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Abstract
This paper is focused on the unbalanced fixed effects panel data model. This is a linear regression model able to represent
unobserved heterogeneity in the data, by allowing each two distinct observational units to have possibly different numbers of
associated observations. We specifically address the case in which the model includes the additional possibility of controlling
the conditional variance of the output given the input and the selection probabilities of the different units per unit time.
This is achieved by varying the cost associated with the supervision of each training example. Assuming an upper bound
on the expected total supervision cost and fixing the expected number of observed units for each instant, we analyze and
optimize the trade-off between sample size, precision of supervision (the reciprocal of the conditional variance of the output)
and selection probabilities. This is obtained by formulating and solving a suitable optimization problem. The formulation
of such a problem is based on a large-sample upper bound on the generalization error associated with the estimates of
the parameters of the unbalanced fixed effects panel data model, conditioned on the training input dataset. We prove that,
under appropriate assumptions, in some cases “many but bad” examples provide a smaller large-sample upper bound on the
conditional generalization error than “few but good” ones, whereas in other cases the opposite occurs.We conclude discussing
possible applications of the presented results, and extensions of the proposed optimization framework to other panel data
models.

Keywords Unbalanced fixed effects panel data model · Noise variance control · Generalization error · Large-sample
approximation · Optimal sample size and selection probabilities

1 Introduction

Inmany situations involving economics, engineering, physics,
and other fields, it is required to approximate a function on
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the basis of a finite set of input–output noisy examples. This
belongs to the typical class of problems addressed by super-
vised machine learning (Vapnik 1998). In some cases, the
output noise variance can be reduced to some extent, by
increasing the cost of each supervision. For example, devices
with higher precision could be used to acquiremeasurements,
or experts could be involved in the data analysis procedure.
However, in the presence of a budget constraint, increasing
the cost of each supervision could reduce the total number
of available labeled examples. In such cases, the investiga-
tion of an optimal trade-off between the sample size and
the precision of supervision plays a key role. In Gnecco and
Nutarelli (2019a), this analysis was carried out by employ-
ing the classical linear regressionmodel, suitablymodified in
order to include the additional possibility of controlling the
conditional variance of the output given the input. Specifi-
cally, this was pursued by varying the time (hence, the cost)
dedicated to the supervision of each training example, and
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fixing an upper bound on the total available supervision time.
Based on a large-sample approximation of the output of the
ordinary least squares regression algorithm, it was shown
therein that the optimal choice of the supervision time per
example is highly dependent on the noise model. The anal-
ysis was refined in Gnecco and Nutarelli (2019b)1, where
an additional algorithm (weighted least squares) was consid-
ered, and shown to produce similar results at optimality as the
ordinary least squares algorithm, for a model in which differ-
ent training examples are possibly associated with different
supervision times.

In this work, we analyze the optimal trade-off between
sample size, precision of supervision, and selection proba-
bilities for a more general linear model of the input–output
relationship, which is the unbalanced fixed effects panel
data model. The (either balanced or unbalanced) fixed
effects model is commonly applied in the econometric anal-
ysis of microeconomic and macroeconomic data (Andreß
et al. 2013; Arellano 2004; Cameron and Trivedi 2005;
Wooldridge 2002), where each unit may represent, e.g., a
firm, or a country. It is also applied, among other fields, in
biostatistics (Härdle et al. 2007), educational research (Sher-
ron et al. 2000), engineering (Reeve 1988; Yu et al. 2018;
Zeifman 2015), neuroscience (Friston et al. 1999), political
science (Bell and Jones 2014), and sociology (Frees 2004).
In a fixed effects panel data model, observations related
to different observational units (individuals) are associated
with possibly different constants, which are able to represent
unobserved heterogeneity in the data. Moreover, the same
unit is observed along another dimension, which is typically
time. In the unbalanced case, at each instant, different units
may be not observedwith some positive probability (possibly
unit-dependent), resulting in a possibly unbalanced panel. In
this framework, the balanced case corresponds to the situa-
tion in which the number of observations is the same for all
the units.

The present work extends significantly the analysis of our
previous conference article (Gnecco and Nutarelli 2020) to
the unbalanced fixed effects panel data model, which is more
general than the balanced case considered therein, and leads
to an optimization problem that is more complex to inves-
tigate. Indeed, in Gnecco and Nutarelli (2020), all the units
are always selected at each instant, therefore the selection
probabilities do not appear as optimization variables in the
corresponding model. Moreover, theoretical arguments are
reported in much more details in the current work.

The results that will be presented in this paper concerning
the unbalanced fixed effects panel data model are consistent

1 A short abstract version of Gnecco and Nutarelli (2019b) was pre-
sented at the session “Optimization in Machine Learning” of the
International Conference on Optimization and Decision Science (ODS
2019), see Gnecco and Nutarelli (2019c).

with those of Gnecco and Nutarelli (2020) for the balanced
case, and those of Gnecco and Nutarelli (2019a, b) con-
cerning simpler linear regression models. Specifically, we
show that, also for the unbalanced fixed effects panel data
model, the following holds. When the precision of the super-
vision increases less than proportionally with respect to the
supervision cost per example, the minimum (large-sample
upper bound on the) generalization error (conditioned on the
training input dataset) is obtained in correspondence of the
smallest supervision cost per example. As a consequence
of the problem formulation, this corresponds to the choice
of the largest number of examples. Instead, when the preci-
sion of the supervision increases more than proportionally
with respect to the supervision cost per example, the opti-
mal supervision cost per example is the largest one. Again,
as a consequence of the problem formulation, this corre-
sponds to the choice of the smallest number of examples. The
structure of the optimal selection probabilities is also inves-
tigated, under the constraint of a constant expected number
of observed units for each instant. In summary, the results of
the theoretical analyses performed, for different regression
models of increasing complexity, in Gnecco and Nutarelli
(2019a, b, 2020), and in this paper highlight that, in some
circumstances, collecting a smaller number of more reliable
data is preferable than increasing the size of the sample set.
This looks particularly relevant when one is given a certain
flexibility in designing the data collection process.

Up to our knowledge, the analysis and the optimization of
the trade-off between sample size, precision of supervision,
and selection probabilities in regression has been carried out
rarely in the machine-learning literature. Nevertheless, the
approach applied in this paper resembles the one used in the
optimization of sample survey design, where some of the
design parameters are optimized to minimize the sampling
variance (Groves et al. 2004). Such an approach is also similar
to the one exploited in Nguyen et al. (2009) for the optimiza-
tion of the design ofmeasurement devices. In that framework,
however, linear regression is marginally involved, since only
arithmetic averages of measurement results are considered
therein. The search for optimal sample designs can be also
performed by the Optimal Computing Budget Allocation
(OCBA) method (Chen and Lee 2010). Differently from
that approach, however, our analysis provides the optimal
design a priori, i.e., before actually collecting the data. Our
work can also be related to recent literature dealing with
the joint application of machine learning, optimization, and
econometrics (Varian 2014; Athey and Imbens 2016; Bar-
gagli Stoffi and Gnecco 2018, 2019; Crane-Droesch 2017).
For instance, the generalization error—which is typically
investigated by machine learning, and optimized by solv-
ing suitable optimization problems—is not addressed in the
classical analysis of the either balanced or unbalanced fixed
effects panel data model (Wooldridge 2002, Chapters 10 and
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17). Finally, an advantage of the approach considered in this
work with respect to other possible ones grounded on Sta-
tistical Learning Theory (SLT) (Vapnik 1998) is that, being
based on a large-sample approximation, it provides bounds
on the conditional generalization error that do not need any
a-posteriori evaluation of empirical risks.

The paper is structured as follows. Section 2 provides a
background on the unbalancedfixed effects panel datamodel.
Section 3 presents the analysis of its conditional generaliza-
tion error, and of the large-sample upper bound on the latter
with respect to time. Section 4 formulates and solves the
optimization problem modeling the trade-off between sam-
ple size, precision of supervision, and selection probabilities
for the unbalanced fixed effects panel data model, using the
large-sample upper bound above. Finally, Sect. 5 discusses
some possible applications and extensions of the theoretical
results obtained in the work.

2 Background

We recall some basic facts about the following (static) unbal-
anced fixed effects panel data model (see, e.g., (Wooldridge
2002, Chapters 10 and 17)). Let n = 1, . . . , N denote obser-
vational units and, for each n, let t = 1, . . . , Tn be time
instants. Moreover, let the inputs xn,t (n = 1, . . . , N , t =
1, . . . , Tn) to the model be random column vectors in R

p

and, for each n = 1, . . . , N and t = 1, . . . , Tn , let the output
yn,t ∈ R be a scalar. The parameters of the model are some
individual constants ηn (n = 1, . . . , N ), one for each unit,
and a column vector β ∈ R

p. The (noise-free) input–output
relationship is expressed as follows:

yn,t := ηn + β ′xn,t , n = 1, . . . , N , t = 1, . . . , Tn . (1)

Equation (1) represents an unbalanced panel data model,
which can be applied in the following two situations:

• distinct units n are associated with possibly differ-
ent numbers Tn of data collected at each time instant
t = 1, . . . , Tn over a whole observation period T ≥
maxNn=1 Tn ;

• the observations related to the same unit are associ-
ated with a subsequence {t1, t2, . . . , tTn } of the sequence
{1, 2, . . . , T }.

In the next sections, we focus on the second situation. To
avoid burdening the notation by introducing an additional
index, we still indicate, also in this case, by {1, 2, . . . , Tn}
the subsequence {t1, t2, . . . , tTn }. A possible way to get dif-
ferent numbers of observations Tn for distinct units consists
in associating to each unit n a scalar qn ∈ (0, 1], which
denotes the (positive) probability that n is observed at any

time t . Selections for different units are supposed to bemutu-
ally independent. For simplicity, for each unit, selections at
different times are also assumed to be mutually independent.
For a total observation time T , denoting byE the expectation
operator, the expected number of observations for each unit
n isE {Tn} = qnT . The balanced case, which was considered
in the analysis of Gnecco and Nutarelli (2020), corresponds
to the situation qn = 1 for each n.

Let {εn,t }n=1,...,N , t=1,...,Tn be a collection of mutually
independent and identically distributed random variables,
having mean 0 and the same variance σ 2. Moreover, let all
the εn,t be independent also from all the xn,t . It is assumed
that noisymeasurements ỹn,t of the outputs yn,t are available;
specifically, the following additive noisemodel is considered:

ỹn,t = yn,t + εn,t , n = 1, . . . , N , t = 1, . . . , Tn . (2)

The input–output pairs
(
xn,t , ỹn,t

)
for n = 1, . . . , N , t =

1, . . . , Tn , are used to train the model, i.e., to estimate its
parameters. In the following, for n = 1, . . . , N , let Xn ∈
R
Tn ,p denote the matrix whose rows are the transposes of the

xn,t ; ỹn be the column vector that collects the noisy mea-
surements ỹn,t ; ITn ∈ R

Tn×Tn denote the identity matrix;
1Tn ∈ R

Tn be the column vector whose elements are all equal
to 1; and

Qn := ITn − 1

Tn
1Tn1T ′

n
(3)

be a symmetric and idempotent matrix, i.e., such that Q′
n =

Qn = Q2
n . Hence, for each unit n,

QnXn =

⎡

⎢⎢⎢
⎣

xn,1 − 1
Tn

∑Tn
t=1 xn,t

xn,2 − 1
Tn

∑Tn
t=1 xn,t

· · ·
xn,Tn − 1

Tn

∑Tn
t=1 xn,t

⎤

⎥⎥⎥
⎦

, (4)

and

Qn ỹn =

⎡

⎢
⎢⎢
⎣

ỹn,1 − 1
Tn

∑Tn
t=1 ỹn,t

ỹn,2 − 1
Tn

∑Tn
t=1 ỹn,t

· · ·
ỹn,Tn − 1

Tn

∑Tn
t=1 ỹn,t

⎤

⎥
⎥⎥
⎦

(5)

represent, respectively, thematrix of time de-meaned training
inputs, and the vector of time de-meaned corrupted training
outputs. The aim of time de-meaning is to generate another
dataset that does not include the fixed effects, making it pos-
sible to estimate first the vector β, then—going back to the
original dataset—the fixed effects ηn .

Assuming in the following the invertibility of the matrix∑N
n=1 X

′
n QnXn (see the next Remark 3.2 for a mild con-

dition ensuring this), the fixed effects estimate of β for the
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unbalanced case is

β̂FE

:=
(

N∑

n=1

X ′
n QnXn

)−1 ( N∑

n=1

X ′
n Qn ỹn

)

=
(

N∑

n=1

X ′
n Q

′
n QnXn

)−1 ( N∑

n=1

X ′
n Q

′
n Qn ỹn

)

. (6)

The unbalanced Fixed Effects (FE) estimates of the ηn ,
for n = 1, . . . , N , are

η̂n,FE := 1

Tn

Tn∑

t=1

(
ỹn,t − β̂

′
FExn,t

)
. (7)

Let 0p ∈ R
p be the column vector whose elements are all

equal to 0. By taking expectations and recalling the respec-
tive definitions and the fact that the measurement errors have
0 mean, it follows that the estimates (6) and (7) are condi-
tionally unbiased with respect to the training input dataset
{Xn}Nn=1, i.e.,

E

{(
β̂FE − β

)
|{Xn}Nn=1

}
= 0p, (8)

and, for any i = 1, . . . , N ,

E

{(
η̂i,FE − ηi

) |{Xn}Nn=1

}
= 0. (9)

Finally, the covariance matrix of β̂FE, conditioned on the
training input dataset, is

Var
(
β̂FE|{Xn}Nn=1

)

= σ 2

(
N∑

n=1

X ′
n QnXn

)−1

= σ 2

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1

. (10)

3 Large-sample upper bound on the
conditional generalization error

This section analyzes the generalization error associatedwith
the FE estimates (6) and (7), conditioned on the training input
dataset, by providing its large-sample approximation, and a
related large-sample upper bound on it. Then, in the next
section, the resulting expression is optimized, after choosing
a suitable model for the variance σ 2 of the measurement
noise, and imposing appropriate constraints.

Let xtesti ∈ R
p be a random test vector, which is assumed

to have finite mean and finite covariance matrix, and to be
independent from the training data. We express the general-
ization error for the i-th unit (i = 1, . . . , N ), conditioned on
the training input dataset, as follows2:

E

{(
η̂i,FE + β̂

′
FEx

test
i − ηi − β ′xtesti

)2 ∣∣{Xn}Nn=1

}
. (11)

The conditional generalization error (11) represents the
expected mean squared error of the prediction of the out-
put associated with a test input, conditioned on the training
input dataset.

For n = 1, . . . , N , let εn ∈ R
Tn be the column vector

whose elements are the εn,t ; ηn ∈ R
Tn be the column vector

whose elements are all equal to ηn ; and 0Tn×Tn ∈ R
Tn×Tn be

a matrix whose elements are all equal to 0. Noting that

E
{
εnε

′
m

} = 0Tn×Tn , for n �= m, (12)

E
{
εnε

′
n

} = σ 2 ITn , (13)

Q′
n Qn = Qn, (14)

Q′
n Qn Q

′
n Qn = Q′

n Qn, (15)

Qnηn = Q′
nηn = 0Tn , (16)

and

Qn1Tn = Q′
n1Tn = 0Tn , (17)

we can express the conditional generalization error (11)
as follows, highlighting its dependence on σ 2 and Ti (see
“Appendix 1” for the details):

E

{(
η̂i,FE + β̂

′
FEx

test
i − ηi − β ′xtesti

)2 ∣∣{Xn}Nn=1

}

= σ 2

T 2
i

1′
Ti X i

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1

X ′
i1Ti

+ σ 2

Ti

+ E

{
σ 2 (xtesti

)′
(

N∑

n=1

X ′
n Q

′
n QnXn

)−1

xtesti

∣
∣{Xn}Nn=1

}

− 2E

{
σ 2

Ti
1′
Ti X i

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1

xtesti

∣∣{Xn}Nn=1

}
. (18)

Next, we obtain a large-sample approximation of the condi-
tional generalization error (18) with respect to T , for a fixed
number N of units3.

2 See the next Remark 3.3 for a justification of the choice of the condi-
tioned generalization error for the analysis, instead of its unconditional
version.
3 Such an approximation is useful, e.g., in the application of the model
to macroeconomics data, for which it is common to investigate the
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For n = 1, . . . , N , let the symmetric and positive semi-
definite matrices An ∈ R

p×p be defined as

An = A′
n := E

{(
xn,1 − E

{
xn,1

}) (
xn,1 − E

{
xn,1

})′}
.(19)

In the following, the positive definiteness (hence, the invert-
ibility) of each matrix An is assumed. This is a quite mild
condition because it is associated with the fact that, with pos-
itive probability, the random vectors xn,1 − E

{
xn,1

}
do not

belong to any given subspace of Rp with dimension smaller
than p (so, they are effectively p-dimensional random vec-
tors).

Under mild conditions (e.g., if the xn,t are mutually inde-
pendent, identically distributed, and have finite moments up
to the order 4), the following convergences in probability4

hold:

plimT→+∞
1

Ti
1′
Ti X i

= plimT→+∞
1

Ti

Ti∑

t=1

x′
i,t

= (E {xi,1
})′

, (20)

and

plimT→+∞
1

T

N∑

n=1

X ′
n Q

′
n QnXn

= plimT→+∞
N∑

n=1

Tn
T

1

Tn
X ′
n Q

′
n QnXn

= AN , (21)

where

AN = A′
N :=

N∑

n=1

qnAn (22)

which is the weighted summation, with positive weights qn ,
of the symmetric and positive definite matrices An , hence it
is also a symmetric and positive definite matrix.

Remark 3.1 Equations (20) and (21) follow from the exten-
sion ofChebyschev’sweak lawof large numbers (Ruud2000,
Section 13.4.2) to the case of the summation of a random

case of a large horizon T . The case of finite T and large N is of more
interest for microeconometrics (Cameron and Trivedi 2005), and will
be investigated in future research.
4 We recall that a sequence of random real matrices MT of the same
dimension, T = 1, 2, . . . , converges in probability to the real matrix M
if, for every ε > 0, Prob (‖MT − M‖ > ε) (where ‖ · ‖ is an arbitrary
matrix norm) tends to 0 as T tends to +∞. In this case, one writes
plimT→+∞MT = M.

number of mutually independent random variables (Révész
1968, Theorem 10.1), combined with other technical results.
First, for each n = 1, . . . , N , convergence in probability of
1
Tn
X ′
n Q

′
n QnXn to An is proved element-wise, by applying

(Révész 1968, Theorem 10.1). Then, one exploits the fact
that, as a consequence of the Continuous Mapping Theorem
(Florescu 2015, Theorem 7.33), the probability limit of the
product of two random variables (in this case, Tn

T and each
element of 1

Tn
X ′
n Q

′
n QnXn) equals the product of their prob-

ability limits, when the latter two exist (which is the case for
Tn
T and each element of 1

Tn
X ′
n Q

′
n QnXn). Finally, one applies

the fact that, for a randommatrix, element-wise convergence
in probability implies convergence in probability of thewhole
random matrix (Lee 2010).

Remark 3.2 The existence of the probability limit (21) and
the positive definiteness of the matrix AN guarantee that the
invertibility of the matrix

N∑

n=1

X ′
n QnXn =

N∑

n=1

X ′
n Q

′
n QnXn (23)

(see Sect. 2) holds with probability close to 1 for large T . Due
to the generalizationofSlutsky’s theorem reported in (Greene
2003, TheoremD.14)5, under the stated assumptions also the
sequence of random matrices

(
1

T

N∑

n=1

X ′
n Q

′
n QnXn

)−1

(24)

converges in probability to A−1
N . This is needed to obtain

the next large-sample approximation (25) of the conditional
generalization error.

Remark 3.3 We point out that the conditional generalization
error (11) is investigated in this work, instead of its uncon-
ditional version because, in general, probability limits and
expectations cannot be inverted in order. This could prevent
the application of (Greene 2003, Theorem D.14) (or of simi-
lar results about probability limits)whenperforming a similar
analysis for the unconditional generalization error.

Let ‖ · ‖2 denote the l2-norm, and A
− 1

2
N be the principal

square root (i.e., the symmetric and positive definite square
root) of the symmetric and positive definite matrix A−1

N .
When (20) and (21) hold, from (18) and the assumed inde-
pendence of xtesti from all the other random vectors we get

5 It states that, given a sequence of random real square matrices MT
of the same dimension, T = 1, 2, . . . , if plimT→+∞MT = B and B
is invertible, then also plimT→+∞M−1

T = B−1.
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the following large-sample approximation (with respect to
T ) for the conditional generalization error (11):

E

{(
η̂i,FE + β̂

′
FEx

test
i − ηi − β ′xtesti

)2 ∣∣{Xn}Nn=1

}

	 σ 2

T

(
E
{
xi,1
})′ A−1

N E
{
xi,1
}

+ σ 2

qi T

+σ 2

T
E

{(
xtesti

)′
A−1
N xtesti

}

−2
σ 2

T

(
E
{
xi,1
})′ A−1

N E
{
xtesti

}

= σ 2

T

(
1

qi
+ E

{∥∥∥∥A
− 1

2
N

(
E
{
xi,1
}− xtesti

)
∥∥∥∥

2

2

})

. (25)

In the following, we denote, for a generic symmetric matrix
A ∈ R

s×s , by λmin(A) and λmax(A), respectively, its
minimum and maximum eigenvalue. Starting from the large-
sample approximation (25), the following steps canbeproved
(see “Appendix 2” for the details):

σ 2

T

(
1

qi
+ E

{∥∥
∥∥A

− 1
2

N

(
E
{
xi,1
}− xtesti

)
∥∥
∥∥

2

2

})

≤ σ 2

T

(
1

qi
+ λmax(A

−1
N )E

{∥∥(E
{
xi,1
}− xtesti

)∥∥2
2

})

= σ 2

T

(
1

qi
+ 1

λmin(AN )
E

{∥∥(E
{
xi,1
}− xtesti

)∥∥2
2

})

≤ σ 2

T

(
1

qi
+ 1
∑N

n=1 qnλmin(An)
E

{∥
∥(E

{
xi,1
}− xtesti

)∥∥2
2

})

.

(26)

We refer to the inequality

σ 2

T

(
1

qi
+ E

{∥
∥
∥∥A

− 1
2

N

(
E
{
xi,1
}− xtesti

)
∥
∥
∥∥

2

2

})

≤ σ 2

T

(
1

qi
+ 1
∑N

n=1 qnλmin(An)
E

{∥∥(E
{
xi,1
}− xtesti

)∥∥2
2

}
)

(27)

as the large-sample upper bound on the conditional general-
ization error. Interestingly, its right-hand side is expressed in
the separable form σ 2

T Ki ({qn}Nn=1), where

Ki ({qn}Nn=1)

:=
(

1

qi
+ 1
∑N

n=1 qnλmin(An)
E

{∥∥(E
{
xi,1
}− xtesti

)∥∥2
2

}
)

(28)

depends only on the qn . As shown in the next section, this
simplifies the analysis of the trade-off between sample size,

precision of supervision, and selection probabilities per-
formed therein, since one does not need to compute the exact
expression of the function Ki ({qn}Nn=1) to find the optimal
trade-off with respect to a suitable subset of optimization
variables.

4 Optimal trade-off between sample size,
precision of supervision, and selection
probabilities

In this section, we are interested in optimizing the large-
sample upper bound (27) of the conditional generalization
error when the variance σ 2 is modeled as a decreasing func-
tion of the supervision cost per example c, and a given upper
bound C > 0 is imposed on the expected total supervision
cost

∑N
n=1 qnT c associated with the whole training set. For

large T , this upper bound practically coincides with the total
supervision cost

∑N
n=1 Tnc. This follows by an application

of Chebyschev’s weak law of large numbers.

Remark 4.1 In our previous conference work (Gnecco and
Nutarelli 2020), the large-sample approximation (25) was
optimized, instead of (27). This was motivated by the fact
that all the selection probabilities qn were fixed to 1, implying
that both qi and AN , hence also the term

(
1

qi
+ E

{∥∥∥∥A
− 1

2
N

(
E
{
xi,1
}− xtesti

)
∥∥∥∥

2

2

})

, (29)

were constant therein.

In the following analysis of the optimal trade-off, N is
kept fixed; furthermore, one imposes the constraints

qn,min ≤ qn ≤ qn,max, n = 1, . . . , N , (30)

for some given qn,min ∈ (0, 1) and qn,max ∈ [qn,min, 1], and
N∑

n=1

qn = q̄ N , (31)

for some given q̄ ∈
[∑N

n=1 qn,min
N ,

∑N
n=1 qn,max

N

]
⊆ (0, 1].

In Eq. (31),
∑N

n=1 qn represents the expected number of
observed units for each instant, which is fixed. Moreover, T
is chosen as

⌊
C

q̄Nc

⌋
. Finally, the supervision cost per exam-

ple c is allowed to take values on the interval [cmin, cmax],
where 0 < cmin < cmax, so that the resulting T belongs to{⌊

C
q̄Ncmax

⌋
, . . . ,

⌊
C

q̄Ncmin

⌋}
. In the following,C is supposed

to be sufficiently large, so that the large-sample upper bound
(27) can be assumed to hold for every c ∈ [cmin, cmax] and
every qn ∈ [qn,min, qn,max] (for n = 1, . . . , N ).
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Consistently with (Gnecco and Nutarelli 2019a, b, 2020),
we adopt the following model for the variance σ 2, as a func-
tion of the supervision cost per example c:

σ 2(c) = kc−α, (32)

where k, α > 0. For 0 < α < 1, if one doubles the supervi-
sion cost per example c, then the precision 1/σ 2(c) (i.e., the
reciprocal of the conditional variance of the output) becomes
less than two times its initial value (or equivalently, the vari-
ance σ 2(c) becomes more than one half its initial value).
This case is referred to as “decreasing returns of scale” in
the precision of each supervision. Conversely, for α > 1,
if one doubles the supervision cost per example c, then the
precision 1/σ 2(c) becomes more than two times its initial
value (or equivalently, the variance σ 2(c) becomes less than
one half its initial value). This case is referred to as “increas-
ing returns of scale” in the precision of each supervision.
Finally, the case α = 1 is intermediate and refers to “con-
stant returns of scale”. In all the cases above, the precision
of each supervision increases by increasing the supervision
cost per example c.

Summarizing, under the assumptions above, the optimal
trade-off between sample size, precision of supervision, and
selection probabilities for the unbalanced fixed effects panel
data model is modeled by the following optimization prob-
lem:

minimize
c∈[cmin,cmax],

qn∈[qn,min,qn,max],
n=1,...,N

Ki ({qn}Nn=1)k
c−α

⌊
C

q̄Nc

⌋

s.t.
N∑

n=1

qn = q̄ N . (33)

By a similar argument as in the proof of (Gnecco and
Nutarelli 2019b, Proposition 3.2), which refers to an analo-
gous function approximation problem, whenC is sufficiently
large, the objective function CKi ({qn}Nn=1)k

c−α
⌊

C
q̄Nc

⌋ of the

optimization problem (33), rescaled by the multiplicative
factor C , can be approximated, with a negligible error in
the maximum norm on [cmin, cmax] × �N

n=1[qn,min, qn,max],
by q̄ N Ki ({qn}Nn=1)kc

1−α . Figure 1 shows the behavior of the
rescaled objective functions

CKi ({qn}Nn=1)k
c−α

⌊
C

q̄Nc

⌋ (34)

and

q̄ N Ki ({qn}Nn=1)kc
1−α (35)

for the three cases 0 < α = 0.5 < 1, α = 1.5 > 1, and
α = 1. The values of the other parameters are k = 0.5,

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
3

3.2

3.4

3.6
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4.6

(a)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
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(b)

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
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5.14

5.16
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(c)

Fig. 1 Plots of the rescaled objective functions CKi ({qn}Nn=1)k
c−α
⌊

C
q̄Nc

⌋

and q̄ N Ki ({qn}Nn=1)kc
1−α for α = 0.5 (a), α = 1.5 (b), and α = 1 (c).

The values chosen for the other parameters are detailed in the text
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q̄ = 0.5, Ki ({qn}Nn=1) = 2 (which can be assumed to hold
for a fixed choice of the set of the qn), N = 10, C = 125,
cmin = 0.4, and cmax = 0.8. One can show by standard cal-
culus that, for C → +∞ and the qn fixed to constant values,
the number of discontinuity points of the rescaled objec-
tive functionCKi ({qn}Nn=1)k

c−α
⌊

C
q̄Nc

⌋ tends to infinity, whereas

the amplitude of its oscillations above the lower envelope
q̄ N Ki ({qn}Nn=1)kc

1−α tends to 0 uniformly with respect to
c ∈ [cmin, cmax].

Concluding, under the approximation above, one can
replace the optimization problem (33) with

minimize
c∈[cmin,cmax],

qn∈[qn,min,qn,max],
n=1,...,N

q̄NKi ({qn}Nn=1)kc
1−α

s.t.
N∑

n=1

qn = q̄ N . (36)

Such optimization problem appears in a separable form, in
which one can optimize separately the variable c and the
variables qn , for n = 1, . . . , N . In particular, the optimal
solutions c◦ have the following expressions:

(a) if 0 < α < 1 (“decreasing returns of scale”): c◦ = cmin;
(b) if α > 1 (“increasing returns of scale”): c◦ = cmax;
(c) if α = 1 (“constant returns of scale”): c◦ = any cost c in

the interval [cmin, cmax].

In summary, the results of this part of the analysis show that,
in the case of “decreasing returns of scale”, “many but bad”
examples are associated with a smaller large-sample upper
bound on the conditional generalization error than “few but
good” ones. The opposite occurs for “increasing returns of
scale”, whereas the case of “constant returns of scale” is
intermediate. These results are qualitatively in line with the
ones obtained in Gnecco and Nutarelli (2020) for the bal-
anced case and inGnecco andNutarelli (2019a, b) for simpler
linear regression problems, to which the ordinary/weighted
least squares algorithms were applied. This depends on the
fact that, in all these cases, the large-sample approximation of
the conditional generalization error (or its large-sample upper
bound) has the functional form σ 2

T Ki , where Ki is either a
constant, or depends on optimization variables related to nei-
ther σ nor T .

One can observe that, in order to discriminate among the
three cases of the analysis reported above, it is not needed
to know the exact values of the constants k and N , neither
the expression of Ki as a function of the qn . Moreover, to
discriminate between the first two cases, it is not necessary
to know the exact value of the positive constant α. Indeed,
it suffices to know if α belongs, respectively, to the inter-
val (0, 1) or the interval (1,+∞). Finally, for this part of

the analysis, knowledge of the probability distributions of
the input examples associated with the different units is lim-
ited to the determination of the expressions of the constants
λmin(An) involved in the optimization of the variables qn .

Assuming that the constant terms λmin(An) and E{∥∥(E
{
xi,1
}− xtesti

)∥∥2
2

}
are known, optimal q◦

n can be

derived as follows. First, note that, for each fixed admissible
choice of qi , the optimization of the other qn can be restated
as follows:

maximize
qn∈[qn,min,qn,max],
n=1,...,N ,n �=i

⎛

⎝λmin(Ai )qi +
∑

n=1,...,N ,n �=i

λmin(An)qn

⎞

⎠

s.t.
∑

n=1,...,N ,n �=i

qn = q̄ N − qi . (37)

More precisely, an admissible choice for qi is one for which
qi ∈ [q̂i,min, q̂i,max

]
, where

q̂i,min := max{qi,min, q̄ N −
∑

n=1,...,N ,n �=i

qn,max}, (38)

and

q̂i,max := min{qi,max, q̄ N −
∑

n=1,...,N ,n �=i

qn,min}. (39)

The optimization problem (37) is a linear programming one,
which can be reduced to a continuous knapsack problem
(Martello and Toth 1990, Section 2.2.1), after a rescaling of
all its optimization variables and of their respective bounds.
It is well known that, due to its particular structure, such a
problem can be solved by the following greedy algorithm,
which is divided into three steps (for simplicity of exposi-
tion, we assume that all the λmin(An) are different from each
other):

1. first, the variables qn are re-ordered according to decreas-
ing values of the associated λmin(An). So, let q̌n := qπ(n)

and Ǎn := Aπ(n), where the function π : {1, . . . , N } →
{1, . . . , N } is a permutation satisfying λmin( Ǎm) <

λmin( Ǎn) for every m ≥ n. Let also ǐ = π(i);
2. starting from q̌n = q̌n,min for every n �= ǐ , the first

variable q̌1 (if ǐ �= 1) is increased until either the con-
straint

∑
n=1,...,N ,n �=ǐ q̌n = q̄ N − q̌ǐ , or the constraint

q̌1 = q̌1,max, is met; if ǐ = 1, then the procedure is applied
to the second variable q̌2;

3. step 2 is repeated for the successive variables (excluding
q̌ǐ ), terminating thefirst time the constraint

∑
n=1,...,N ,n �=ǐ q̌n

= q̄ N − q̌ǐ is met (this surely occurs, since qi is admissi-
ble).

The resulting optimal q◦
n (for n = 1, . . . , N with n �= i) are

parametrized by the remaining variable qi . Then, the optimal
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value of the objective function of the optimization problem
(37) is a real-valued function of qi which, in the following,
is denoted by fi (qi ). It follows from the procedure above
that fi (qi ) is a continuous and piece-wise affine function of
qi , with piece-wise constant slopes λmin( Ǎǐ )−λmin( Ǎn(qi )),
where the choice of the index n is a function of qi , and is
such that λmin( Ǎn(qi )) is a nonincreasing function of qi .
Hence, fi (qi ) is concave, and is nondecreasing for qi ≤
q̄ N − ∑ǐ−1

n=1 q̌n,max, where q̌n,max := qπ(n),max, and non-
increasing otherwise.

Exploiting the results above, the optimal value of qi for
the original optimization problem (36) is obtained by solving
the following optimization problem:

minimize
qi∈[q̂i,min,q̂i,max]

⎛

⎝ 1

qi
+

E

{∥
∥(E

{
xi,1
}− xtesti

)∥∥2
2

}

fi (qi )

⎞

⎠ . (40)

This is a convex optimization problem, since the function 1
qi

is convex, whereas the function

E

{∥∥(E
{
xi,1
}− xtesti

)∥∥2
2

}

fi (qi )
(41)

is of the form h( fi ), where fi is concave and h is convex and
nonincreasing, so h( fi ) is convex (Boyd and Vandenberghe
2004, Section 3.2). After solving the optimization problem
(40), the optimal values of the other qn for the original opti-
mization problem (36) are obtained as a consequence of the
three steps detailed above.

It follows from the reasoning above that the structure of
the optimal solutions q◦

n is as follows. First, there exists a
threshold λ̄◦ > 0 such that

(i) for any n �= i with λmin(An) > λ̄◦, q◦
n is equal to its

maximum admissible value qn,max;
(ii) for any n �= i with λmin(An) < λ̄◦, q◦

n is equal to its
minimum admissible value qn,min;

(iii) for at most one unit n �= i (for which λmin(An) =
λ̄◦, provided that there exists one value of n for which
this condition holds), q◦

n belongs to the interior of the
interval [qn,min, qn,max].

Moreover,

(iv) if
(
q̄ N −∑ǐ−1

n=1 q̌n,max

)
≥ q̂i,max, then

q◦
i = q̂i,max, (42)

and

λ̄◦ ∈ (0, λmin(Ai )) ; (43)

(v) if
(
q̄ N −∑ǐ−1

n=1 q̌n,max

)
< q̂i,max, then

q◦
i ∈

⎡

⎣

⎛

⎝q̄ N −
ǐ−1∑

n=1

q̌n,max

⎞

⎠ , q̂i,max

⎤

⎦ , (44)

and

λ̄◦ > λmin(Ai ). (45)

Finally, it is worth observing that the structure highlighted
above for the optimal solutions q◦

n and c◦ (the latter reported
under Eq. (36)), which is valid for any fixed value of q̄ , can be
useful to solve the modification of the optimization problem
(36) obtained in case the constraint (31) is replaced by

q̄minN ≤
N∑

n=1

qn ≤ q̄maxN , (46)

for some given q̄min, q̄max ∈ (0, 1], with q̄min < q̄max.

5 Conclusions

In this paper, the optimal trade-off between sample size, pre-
cision of supervision, and selection probabilities, has been
studiedwith specific reference to a quite general linearmodel
of input–output relationship representing unobserved het-
erogeneity in the data, namely the unbalanced fixed effects
panel data model. First, we have analyzed its conditional
generalization error, then we have minimized a large-sample
upper bound on it with respect to some of its parameters.
We have proved that, under suitable assumptions, “many
but bad” examples provide a smaller upper bound on the
conditional generalization error than “few but good” ones,
whereas in other cases the opposite occurs. The choice
between “many but bad” and “few but good” examples plays
an important role when better supervision implies higher
costs.

The theoretical results obtained in this work could be
applied to the acquisition design of unbalanced panel data
related to several fields, such as biostatistics, econometrics,
educational research, engineering, neuroscience, political
science, and sociology. Moreover, the analysis of the large-
sample case could be extended to deal with large N , or with
both large N and T . These cases would be of interest for
their potential applications in microeconometrics (Cameron
and Trivedi 2005). Another possible extension concerns the
introduction, in the noise model, of a subset of not con-
trollable parameters (beyond the controllable one, i.e., the
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noise variance), which could be estimated from a subset of
training data. As a final extension, one could investigate and
optimize the trade-off between sample size and precision of
supervision (and possibly, also selection probabilities) for the
random effects panel data model (Greene 2003, Chapter 13).
This is also commonly applied in the analysis of economic
data, and differs from the fixed effects panel data model in
that its parameters are considered as random variables. In the
present context, however, a possible advantage of the fixed
effects panel data model is that it also allows one to obtain
estimates of the individual constants ηn (see Eq. (7)), which
appear in the expression (11) of the conditional generaliza-
tion error. Moreover, the application of the random effects
model to the unbalanced case requires stronger assumptions
than the ones needed for the application of the fixed effects
model (Wooldridge 2002, Chapter 17).
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Appendix 1: Proof of Equation (18)

First, we expand the conditional generalization error (11) as
follows:

E

{(
η̂i,FE + β̂

′
FEx

test
i − ηi − β ′xtesti

)2 ∣∣{Xn}Nn=1

}

= E

{((
η̂i,FE − ηi

)+
(
β̂FE − β

)′
xtesti

)2 ∣∣{Xn}Nn=1

}

= E

{
(η̂i,FE − ηi )

2|{Xn}Nn=1

}

+ E

{((
β̂FE − β

)′
xtesti

)2 ∣∣{Xn}Nn=1

}

+ 2E

{
(
η̂i,FE − ηi

) (
β̂FE − β

)′
xtesti

∣∣{Xn}Nn=1

}
. (47)

Exploiting the conditional unbiasedness of η̂i,FE, and the
expressions (1) of yn,t , (2) of ỹn,t , and (7) of η̂i,FE (with
the index n replaced by the index i), one gets

E

{
(η̂i,FE − ηi )

2|{Xn}Nn=1

}

= E

{
⎛

⎝ 1

Ti

⎛

⎝
Ti∑

t=1

(
ηi + β ′xi,t+εi,t− β̂

′
FExi,t

)
⎞

⎠− ηi

⎞

⎠

2

∣
∣{Xn}Nn=1

}

= E

⎧
⎪⎨

⎪⎩

⎛

⎝ 1

Ti

Ti∑

t=1

((
β − β̂FE

)′
xi,t + εi,t

)⎞

⎠

2
∣∣{Xn}Nn=1

⎫
⎪⎬

⎪⎭
.

(48)

It follows from Eq. (48) that Eq. (47) can be re-written as

E

⎧
⎪⎨

⎪⎩

⎛

⎝ 1

Ti

Ti∑

t=1

((
β − β̂FE

)′
xi,t + εi,t

)
⎞

⎠

2
∣∣{Xn}Nn=1

⎫
⎪⎬

⎪⎭

+ E

{
(
xtesti

)′ (
β̂FE − β

) (
β̂FE − β

)′
xtesti

∣∣{Xn}Nn=1

}

+ 2E

{⎛

⎝ 1

Ti

Ti∑

t=1

((
β − β̂FE

)′
xi,t + εi,t

)⎞

⎠

(
β̂FE − β

)′
xtesti

∣∣{Xn}Nn=1

}
. (49)

Using the expression (6) of β̂FE, and Eq. (16), one can sim-
plify the term β̂FE − β above as follows:

β̂FE − β

=
(

N∑

n=1

X ′
n QnXn

)−1 ( N∑

n=1

X ′
n Qn ỹn

)

− β
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=
(

N∑

n=1

X ′
n QnXn

)−1 ( N∑

n=1

X ′
n Qn

(
ηn + Xnβ + εn

)
)

− β

=
(

N∑

n=1

X ′
n QnXn

)−1 ( N∑

n=1

X ′
n Qnεn

)

. (50)

Then, Eq. (49) becomes

E

{(1′
Ti

Ti

(
− X i

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1

(
N∑

n=1

X ′
n Q

′
n Qnεn

)

+ εi

))2∣∣{Xn}Nn=1

}

+ E

{
(
xtesti

)′
(

N∑

n=1

X ′
n Q

′
n QnXn

)−1 ( N∑

n=1

X ′
n Q

′
n Qnεn

)

⎛

⎝
(

N∑

n=1

X ′
n Q

′
n QnXn

)−1 ( N∑

n=1

X ′
n Q

′
n Qnεn

)⎞

⎠

′

xtesti

∣∣{Xn}Nn=1

}

+ 2E

{(1′
Ti

Ti

(
− X i

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1

(
N∑

n=1

X ′
n Q

′
n Qnεn

)

+ εi

))

⎛

⎝
(

N∑

n=1

X ′
n Q

′
n QnXn

)−1 ( N∑

n=1

X ′
n Q

′
n Qnεn

)⎞

⎠

′

xtesti

∣∣{Xn}Nn=1

}
. (51)

Expanding the square in thefirst term in the expression above,
and splitting its last term in two parts, one obtains the fol-
lowing expression for Eq. (51):

E

{1′
Ti
X i

T 2
i

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1 ( N∑

n=1

X ′
n Q

′
n Qnεn

)

(
N∑

n=1

ε′
n Q

′
n QnXn

)⎛

⎝

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1⎞

⎠

′

X ′
i1Ti
∣
∣{Xn}Nn=1

}

+ E

{
1′
Ti

εiε
′
i1Ti

T 2
i

∣
∣{Xn}Nn=1

}

− 2E

{1′
Ti
X i

T 2
i

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1

(
N∑

n=1

X ′
n Q

′
n Qnεn

)

ε′
i1Ti
∣∣{Xn}Nn=1

}

+ E

{ (
xtesti

)′
(

N∑

n=1

X ′
n Q

′
n QnXn

)−1

(
N∑

n=1

X ′
n Q

′
n Qnεn

)(
N∑

n=1

ε′
n Q

′
n QnXn

)

⎛

⎝
(

N∑

n=1

X ′
n Q

′
n QnXn

)−1⎞

⎠

′

xtesti

∣∣{Xn}Nn=1

}

− 2E

{1′
Ti
X i

Ti

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1

(
N∑

n=1

X ′
n Q

′
n Qnεn

)(
N∑

n=1

ε′
n Q

′
n QnXn

)

⎛

⎝

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1⎞

⎠

′

xtesti

∣∣{Xn}Nn=1

}

+ 2E

{1′
Ti

εi

Ti

(
N∑

n=1

ε′
n Q

′
n QnXn

)

⎛

⎝
(

N∑

n=1

X ′
n Q

′
n QnXn

)−1⎞

⎠

′

xtesti

∣∣{Xn}Nn=1

}
. (52)

In order to simplify the various terms contained in Eq. (52),
one observes that, due to Eqs. (12), (13), and (15), one gets

E

{( N∑

n=1

X ′
n Q

′
n QnXn

)−1 ( N∑

n=1

X ′
n Q

′
n Qnεn

)

(
N∑

n=1

ε′
n Q

′
n QnXn

)⎛

⎝

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1⎞

⎠

′

∣∣{Xn}Nn=1

}

= E

{( N∑

n=1

X ′
n Q

′
n QnXn

)−1

(
N∑

n=1

X ′
n Q

′
n Qnεnε

′
n Q

′
n QnXn

)

⎛

⎝
(

N∑

n=1

X ′
n Q

′
n QnXn

)−1⎞

⎠

′
∣∣{Xn}Nn=1

}

= σ 2
E

{( N∑

n=1

X ′
n Q

′
n QnXn

)−1

(
N∑

n=1

X ′
n Q

′
n Qn Q

′
n QnXn

)
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⎛

⎝

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1⎞

⎠

′
∣∣{Xn}Nn=1

}

= σ 2
E

{( N∑

n=1

X ′
n Q

′
n QnXn

)−1 ( N∑

n=1

X ′
n Q

′
n QnXn

)

⎛

⎝

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1⎞

⎠

′
∣∣{Xn}Nn=1

}

= σ 2
E

{( N∑

n=1

X ′
n Q

′
n QnXn

)−1
∣∣{Xn}Nn=1

}
, (53)

and

E

{( N∑

n=1

X ′
n Q

′
n QnXn

)−1

(
N∑

n=1

X ′
n Q

′
n Qnεn

)

ε′
i

∣
∣{Xn}Nn=1

}

= E

{( N∑

n=1

X ′
n Q

′
n QnXn

)−1

X ′
i Q

′
i Qiεiε

′
i

∣∣{Xn}Nn=1

}

= σ 2
E

{( N∑

n=1

X ′
n Q

′
n QnXn

)−1

X ′
i Q

′
i Qi

∣∣{Xn}Nn=1

}
.

(54)

Then, by an application of the two equations just derived
above, one obtains the following equivalent expression for
Eq. (52):

σ 21′
Ti
X i

T 2
i

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1

X ′
i1Ti

+ σ 2

Ti

− 2
σ 21′

Ti
X i

T 2
i

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1

X ′
i Q

′
i Qi1Ti

+ E

{
σ 2 (xtesti

)′
(

N∑

n=1

X ′
n Q

′
n QnXn

)−1

xtesti

∣
∣{Xn}Nn=1

}

− 2E

⎧
⎨

⎩

σ 21′
Ti
X i

Ti

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1

xtesti

∣∣{Xn}Nn=1

⎫
⎬

⎭

+ 2E

⎧
⎨

⎩

σ 21′
Ti
Q′

i Qi X i

Ti

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1

xtesti

∣∣{Xn}Nn=1

⎫
⎬

⎭
,

(55)

where, in some cases, the conditional expectations of deter-
ministic matrices (and of random matrices, like X i , that
becomeknownonce the set of conditioningmatrices {Xn}Nn=1

has been fixed) have been replaced by the matrices them-
selves. Finally, exploiting Eq. (17), one can get rid of the
third and sixth terms in Eq. (55), which then becomes

σ 21′
Ti
X i

T 2
i

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1

X ′
i1Ti

+ σ 2

Ti

+ E

{
σ 2 (xtesti

)′
(

N∑

n=1

X ′
n Q

′
n QnXn

)−1

xtesti

∣
∣{Xn}Nn=1

}

− 2E

{
σ 21′

Ti
X i

Ti

(
N∑

n=1

X ′
n Q

′
n QnXn

)−1

xtesti

∣
∣{Xn}Nn=1

}
, (56)

which is Eq. (18).

Appendix 2: Proof of Equation (26)

The first inequality

σ 2

T

(
1

qi
+ E

{∥
∥∥∥A

− 1
2

N

(
E
{
xi,1
}− xtesti

)
∥
∥∥∥

2

2

})

≤ σ 2

T

(
1

qi
+ λmax(A

−1
N )E

{∥∥(E
{
xi,1
}− xtesti

)∥∥2
2

})

(57)

in Eq. (26) is obtained by exploiting the definition of induced
l2-matrix norm, i.e.,

‖A− 1
2

N ‖2 = sup
x∈Rp,‖x‖2 �=0

‖A− 1
2

N x‖2
‖x‖2 , (58)

and the fact that, being A
− 1

2
N symmetric, one has

‖A− 1
2

N ‖22 = λ2max(A
− 1

2
N ) = λmax(A

−1
N ). (59)

Then, the equality

σ 2

T

(
1

qi
+ λmax(A

−1
N )E

{∥
∥(E

{
xi,1
}− xtesti

)∥∥2
2

})

= σ 2

T

(
1

qi
+ 1

λmin(AN )
E

{∥∥(E
{
xi,1
}− xtesti

)∥∥2
2

})
.

(60)

follows from the relationship λmin(AN ) = 1
λmax(A

−1
N )

.

Finally, the last inequality in Eq. (26) is obtained by
exploitingWeyl’s inequalities (Bhatia 1997,Theorem III.2.1)
for the eigenvalues of the sum of symmetric matrices, as
detailed in the following remark.
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Remark 5.1 Given any pair of symmetric matrices A, B ∈
R
s×s , let their eigenvalues and those of C := A + B be

ordered nondecreasingly (with possible repetitions in case
of multiplicity larger than 1) as

λ1(A) ≤ λ2(A) ≤ . . . ≤ λk(A) ≤ . . . ≤ λs(A),

λ1(B) ≤ λ2(B) ≤ . . . ≤ λk(B) ≤ . . . ≤ λs(B),

λ1(C) ≤ λ2(C) ≤ . . . ≤ λk(C) ≤ . . . ≤ λs(C). (61)

Then, Weyl’s inequalities, in their simplest form, state that,
for every k = 1, . . . , s, one has

λk(A) + λ1(B) ≤ λk(C) ≤ λk(A) + λs(B). (62)

Hence, λmin(C) ≥ λmin(A) + λmin(B). Similarly, for any
μ1, μ2 ≥ 0, when A and B are also positive semi-definite
(as in the case of the matrices A defined in Eq. (19)), one
gets

λmin(μ1A + μ2B) ≥ μ1λmin(A) + μ2λmin(B). (63)

Finally, Eq. (63) extends directly to the case of a weighted
summation (with non-negative weights) of symmetric and
positive semi-definite matrices, proving the last inequality in
Eq. (26).
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