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SCATTERING FOR NON-RADIAL 3D NLS WITH COMBINED

NONLINEARITIES: THE INTERACTION MORAWETZ APPROACH

JACOPO BELLAZZINI, VAN DUONG DINH, AND LUIGI FORCELLA

Abstract. We give a new proof of the scattering below the ground state energy level for
a class of nonlinear Schrödinger equations (NLS) with mass-energy intercritical compet-
ing nonlinearities. Specifically, the NLS has a focusing leading order nonlinearity with
a defocusing perturbation. Our strategy combines interaction Morawetz estimates à la
Dodson-Murphy and a new crucial bound for the Pohozaev functional of localized func-
tions, which is essential to overcome the lack of a monotonicity condition. Furthermore,
we give the rate of blow-up for symmetric solutions.

1. Introduction

The aim of the present paper is to study long time dynamics of solutions to the following
nonlinear Schrödinger equation with competing nonlinearities

i∂tu+∆u = λ1|u|
q−1u+ λ2|u|

p−1u, (1.1)

where u(t, x) : I × Rd → C, I ⊆ R, and the parameters λ1, λ2 ∈ R. Equation (1.1) is a
nonlinear Schrödinger equation which arises in many physical contexts, and we refer the
reader to [19, 21, 30, 40] for motivations and further discussions on the models. Since the
early works by Zhang [44], Tao, Vişan, and Zhang [43], and Miao, Xu, and Zhao [36],
equations of the type (1.1) have attracted a lot of attention leading to a wide literature
concerning different problems: local and global theory, scattering, blow-up, stability of
standing waves, and so on; see [2, 3, 6, 8, 9, 20, 29, 31–34, 38, 41, 42] and references therein.

In this article, we are primarily interested in the 3D physical case, and we consider expo-
nents satisfying 7

3
< q < p < 5, with a positive coefficient λ1 and a negative coefficient λ2.

Namely, the nonlinearities are defocusing and mass supercritical, and focusing and energy
subcritical, respectively. Without loss of generality, we can normalise the coefficients, by
scaling and homogeneity, as λ1 = −λ2 = 1. Therefore, our main focus lies in the Cauchy
problem below:

{

i∂tu+∆u = |u|q−1u− |u|p−1u

u(0, x) = u0 ∈ H1(R3),
(1.2)

where u(t, x) : I × R3 → C, I ⊆ R, with 7
3
< q < p < 5.

At the local level, it is well-known that (1.2) admits solutions, see [7], and by denoting
Imax ∋ 0 the maximal interval of existence, solutions preserve (among other quantities)
mass and energy, defined by

M(u(t)) :=

ˆ

R3

|u(t)|2 dx, (1.3)
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and

E(u(t)) :=
1

2

ˆ

R3

|∇u(t)|2 dx+
1

q + 1

ˆ

R3

|u(t)|q+1 dx−
1

p+ 1

ˆ

R3

|u(t)|p+1 dx, (1.4)

respectively. Hence (1.3) and (1.4) are independent of time.

The main purpose of this paper is to study the energy scattering for (1.2) with non-radial
initial data which avoids the machinery of the concentration-compactness and rigidity
method. Before stating our main contribution, let us briefly recall known results related
to the energy scattering for combined NLS with focusing leading nonlinearity.

1.1. Known results. Since the pioneering work by Kenig and Merle [26] establishing the
scattering below the ground state threshold for the energy critical focusing (3D quintic)
NLS with radial data, i.e. (1.1) with λ1 = 0 and λ2 < 0, the literature on the scattering
problem for nonlinear dispersive PDEs rapidly grew up. The Kenig-Merle approach relies
on the so-called concentration-compactness and rigidity scheme, based on profile decom-
positions. The radial assumption on the milestone paper [26] was removed by Killip and
Vişan [23] for dimensions greater than or equal to five and by Dodson [13] in dimension
four. After the energy critical cases, the mass-critical problems have been considered by
several mathematicians. Killip, Tao, and Vişan [27] proved the scattering below the mass
threshold for the 2D cubic NLS with radial data. The higher dimensional cases, still with
radial data, was investigated by Killip, Vişan, and Zhang [28]. Dodson [12] completely
removed the radial requirement and extended these results to all dimensions.
Moving to the mass-supercritical and energy-subcritical nonlinearities (the so-called

intercritical case), still by exploiting a Kenig-Merle scheme, the scattering below the
ground state threshold was established by Holmer and Roudenko [22] for the 3D cubic
NLS with radial data. Then the radial condition was later removed by Duyckaerts, Holmer,
and Roudenko [17]. Extensions to higher dimensions, in the whole intercritical range, were
done by Akahori and Nawa [1], and Fang, Xie, and Cazenave [18].

The argument used in the previously cited papers follows the Kenig-Merle road map
with a concentration-compactness and rigidity scheme. An alternative strategy to prove
scattering below the ground state energy in a non-radial framework was recently intro-
duced by Dodson and Murphy [15] (see [14] by the same authors for the radial case) for
the Ḣ1/2-critical nonlinearity, combining interaction Morawetz estimates together with a
scattering criterion. See also [11] for a generalisation to intercritical powers in general
dimension.

As far as we know, similarly to the single nonlinearity, also in the case of double non-
linearity all the existing results rely on a concentration-compactness and rigidity scheme.
For equations of the type (1.1) with a focusing leading term, we mention here the papers
by Akahori, Ibrahim, Kikuchi, and Nawa [3] with energy critical leading term and a focus-
ing mass-supercritical perturbation in dimensions d ≥ 5 and the recent extension to d ≥ 3,
given by Luo in [33]. In the case of a focusing mass-critical perturbation, the scattering
was recently proved by Luo [34] in all dimensions d ≥ 3. Note that the 3D case requires
the radial assumption due to the fact that the non-radial scattering for the 3D quintic
NLS is still an open question. For the defocusing mass-supercritical perturbation, an early
scattering result was proved by Miao, Xu, and Zhao [36] for the 3D cubic-quintic NLS
with radial data. It was extended to dimensions five and higher in [37]. For the defocusing
mass-critical perturbation, Cheng, Miao, and Zhao [9] proved the scattering with radial
data in dimensions d ≤ 4. It was recently extended, still with radial data, to dimensions
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d ≥ 5 by Luo [33]. When the leading term is mass-supercritical and energy-subcritical we
refer to Cheng [8] with the defocusing mass-critical perturbation.

Concerning the intercritical range on nonlinearities, the energy scattering was proved
by Akahora, Kikuchi, and Nawa in [4], and as for the already mentioned papers, the
scattering for such equations is proved by means of a Kenig-Merle approach. In fact,
in [4] a wide class of NLS-type equations is treated. Among them, one also finds the NLS
equation with combined nonlinearities with intercritical exponents. The main novelty
in [4] is that they replace a usual monotonicity condition (which is in fact not satisfied
by combined power nonlinearities) with weaker assumptions. Then, in order to prove a
desired lower bound on the Pohozaev functional G, see (1.5) below, Akahori, Kikuchi,
and Nawa distinguish different cases depending on sign of G along minimizing sequences.
Specifically, the tool given by [4, Lemma 3.3] enables them to employ a concentration-
compacteness and rigidity scheme.

In our paper, we propose an alternative approach to prove the energy scattering of [4]
for (1.2) based on the recent method proposed by Dodson and Murphy, see [15], for the 3D
focusing cubic NLS, which relies on suitable interaction Morawetz estimates, and avoids
the Kenig-Merle machinery. In the next sections, we explain our new contributions and
the main novelties.

1.2. Main results and novelties. To state our main results and our original achieve-
ments, we begin by introducing the following Pohozaev functional

G(u) =

ˆ

R3

|∇u(t)|2 dx+
3

2

(

q − 1

q + 1

)
ˆ

R3

|u(t)|q+1 dx−
3

2

(

p− 1

p+ 1

)
ˆ

R3

|u(t)|p+1 dx, (1.5)

which will be crucial for the characterization of the dynamics of solutions to (1.2). We
note in particular that solutions to (1.2) of the form u(t, x) = eiωtψ(x), with ω being a
real parameter, i.e., standing wave solutions, fulfill G(ψ) = 0.
Furthermore, we introduce the action functional

Sω(φ) = E(φ) +
ω

2
M(φ)

=
1

2
‖∇φ‖2L2(R3) −

1

p+ 1
‖φ‖p+1

Lp+1(R3) +
1

q + 1
‖φ‖q+1

Lq+1(R3) +
ω

2
‖φ‖2L2(R3)

and the following ground state energy

mω := inf
{

Sω(φ) : φ ∈ H1(R3)\{0}, G(φ) = 0
}

.

Note that the action functional Sω is a conserved quantity along the time evolution of a
solution to (1.2), as sum of conserved quantities.

The existence of standing waves of the form u(t, x) = eiωtψ(x) can be proved by showing
that the aforementioned ground state energy is achieved, i.e., that the infimum of the
action on the constraint G = 0 is indeed a minimum. The fact that ground state energy
level mω is achieved for any ω > 0 is proved in [4] while the instability properties of the
corresponding standing waves is a recent result by [20]. It is worth mentioning that mω

is given by Sω(Qω), where Qω solves the elliptic equation

−∆Qω + ωQω +Qq
ω −Qp

ω = 0.

The question concerning the existence of ground states with an assigned mass has been
addressed in [5]. Eventually, for ω > 0, we introduce

A+
ω :=

{

u ∈ H1(R3) : Sω(u) < mω, G(u) ≥ 0
}



4 J. BELLAZZINI, V. D. DINH, AND L. FORCELLA

and

A−
ω :=

{

u ∈ H1(R3) : Sω(u) < mω, G(u) < 0
}

,

and we recall the notion of scattering: we say that a solution u(t, x) to (1.2) scatters
provided that

lim
t→±∞

‖u(t)− eit∆u±0 ‖H1(R3) = 0,

for suitable u±0 ∈ H1(R3), where eit∆ is the linear Schrödinger propagator.

Our purpose is to show that:

(1) if u0 ∈ A+
ω , then the corresponding solution exists globally in time and scatters in

H1(R3) in both directions;
(2) if u0 ∈ A−

ω , then if we assume u0 is radially symmetric or cylindrically symmetric
(with some additional restrictions on p and some relaxations on the hypothesis
on q), then the corresponding solution blows up in finite time with an explicit
blow-up rate.

The first result concerns the energy scattering for (1.2) with data in A+
ω .

Theorem 1.1. Let 7
3
< q < p < 5 and ω > 0. Let u0 ∈ A+

ω . Then the corresponding
solution to (1.2) exists globally in time and scatters.

1.2.1. Comments on Theorem 1.1. In order to prove Theorem 1.1, we combine a scatter-
ing criterion jointly with interaction Morawetz estimates in the spirit of [15], and our new
key ingredient is a coercivity property established in Subsection 4.2 for solutions belong-
ing to A+

ω . Specifically, we provide here the new crucial bound (1.6) on the Pohoazev
functional for localized solutions, which enables us to build upon [15]. In order to get
this property, we perform a careful variational study of the functional G that we believe
it is of independent interest. More precisely, we use the variational properties of the
functional G, that appears in the virial-like estimates, to prove an interaction Morawetz
estimate. We show that taken a suitable cut-off function χR(x) = χ( x

R
) such that χR = 1

when |x| ≤ (1 − η)R with some η > 0 small, the Pohozaev functional fulfills, for any R
sufficiently large,

G(χR(· − z)uξ(t, ·)) ≥ δ‖∇(χR(· − z)uξ(t, ·))‖2L2(R3) (1.6)

for any space shift z ∈ R3, all time t ∈ R, and some ξ = ξ(t, z, R) ∈ R3, where uξ(t, x)
stands for the modulated function eix·ξu(t, x). Here δ > 0 is a constant independent of
time and the translation vector.

Remark 1.2. The localized coercivity result, i.e., that the coercivity is true if we localize
the modulated and translated solution u(t) in a sufficiently large ball centered anywhere,
as far as we know is a new property which may be relevant in other contexts. Indeed,
(1.6) may be used in contexts where a concentration-compactness scheme is unknown
to be exploitable. We refer the reader to the very recent work by Luo, [35], where our
estimate (1.6) is crucially used for the scattering of solutions to intercritical NLS posed
on high-dimensional waveguides. Hence, we believe that our strategy is not only a mere
alternative proof of the results of [4] for (1.2).

Remark 1.3. We shall emphasize that in the paper by Dodson-Murphy, the coerciv-
ity property needed to prove interaction Morawetz estimates comes from the refined
Gagliardo-Nirenberg inequality (see [15, Lemma 2.1])

‖f‖4L4(R3) ≤ CGN‖f‖L2(R3)‖∇f‖L2(R3)‖∇f
ξ‖2L2(R3) (1.7)
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which holds for any f ∈ H1(R3) and any ξ ∈ R
3, and that we are prevented to use

in our setting. Indeed, due to the non-homogeneity of nonlinearities, inequality (1.7) is
not applicable in our framework. Therefore, our proof is not a straightforward adaptation
of [15] as we need to bypass the difficulties related to the lack of scaling due to the presence
of two competing nonlinearities.

Remark 1.4. One of the motivation to study the energy scattering for (1.2) came to
complete the picture on the dynamics of solutions to (1.2) after a recent work by the first
and third authors with Georgiev, see [5], where existence of normalized ground states for
(1.2) and blow-up results were established in the 3D space. We keep the presentation for
the physically relevant 3D case as a counterpart of the results we established in [5]. It is
worth mentioning that the scattering results of Theorem 1.1 still holds in arbitrary space
dimension, as (1.6) can be established in the same way in any dimension d ≥ 1, for any
intercritical powers 4

d
+ 1 < q < p < 1 + 4

(d−2)+
, with (d− 2)+ := max{0, d− 2}.

Our second result concerns the blow-up rate for finite time blowing-up solutions to (1.2)
with initial data in A−

ω . In [5], we proved that if 7
3
< p < 5, 1 < q < p, and ω > 0, for

u0 ∈ A−
ω , if one of the following conditions is satisfied:

• u0 ∈ Σ(R3) := H1(R3) ∩ L2(R3, |x|2dx),
• u0 ∈ H1(R3) is radial,
• u0 ∈ Σ3(R

3) and p ≤ 3, where

Σ3(R
3) :=

{

f ∈ H1(R3) : f(x) = f(x, x3) = f(|x|, x3), f ∈ L2(R3, x23dx)
}

, x = (x1, x2),

then the corresponding solution to (1.2) blows up in finite time.

Here we show that we have the following blow-up rate for (1.2).

Proposition 1.5. Let 7
3
< p < 5, 1 < q < p, ω > 0, and u0 ∈ A−

ω .

(i) Assume that one of the following conditions is fulfilled:

(1) u0 ∈ H1(R3) is radial,
(2) u0 ∈ Σ3(R

3) and p < 3.

Then the corresponding solution to (1.2) blows up in finite time, i.e., T ∗ < +∞, and for
t close to T ∗,

ˆ T ∗

t

(T ∗ − τ)‖∇u(τ)‖2L2(R3)dτ ≤

{

C(T ∗ − t)
2(5−p)
p+3 if (1) holds,

C(T ∗ − t)
4(3−p)
5−p if (2) holds.

(1.8)

In addition, there exists a time sequence tn ր T ∗ such that

‖∇u(tn)‖L2(R3) ≤

{

C(T ∗ − tn)
− 2(p−1)

p+3 if (1) holds,

C(T ∗ − tn)
− p−1

5−p if (2) holds.
(1.9)

(ii) If we do not assume any symmetry on the solution (nor any restriction on the ex-

ponents), then either T ∗ < ∞ or u grows up in infinite time, namely T ∗ = ∞ and
lim supt→∞ ‖∇u(t)‖L2(R3) = ∞.

The Proposition above is based on the results we obtained in [5], jointly with a Merle,
Raphaël, and Szeftel argument [39]. In particular, the new results are the blow-up rate
estimates (1.8) and (1.9) of point (i), and point (ii). The finite time blow-up for symmetric
solutions is established in [5], and we include it in the statement for sake of completeness.
The grow-up result follows by means of a localized properties of the mass, jointly with a
contradiction argument as in [16].
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Notations. In the rest of the paper, we will use the notations below.

Given two quantities A and B, we denote A . B if there exists a positive constant C
such that A ≤ CB. For 1 ≤ p ≤ ∞, the Lp = Lp(Ω;C) are the classical Lebesgue spaces

endowed with norm ‖f‖Lp(Ω) =
(´

Ω
|f(x)|p dx

)1/p
if p 6= ∞ or ‖f‖L∞(Ω) = ess supx∈Ω |f(x)|

for p = ∞. We denote by H1 = H1(R3;C) the usual Sobolev space of L2 functions with
gradient in L2. Here 〈·〉 stands for the Japanese brackets 〈·〉 = (1 + | · |2)1/2. Given an
interval I ⊆ R, bounded or unbounded, we define by Lp

tXx = Lp
t (I,Xx) the Bochner

space of vector-valued functions f : I → X endowed with the norm
(´

I
‖f(s)‖pX ds

)1/p
for

1 ≤ p < ∞, with similar modification as above for p = ∞. (In what follows, f ∈ Lp
tXx

means that f = f(t, x) is a function depending on the time variable t ∈ I ⊆ R and
the space variable x ∈ R3, with finite Lp

tXx-norm). For any p ∈ [1,∞], p′ denotes its
dual defined by p′ = p

p−1
. As we work in the 3D case, we omit the R3 notation when no

confusion may arise.

2. Variational analysis

In this section, we recall and prove some crucial variational tools used along the paper,
used in particular to define the scattering/blow-up dichotomy regions of initial data for
the Cauchy problem (1.2). Furthermore, some of the results illustrated below will be also
essential in proving a new coercivity property that we need to prove scattering by means
of suitable interaction Morawetz estimates.

Let ω > 0. We consider the minimization problem

mω := inf
{

Sω(φ) : φ ∈ H1\{0}, G(φ) = 0
}

,

where

Sω(φ) = E(φ) +
ω

2
M(φ) =

1

2
‖∇φ‖2L2 −

1

p+ 1
‖φ‖p+1

Lp+1 +
1

q + 1
‖φ‖q+1

Lq+1 +
ω

2
‖φ‖2L2

is the action functional and

G(φ) = ‖∇φ‖2L2 −
3(p− 1)

2(p+ 1)
‖φ‖p+1

Lp+1 +
3(q − 1)

2(q + 1)
‖φ‖q+1

Lq+1

is the Pohozaev functional.

Proposition 2.1. Let 7
3
< p < 5, 1 < q < p, and ω > 0. Then mω > 0 and there exists

at least a minimizer for mω.

Before giving the proof of Proposition 2.1, let us start with the following observation.

Lemma 2.2. Let φ ∈ H1\{0}. Then there exists a unique λ0 > 0 such that

G(φλ)







> 0 if 0 < λ < λ0,
= 0 if λ = λ0,
< 0 if λ > λ0,

where

φλ(x) := λ
3
2φ(λx), λ > 0. (2.1)
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Proof. We have

G(φλ) = λ2‖∇φ‖2L2 −
3(p− 1)

2(p+ 1)
λ

3
2
(p−1)‖φ‖p+1

Lp+1 +
3(q − 1)

2(q + 1)
λ

3
2
(q−1)‖φ‖q+1

Lq+1

= λ2
(

‖∇φ‖2L2 −
3(p− 1)

2(p+ 1)
λ

3
2
(p−1)−2‖φ‖p+1

Lp+1 +
3(q − 1)

2(q + 1)
λ

3
2
(q−1)−2‖φ‖q+1

Lq+1

)

=: λ2f(λ).

Consider f(λ) = a− bλα + cλβ with a, b, c > 0, α > 0, and β < α. We have

f ′(λ) = λβ−1(cβ − bαλα−β).

In particular, there exists a unique λ1 > 0 such that

f(λ1) = max
λ>0

f(λ).

Drawing the graph of f , we see that there exists a unique λ0 > 0 such that f(λ0) = 0.
Moreover, f(λ) > 0 for 0 < λ < λ0 and f(λ) < 0 for λ > λ0. This shows the lemma. �

Proof of Proposition 2.1. We proceed in several steps, illuminated by the works of Ibrahim,
Masmoudi, and Nakanishi [24], and Akahori, Ibrahim, Kikuchi, and Nawa [2].

Step 1. An auxiliary minimization problem. Denote

Iω(φ) := Sω(φ)−
2

3(q − 1)
G(φ) =

3q − 7

6(q − 1)
‖∇φ‖2L2 +

p− q

(p+ 1)(q − 1)
‖φ‖p+1

Lp+1 +
ω

2
‖φ‖2L2

and consider

m̃ω := inf
{

Iω(φ) : φ ∈ H1\{0}, G(φ) ≤ 0
}

. (2.2)

We claim that mω = m̃ω > 0. In fact, it is clear that m̃ω ≤ mω. Now let φ ∈ H1\{0} be
such that G(φ) ≤ 0. By Lemma 2.2, there exists λ0 ∈ (0, 1] such that G(φλ0) = 0. Thus

mω ≤ Sω(φλ0) = Iω(φλ0) ≤ Iω(φ),

where we have used λ0 ≤ 1 in the last inequality. Taking the infimum, we get mω ≤ m̃ω,
hence mω = m̃ω.
To see that m̃ω > 0, we take a minimizing sequence {φn}n for m̃ω, i.e., φn ∈ H1\{0},

G(φn) ≤ 0, and Iω(φn) → m̃ω. As Iω is non-negative, there exists C = C(ω) > 0 such
that

‖φn‖
2
L2 ≤ C, ∀n ≥ 1.

On the other hand, since G(φn) ≤ 0, we have

‖∇φn‖
2
L2 ≤

3(p− 1)

2(p+ 1)
‖φn‖

p+1
Lp+1

which together with the standard Gagliardo-Nirenberg inequality yield

‖∇φn‖
2
L2 ≤ C‖∇φn‖

3(p−1)
2

L2 ‖φn‖
5−p
2

L2 ≤ C‖∇φn‖
3(p−1)

2

L2 .

This shows that

‖∇φn‖
2
L2 ≥ C > 0, ∀n ≥ 1, (2.3)

hence m̃ω > 0.

Step 2. Minimizers for m̃ω. Let {φn}n be a minimizing sequence for m̃ω. Observe that
if φ∗

n is the Schwarz symmetrization of φn, then {φ∗
n}n is still a minimizing sequence for

m̃ω. Thus without loss of generality, we can assume that φn is radially symmetric. As Iω
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is non-negative, we see that {φn}n is a bounded sequence in H1. Passing to a subsequence
if necessary, there exists φ ∈ H1 such that φn ⇀ φ weakly in H1 and φn → φ strongly in
Lr for all 2 < r < 6. As G(φn) ≤ 0, using (2.3), we have

‖φn‖
p+1
Lp+1 ≥

2(p+ 1)

3(p− 1)
‖∇φn‖

2
L2 ≥

2(p+ 1)

3(p− 1)
C > 0, ∀n ≥ 1

which shows φ 6= 0. We also have

G(φ) ≤ lim inf
n→∞

G(φn) = 0,

thus

m̃ω ≤ Iω(φ) ≤ lim inf
n→∞

Iω(φn) = m̃ω.

This shows that φ is a minimizer for m̃ω.

Step 3. Minimizers for mω. We now show that there exists at least a minimizer for
mω. Let φ be a minimizer for m̃ω. By Lemma 2.2, there exists λ0 ∈ (0, 1] such that
G(φλ0) = 0. Thus

mω ≤ Sω(φλ0) = Iω(φλ0) ≤ Iω(φ) = m̃ω = mω.

This shows that λ0 = 1, G(φ) = 0, and Sω(φ) = mω. In particular, φ is a minimizer for
mω. �

3. Scattering criterion

In this section, we state and prove a scattering criterion for (1.1) which is inspired by
the paper of Dodson and Murphy [15]. As explained in [15], the criterion infers that if on
any time interval which is large enough, one can find a large interval where the scattering
norm is small, then the global solution scatters.
We first introduce the following exponents:

a1 :=
4(p+ 1)

3(p− 1)
, m1 :=

2(p− 1)(p+ 1)

5− p
, n1 :=

2(p− 1)(p+ 1)

3p2 − 5p− 2
(3.1)

and

b1 := p+ 1, r1 :=
6(p− 1)(p+ 1)

3p2 + 2p− 13
. (3.2)

It can be easily checked that (a1, b1) and (m1, r1) are Schrödinger admissible and

1

m1
+

1

n1
=

2

a1
,

1

b1
=

1

r1
−
σ1
3
, σ1 :=

3p− 7

2(p− 1)
.

Proposition 3.1. Let 7
3
< q < p < 5. Suppose that u(t) is a global solution to (1.2)

satisfying ‖u‖L∞

t (R,H1
x) < ∞. Then there exist ε > 0 and T0 = T0(ε) > 0 such that if for

any a > 0, there exists t0 ∈ (a, a+ T0) such that [t0 − ε−σ, t0] ⊂ (a, a + T0) and

‖u‖
L
m1
t ([t0−ε−σ,t0],L

b1
x )

. ε (3.3)

for some σ > 0, then the solution scatters forward in time.

Proof. By Lemma A.5, it suffices to prove that there exists T > 0 such that

‖ei(t−T )∆u(T )‖
L
m1
t ([T,∞),L

b1
x )

. εµ (3.4)
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for some µ > 0. To show (3.4), we write

ei(t−T )∆u(T ) = eit∆u0 + i

ˆ T

0

ei(t−s)∆
(

|u(s)|p−1u(s)− |u(s)|q−1u(s)
)

ds.

By Sobolev embedding and Strichartz estimate (see Proposition A.2), we have

‖eit∆u0‖Lm1
t (R,L

b1
x )

. ‖u0‖H1
x
.

By the monotone convergence theorem, there exists T1 > 0 sufficiently large such that for
all T > T1,

‖eit∆u0‖Lm1
t ([T,∞),L

b1
x )

. ε. (3.5)

Taking a = T1 and T = t0 with a and t0 as in (3.3), we write
ˆ T

0

ei(t−s)∆
(

|u(s)|p−1u(s)− |u(s)|q−1u(s)
)

ds =

ˆ

I1∪I2

ei(t−s)∆
(

|u(s)|p−1u(s)− |u(s)|q−1u(s)
)

ds

where I1 = [T − ε−σ, T ] and I2 = [0, T − ε−σ]. By using the linearity, we denote by F1(t)
and F2(t) the integrals over I1 and I2, respectively.

To estimate F1, we start with the following observation:

‖u‖
L
qn′

1
t (I1,L

qb′1
x )

≤ ‖u‖θ
L
m1
t (I1,L

b1
x )
‖u‖1−θ

Lρ
t (I1,L

γ
x)
, (3.6)

where

θ =
3pq − 3q − 4p

q(3p− 7)
, ρ =

(1− θ)qm1n
′
1

m1 − θqn′
1

, γ =
(1− θ)qb1b

′
1

b1 − θqb′1
.

Since 7
3
< q < p < 5, we see that

θ ∈ (0, 1),
2

ρ
+

3

γ
=

3

2
, γ ∈ [2, 6].

In particular, (ρ, γ) is a Schrödinger admissible pair. Thanks to Strichartz estimates for
non-admissible pairs (see Proposition A.2), we have

‖F1‖Lm1
t ([T,∞),L

b1
x )

≤ C‖|u|p−1u‖
L
n′

1
t (I1,L

b′
1

x )
+ C‖|u|q−1u‖

L
n′

1
t (I1,L

b′
1

x )

≤ C‖u‖p
L
m1
t (I1,L

b1
x )

+ C‖u‖q
L
qn′

1
t (I1,L

qb′
1

x )

≤ C‖u‖p
L
m1
t (I1,L

b1
x )

+ C‖u‖qθ
L
m1
t (I1,L

b1
x )
‖u‖

q(1−θ)

Lρ
t (I1,L

γ
x)

≤ C‖u‖p
L
m1
t (I1,L

b1
x )

+ C|I1|
q
ρ
(1−θ)‖u‖qθ

L
m1
t (I1,L

b1
x )
‖u‖

q(1−θ)

L∞

t (I1,H1
x)
.

Since ‖u‖L∞

t (R,H1
x) <∞, we infer from (3.3) that

‖F1‖Lm1
t ([T,∞),L

b1
x )

≤ Cεp + Cεqθ−
q
ρ
σ(1−θ).

Taking σ > 0 small, we have

‖F1‖Lm1
t ([T,∞),L

b1
x )

≤ Cεµ (3.7)

for some µ > 0.
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To estimate F2, we use Hölder’s inequality to have

‖F2‖Lm1
t ([T,∞),L

b1
x )

≤ ‖F2‖
r1
b1

L
m1
t ([T,∞),L

r1
x )
‖F2‖

b1−r1
b1

L
m1
t ([T,∞),L∞

x )
.

As (m1, r1) is a Schrödinger admissible pair and

F2(t) = ei(t−T+ε−σ)∆u(T − ε−σ)− eit∆u0,

we have

‖F2‖Lm1
t ([T,∞),L

r1
x ) . 1.

On the other hand, by the dispersive estimates (A.1) and Sobolev embedding, and noting
that m1 > 2, we have for all t ≥ T ,

‖F2(t)‖L∞

x
.

ˆ T−ε−σ

0

(t− s)−
3
2

(

‖|u(s)|p−1u(s)‖L1
x
+ ‖|u(s)|q−1u(s)‖L1

x

)

ds

=

ˆ T−ε−σ

0

(t− s)−
3
2

(

‖u(s)‖p
Lp
x
+ ‖u(s)‖q

Lq
x

)

ds

.

ˆ T−ε−σ

0

(t− s)−
3
2

(

‖u(s)‖pH1
x
+ ‖u(s)‖qH1

x

)

ds

. (t− T + ε−σ)−
1
2 .

It follows that

‖F2‖Lm1
t ([T,∞),L∞

x ) .
(

ˆ ∞

T

(t− T + ε−σ)−
m1
2 dt

)
1

m1 . ε
σ
(

1
2
− 1

m1

)

.

In particular, we get

‖F2‖Lm1
t ([T,∞),L

b1
x )

. ε
σ
(

1
2
− 1

m1

)

r1−b1
r1 . (3.8)

Collecting (3.5), (3.7), (3.8), and choosing σ > 0 sufficiently small, we prove (3.4). The
proof is complete. �

4. Energy Scattering

This section is the bulk of the paper and contains the main novelty. Specifically, we will
prove a coercivity property, see Lemma 4.2 below, and the interaction Morawetz estimates
that will allow to prove the scattering for large data global solutions to (1.2).

4.1. A cutoff function. Let η ∈ (0, 1) be a small constant. Let χ be a smooth decreasing
radial function satisfying

χ(x) = χ(r) =

{

1 if r ≤ 1− η,
0 if r > 1,

|χ′(r)| .
1

η
, r = |x|. (4.1)

For R > 0 large, we define the functions

φR(x) :=
1

ω3R3

ˆ

χ2
R(x− z)χ2

R(z)dz

and

φp,R(x) : =
1

ω3R3

ˆ

χ2
R(x− z)χp+1

R (z)dz,

φq,R(x) : =
1

ω3R3

ˆ

χ2
R(x− z)χq+1

R (z)dz,
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where χR(z) := χ(z/R), and ω3 is the volume of the unit ball in R
3. We see that φR, φp,R,

and φq,R are radial functions. We next define the radial function

ψR(x) = ψR(r) :=
1

r

ˆ r

0

φR(τ)dτ, r = |x|. (4.2)

We collect some basic properties of φR, φp,R, φq,R, and ψR as follows (see [10] for a proof.).

Lemma 4.1. We have

|ψR(x)| . min

{

1,
R

|x|

}

, ∂jψR(x) =
xj
|x|2

(φR(x)− ψR(x)) , j = 1, 2, 3

and

ψR(x)− φR(x) ≥ 0, φR(x)− φq,R(x) ≥ 0, |φR(x)− φp,R(x)| . η (4.3)

and

|∇φR(x)| .
1

ηR
, |ψR(x)− φR(x)| .

1

η
min

{

|x|

R
,
R

|x|

}

, |∇ψR(x)| .
1

η
min

{

1

R
,
R

|x|2

}

(4.4)

for all x ∈ R3.

4.2. A coercivity property. The following is the essential new ingredient that will be
exploited to prove suitable interaction Morawetz estimates. As already mentioned in the
introduction, the scaling invariant equation with one nonlinearity is treated by taking
advantage of the refined Gagliardo-Nirenberg inequality (1.7), that we cannot use in the
present paper.

Lemma 4.2. Let 7
3
< q < p < 5 and ω > 0. Then A+

ω is invariant under the flow of
(1.2), i.e., if u0 ∈ A+

ω , then u(t) ∈ A+
ω for all t ∈ Imax. In particular, the solution to (1.2)

with initial data u0 exists globally in time. In addition, there exists R0 > 0 sufficiently
large such that for all R ≥ R0, all z ∈ R

3, and all t ∈ R,

G(χR(· − z)uξ(t)) ≥ δ‖∇(χR(· − z)uξ(t))‖2L2 , (4.5)

where uξ(t, x) := eix·ξu(t, x) with ξ = ξ(t, z, R) and

ξ(t, z, R) :=



























−

ˆ

Im(χ2
R(x− z)u(t, x)∇u(t, x))dx

ˆ

χ2
R(x− z)|u(t, x)|2dx

if

ˆ

χ2
R(x− z)|u(t, x)|2dx 6= 0,

0 if

ˆ

χ2
R(x− z)|u(t, x)|2dx = 0,

(4.6)

and χR(x) = χ(x/R) with χ as in (4.1)

Proof. Let u0 ∈ A+
ω . We will show that u(t) ∈ A+

ω for all t ∈ Imax. By the conservation
of mass and energy, we have Sω(u(t)) = Sω(u0) < mω for all t ∈ Imax. Assume by
contradiction that there exists t0 such that G(u(t0)) < 0. As u : Imax → H1 is continuous,
there exists t1 such that G(u(t1)) = 0. By the definition of mω, we have Sω(u(t1)) ≥ mω

which is a contradiction. Thus G(u(t)) ≥ 0 for all t ∈ Imax, namely A+
ω is invariant under

the flow of (1.2).
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As G(u(t)) ≥ 0, we have

3q − 7

6(q − 1)
‖∇u(t)‖2L2 +

p− q

(p+ 1)(q − 1)
‖u(t)‖p+1

Lp+1 +
ω

2
‖u(t)‖2L2

= Iω(u(t)) = Sω(u(t))−
2

3(q − 1)
G(u(t)) ≤ Sω(u(t)) < mω, ∀t ∈ Imax.

This shows that

‖∇u(t)‖2L2 ≤
6(q − 1)

3q − 7
mω, ∀t ∈ Imax. (4.7)

The blow-up alternative shows that the solution must exist globally in time.

Next we prove (4.5). To this end, we observe that

Iω(u(t)) = Sω(u(t))−
2

3(q − 1)
G(u(t)) ≤ Sω(u(t)) = Sω(u0) = mω − ν, ∀t ∈ Imax,

(4.8)

for some ν > 0 as Sω(u0) < mω. Using
ˆ

|∇(χu)|2dx =

ˆ

χ2|∇u|2dx−

ˆ

χ∆χ|u|2dx, (4.9)

we have
ˆ

|∇(χuξ)|2dx = |ξ|2
ˆ

χ2|u|2dx+

ˆ

χ2|∇u|2dx−

ˆ

χ∆χ|u|2dx+ 2ξ ·

ˆ

Im(χ2u∇u)dx.

By the definition of ξ, we have

Iω(χR(· − z)uξ(t)) =
3q − 7

6(q − 1)

(

ˆ

χ2
R(· − z)|∇u(t)|2dx

−

ˆ

χR(· − z)∆χR(· − z)|u(t)|2dx
)

−
3q − 7

6(q − 1)

∣

∣

∣

ˆ

Im(χ2
R(· − z)u(t, x)∇u(t, x))dx

∣

∣

∣

2

ˆ

χ2
R(· − z)|u(t, x)|2dx

+
p− q

(p+ 1)(p− 1)

ˆ

χp+1
R (· − z)|u(t)|p+1dx+

ω

2

ˆ

χ2
R(· − z)|u(t)|2dx

≤ Iω(u(t)) +O(R−2).

Thus, by (4.8), there exists R0 > 0 sufficiently large such that

Iω(χR(· − z)uξ(t)) ≤ mω −
ν

2
, ∀R ≥ R0, ∀z ∈ R

3, ∀t ∈ R. (4.10)

We claim that

G(χR(· − z)uξ(t)) > 0, ∀R ≥ R0, ∀z ∈ R
3, ∀t ∈ R. (4.11)

Suppose now that there exists R1 ≥ R0, z1 ∈ R
3, t1 ∈ R, and ξ1 = ξ(t1, z1, R1) ∈ R

3 such
that G(χR1(· − z1)u

ξ1(t1)) ≤ 0. Using the definition of m̃ω (see (2.2)) and the fact that
mω = m̃ω, we have

Iω(χR1(· − z1)u
ξ1(t1)) ≥ mω

which contradicts (4.10).
For R ≥ R0, z ∈ R

3, t ∈ R, and ξ = ξ(t, z, R) ∈ R
3, we denote Θ := χR(x − z)uξ(t).

We consider two cases.
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Case 1. Assume that

4‖∇Θ‖2L2 −
3(p− 1)(3p+ 1)

4(p+ 1)
‖Θ‖p+1

Lp+1 +
3(q − 1)(3q + 1)

4(q + 1)
‖Θ‖q+1

Lq+1 ≥ 0.

Then we have

G(Θ) = ‖∇Θ‖2L2 −
3(p− 1)

2(p+ 1)
‖Θ‖p+1

Lp+1 +
3(q − 1)

2(q + 1)
‖Θ‖q+1

Lq+1

≥
3p− 7

3p+ 1
‖∇Θ‖2L2 +

9(q − 1)(p− q)

2(q + 1)(3p+ 1)
‖Θ‖q+1

Lq+1

≥
3p− 7

3p+ 1
‖∇Θ‖2L2.

This proves (4.5).

Case 2. We now assume that

4‖∇Θ‖2L2 −
3(p− 1)(3p+ 1)

4(p+ 1)
‖Θ‖p+1

Lp+1 +
3(q − 1)(3q + 1)

4(q + 1)
‖Θ‖q+1

Lq+1 < 0. (4.12)

We first observe that as Iω(Θ) < mω (see (4.10)), an argument leading to (4.7) yields

‖∇Θ‖2L2 ≤
6(q − 1)

3q − 7
mω. (4.13)

Now set f(λ) := Sω(Θλ), with Θλ as in the rescaling (2.1). We have

f ′(λ) = λ‖∇Θ‖2L2 −
3(p− 1)

2(p+ 1)
λ

3(p−1)
2

−1‖Θ‖p+1
Lp+1 +

3(q − 1)

2(q + 1)
λ

3(q−1)
2

−1‖Θ‖q+1
Lq+1 =

G(Θλ)

λ

and

(λf ′(λ))
′
= 2λ‖∇Θ‖2L2 −

9(p− 1)2

4(p+ 1)
λ

3(p−1)
2

−1‖Θ‖p+1
Lp+1 +

9(q − 1)2

4(q + 1)
λ

3(q−1)
2

−1‖Θ‖q+1
Lq+1.

We write

(λf ′(λ))
′
= −2f ′(λ) + λ

(

4‖∇Θ‖2L2 −
3(p− 1)(3p+ 1)

4(p+ 1)
λ

3p−7
2 ‖Θ‖p+1

Lp+1

+
3(q − 1)(3q + 1)

4(q + 1)
λ

3q−7
2 ‖Θ‖q+1

Lq+1

)

=: −2f ′(λ) + λh(λ).
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Thanks to (4.12), we have

h′(λ) = λ
3q−7

2

(

−
3(p− 1)(3p+ 1)(3p− 7)

8(p+ 1)
λ

3(p−q)
2 ‖Θ‖p+1

Lp+1

+
3(q − 1)(3q + 1)(3p− 7)

8(q + 1)
‖Θ‖q+1

Lq+1

)

≤ λ
3q−7

2

(

−
3(p− 1)(3p+ 1)(3p− 7)

2(p+ 1)
λ

3(p−q)
2 ‖∇Θ‖2L2

+
3(q − 1)(3q + 1)

4(q + 1)

(

−
3p− 7

2
λ

3(p−q)
2 +

3q − 7

2

)

‖Θ‖q+1
Lq+1

)

≤ λ
3q−7

2

(

−
3(p− 1)(3p+ 1)(3p− 7)

2(p+ 1)
λ

3(p−q)
2 ‖∇Θ‖2L2

−
9(q − 1)(3q + 1)(p− q)

8(q + 1)
‖Θ‖q+1

Lq+1

)

< 0

for all λ ≥ 1. This shows that h(λ) ≤ h(1) < 0 for all λ ≥ 1. In particular, we have

(λf ′(λ))
′
≤ −2f ′(λ), ∀λ ≥ 1. (4.14)

As G(Θ) > 0 due to (4.11), Lemma 2.2 shows G(Θλ0) = 0 for some λ0 > 1. Integrating
(4.14) over (1, λ0), we get

G(Θ) ≥ 2(Sω(Θλ0)− Sω(Θ)) = 2

(

Iω(Θλ0)− Iω(Θ)−
2

3(q − 1)
G(Θ)

)

.

It follows that

G(Θ) ≥
6(q − 1)

3q + 1
(Iω(Θλ0)− Iω(Θ))

≥
6(q − 1)

3q + 1
(mω − Iω(Θ))

≥
6(q − 1)

3q + 1

(

1−
Iω(Θ)

mω

)

mω

≥
(3q − 7)ν

2(3q + 1)mω
‖∇Θ‖2L2,

where we have used (4.10) and (4.13) to get the last inequality. This also proves (4.5). �

4.3. An interaction Morawetz estimate. We next define the interaction Morawetz
action

M⊗2
R (t) := 2

¨

|u(t, y)|2ψR(x− y)(x− y) · Im(u(t, x)∇u(t, x))dxdy, (4.15)

where ψR is as in (4.2). We start by the following interaction Morawetz identity.

Lemma 4.3. Let u be a solution to (1.2) satisfying

sup
t∈[0,T ∗)

‖u(t)‖H1
x
≤ A

for some constant A > 0. Let M⊗2
R (t) be as in (4.15). Then we have

sup
t∈[0,T ∗)

|M⊗2
R (t)| .A R. (4.16)
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Moreover, we have

d

dt
M⊗2

R (t) = −4
∑

j,k

¨

∂j (Im(u(t, y)∂ju(t, y)))

× ψR(x− y)(xk − yk) Im(u(t, x)∂ku(t, x))dxdy (4.17)

− 4
∑

j,k

¨

|u(t, y)|2ψR(x− y)(xj − yj)

× ∂k (Re(∂ju(t, x)∂ku(t, x))) dxdy (4.18)

+

¨

|u(t, y)|2ψR(x− y)(x− y) · ∇∆(|u(t, x)|2)dxdy (4.19)

+
2(p− 1)

p+ 1

¨

|u(t, y)|2ψR(x− y)(x− y) · ∇(|u(t, x)|p+1)dxdy (4.20)

−
2(q − 1)

q + 1

¨

|u(t, y)|2ψR(x− y)(x− y) · ∇(|u(t, x)|q+1)dxdy (4.21)

for all t ∈ [0, T ∗).

Proof. By the support property of χ, we have φR(τ) = 0 for all |τ | ≥ 2R. Thus we get

ψR(x)|x| ≤

ˆ 2R

0

φR(τ)dτ =
R

ω3

ˆ 2

0

ˆ

χ2(x− z)χ2(z)dzdτ = CR (4.22)

for some constant C > 0 independent of R. The estimate (4.16) follows directly from
Hölder’s inequality and (4.22). The identities (4.17)–(4.21) follow from a direct computa-
tion using

∂t(|u|
2) = −2

∑

j

∂j(Im(u∂ju))

and

∂t(Im(u∂ju)) = −
∑

k

∂k

(

2Re(∂ju∂ku)−
1

2
δjk∆(|u|2)

)

+
p− 1

p+ 1
∂j(|u|

p+1)−
q − 1

q + 1
∂j(|u|

q+1),

for j = 1, 2, 3, where δjk is the Kronecker symbol. �

We are now in position to prove our interaction Morawetz estimates, that jointly to the
scattering criterion of the previous section will yield to the main result of the paper. The
coercivity result in Lemma 4.2 is essential for the proof of the estimates below.

Proposition 4.4. Let 7
3
< q < p < 5 and ω > 0. Let u0 ∈ A+

ω and u(t) be the

corresponding solution to (1.2). Define M⊗2
R (t) as in (4.15). Then for ε > 0 sufficiently

small, there exist T0 = T0(ε), J = J(ε), R0 = R0(ε, u0) sufficiently large, and η = η(ε) > 0
sufficiently small such that for any a ∈ R,

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

1

R3

˚

|χR(y − z)u(t, y)|2 |∇(χR(x− z)uξ(t, x))|2dxdydz
dR

R
dt . ε,

(4.23)

where χR(x) = χ(x/R) with χ as in (4.1) and uξ(t, x) = eix·ξu(t, x) with some ξ =
ξ(t, z, R) ∈ R3.



16 J. BELLAZZINI, V. D. DINH, AND L. FORCELLA

Proof. Denote

Pjk(x) := δjk −
xjxk
|x|2

.

As

∂j(ψRxk) = δjkψR +
xjxk
|x|2

(φR − ψR),

the integration by parts yields

(4.17) = 4
∑

j,k

¨

Im(u(t, y)∂ju(t, y))∂
y
j (ψR(x− y)(xk − yk)) Im(u(t, x)∂ku(t, x))dxdy

= −4
∑

j,k

¨

Im(u(t, y)∂ju(t, y))δjkφR(x− y) Im(u(t, x)∂ku(t, x))dxdy (4.24)

− 4
∑

j,k

¨

Im(u(t, y)∂ju(t, y))Pjk(x− y)

× (ψR − φR)(x− y) Im(u(t, x)∂ku(t, x))dxdy, (4.25)

where ∂yj is ∂j with respect to the y-variable. Similarly, we have

(4.18) = 4
∑

j,k

¨

|u(t, y)|2∂xk (ψR(x− y)(xj − yj)) Re(∂ju(t, x)∂ku(t, x))dxdy

= 4
∑

j,k

¨

|u(t, y)|2δjkφR(x− y) Re(∂ju(t, x)∂ku(t, x))dxdy (4.26)

− 4
∑

j,k

¨

|u(t, y)|2Pjk(x− y)(ψR − φR)(x− y) Re(∂ju(t, x)∂ku(t, x))dxdy, (4.27)

where ∂xk is ∂k with respect to the x-variable. We have

(4.25) + (4.27) = 4

¨

|u(t, y)|2| /∇yu(t, x)|
2(ψR − φR)(x− y)dxdy

− 4

¨

Im(u(t, y) /∇xu(t, y)) · Im(u(t, x) /∇yu(t, x))(ψR − φR)(x− y)dxdy,

where

/∇yu(t, x) := ∇u(t, x)−
x− y

|x− y|

(

x− y

|x− y|
∇u(t, x)

)

is the angular derivative centered at y, and similarly for /∇xu(t, y). As ψR − φR ≥ 0, the
Cauchy-Schwarz inequality yields

(4.25) + (4.27) ≥ 0.

Next, using the fact that

φR(x− y) =
1

ω3R3

ˆ

χ2
R(x− y − z)χ2

R(z)dz =
1

ω3R3

ˆ

χ2
R(x− z)χ2

R(y − z)dz,
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we have

(4.24) + (4.26) = 4

¨

φR(x− y)
(

|u(t, y)|2|∇u(t, x)|2

− Im(u(t, y)∇u(t, y)) · Im(u(t, x)∇u(t, x))) dxdy

=
4

ω3R3

˚

χ2
R(x− z)χ2

R(y − z)
(

|u(t, y)|2|∇u(t, x)|2

− Im(u(t, y)∇u(t, y)) · Im(u(t, x)∇u(t, x))) dxdydz.

For z ∈ R
3 fixed, we consider the quantity defined by

¨

χ2
R(x− z)χ2

R(y − z)
(

|u(t, y)|2|∇u(t, x)|2

− Im(u(t, y)∇u(t, y)) · Im(u(t, x)∇u(t, x))) dxdy.

It is not hard to see that the above quantity is invariant under the Galilean transformation
u(t, x) 7→ uξ(t, x) for all ξ ∈ R

3 due to the symmetry of χ. We will choose a suitable
ξ ∈ R3 such that

ˆ

Im(χ2
R(x− z)uξ(t, x)∇(uξ(t, x)))dx = 0.

Specifically, we select ξ as follows (compare with (4.6)):

ξ = ξ(t, z, R) = −

ˆ

Im(χ2
R(x− z)u(t, x)∇u(t, x))dx

ˆ

χ2
R(x− z)|u(t, x)|2dx

,

provided that the denominator is non-zero (otherwise ξ = 0 suffices). With this ξ, we get

(4.24) + (4.26) =
4

ω3R3

˚

|χR(y − z)u(t, y)|2|χR(x− z)∇(uξ(t, x))|2dxdydz.

By integration by parts twice and using

∑

j

∂j(ψRxj) = 3ψR +
∑

j

xj∂jψR = 3φR + 2(ψR − φR),

we have

(4.19) =
∑

j,k

¨

|u(t, y)|2ψR(x− y)(xj − yj)∂j∂
2
k(|u(t, x)|

2)dxdy

= −
∑

j,k

¨

|u(t, y)|2∂xj (ψR(x− y)(xj − yj))∂
2
k(|u(t, x)|

2)dxdy

=
∑

k

¨

|u(t, y)|2∂xk (3φR(x− y) + 2(ψR − φR)(x− y))∂k(|u(t, x)|
2)dxdy.
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We also have

(4.20) = −
2(p− 1)

p+ 1

∑

j

¨

|u(t, y)|2∂xj (ψR(x− y)(xj − yj))|u(t, x)|
p+1dxdy

= −
6(p− 1)

p+ 1

¨

|u(t, y)|2φp,R(x− y)|u(t, x)|p+1dxdy (4.28)

−
6(p− 1)

p+ 1

¨

|u(t, y)|2(φR − φp,R)(x− y)|u(t, x)|p+1dxdy

−
4(p− 1)

p+ 1

¨

|u(t, y)|2(ψR − φR)(x− y)|u(t, x)|p+1dxdy.

We can rewrite (4.28) as

(4.28) = −
6(p− 1)

(p + 1)ω3R3

˚

|χR(y − z)u(t, y)|2|χR(x− z)u(t, x)|p+1dxdydz.

Similarly, we have

(4.21) =
6(q − 1)

(q + 1)ω3R3

˚

|χR(y − z)u(t, y)|2|χR(x− z)u(t, x)|q+1dxdydz

+
6(q − 1)

q + 1

¨

|u(t, y)|2(φR − φq,R)(x− y)|u(t, x)|q+1dxdy

+
4(q − 1)

q + 1

¨

|u(t, y)|2(ψR − φR)(x− y)|u(t, x)|q+1dxdy.

Collecting the above identities, we obtain

d

dt
M⊗2

R (t) ≥
4

ω3R3

˚

|χR(y − z)u(t, y)|2|χR(x− z)∇(uξ(t, x))|2dxdydz

+

¨

|u(t, y)|2∇(3φR(x− y) + 2(ψR − φR)(x− y)) · ∇(|u(t, x)|2)dxdy

−
6(p− 1)

(p+ 1)ω3R3

˚

|χR(y − z)u(t, y)|2|χR(x− z)u(t, x)|p+1dxdydz

−
6(p− 1)

p+ 1

¨

|u(t, y)|2(φR − φp,R)(x− y)|u(t, x)|p+1dxdy

−
4(p− 1)

p+ 1

¨

|u(t, y)|2(ψR − φR)(x− y)|u(t, x)|p+1dxdy

+
6(q − 1)

(q + 1)ω3R3

˚

|χR(y − z)u(t, y)|2|χR(x− z)u(t, x)|q+1dxdydz

+
6(q − 1)

q + 1

¨

|u(t, y)|2(φR − φq,R)(x− y)|u(t, x)|q+1dxdy

+
4(q − 1)

q + 1

¨

|u(t, y)|2(ψR − φR)(x− y)|u(t, x)|q+1dxdy.
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As ψR − φR ≥ 0 and φR − φq,R ≥ 0, we get

4

ω3R3

˚

|χR(y − z)u(t, y)|2
(

|χR(x− z)∇(uξ(t, x))|2

−
3(p− 1)

2(p+ 1)
|χR(x− z)u(t, x)|p+1 +

3(q − 1)

2(q + 1)
|χR(x− z)u(t, x)|q+1

)

dxdydz

≤
d

dt
M⊗2

R (t)−

¨

|u(t, y)|2∇ (3φR(x− y) + 2(ψR − φR)(x− y)) · ∇(|u(t, x)|2)dxdy

+
6(p− 1)

p+ 1

¨

|u(t, y)|2(φR − φp,R)(x− y)|u(t, x)|p+1dxdy

+
4(p− 1)

p+ 1

¨

|u(t, y)|2(ψR − φR)(x− y)|u(t, x)|p+1dxdy.

By (4.16), we see that
∣

∣

∣

∣

∣

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

d

dt
M⊗2

R (t)
dR

R
dt

∣

∣

∣

∣

∣

≤
1

JT0

ˆ R0eJ

R0

sup
t∈[a,a+T0]

|M⊗2
R (t)|

dR

R

.
1

JT0

ˆ R0eJ

R0

dR .
R0e

J

JT0
. (4.29)

As |∇φR(x)| .
1
ηR

and supt∈R ‖u(t)‖H1 <∞, we see that

∣

∣

∣

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

¨

|u(t, y)|2∇φR(x− y) · ∇(|u(t, x)|2)dxdy
dR

R
dt
∣

∣

∣

.
1

ηJT0

ˆ a+T0

a

ˆ R0eJ

R0

‖u(t)‖3L2‖∇u(t)‖L2

dR

R2
dt

.
1

ηJT0

ˆ a+T0

a

ˆ R0eJ

R0

dR

R2
dt

.
1

ηJR0
. (4.30)

Similarly, as |∇(ψR − φR)(x)| .
1
η
min

{

1
R
, R
|x|2

}

< 1
ηR

, we have

∣

∣

∣

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

¨

|u(t, y)|2∇(ψR − φR)(x− y) · ∇(|u(t, x)|2)dxdy
dR

R
dt
∣

∣

∣
.

1

ηJR0
.

(4.31)

Using (4.4), we see that

∣

∣

∣

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

¨

|u(t, y)|2(ψR − φR)(x− y)|u(t, x)|p+1dxdy
dR

R
dt
∣

∣

∣

.
1

ηJT0

ˆ a+T0

a

ˆ R0eJ

R0

¨

|u(t, y)|2min

{

|x− y|

R
,

R

|x− y|

}

|u(t, x)|p+1dxdy
dR

R
dt

.
1

ηJT0

ˆ a+T0

a

¨

|u(t, y)|2|u(t, x)|p+1

(

ˆ R0eJ

R0

min

{

|x− y|

R
,

R

|x− y|

}

dR

R

)

dxdydt

.
1

ηJ
. (4.32)
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Here we have used the fact that supt∈R ‖u(t)‖H1 <∞ and
ˆ ∞

0

min

{

|x− y|

R
,

R

|x− y|

}

dR

R
. 1.

Using (4.3), we have

∣

∣

∣

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

¨

|u(t, y)|2(φR − φp,R)(x− y)|u(t, x)|p+1dxdy
dR

R
dt
∣

∣

∣

.
1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

η
dR

R
dt . η. (4.33)

By glueing up together (4.29), (4.30), (4.31), (4.32), and (4.33), we obtain

∣

∣

∣

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

1

R3

˚

|χR(y − z)u(t, y)|2
(

|χR(x− z)∇(uξ(t, x))|2

−
3(p− 1)

2(p+ 1)
|χR(x− z)u(t, x)|p+1 +

3(q − 1)

2(q + 1)
|χR(x− z)u(t, x)|q+1

)

dxdydz
dR

R
dt
∣

∣

∣

. η +
R0e

J

ηJT0
+

1

ηJ
+

1

ηJR0

. (4.34)

Now, for fixed z, ξ ∈ R
3, we have from (4.9) that

ˆ

|χR(x− z)∇(uξ(t, x))|2dx =

ˆ

|∇[χR(x− z)uξ(t, x)]|2dx+O(R−2‖u(t)‖2L2).

From the conservation of mass and (4.5) that for R ≥ R0 with R0 sufficiently large,
ˆ

(

|χR(x− z)∇(uξ(t, x))|2 −
3(p− 1)

2(p+ 1)
|χR(x− z)u(t, x)|p+1

+
3(q − 1)

2(q + 1)
|χR(x− z)u(t, x)|q+1

)

dx

= G(χR(· − z)uξ(t)) +O(R−2)

≥ δ‖∇(χR(· − z)uξ(t))‖2L2 +O(R−2).

The term O(R−2) can be treated analogously to (4.30). We thus infer from (4.34) that

∣

∣

∣

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

1

R3

˚

|χR(y − z)u(t, y)|2|∇(χR(x− z)uξ(t, x))|2dxdydz
dR

R
dt
∣

∣

∣

. η +
R0e

J

ηJT0
+

1

ηJ
+

1

ηJR0

. (4.35)

This proves (4.23) by taking η = ε, J = ε−3, R0 = ε−1 and T0 = eε
−3
. The proof is

complete. �

4.4. Proof of the main result. We can now proceed with the proof of the main result.

Proof of Theorem 1.1. The global existence is proved in Lemma 4.2. It remains to prove
the scattering. We only consider the positive times since the one for negative times is
similar. Our purpose is to check the scattering criteria given in Proposition 3.1. To this
end, we fix a ∈ R and let ε > 0 sufficiently small and T0 > 0 sufficiently large to be
determined later. We will show that there exists t0 ∈ (a, a+ T0) such that [t0 − ε−σ, t0] ⊂
(a, a+ T0) and

‖u‖
L
m1
t ([t0−ε−σ,t0],L

b1
x )

. εµ (4.36)
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for some σ, µ > 0 to be determined later. By (4.23), there exist T0 = T0(ε), J = J(ε),
R0 = R0(ε, u0) and η = η(ε) such that

1

JT0

ˆ a+T0

a

ˆ R0eJ

R0

1

R3

˚

|χR(y − z)u(t, y)|2|∇(χR(x− z)uξ(t, x))|2dxdydz
dR

R
dt . ε.

It follows that there exists R1 ∈ [R0, R0e
J ] such that

1

T0

ˆ a+T0

a

1

R3
1

˚

|χR1(y − z)u(t, y)|2|∇(χR1(x− z)uξ(t, x))|2dxdydzdt . ε

hence

1

T0

ˆ a+T0

a

1

R3
1

ˆ

‖χR1(· − z)u(t)‖2L2
x
‖∇(χR1(· − z)uξ(t))‖2L2

x
dzdt . ε.

By the change of variable z = R1

4
(w + θ) with w ∈ Z3 and θ ∈ [0, 1]3, we deduce that

there exists θ1 ∈ [0, 1]3 such that

1

T0

ˆ a+T0

a

∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

2

L2
x

∥

∥

∥
∇

(

χR1

(

(· −
R1

4
(w + θ1)

)

uξ(t)

)

∥

∥

∥

2

L2
x

dt

. ε.

Let σ > 0 to be chosen later. By dividing the interval
[

a + T0

2
, a+ 3T0

4

]

into T0ε
σ intervals

of length ε−σ, we infer that there exists t0 ∈
[

a + T0

2
, a+ 3T0

4

]

such that [t0 − ε−σ, t0] ⊂
(a, a+ T0) and

ˆ t0

t0−ε−σ

∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w+ θ1)

)

u(t)
∥

∥

∥

2

L2
x

∥

∥

∥
∇

(

χR1

(

· −
R1

4
(w + θ1)

)

uξ(t)

)

∥

∥

∥

2

L2
x

dt . ε1−σ.

This, together with the Gagliardo-Nirenberg inequality

‖u‖4L3
x
. ‖u‖2L2

x
‖∇uξ‖2L2

x
,

implies that

ˆ t0

t0−ε−σ

∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

4

L3
x

dt . ε1−σ. (4.37)

On the other hand, by Hölder’s inequality, Cauchy-Schwarz inequality, and Sobolev em-
bedding, we have

∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

2

L3
x

≤
∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

L2
x

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

L6
x

≤
(

∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

2

L2
x

)1/2( ∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

2

L6
x

)1/2

. ‖u(t)‖L2
x
‖u(t)‖H1

x
. 1. (4.38)
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Here we have used the following estimate to get the last line:

∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

2

L6
x

.
∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

∇u(t)
∥

∥

∥

2

L2
x

+
1

R2
1

∥

∥

∥
(∇χ)R1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

2

L2
x

. ‖∇u(t)‖2L2
x
+

1

R2
1η

2
‖u(t)‖2L2

x
. ‖u(t)‖2H1

x

as R1 > R0 = ε−1 = η−1 (see after (4.35)). Note that |∇χ| . η−1 by the choice of χ.
Combining (4.37) and (4.38), we get from the property of χR1 , in conjunction with the
Hölder and the Cauchy-Schwarz inequalities, that

‖u‖3L3
t,x([t0−ε−σ,t0]×R3) .

ˆ t0

t0−ε−σ

∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

3

L3
x

dt

.

ˆ t0

t0−ε−σ

(

∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

4

L3
x

)
1
2

×
(

∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

2

L3
x

)
1
2
dt

.
(

ˆ t0

t0−ε−σ

∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

4

L3
x

dt
)

1
2

×
(

ˆ t0

t0−ε−σ

∑

w∈Z3

∥

∥

∥
χR1

(

· −
R1

4
(w + θ1)

)

u(t)
∥

∥

∥

2

L3
x

dt
)

1
2

. ε
1−σ
2 ε−

σ
2 = ε

1
2
−σ,

which implies that

‖u‖L3
t,x([t0−ε−σ,t0]×R3) . ε

1
3(

1
2
−σ). (4.39)

Let θ ∈ (0, 1) to be chosen shortly. We define (γ, ρ) by

1

m1
=
θ

3
+

1− θ

γ
,

1

b1
=
θ

3
+

1− θ

ρ
.

Pick β, s > 0 such that
1

ρ
=

1

β
−
s

3
,

2

γ
+

3

β
=

3

2
.

We readily check that

2

m1
+

3

b1
=

2

p− 1
=

5θ

3
+ (1− θ)

(

3

2
− s

)

.

In particular,

s =
3

2
−

1

1− θ

(

2

p− 1
−

5θ

3

)

.

As 7/3 < p < 5, we can take θ > 0 sufficiently small so that 0 < s < 1. In particular,
(γ, β) is a Schrödinger admissible pair. By Hölder’s inequality, Sobolev embedding, and
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(4.39), we have

‖u‖
L
m1
t ([t0−ε−σ,t0],L

b1
x )

≤ ‖u‖θL3
t,x([t0−ε−σ,t0]×R3)‖u‖

1−θ
Lγ
t ([t0−ε−σ,t0],L

ρ
x)

. ‖u‖θL3
t,x([t0−ε−σ,t0]×R3)‖|∇|su‖1−θ

Lγ
t ([t0−ε−σ,t0],L

β
x)

. ‖u‖θL3
t,x([t0−ε−σ,t0]×R3)‖ 〈∇〉s u‖1−θ

Lγ
t ([t0−ε−σ,t0],L

β
x)

. ε
θ
3(

1
2
−σ)ε−

σ
γ
(1−θ)

. ε
θ
6
−( θ

3
+ 1−θ

γ )σ.

Here we have used the fact that

‖ 〈∇〉u‖Lγ
t (I,L

β
x)

. 〈I〉
1
γ

which follows from the local theory. This proves (4.36) by choosing σ > 0 small enough.
The proof is complete. �

5. Blow-up results

In this last section, we prove the blow-up rate results as stated in Theorem 1.5. We
start with the following upper bound for the Pohozaev functional for solutions arising
from initial data in A−

ω . The result of the next Lemma is also contained in [5,20], but we
report the short proof for sake of completeness.

Lemma 5.1. Let 7
3
< p < 5, 1 < q < p, and ω > 0. Then A−

ω is invariant under the flow
of (1.2), i.e., if u0 ∈ A−

ω , then u(t) ∈ A−
ω for all t ∈ Imax. In addition, we have

G(u(t)) ≤ −
3(p− 1)

2
(mω − Sω(u0)), ∀t ∈ Imax. (5.1)

Furthermore, there exists δ > 0 small such that

G(u(t)) + δ‖∇u(t)‖2L2 ≤ −
3(p− 1)

4
(mω − Sω(u0)), ∀t ∈ Imax. (5.2)

Proof. Let u0 ∈ A−
ω . We will show that u(t) ∈ A−

ω for all t ∈ Imax. By the conservation
of mass and energy, we have

Sω(u(t)) = Sω(u0) < mω, ∀t ∈ Imax. (5.3)

Assume by contradiction that there exists t0 such that G(u(t0)) ≥ 0. As u : Imax → H1

is continuous, there exists t1 such that G(u(t1)) = 0. By the definition of mω, we have
Sω(u(t1)) ≥ mω which contradicts (5.3). Thus G(u(t)) < 0 for all t ∈ Imax or A−

ω is
invariant under the flow of (1.2).
For simplicity, we denote u := u(t) and set f(λ) := Sω(uλ), where uλ is the scaling

(2.1). We have

f ′(λ) = λ‖∇u‖2L2 −
3(p− 1)

2(p+ 1)
λ

3(p−1)
2

−1‖u‖p+1
Lp+1 +

3(q − 1)

2(q + 1)
λ

3(q−1)
2

−1‖u‖q+1
Lq+1 =

G(uλ)

λ

and

(λf ′(λ))
′
= 2λ‖∇u‖2L2 −

9(p− 1)2

4(p+ 1)
λ

3(p−1)
2

−1‖u‖p+1
Lp+1 +

9(q − 1)2

4(q + 1)
λ

3(q−1)
2

−1‖u‖q+1
Lq+1.

We then write

(λf ′(λ))
′
=

3(p− 1)

2
f ′(λ)−

3p− 7

2
λ‖∇u‖2L2 −

9(q − 1)(p− q)

4(q + 1)
λ

3(q−1)
2

−1‖u‖q+1
Lq+1.
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As 7
3
< p < 5 and 1 < q < p, we get

(λf ′(λ))
′
≤

3(p− 1)

2
f ′(λ), ∀λ > 0. (5.4)

On the other hand, as G(u) < 0, by Lemma 2.2, there exists λ0 ∈ (0, 1) such that
G(uλ0) = 0. In particular, we have λ0f

′(λ0) = 0 and f(λ0) = Sω(uλ0) ≥ mω. Integrating
(5.4) over (λ0, 1), we obtain

G(u) ≤
3(p− 1)

2
(Sω(u)− Sω(uλ0)) ≤

3(p− 1)

2
(Sω(u)−mω)

which is (5.1).

Finally, we prove (5.2). Observe that

‖∇u‖2L2 =
6(q − 1)

3q − 7

(

Iω(u)−
p− q

(p+ 1)(q − 1)
‖u‖p+1

Lp+1 −
ω

2
‖u‖2L2

)

=
6(q − 1)

3q − 7

(

Sω(u)−
2

3(q − 1)
G(u)−

p− q

(p+ 1)(q − 1)
‖u‖p+1

Lp+1 −
ω

2
‖u‖2L2

)

.

It follows that

G(u) + δ‖∇u‖2L2 =

(

1−
4δ

3q − 7

)

G(u) +
6δ(q − 1)

3q − 7
Sω(u)

−
6δ(p− q)

(3q − 7)(p+ 1)
‖u‖p+1

Lp+1 −
3δω(q − 1)

3q − 7
‖u‖2L2

≤

(

1−
4δ

3q − 7

)

G(u) +
6δ(q − 1)

3q − 7
Sω(u)

as ω > 0 and q < p. By the energy and mass conservation laws, and (5.1), we get

G(u(t)) + δ‖∇u(t)‖2L2 ≤ −

(

1−
4δ

3q − 7

)

3(p− 1)

2
(mω − Sω(u0)) +

6δ(q − 1)

3q − 7
Sω(u0),

∀t ∈ Imax. By taking δ > 0 sufficiently small, we obtain (5.2). �

We are now ready to give the proof of the blow-up results in Theorem 1.5. They are
based on virial identities/estimates. We classically introduce a sufficiently smooth and
decaying function φ : R3 → R. We denote the virial quantity

Vφ(t) :=

ˆ

φ|u(t)|2dx.

The following identities are nowadays standard (see e.g., [7]):

V ′
φ(t) = 2 Im

ˆ

∇φ · ∇u(t)u(t)dx

and

V ′′
φ (t) = −

ˆ

∆2φ|u(t)|2dx+ 4
∑

j,k

Re

ˆ

∂2jkφ∂ju(t)∂ku(t)dx

+
2(q − 1)

q + 1

ˆ

∆φ|u(t)|q+1dx−
2(p− 1)

p+ 1

ˆ

∆φ|u(t)|p+1dx.
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A first application of the above virial identities is the following virial identity for finite
variance solutions. More precisely, if u0 ∈ Σ, then the corresponding solution to (1.2)
satisfies

V ′′
|x|2(t) = 8G(u(t)), ∀t ∈ Imax. (5.5)

Provided u0 ∈ A−
ω , by Lemma 5.1 G(u(t)) . −1 for any t ∈ Imax. Then (5.5) implies

finite time blow-up for solutions in Σ via a convexity argument.

Another applications are virial estimates for radial and cylindrical solutions [5]. To
state these estimates, we let θ : [0,∞) → [0, 2] a smooth function satisfying

θ(r) =

{

2 if 0 ≤ r ≤ 1,
0 if r ≥ 2.

(5.6)

We define the function ϑ : [0,∞) → [0,∞) by

ϑ(r) :=

ˆ r

0

ˆ s

0

θ(τ)dτds.

For ̺ > 0, we define the radial function φ̺ : R
3 → R by

φ̺(x) = φ̺(r) := ̺2ϑ(r/̺), r = |x|. (5.7)

Then the following virial estimate for radial solutions: If u0 ∈ H1 is radial, then the
corresponding solution to (1.2) satisfies

V ′′
φ̺
(t) ≤ 8G(u(t)) + C̺−2 + C̺−(p−1)‖∇u(t)‖

p−1
2

L2 , ∀t ∈ Imax. (5.8)

To state virial estimates for cylindrical solutions, we define, for ̺ > 0, the function

φ̺(x) := ̺2ϑ(r/̺) + x23, r := |x|, x = (x1, x2). (5.9)

If u0 ∈ Σ3, then the corresponding solution to (1.2) satisfies

V ′′
φ̺
(t) ≤ 8G(u(t)) + C̺−2 + C̺−

p−1
2 ‖∇u(t)‖p−1

L2 , ∀t ∈ Imax. (5.10)

We refer the readers to [5] for a proof of (5.8) and (5.10). We are now able to prove our
blow-up result for (1.2).

Proof of Proposition 1.5. Let us start with the point (i). The proof is based on an idea
of Merle, Raphaël, and Szeftel [39].

(1) Let us consider the radial case. Using

G(u) =
3(p− 1)

2
E(u)−

3p− 7

4
‖∇u‖2L2 −

3(p− q)

2(q + 1)
‖u‖q+1

Lq+1,

we infer from (5.8) that

V ′′
φ̺
(t) ≤ 12(p− 1)E(u(t))− 2(3p− 7)‖∇u(t)‖2L2 −

12(p− q)

q + 1
‖u(t)‖q+1

Lq+1

+ C̺−2 + C̺−(p−1)‖∇u(t)‖
p−1
2

L2 , ∀t ∈ Imax,

where φ̺ is as in (5.7). As p < 5, by Young’s inequality, we have for any ε > 0,

V ′′
φ̺
(t) ≤ 12(p− 1)E(u(t))− 2(3p− 7)‖∇u(t)‖2L2 + C̺−2 + ε‖∇u(t)‖2L2 + Cε−

p−1
5−p̺−

4(p−1)
5−p ,

∀t ∈ Imax. Taking ε = 3p− 7, we get

V ′′
φ̺
(t) ≤ 12(p− 1)E(u(t))− (3p− 7)‖∇u(t)‖2L2 + C̺−2 + C̺−

4(p−1)
5−p ,
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∀t ∈ Imax. By the conservation of energy and 2 < 4(p−1)
5−p

, we obtain

(3p− 7)‖∇u(t)‖2L2 + V ′′
φ̺
(t) ≤ C̺−

4(p−1)
5−p , (5.11)

∀t ∈ Imax provided that ̺ > 0 is taken sufficiently small. Let 0 < t0 < t < T ∗. We
integrate (5.11) twice on (t0, t) and get

(3p− 7)

ˆ t

t0

ˆ s

t0

‖∇u(τ)‖2L2dτds+ Vφ̺
(t) ≤ C̺−

4(p−1)
5−p (t− t0)

2 + (t− t0)V
′
φ̺
(t0) + Vφ̺

(t0)

≤ C̺−
4(p−1)
5−p (t− t0)

2 + C̺(t− t0)‖∇u(t0)‖L2

+ C̺2,

where we have used the conservation of mass and

Vφ̺
(t0) ≤ C̺2‖u(t0)‖

2
L2 ≤ C̺2,

V ′
φ̺
(t0) ≤ C̺‖∇u(t0)‖L2‖u(t0)‖L2 ≤ C̺‖∇u(t0)‖L2.

Note that the constant C > 0 may vary from line to line. By Fubini’s Theorem, we have
ˆ t

t0

ˆ s

t0

‖∇u(τ)‖2L2dτds =

ˆ t

t0

(
ˆ t

τ

ds

)

‖∇u(τ)‖2L2dτ =

ˆ t

t0

(t− τ)‖∇u(τ)‖2L2dτ.

As Vφ̺
is non-negative, we get
ˆ t

t0

(t− τ)‖∇u(τ)‖2L2dτ ≤ C̺−
4(p−1)
5−p (t− t0)

2 + C̺(t− t0)‖∇u(t0)‖L2 + C̺2.

Letting tր T ∗, we obtain
ˆ T ∗

t0

(T ∗ − τ)‖∇u(τ)‖2L2dτ ≤ C̺−
4(p−1)
5−p (T ∗ − t0)

2 + C̺(T ∗ − t0)‖∇u(t0)‖L2 + C̺2.

Optimizing in ̺ by choosing ̺−
4(p−1)
5−p (T ∗ − t0)

2 = ̺2 or equivalently ̺ = (T ∗ − t0)
5−p
p+3 , we

have
ˆ T ∗

t0

(T ∗ − τ)‖∇u(τ)‖2L2dτ ≤ C(T ∗ − t0)
2(5−p)
p+3 + C(T ∗ − t0)

5−p
p+3

+1‖∇u(t0)‖L2

≤ C(T ∗ − t0)
2(5−p)
p+3 + C(T ∗ − t0)

2‖∇u(t0)‖
2
L2 ,

for any 0 < t0 < T ∗. Now set

g(t) :=

ˆ T ∗

t

(T ∗ − τ)‖∇u(τ)‖2L2dτ. (5.12)

We have

g(t) ≤ C(T ∗ − t)
2(5−p)
p+3 − (T ∗ − t)g′(t), ∀0 < t < T ∗

which is rewritten as
(

g(t)

T ∗ − t

)′

=
1

(T ∗ − t)2
(g(t) + (T ∗ − t)g′(t)) ≤

C

(T ∗ − t)
4(p−1)
p+3

.

Integrating it over (0, t), we obtain

g(t)

T ∗ − t
≤
g(0)

T ∗
+

C

(T ∗ − t)
3p−7
p+3

−
C

(T ∗)
3p−7
p+3
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which yields
g(t)

T ∗ − t
≤

C

(T ∗ − t)
3p−7
p+3

for t close to T ∗.

In particular, we have g(t) ≤ C(T ∗ − t)
2(5−p)
p+3 which is (1.8).

To see (1.9), we rewrite (1.8) as

1

T ∗ − t

ˆ T ∗

t

(T ∗ − τ)‖∇u(τ)‖2L2dτ ≤
C

(T ∗ − t)
3p−7
p+3

. (5.13)

Take Tn ր T ∗. For a fixed n, g defined in (5.12) is a continuous function on [Tn, T
∗] and

differentiable on (Tn, T
∗). By the mean value theorem, there exists tn ∈ (Tn, T

∗) such
that

−(T ∗ − tn)‖∇u(tn)‖
2
L2 = g′(tn) =

g(T ∗)− g(Tn)

T ∗ − Tn
= −

ˆ T ∗

Tn

(T ∗ − τ)‖∇u(τ)‖2L2dτ

T ∗ − Tn
.

Using (5.13), we have

(T ∗ − tn)‖∇u(tn)‖
2
L2 ≤

C

(T ∗ − Tn)
3p−7
p+3

≤
C

(T ∗ − tn)
3p−7
p+3

hence

‖∇u(tn)‖
2
L2 ≤

C

(T ∗ − tn)
4(p−1)
p+3

.

This proves (1.9).

(2) We now consider the cylindrical case. By (5.10), we have

V ′′
φ̺
(t) ≤ 8G(u(t)) + C̺−2 + C̺−

p−1
2 ‖∇u(t)‖p−1

L2

≤ 12(p− 1)E(u(t))− 2(3p− 7)‖∇u(t)‖2L2 −
12(p− q)

q + 1
‖u(t)‖q+1

Lq+1

+C̺−2 + C̺−
p−1
2 ‖∇u(t)‖p−1

L2 , ∀t ∈ Imax,

where φ̺ is as in (5.9). By Young’s inequality with p < 3 and q < p, we have

V ′′
φ̺
(t) ≤ 12(p− 1)E(u(t))− 2(3p− 7)‖∇u(t)‖2L2 + C̺−2 + ε‖∇u(t)‖2L2 + Cε−

p−1
3−p̺−

p−1
3−p

≤ 12(p− 1)E(u(t))− (3p− 7)‖∇u(t)‖2L2 + C̺−2 + C̺−
p−1
3−p , ∀t ∈ Imax,

where we have chosen ε = 3p − 7 to get the second line. The energy conservation and
2 < p−1

3−p
yield

(3p− 7)‖∇u(t)‖2L2 + V ′′
φ̺
(t) ≤ C̺−

p−1
3−p , ∀t ∈ Imax

provided that ̺ > 0 is taken sufficiently small. By the same reasoning as above, we prove
(1.8) and (1.9).

Point (ii). The result is a straightforward application of the estimate in Lemma 5.1
yielding G(u(t)) . −1 uniformly in time in the maximal time of existence, and the Du,
Wu, and Zhang scheme [16]. Indeed, with respect to the NLS equation with one focusing
nonlinearity, the extra defocusing term accounts for negative contributions in the virial
estimates. Hence by repeating the argument in [16] jointly with the uniform negative
upper bound for G, the proof is complete. �



28 J. BELLAZZINI, V. D. DINH, AND L. FORCELLA

Acknowledgements. The authors would like to thank the anonymous referee for sug-
gesting the reference [4] and for valuable comments on a previous version of the paper.
J.B. is partially supported by project PRIN 2020XB3EFL by the Italian Ministry of Uni-
versities and Research and by the University of Pisa, Project PRA 2022 11. V.D.D. is
supported by the European Union’s Horizon 2020 Research and Innovation Programme
(Grant agreement CORFRONMAT No. 758620, PI: Nicolas Rougerie).

Appendix A. Small data theory

In this appendix, we first recall some useful tools such as dispersive and Strichartz
estimates. We then prove small data global existence and small data scattering results
related to (1.1). Let us start by reporting the well-known 3D dispersive estimate, see [7]
for a proof.

Lemma A.1. We have, for all r ∈ [2,∞] and for any t 6= 0,

‖eit∆f‖Lr
x
. |t|−

3
2(1−

2
r )‖f‖Lr′

x
(A.1)

for any f ∈ Lr′.

The next ones are the well-known Strichartz estimates, arising from the dispersive
estimate above. See [7, 25].

Proposition A.2. The following space-time bounds hold true.

• (Homogeneous Strichartz estimates) For any f ∈ L2 and any Schrödinger admis-
sible pair (a, b), i.e.,

2

a
+

3

b
=

3

2
, b ∈ [2, 6],

then
‖eit∆f‖La

t (R,L
b
x)
. ‖f‖L2

x
.

• (Inhomogeneous Strichartz estimates) Let I ⊂ R be an interval containing 0. Then
∥

∥

∥

∥

ˆ t

0

ei(t−s)∆F (s)ds

∥

∥

∥

∥

La
t (I,L

b
x)

. ‖F‖
Lρ′

t (I,Lγ′
x )

for any F ∈ Lρ′

t (I, L
γ′

x ) and any Schrödinger admissible pairs (a, b) and (ρ, γ).
• (Strichartz estimates for non-admissible pairs) Let I ⊂ R be an interval containing
0 and (a, b) be a Schrödinger admissible pair with b > 2. Fix m > a

2
and define n

by
1

m
+

1

n
=

2

a
.

Then
∥

∥

∥

∥

ˆ t

0

ei(t−s)∆F (s)ds

∥

∥

∥

∥

Lm
t (I,Lb

x)

. ‖F‖Ln′

t (I,Lb′
x )

for any F ∈ Ln′

t (I, L
b′

x ).

As in (3.1) and (3.2), we introduce the following exponents:

a2 :=
4(q + 1)

3(q − 1)
, m2 :=

2(q − 1)(q + 1)

5− q
, n2 :=

2(q − 1)(q + 1)

3q2 − 5q − 2
,

and

b2 := q + 1, r1 :=
6(q − 1)(q + 1)

3q2 + 2q − 13
.
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We see that (a2, b2), (m2, r2) are Schrödinger admissible pairs and

1

m2
+

1

n2
=

2

a2
,

1

b2
=

1

r2
−
σ2
3
, σ2 :=

3q − 7

2(q − 1)
.

The following Lemma follows directly from the above choices, Hölder’s inequality, and
Sobolev embeddings.

Lemma A.3. Let I ⊂ R be an interval. We have

‖|u|p−1u‖
L
n′

1
t (I,L

b′1
x )

. ‖u‖p
L
m1
t (I,L

b1
x )
,

‖|u|q−1u‖
L
n′

2
t (I,L

b′2
x )

. ‖u‖q
L
m2
t (I,L

b2
x )
,

‖ 〈∇〉 (|u|p−1u)‖
L
a′
1

t (I,L
b′
1

x )
. ‖u‖p−1

L
m1
t (I,L

b1
x )
‖ 〈∇〉u‖

L
a1
t (I,L

b1
x )
,

‖ 〈∇〉 (|u|q−1u)‖
L
a′
2

t (I,L
b′
2

x )
. ‖u‖q−1

L
m2
t (I,L

b2
x )
‖ 〈∇〉u‖

L
a2
t (I,L

b2
x )
,

‖u‖
L
m1
t (I,L

b1
x )

. ‖|∇|σ1u‖Lm1
t (I,L

r1
x ) . ‖ 〈∇〉u‖Lm1

t (I,L
r1
x ),

‖u‖
L
m2
t (I,L

b2
x )

. ‖|∇|σ2u‖Lm2
t (I,L

r2
x ) . ‖ 〈∇〉u‖Lm2

t (I,L
r2
x ).

We next prove a global existence result for small data.

Lemma A.4. Let 7
3
< q < p < 5 and T > 0 be such that u(T ) ∈ H1. Then there exists

δ > 0 sufficiently small such that if

‖ei(t−T )∆u(T )‖
L
m1
t ([T,∞),L

b1
x )∩L

m2
t ([T,∞),L

b2
x )
< δ,

then there exists a unique solution to (1.2) with initial datum u(T ) satisfying

‖u‖
L
m1
t ([T,∞),L

b1
x )∩L

m2
t ([T,∞),L

b2
x )

≤ 2‖ei(t−T )∆u(T )‖
L
m1
t ([T,∞),L

b1
x )∩L

m2
t ([T,∞),L

b2
x )

and

‖ 〈∇〉u‖
L
a1
t ([T,∞),L

b1
x )∩La2 ([T,∞),L

b2
x )

≤ C‖u(T )‖H1
x

for some constant C > 0.

Proof. We consider

XT :=
{

u : ‖u‖
L
m1
t (I,L

b1
x )∩L

m2
t (I,L

b2
x )

≤M, ‖ 〈∇〉 u‖
L
a1
t (I,L

b1
x )∩L

a2
t (I,L

b2
x )

≤ L
}

equipped with the distance

d(u, v) := ‖u− v‖
L
a1
t (I,L

b1
x )∩L

a2
t (I,L

b2
x )
,

where I = [T,∞) and M,L > 0 will be chosen later. By the persistence of regularity
(see e.g., [7, Theorem 1.2.5]), we readily see that (XT , d) is a complete metric space. Our
purpose is to show that the Duhamel functional

ΦT (u(t)) := ei(t−T )∆u(T ) + i

ˆ t

T

ei(t−s)∆
(

|u(s)|p−1u(s)− |u(s)|q−1u(s)
)

ds (A.2)
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is a contraction on (XT , d). By Strichartz estimates and Lemma A.3, we have

‖ΦT (u)‖Lm1
t (I,L

b1
x )

≤ ‖ei(t−T )∆u(T )‖
L
m1
t (I,L

b1
x )

+

∥

∥

∥

∥

ˆ t

T

ei(t−s)∆|u(s)|p−1u(s)ds

∥

∥

∥

∥

L
m1
t (I,L

b1
x )

+

∥

∥

∥

∥

ˆ t

T

ei(t−s)∆|u(s)|q−1u(s)ds

∥

∥

∥

∥

L
m1
t (I,L

b1
x )

≤ ‖ei(t−T )∆u(T )‖
L
m1
t (I,L

b1
x )

+ C‖|u|p−1u‖
L
n′

1
t (I,L

b′1
x )

+

∥

∥

∥

∥

〈∇〉

ˆ t

T

ei(t−s)∆|u(s)|q−1u(s)ds

∥

∥

∥

∥

L
m1
t (I,L

r1
x )

≤ ‖ei(t−T )∆u(T )‖
L
m1
t (I,L

b1
x )

+ C‖|u|p−1u‖
L
n′

1
t (I,L

b′
1

x )

+ C‖ 〈∇〉 (|u|q−1u)‖
L
a′
2

t (I,L
b′
2

x )

≤ ‖ei(t−T )∆u(T )‖
L
m1
t (I,L

b1
x )

+ C‖u‖p
L
m1
t (I,L

b1
x )

+ ‖u‖q−1

L
m2
t (I,L

b2
x )
‖ 〈∇〉u‖

L
a2
t (I,L

b2
x )
.

Similarly, we have

‖ΦT (u)‖Lm2
t (I,L

b2
x )

≤ ‖ei(t−T )∆u(T )‖
L
m2
t (I,L

b2
x )

+ C‖u‖p−1

L
m1
t (I,L

b1
x )
‖ 〈∇〉u‖

L
a2
t (I,L

b2
x )

+ C‖u‖q
L
m2
t (I,L

b2
x )
.

We next estimate

‖ 〈∇〉ΦT (u)‖La1
t (I,L

b1
x )

≤ C‖u(T )‖H1
x
+ C‖ 〈∇〉 (|u|p−1u)‖

L
a′
1

t (I,L
b′
1

x )

+ C‖ 〈∇〉 (|u|q−1u)‖
L
a′
2

t (I,L
b′
2

x )

≤ C‖u(T )‖H1
x
+ C‖u‖p−1

L
m1
t (I,L

b1
x )
‖ 〈∇〉u‖

L
a1
t (I,L

b1
x )

+ C‖u‖q−1

L
m2
t (I,L

b2
x )
‖ 〈∇〉 u‖

L
a2
t (I,L

b2
x )

and
‖ 〈∇〉ΦT (u)‖La2

t (I,L
b2
x )

≤ C‖u(T )‖H1
x
+ C‖u‖p−1

L
m1
t (I,L

b1
x )
‖ 〈∇〉u‖

L
a1
t (I,L

b1
x )

+ C‖u‖q−1

L
m2
t (I,L

b2
x )
‖ 〈∇〉 u‖

L
a2
t (I,L

b2
x )
.

Next we have

‖ΦT (u)− ΦT (v)‖La1
t (I,L

b1
x )∩L

a2
t (I,L

b2
x )

≤ C‖|u|p−1u− |v|p−1v‖
L
n′

1
t (I,L

b′
1

x )

+ C‖|u|q−1u− |v|q−1v‖
L
n′

2
t (I,L

b′
2

x )

≤
(

‖u‖p−1

L
m1
t (I,L

b1
x )

+ ‖v‖p−1

L
m1
t (I,L

b1
x )

)

‖u− v‖
L
a1
t (I,L

b1
x )

+
(

‖u‖q−1

L
m2
t (I,L

b2
x )

+ ‖v‖q−1

L
m2
t (I,L

b2
x )

)

‖u− v‖
L
a2
t (I,L

b2
x )
.

Thus there exists C > 0 independent of T such that for any u, v ∈ XT , we have

‖ΦT (u)‖Lm1
t (I,L

b1
x )∩L

m2
t (I,L

b2
x )

≤ ‖ei(t−T )∆u(T )‖
L
m1
t (I,L

b1
x )∩L

m2
t (I,L

b2
x )

+ C(M q +Mp)

+ C(M q−1 +Mp−1)L,

‖ 〈∇〉ΦT (u)‖La1
t (I,L

b1
x )∩L

a2
t (I,L

b2
x )

≤ C‖u(T )‖H1
x
+ C(M q−1 +Mp−1)L,
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and
d(ΦT (u),ΦT (v)) ≤ C(M q−1 +Mp−1)d(u, v).

By choosing M = 2‖ei(t−T )∆u(T )‖
L
m1
t (I,L

b1
x )∩L

m2
t (I,L

b2
x )

and L = 2C‖u(T )‖H1
x
and taking

M sufficiently small, we see that ΦT is a contraction on (XT , d). This completes the
proof. �

The next Lemma is a small data scattering result.

Lemma A.5. Let 7
3
< q < p < 5. Suppose that u(t) is a global solution to (1.2) satisfying

‖u‖L∞

t (R,H1
x) <∞. Then there exists δ > 0 sufficiently small such that if

‖ei(t−T )∆u(T )‖
L
m1
t ([T,∞),L

b1
x )
< δ

for some T > 0, then u scatters forward in time.

Proof. We first observe that for any interval I ⊂ R,

‖u‖
L
m2
t (I,L

b2
x )

≤ ‖u‖θ
L
m1
t (I,L

b1
x )
‖u‖1−θ

Lρ
t (I,L

γ
x)
,

where

θ =
(3q − 7)(p− 1)

(3p− 7)(q − 1)
, ρ =

(1− θ)m1m2

m1 − θm2
, γ =

(1− θ)b1b2
b1 − θb2

.

We readily check that for 7
3
< q < p < 5,

θ ∈ (0, 1),
2

ρ
+

3

γ
=

3

2
, γ ∈ [2, 6],

namely (ρ, γ) is a Schrödinger admissible pair. It follows that

‖ei(t−T )∆u(T )‖
L
m2
t ([T,∞),L

b2
x )

≤ ‖ei(t−T )∆u(T )‖θ
L
m1
t ([T,∞),L

b1
x )
‖ei(t−T )∆u(T )‖1−θ

Lρ
t ([T,∞),Lγ

x)

≤ δθ‖u(T )‖1−θ
H1

x
.

Thus
‖ei(t−T )∆u(T )‖

L
m1
t ([T,∞),L

b1
x )∩L

m2
t ([T,∞),L

b2
x )
< ε(δ)

for some ε(δ) > 0 small depending on δ. By Lemma A.4, we have

‖u‖
L
m1
t ([T,∞),L

b1
x )∩L

m2
t ([T,∞),L

b2
x )

≤ 2‖ei(t−T )∆u(T )‖
L
m1
t ([T,∞),L

b1
x )∩L

m2
t ([T,∞),L

b2
x )

(A.3)

and

‖ 〈∇〉u‖
L
a1
t ([T,∞),L

b1
x )∩La2 ([T,∞),L

b2
x )

≤ C‖u(T )‖H1
x

(A.4)

for some constant C > 0.
For T < t1 < t2, we use the Duhamel formula (A.2), (A.3), and (A.4) to have

‖e−it2∆u(t2)− e−it1∆u(t1)‖H1
x
≤ C‖ 〈∇〉 (|u|p−1u)‖

L
a′1
t ((t1,t2),L

b′1
x )

+ C‖ 〈∇〉 (|u|q−1u)‖
L
a′2
t ((t1,t2),L

b′2
x )

≤ C‖u‖p−1

L
m1
t ((t1,t2),L

b1
x )
‖ 〈∇〉 u‖

L
a1
t ((t1,t2),L

b1
x )

+ C‖u‖q−1

L
m2
t ((t1,t2),L

b2
x )
‖ 〈∇〉u‖

L
a2
t ((t1,t2),L

b2
x )

→ 0

as t1, t2 → ∞. This shows that {e−it∆u(t)}t→∞ is a Cauchy sequence in H1
x. Thus there

exists

u+ = e−iT∆u(T ) + i

ˆ ∞

T

e−is∆
(

|u(s)|p−1u(s)− |u(s)|q−1u(s)
)

ds ∈ H1
x
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such that e−it∆u(t) → u+ strongly in H1
x as t → ∞. By the unitary property of the

propagator, we obtain

‖u(t)− eit∆u+‖H1
x
→ 0 as t→ ∞.

The proof is complete. �
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Bruno Pontecorvo, 5, 56127, Pisa, Italy

Email address : luigi.forcella@unipi.it


	1. Introduction
	1.1. Known results
	1.2. Main results and novelties
	Notations

	2. Variational analysis
	3. Scattering criterion
	4. Energy Scattering
	4.1. A cutoff function
	4.2. A coercivity property
	4.3. An interaction Morawetz estimate
	4.4. Proof of the main result

	5. Blow-up results
	Appendix A. Small data theory
	References

