresponding to the region |q| . 4 GeV, i.e. where

the differential cross section in qT is rapidly growing. For γ values in excess of about 10−3,

the boost p.d.f. is well approximated by a power law of the form g(γ) ∼ (γ − p0)−p1 , with

p0 ≈ 0.9 and p1 ≈ 0.8.

The angular coefficients are dimensionless functions of |q|/M and y encoding the av-

erage polarization of W bosons produced in hadron collisions as a function of the W boson

kinematics [11]. They are simultaneously determined by the partonic density functions

(PDFs) of the proton and by emission of additional QCD radiation. Furthermore, they

depend on the reference frame, i.e. they are not rotation-invariant. The coefficients A0,4 of

eq. (2.5) are calculated in a particular rest frame of the W boson defined by a boost along

the velocity β, which we will refer to as the helicity frame. For fixed and small values of γ,

their values are determined by the average of A0,4 over all momenta q defining the surface

of a sphere of radius |q|, such that γ ≈ 1 + |q|2
2M2 :

lim
γ→1+

A0,4(γ) = lim
|q|→0

∫
d3q d

3σ
d3q

δ(γ − |q|2
2M2 − 1)A0,4(q)∫

d3q d
3σ
d3q

δ(γ − |q|2
2M2 − 1)

(2.23)

Similarly to eq. (2.21), one can easily verify that all directions q/|q| are equally likely in

the limit |q| → 0:

lim
|q|→0

dσ

d|q|dΩ
=
|q|2

2MW

[
d3σ

dq2T dy dφ

]
0

, (2.24)
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where the right-hand side does not depend on the direction Ω. When |q| is small, the

direction of the quark and antiquark in any rest frame of the W boson remain almost anti-

parallel. They both carry spin parallel or anti-parallel to their respective momentum. While

averaging over the full solid angle, their directions, which are fixed in the laboratory frame,

move isotropically in the helicity frame around the quantization axis defined by q itself.

The net result must be a uniform distribution in c∗, i.e. A
(0)
0 = 2/3 and A

(0)
4 = 0, or, using

eq. (2.6), fL = fR = f0. This is only true when |q| → 0. For small finite momenta, a tiny

polarization is produced. The amount by which a polarization is built by the misalignment

of the quark directions can be estimated looking at a particular configuration where y = 0

and |q| = qT. In this case, the center-of-mass frame is related to the Collins-Soper (CS)

frame [13] by a rotation of π/2. From a MC simulation, we find that the longitudinal

polarization in the CS frame is built at a pace of about A0(qT) ≈ 2 × (qT/MW )2, or

equivalently A0(γ) ≈ 4γ. The values of (fL, fR, f0) in the helicity frame is thus perturbed

by an amount of similar size from the values ( 14 ,
1
4 ,

1
2) in the limit |q| → 0. When |q| grows,

large values of qT in eq. (2.23) become increasingly unlikely and the cross section favors

a longitudinal motion with |qz| � qT. In this latter case, a net transverse polarization is

built as a consequence of the PDF ratio q/q̄ growing fast at large rapidities. Again using

a MC simulation, we find an empirical slope dA4/dy ≈ ±0.3 for qT = 0, where the sign

depends on the charge of the W boson. Given that dy = d ln γ, we also have A
(1)
4 ≈ 0.3.

We notice that the same argument applies to the case of a proton-antiproton collider,

for which W bosons produced almost at rest in the laboratory frame are preferentially

polarized in the direction of the antiproton. When integrating over the full solid angle,

however, the average polarization in the helicity frame vanishes.

2.4 Discussion

We now summarize the results obtained so far. When considering the two-body decay of

a spin-1 resonance, the probability density function f describing the laboratory energy of

any of the two daughter particles, assumed to be massless spin- 12 particles, is in general

not analytic at x = 1, when the narrow-width approximation for the resonance is made. In

particular, the derivatives of f are likely to be non-derivable, discontinuous, or divergent at

that point, depending on the boost factor p.d.f. and on the polarization of the resonance.

The appearance of a local maximum of the density at x = 1 is in general a fortuitous

occurrence. A pole at x = 1 in the first derivative is associated with the presence of a

non-zero transverse polarization at rest. Conversely, cusps in the second derivative appear

quite naturally as a result of terms of the form |x−1|3 in the expansion of f around x = 1,

which do not compete with (x − 1)3 terms from higher boost factors. This is a general

result that only depends on the spin-1 assumption for the resonance. The condition for

which a cusp is generated amounts to |G| > |F |, as defined in eq. (2.15). If g(0) = 0, this

is satisfied if A
(0)
4 = 0 (otherwise the coefficient E in eq. (2.16) would be non-zero, giving

rise to a pole in f (1)). If instead g(0) > 0 and A
(0)
4 = 0, the condition for developing a cusp

in f (2) is: ∣∣∣A(1)
4

∣∣∣ < 8

3

∣∣∣∣∣
(
A

(1)
0 +

g(1)

g(0)
A

(0)
0

)
− 1

8

(
1− 3

2
A

(0)
0

)
− g(1)

g(0)

∣∣∣∣∣ (2.25)
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which is satisfied if A4 is a slowly varying function of γ. We remark that even if eq. (2.25)

were not satisfied, kinks at x = 1 for at least one among f (0), f (1), and f (2) will be present,

so that a divergence in the higher-order derivatives will eventually show up.

The following search algorithm is then proposed. For simplicity, we assume the labo-

ratory energy E to be normalized to a constant E′0, playing the role of a trial mass. We

define x = E/E′0 and set f (0) ≡ f for consistency of notation. Then:

1. if the resonance is known to be unpolarized, then define x̂1 = argmax[f (0)] and stop,

else compute f (1);

2. if a pole or cusp in f (1) is found, then define such point x̂2 and stop, else compute

f (2);

3. if f (2) = const. over a range [x−, x+], then define x̂3 =
√
x−x+ and stop. Else: if

there is a cusp, define such point x̂3 and stop;

4. if no such points exist, then compute f (k), with k ≥ 3, and continue searching for a

singularity x̂k+1.

The mass estimator is then defined as M̂ = 2x̂kE
′
0. When a broad distribution of energies

in the center-of-mass frame is accounted for, the analyticity of f is restored. In particular,

poles and cusps are regularized into local stationary points. These points are in general

displaced from x = 1 by an amount that vanishes in the limit ∆ → 0. Furthermore, since

there may be a multiplicity of such stationary points, a prior on M will be in general

needed to disambiguate among them and for an ultimate calibration of the estimator. The

determination of the unknown resonance mass is then recast as a univariate optimization

problem, in a way that decouples from the details of the underlying production and decay

dynamics to the extent that the resonance width can be neglected.

3 Numerical examples

The predictions of eq. (2.15) have been verified numerically for selected choices of the

functions g, A0, and A4. The three following functional forms for the boost factor p.d.f.

have been studied:

• gexp(γ) ∝ (γ − 1) exp−(γ−1). This function is analytic in γ = 1, and is chosen as the

prototype of a p.d.f. with g(0) = 0.

• gpow(γ) ∝ (γ − 0.9)−0.8. This function is analytic in γ = 1, but this time g(0) > 0.

The numerical values of the coefficients are somehow tuned on the empirical boost

distribution for W bosons production at the LHC when γ − 1 is in excess of about

10−3, see section 2.3.

• gsqrt(γ) ∝ (γ−1)
1
2 . This function is chosen as the prototype of a p.d.f which is not an-

alytic in γ = 1. In particular, it is finite for γ → 1+, but its first derivative is infinite.
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For sake of numerical precision, the integration over the boost factors is restricted to the

range γ ∈ [1, 3]. Both gexp and gpow are not integrable, so strictly speaking they cannot

be interpreted as probability density functions. However, they can still provide a good

approximation of physical densities for small values of γ. For all three functions, the

following values for (A0, A4) have been studied:

1. (0, 0), corresponding to an equal left and right polarization;

2. (23 , 0), corresponding to an unpolarized resonance;

3. (0, 1), corresponding to partial transverse polarization;

4. (tanh [4(γ − 1)] , tanh [0.3(γ − 1)]), corresponding to a resonance which has equal left

and right polarization at rest, and then it acquires both a longitudinal and a trans-

verse polarization as the boost factor increases. The choice of numerical constants is

somehow inspired by the case of W production as discussed in section 2.3.

The resulting probability density functions f (0) are shown in figures 1–3 together with their

first f (1) and second f (2) derivatives. The latter are estimated from finite differences of

f (0) over an equally-spaced mesh of xi values:

f (1)(xi) ≈
f (0)(xi + d)− f (0)(xi − d)

2d
(3.1a)

f (2)(xi) ≈
f (0)(xi + d) + f (0)(xi − d)− 2f (0)(xi)

d2
(3.1b)

where d is the mesh size.

Figure 1 shows the results for gexp for each choice of the angular coefficients. Since

g(0) = 0, we have C = E = H = 0, as for eq. (2.16). Apart from case 2), where x = 1

is also a local maximum of f (0), the first derivative does not vanish in general at x = 1.

However, the presence of a term like |ε3| in eq. (2.15) induces the presence of a cusp in the

second derivative.

For gpow, which has g(0) > 0, additional sources of non-analyticity are present in

eq. (2.15), clearly visible in figure 2. In case 1), the Taylor expansion of f (0) contains a

term of the form Eε|ε| with E 6= 0, hence the second derivative receives a contribution

from a step-function centered at x = 1. In case 2), C 6= 0 so that x = 1 is a cusp: the

first and second derivatives are thus locally proportional to a step-function and a delta

function, respectively. In case 3), H < 0, so that the first order diverges to +∞ like ln |ε|
when ε → 0, whereas the second order derivative goes like 1/ε. Case 4) is qualitatively

similar to the first.

Whenever g or any of the two angular coefficients are not analytic at γ = 1, like for

gsqrt, eq. (2.15) does not apply. The general appearance of step functions and poles in

x = 1 is however unchanged, as shown by figure 3. In particular, a term of the form ε2 ln |ε|
stems from the last but one line of eq. (2.13). The choice of gsqrt is, however, special since,

for an unpolarized resonance, it provides an analytic p.d.f.:

f(1 + ε) ∝
∫ δ

ε2/2
dκκ

1
2

[
2−

1
2κ−

1
2

]
+

∫ +∞

δ
dκ [. . .] = A+ Cε2 + . . . (3.2)

In this last case, the mass estimator would be provided by argmax[f ].
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Figure 1. The lepton energy p.d.f f ≡ f (0) (left) of eq. (2.9) with its first (center) and second

(right) derivative for a boost p.d.f. of the form g(γ) ∝ (γ − 1) exp(−γ) and the choice (A0, A4) =

(0, 0) (first row), (2/3, 0) (second row), (0, 1) (third row), and (tanh [4(γ − 1)] , tanh [0.3(γ − 1)])

(fourth row). The decaying resonance is treated in the narrow-width approximation.
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Figure 2. The lepton energy p.d.f f ≡ f (0) (left) of eq. (2.9) with its first (center) and second

(right) derivative for a boost p.d.f. of the form g(γ) ∝ (γ−0.9)−0.8 and the choice (A0, A4) = (0, 0)

(first row), (2/3, 0) (second row), (0, 1) (third row), and (tanh [4(γ − 1)] , tanh [0.3(γ − 1)]) (fourth

row). The decaying resonance is treated in the narrow-width approximation.
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Figure 3. The lepton energy p.d.f f ≡ f (0) (left) of eq. (2.9) with its first (center) and second

(right) derivative for a boost p.d.f. of the form g(γ) ∝ (γ − 1)
1
2 and the choice (A0, A4) = (0, 0)

(first row), (2/3, 0) (second row), (0, 1) (third row), and (tanh [4(γ − 1)] , tanh [0.3(γ − 1)]) (fourth

row). The decaying resonance is treated in the narrow-width approximation.
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4 W bosons at the LHC

A special case of the problem studied in section 2 is represented by W bosons produced

in hadron-hadron collisions and decaying into a lepton-neutrino pair. For the purpose of

studying this particular process, a sample of proton-proton collision events at
√
s = 13 TeV

simulating the pp → W±X, W± → µ±νµ reaction has been generated with NLO QCD

accuracy using the MG5 aMC@NLO [14] event generator interfaced with Pythia8 for the parton

shower [15]. The NNPDF3.0 [16] set is used to simulate the proton PDFs. A total of about

84 millions of events are generated, with a fraction of negative weights such that the

effective number of events is reduced by roughly a factor of two compared to the case of

unweighted events. Given that the cross section for W → µνµ production is about 20.5

nb at
√
s = 13 TeV [17], the simulated sample used for this study has the same statistical

power of a sample of collision events corresponding to 1.9 fb−1 of integrated luminosity.

The natural width of the W boson is ΓW ≈ 2.08 GeV [10], corresponding to a value

∆ ≈ 10−2 in eq. (2.2). This is not negligible on the scale of a high-precision measurement of

MW , which targets a relative accuracy on the mass as low as 10−4 [2–4]. Hence, an ultimate

calibration of the estimator is required to meet this level of accuracy. In section 2.3, it

was found that the boost factor p.d.f. for W bosons produced in proton-proton collisions

can be roughly approximated by a power law g ∼ (γ − 1)α: for small values of γ − 1, i.e.

. 5× 10−4, we have α ≈ 0.5 and the W boson is almost unpolarized in the helicity frame;

for higher boost values, α ≈ −0.8, and a net polarization is built, ultimately dominated

by a particular transverse mode. From the numerical simulations of figures 2–3, we could

thus expect x = 1 to be a local minimum of f (2). Indeed, the rising edge of g populates

only the region |x − 1| . 5 × 10−4, where it provides a smooth function f (2), similarly to

the rightmost panel in the second row of figure 3. For larger boosts, f (0) should resemble

more closely the plots in figure 2, featuring a deep minimum of f (2) at x = 1. The whole

picture is then smeared by the finite width of the W boson.

Figure 4 shows the binned density f (0) obtained from the simulated sample of events.

The first and second derivatives are estimated bin-wise in the same fashion as eq. (3.1).

A deep minimum in the histogram of f (2) at x values close to unity is clearly visible.

Interestingly, x = 1 is also close to be a global maximum of f (0), a result that qualitatively

recalls the last toy example in figure 2, where the boost p.d.f. and the angular coefficients

were indeed tuned on the values extracted from the Monte Carlo simulation.

4.1 Detector acceptance and final-state radiation

For the case of W boson production and decay at the LHC, two effects break the math-

ematical hypotheses assumed to derive eq. (2.8): the presence of acceptance selection re-

quirements, which are unavoidable in experiments at hadron colliders, and the emission of

final-state photon radiation (FSR) from the charged lepton. Both affect the center-of-mass

dynamics, albeit in different ways as discussed below.

When the detector coverage is incomplete, the harmonic polynomials that depend on

φ∗, which are themselves proportional to sin θ∗ and sin 2θ∗ [11], don’t average exactly to

zero in some regions of the phase-space, thus adding spurious terms to the c∗ expansion
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Figure 4. The p.d.f f ≡ f (0) from a simulation of pp → W±X, W± → µ±νµ events (left)

with its first (center) and second (right) derivative. In the right-hand panel, the visible bin-by-bin

fluctuations are due to the limited size of the simulated sample.

of the decay angle distribution. Furthermore, the detector acceptance requirements, being

based only on the kinematics of the visible decay products, affect the lepton reconstruction

efficiency differently depending on the kinematics of the W boson. The overall result is to

modify the angular coefficients by boost-dependent efficiency factors ρ0,4(x | γ) in eq. (2.9),

which are in general non-trivial functions of x. Here, we will study the effect of selection

requirements realistic for general-purpose experiments like ATLAS [18] and CMS [19],

namely |η| ≤ 2.5 and pT ≥ 25 GeV, where η and pT are the muon pseudorapidity and

transverse momentum, respectively. In the MC simulation we find these cuts to have an

efficiency of about 77% for W+ and 84% for W− for events with lepton energy E ≈MW /2.

The emission of FSR by the charged lepton perturbs the center-of-mass dynamics.

The overall effect of such perturbation can be thought of as the convolution of the original

harmonic polynomials with a smearing kernel, which introduces infinite harmonics in c∗.

Furthermore, the emission of extra particles (photons and lepton-pairs) reduces the center-

of-mass energy available for the muon and thus primarily affects the visible energy spectrum

by an overall downward shift. This process is well-known [20] though, so that it could be in

principle unfolded at the detector level to recover a pure QCD description of the final-state

kinematics. For the purpose of studying this process, we will consider both an unrealistic

scenario, where the charged leptons do not undergo photon radiation (pre-FSR leptons),

and a realistic scenario where a QED-shower of the muons is simulated by the Pythia8

MC (bare leptons).

4.2 The search for a stationary point

We now consider the problem of finding the stationary points of the higher-order derivatives

of f . The rightmost histogram in figure 4 clearly shows that a local minimum of f (2) is

present at x ≈ 1. The estimator of such point is, however, not uniquely defined. We won’t

address here the problem of finding the statistically optimal of such estimators. Instead,

we decide to define the estimator implicitly as the root of a conveniently chosen function of

the data. To this purpose, we first approximate the density f with a polynomial function
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of degree D centered at x = 1:

f(x) ≡ f (0)(x) ≈
D∑
n=0

cn(x− 1)n. (4.1)

The coefficients cn in eq. (4.1) are determined from a fit to the simulated data by means

of an analytic χ2 method. We then define the stationary points of the i-th order deriva-

tive implicitly as the roots of the (i + 1)-th order derivative. The latter are determined

numerically by using Halley’s root-search method [21], a variant of the classical Newton

method. Statistical uncertainties on the coefficients of the polynomial fit are propagated

to the roots x̂i by means of pseudo-data, resulting in 68% confidence level (CL) intervals.

This approach has a twofold advantage: it regularizes the statistical bin-by-bin fluctuations

by the use of smooth functions and it allows for an analytic evaluation of the derivatives

at any point x.

The energy spectrum is provided as a histogram with 100 MeV large bins. The central

value of each bin is normalized to the constant EW = MW /2 to yield the dimensionless

variable x. The fit is performed in the interval E ∈ [36.2, 44.3] GeV, corresponding to

invariant masses of the W bosons in a window of about ±4ΓW around MW . Such range is

large enough to provide acceptable fits with D = 4, which is the minimum degree to define

a unique root of the third derivative x̂3. We notice that this way of estimating the roots

x̂i is quite sensitive to border effects related to the choice of the fit range: since eq. (4.1)

is only a local approximation of the density, discrepancies between the true spectrum and

f (0) at the edges of the fit range tend to pull more strongly the coefficients associated with

the large powers of n, which in turn affect more strongly the roots of the higher order

derivatives. The bias associated with the choice of fit range will be eventually reabsorbed

as part of the calibration procedure discussed in the next section.

For the sake of comparison, the root of the first derivative x̂1, which corresponds to

a local maximum of f (0), is also studied. Positive and negative muon events are first

considered separately. Since the two samples of events provide consistent results, they are

ultimately combined to maximize the statistical accuracy of the analysis. The result of the

fit to the simulated data is shown in figure 5, together with the first, second, and third

derivative of the fitted polynomial function. As expected, the second derivative features a

local minimum around x = 1 identified by the root x̂3 of the third derivative.

4.3 Calibration curve

The calibration of the x̂i estimator is determined by reweighting the same MC sample to

different values of MW . The fit is then repeated for each mass-reweighted sample and

new roots x̂i are computed, resulting in a calibration curve M̂W = M̂W (x̂i). Figure 6

shows such curves separately for muons in the full phase-space and for muons within the

detector acceptance as defined in section 4.1. The points x̂i are then interpolated through

a linear regression.

The response of x̂3 to a change of MW is found to be linear to better than 1%. This

fact is reassuring and confirms that x̂3 is indeed a good estimator of MW . For comparison,

the root of the first derivative x̂1, and the mean value xµ in the same range of x values
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Figure 5. Polynomial fits to the distribution of the variable x = E/EW − 1, where E is the lepton

energy in the laboratory frame and EW = MW /2, obtained from a Monte Carlo simulation of the

process pp → W±X, W± → µ±νµ. The distribution is fitted to a fourth-order polynomial (red

dahsed-line). The solid area shows the 68% CL interval as obtained from the covariance matrix

of the fit. The first, second, and third derivatives of the fitted function are also shown with their

uncertainty bands.

considered in the fit, are also reported as a function of MW . The former is found to have

a good linear response but a larger offset compared to x̂3 (800 MeV against 100 MeV).

Instead, the mean value xµ is very mildly related to MW , which makes it a rather poor

estimator of the mass. This is however mainly an artifact of considering a narrow range of

x values: as illustrated by the first panel of figure 5, the function f (0) in the neighborhood

of x = 1 is a concave function: a tiny shift δx of the peak position does not change the

mean of the distribution to first-order in δx. It is also interesting to study the response

of the three estimators to a restriction of the lepton phase-space. This is shown in the

right panel of figure 6. Both xµ and x̂1 are found to be significantly affected by acceptance

selection requirements, i.e. their values change compared to the full-acceptance case by

more than their statistical uncertainty. On the contrary, x̂3 is more stable, changing by

less than one standard deviation.

– 18 –



J
H
E
P
0
5
(
2
0
1
9
)
0
4
4

80.1 80.2 80.3 80.4 80.5 80.6 80.7
MW (GeV)

78.5

79.0

79.5

80.0

80.5
̂ x i 
(G

eV
)

W ± ,pre-FSR lepton
Ideal
xμ=0.055⋅MW +76.0 GeV
̂x1=0.998⋅MW -0.8 GeV
̂x3=0.996⋅MW +0.1 GeV

80.1 80.2 80.3 80.4 80.5 80.6 80.7
MW (GeV)

78.5

79.0

79.5

80.0

80.5

̂ x i 
(G

eV
)

W ± ,pre-FSR lepton in acceptance
Ideal
xμ=0.070⋅MW +74.9 GeV
̂x1=0.950⋅MW +3.8 GeV
̂x3=1.012⋅MW -1.4 GeV

Figure 6. The roots x̂1 and x̂3 as a function of MW obtained from a fit to a MC simulated

sample of pp→W±X, W± → µ±νµ events, where pre-FSR muons are considered in the full phase-

space (left) or within the detector acceptance (right). For comparison, the mean value xµ of the

distribution in the same range of the fit is also shown.
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Figure 7. The roots x̂1 and x̂3 as a function of MW obtained from a fit to a MC simulated sample

of pp→W±X, W± → µ±νµ events, where bare muons are considered in the full phase-space (left)

or within the detector acceptance (right). For comparison, the mean value xµ of the distribution

in the same range of the fit is also shown.

Finally, an identical analysis is repeated considering bare leptons instead of pre-FSR

leptons. The results are shown in figure 7. Besides an overall shift of about 200 MeV,

which can be ascribed to the loss of energy drained away by FSR [20], the linear response

of x̂1 and x̂3 to MW is found to be preserved.

4.4 Residual model dependence

The residual model-dependence of x̂i on the production and decay dynamics will be even-

tually incorporated as a systematic uncertainty on the calibration curve. For the pur-

pose of assessing the level of such relic model-dependence, the same MC sample has been

reweighted to nine different sets of values for the renormalization and factorization scales
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(µR, µF ) [14] and to one-hundred MC replicas of the same PDF fit [16]. In the first case,

the maximal deviation of the roots compared to the value obtained for the central choice of

scales is symmetrized and used as a proxy of the perturbative scale uncertainty on x̂i. In the

second case, the RMS of the distribution of roots is considered as systematic uncertainty

related to the imperfect knowledge of the PDFs.

The results are shown in table 1. The variance of the weights used to modify the

simulated sample contributes to these uncertainties. The latter is assessed by means of

pseudo-experiments where the data in the nominal sample are randomized to account for

the extra uncertainty added by the reweighting. We find the additional statistical fluc-

tuation introduced by the reweighting to contribute to x̂i by an amount corresponding

to about 30% (10%) of the Poisson uncertainty on the fitted value for i = 1 (3). The

reduction in statistical uncertainty after applying the acceptance selection requirements,

most noticeable for x̂1, is due to the change of the functional form of the energy spectrum.

Indeed, if the selection efficiency were independent of E, the effect of the acceptance re-

quirements would be to enlarge σstat by some 10% due to the reduced event yield. Instead,

the acceptance selection efficiency increases with E: the net effect is to sculpt the energy

spectrum in such a way that the curvature of f (0) around x = 1 increases, thus reducing

the statistical uncertainty on the position of the maximum.

We can now summarize the results of this study as follows:

1. The root x̂3 is less affected than x̂1 by changes in the modeling of W production and

decay dynamics induced by different choices of perturbative scales and PDFs.

2. The root x̂1 shows a significant systematic uncertainty, i.e. larger than the Poisson

fluctuation introduced by the reweighting. This corroborates the observation that

x̂1 depends more than x̂3 on the underlying dynamics, as also deduced by its larger

sensitivity to the acceptance requirements.

3. The residual scale and PDF uncertainty on x̂3 is consistent with the Poisson fluc-

tuation introduced by the reweighting; within the statistical accuracy of this study,

there is no indications of residual systematic bias.

4. A statistical-only uncertainty on x̂3 corresponding to 15 MeV uncertainty on MW

could be reached with about 300 fb−1 of LHC data, which is within the reach of the

Run 3 of the LHC.

4.5 Background

The analysis discussed in the previous paragraphs neglects the presence of background

sources. Since the measurement of a stationary point x̂i relies on a local description of

the energy p.d.f. in the neighborhood of x = 1, any background with a non-flat p.d.f.

has the potential to bias the mass estimator. For the case of W boson production at

hadron colliders [2–4], three major background processes should be considered: i) multi-

jet production, where the muon comes from hadron decays within a jet, ii) Drell-Yan

production of a muon pair, where one of the muons escapes detection, and iii) top quark
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W+ W− W±

σstat
MeV

σscale
σstat

σPDF
σstat

σstat
MeV

σscale
σstat

σPDF
σstat

σstat
MeV

σscale
σstat

σPDF
σstat

x̂1 120 22% 39% 110 38% 40% 80 10% 49%

x̂3 230 5% 6% 370 18% 4% 180 17% 6%

x̂1 80 14% 44% 90 41% 39% 60 31% 52%

x̂3 210 6% 10% 350 11% 5% 180 6% 10%

Table 1. The statistical uncertainty (in MeV) and the scale and PDF uncertainty on x̂1 and

x̂3, separately for W+, W−, and their combination, without (top rows) or with (bottom rows)

acceptance requirements, obtained from a Monte Carlo simulated sample of pp → W±X, W± →
µ±νµ events, corresponding to an integrated luminosity of 1.9 fb−1. The relative uncertainty on

σscale and σPDF is about 30% and 10%, respectively. The relative statistical uncertainty on σstat is

estimated using psuedo-experiments to be about 5% and 25% for x̂1 and x̂2, respectively.

(t) production. The latter two cases are the least harmful. Indeed, neutral Drell-Yan events

pass the event selection criteria to the extent that one of the muon is emitted with either

soft pT or large values of |η|. In turn, this condition preferentially selects events where the

intermediate Z/γ∗ boson is produced with a finite boost. As for eq. (2.15) with g(k) = 0,

this implies that the E spectrum of the selected muons in the neighborhood of MZ/2 must

have a flat second-order derivative. Similarly, muons in top quark events come from the

decay of boosted W bosons, since, in the rest frame the decaying t quark, the W boson

recoils againts a b quark with |p∗W | ≈ 0.4mt. For multi-jet production, these arguments do

not hold and a detailed data-driven estimation of the functional form should be performed.

However, we remark that the analysis discussed here is robust against changes in muon

acceptance, as observed in section 4.1. Since the multi-jet background is reducible by either

tighter identification criteria on the muon or by stricter requirements on the missing energy

or transverse mass in the event, we do expect room for optimization in case the functional

form of this background were found to be measurable with only limited accuracy.

4.6 Outlook

A more refined analysis of the residual theoretical uncertainties would require the simu-

lation of a much larger data sample and a careful treatment of other model effects, like

non-perturbative physics, mixed QCD-QED corrections, etc. (see e.g. ref. [22] for a recent

review). Similarly, experimental uncertainties from the backgrounds, the bias due to the

choice of a fixed-order polynomial to fit the data, the impact of the lepton energy scale

uncertainty, etc., should be thoroughly assessed. This is beyond the scope of this work.

The study presented here confirms that a stationary point in the second derivative of the

lepton energy density is a good estimator of MW and that it is robust against changes of the

underlying W boson production and decay dynamics, detector acceptance requirements,

and the emission of photon radiation.
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5 Conclusions

We have considered the two-fermion decay of a spin-1 resonance of mass M , and analyzed

the lepton energy distribution in the laboratory frame in full generality, i.e. regardless of

the underlying production and decay dynamics of the resonance. In particular, we have

studied the analyticity of the probability density in the neighborhood of M/2. We find

that the density at this point is not analytic for a narrow-width resonance. In particular,

we have studied the conditions for which a singular point appears in the higher-order

derivatives of the density, and found that the second derivative is likely to develop a cusp

or a pole. Exact formulas have been derived under the assumption that the distribution

of boost factors γ and the polarization of the resonance are described by regular functions

of γ. The formulas have been qualitatively validated with toy examples of production and

decay of a narrow-width resonance. When a finite width of the resonance is accounted

for, the regularity is restored such that cusps or poles are smoothed into local stationary

points potentially displaced from M/2. The size of such displacement depends on the

width of the resonance, but partially also on the production dynamics, thus requiring

an ultimate calibration. The quest for stationary points in the higher-order derivatives

of the energy density function is thus advocated as a way to estimate M with possibly

limited knowledge of the underlying production and decay dynamics of the resonance.

A special case is represented by the production of W bosons in proton-proton collisions,

which has been studied on a Monte Carlo simulation of this process, assuming LHC-like

conditions on the proton beams. As expected, a stationary point in the second derivative

is found close to MW /2. The robustness of this point as an estimator of MW has been

studied by considering the effect of detector acceptance requirements, the emission of final-

state radiation, changes of the perturbative calculation of scattering amplitudes for W

production, the proton PDFs, and the input W boson mass. Interestingly, such a mass

estimator features a good linearity, a small bias, and is rather resilient to changes in the

lepton acceptance and in the modeling of the W boson production dynamics. An ultimate

assessment of the residual model-dependence is left for future work.
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