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Abstract: Stabilized arylzinc iodides, synthesized by direct insertion of zinc into the corresponding
halides, were used as nucleophiles into an acylative Negishi coupling reaction to synthesize chalcones.
The reaction conditions were optimized to afford optimal results on a model reaction and then applied
to synthesize nine compounds. Esters, chlorides, electron-rich, electron-poor and sterically hindered
substrates are well tolerated and even heteroaryl derivatives can be synthesized.
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1. Introduction

Chalcones, namely 1,3-diaryl-2-propen-1-ones, belong to the flavonoid family, being
open-chain flavonoids where the two aromatic rings are conjugated to an α,β-unsaturated
carbonyl system [1,2]. As with the majority of flavonoids, naturally occurring and syn-
thetic chalcones exhibit different biological activities [2–6]. As a matter of fact, chalcone-
containing plants, which possess beneficial biological effects, have been used for a long
time in traditional medical practice [6]. However, isolation of chalcone derivatives from
natural sources requires complicated procedures, so the development of efficient protocols
for their synthesis has been pursued (Scheme 1) [2]. Most of the strategies to prepare
chalcones make use of aldol-like reactions [2], by which the conjugated system can be
built starting from an arylaldehyde and an arylmethylketone [2]. This approach usually
makes use of strong bases and provides good results for simple substrates, but in the case
of complex molecules, the result can be scarcely selective [2]; in addition, the synthesis of
the required aldehydes and methylketones can be tricky [2]. Another approach is based
on the use of the Friedel–Craft acylation, an economical option even if usually limited
to electron-rich substrates [7]. Therefore, the search for alternative synthetic protocols
overcoming these problems is intriguing. Among the possible alternatives, the Negishi
acylative cross-coupling between acyl chlorides and organozinc halides, a well-known
strategy to form ketones, attracted our attention [8]. Such a strategy can be interesting
for the synthesis of chalcones, making use of cinnamoyl chlorides readily available from
the corresponding carboxylic acids, which, in turn, can be synthesized in several ways,
for instance by Knoevenagel–Doebner reaction. Curiously, there are no examples in the
literature of such a reaction: only the synthesis of chalcone (1,3-Diphenylprop-2-en-1-one)
through a Negishi coupling starting from phenylzinc chloride and a mixed anhydride of
cinnamic acid was reported [9]. On the side of the nucleophile, the required arylzinc halides
can be made through different paths. Among all other methods, the preparation of arylzinc
is usually achieved through transmetalation, starting from a more reactive organometallic
compound, or via direct insertion of zinc metal into the corresponding halide [10].
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Scheme 1. Synthesis of chalcones.

The latter strategy shows several advantages, because it is more selective, cheap, and
green, as no other metal has to be used except zinc, and there is no need for other more reac-
tive, and less selective, reactants [11–13]. However, the use of organozinc halides prepared
by direct insertion, especially those obtained from iodides, is known to be problematic for
acylative cross-couplings, because Zn species catalyze side reactions of the acyl chloride
with the ethereal solvent (Scheme 2) [14].
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Scheme 2. Side-reaction catalyzed by zinc and/or zinc salts.

Another issue concerns the presence of electron-rich aromatic rings in most of the
natural and bioactive chalcones, because the preparation of electron-rich arylzinc reagents
by direct insertion can be challenging to achieve in reasonable reaction times [11–13].

In addition, depending on the organozinc formulation, chalcones can be reactive
towards the organozinc halide itself, affording the conjugated addition product of the
nucleophile to the beta-carbon (Scheme 3) [15]. This aspect can complicate the tuning of the
reaction conditions, as the side-reaction of the cross-coupling product with the organozinc
halide must be avoided.
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Problems related both to the preparation of electron-rich organozinc halides and
side-reactions of the organometallic species can be overcome using a recently developed
mild and efficient protocol for the preparation of organozinc iodides by silver catalyzed
zinc insertion into aryl iodides in the presence of N,N,N,N-tetramethylethylenediamine
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(TMEDA), which allowed us to quickly obtain arylzinc iodides, also endowed with electron-
rich substituent groups [13]. These organometallic reagents were successfully used in
Negishi cross-coupling reactions and showed to be unreactive towards the conjugate
addition [13,15].

These considerations, together with our interest in the synthesis of natural products [16–18],
and our previous results in organozinc halides chemistry [13,15,18,19], prompted us
to address our efforts in developing an affordable protocol for the synthesis of chal-
cones through acylative Negishi cross-coupling, using arylzinc halides prepared by direct
insertion [13,15–19].

2. Results and Discussion

For the initial tuning of the reaction conditions, we chose to use our protocol for
preparing the required organozinc halides, which proved to be affordable and fast for
producing electron-rich arylzinc halides [13]. We selected the cross-coupling between
4-methoxyphenylzinc iodide (1a) and cinnamoyl chloride (2a) as the model reaction
(Table 1). The first trial (Table 1, entry 1) was performed in tetrahydrofuran (THF) as
the solvent, a common choice with this kind of organometallics, and we tried to use the
inexpensive air-stable pre-catalyst PdCl2(PPh3)2; unfortunately, in these conditions, only a
low 19% isolated yield was obtained, the more notable byproduct being the result of the
reaction between the acyl chloride and the solvent (Scheme 2). So, we tried to change the
reaction solvent into 1,2-dimethoxyethane (DME). DME is still an ethereal solvent, but it is
not reported in the literature to give this kind of side reactions [14]. A great improvement
with respect to the same reaction performed in THF was observed, the yield rising up to
46% (Table 1, entry 2).

Table 1. Optimization of the model reaction.
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Entry Pre-Catalyst Temperature Solvent Yield 1

1 PdCl2(PPh3)2 50 ◦C THF 19%
2 PdCl2(PPh3)2 50 ◦C DME 46%
3 PdCl2(PPh3)2 70 ◦C DME 36%
4 Pd(dppf)Cl2 50 ◦C DME 51%
5 Pd(dppf)Cl2 70 ◦C DME 49%
6 PdCl2(PCy3)2 50 ◦C DME 22%
7 Pd(OAc)2 + SPhos 50 ◦C DME 45%
8 Pd(OAc)2 + XPhos 50 ◦C DME 25%
9 Pd2(dba)3 + SPhos 50 ◦C DME 90%

10 Pd(PPh3)4 50 ◦C DME 92%

1 isolated yield.

Unfortunately, increasing the temperature from 50 ◦C to 70 ◦C did not improve the
yield furtherly; on the contrary, we experienced lower yields working at higher temper-
atures, probably due to side-reactions, leading to a complex mixture of high molecular
weight compounds (Table 1, entry 2 vs. entry 3). The use of diphenylphosphinoferrocene
derivative Pd(dppf)Cl2 as the pre-catalyst, another air-stable compound with a bidentate
phosphine, known to be a good choice in several cross-coupling reactions; temperatures at
both 50 ◦C (Table 1, entry 4) and 70 ◦C (Table 1, entry 5) gave only a little improvement in
isolated yields, not sufficient yet for synthetic purposes. Using PdCl2(PCy3)2, a pre-catalyst
endowed with the more basic tricyclohexylphosphine ligand, afforded the cross-coupling
product only in 22% yield; this result is probably attributable to a less efficient reduc-
tive elimination step in the catalytic cycle, due to the excessive basicity of the palladium
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ligated to the alkyl phosphine [20]. At this point, we moved our attention to Buchwald
biarylic ligands SPhos and XPhos, which proved to give excellent results in other kind of
Negishi cross-couplings [21,22], using palladium acetate as the source of palladium and a
1:1 stoichiometric ratio between the metal and the phosphines. While with SPhos (Table 1,
entry 7), the yield was 45%, the result using XPhos (Table 1, entry 8) was even worse, as the
product was obtained in only 25% yield. One of the possible problems, common to all the
above-mentioned trials (Table 1, entry 1–8), was supposed to lie in the use of an oxidated
source of palladium. Indeed, the catalytic cycle involves a palladium (0) catalyst, and it is
generally assumed that all the pre-catalysts, in order to start their activity, must be in situ
reduced by one of the other reagents [23]. Therefore, we tried to use a palladium (0) source,
namely tris(dibenzylideneacetone)dipalladium (0), and SPhos as the ligand: to our delight,
these conditions (Table 1, entry 9) resulted in a great improvement of the isolated yield that
raised up to 90%.

Encouraged by this result, we tried another palladium (0) pre-catalyst, the more
classical and less expensive palladium tetrakis triphenylphosphine, which provided slightly
better results (Table 1, entry 10).

With the optimized reaction conditions, the applicability and robustness of the protocol
was proved, using different organozinc iodides as well as different cinnamoyl chlorides.
As shown in Scheme 4, several substituents on both the reaction partners are well-tolerated.
Electron-rich, as well as electron-poor arylzinc halides can be employed and different
substituted cinnamoyl chlorides have been used. Moreover, the reaction does not suffer
steric hindrance on the nucleophile, and even heteroaryl derivatives can be synthesized.
It is important to note that some of the obtained products (3b, 3e, 3f) have functional
groups that are not compatible with polarized organometallic compounds such as Grignard
or organolithium reagents; therefore, their synthesis using arylzinc halides prepared by
transmetalation from these kinds of reactants is not feasible without the use of very low
temperatures [24]. It is also important to note that the direct synthesis of electron-rich
arylzinc halides, such as the ones required to synthesize 3a and 3c, requires very short
times if compared with other literature methods [12].
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3. Conclusions

In conclusion, the synthesis of chalcones through a path involving an acylative Negishi
coupling has been investigated and optimized. The key point of this strategy is the prepara-
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tion of the organozinc by direct insertion which is reflected in a superior functional-group
tolerance and an improved intrinsic greenness. Different functional groups as well as
heteroaryl rings are well-tolerated. The effectiveness of the method has been proven by
synthesizing nine substrates endowed with different synthetic patterns. The products
were esters, chlorides, heteroaryl, electron-rich, electron-poor and sterically hindered com-
pounds.

4. Experimental Section
4.1. General Information

Proton (1H NMR) and carbon (13C NMR) nuclear magnetic resonance spectra were
recorded at 400 MHz and 100 MHz, or at 500 MHz and 125 MHz, respectively. The chemical
shifts are given in parts per million (ppm) on the delta (δ) scale. GC-FID analyses were
performed on GC instrument with a Split/Splitless injector and an FID detector. Analytical
TLCs were performed on precoated silica gel ALUGRAM Xtra G/UV254 plates. Purifications
were performed by flash chromatography on silica gel (40–63 µm). All reactions were
performed in flame dried glassware under argon atmosphere. Ethereal solvents were
dried twice over molecular sieves and distilled before the use. TMEDA was refluxed
with CaH2 and distilled before the use. Thionyl chloride was distilled before the use.
Zinc was flame dried under high vacuum before the use. Cinnamic acids were prepared
according to reported procedures [25]. Acyl chlorides were prepared according to reported
procedures [26]. All other solid reagents were dried under vacuum before the use.

4.2. General Procedure for the Synthesis of the Arylzinc Halides

In a typical procedure, zinc powder (490 mg, 7.5 mmol) was flame dried under
vacuum in a round-bottomed flask equipped with a reflux condenser and a magnetic stirrer;
silver acetate (8.4 mg, 0.05 mmol) was then added under argon and the mixture dried
again under vacuum; the flask was refilled with argon and anhydrous DME (5 mL) and
chlorotrimethylsilane (15 µL, 0.075 mmol) were added. The mixture was stirred and heated
with a hot-gun for 5 min. After cooling, anhydrous TMEDA (750 µL, 5 mmol) and the
aromatic iodide (5 mmol) were added.

The mixture was heated at the reflux and stirred with TLC check on hydrolyzed aliquot
until full conversion.

4.3. General Procedure for the Synthesis of Chalcones

In a typical procedure, Pd(PPh3)4 (38 mg, 0.033 mmol, 1%) was dried under vacuum
in a round-bottomed flask equipped with magnetic stirrer; the flask was refilled with argon
and an acyl halide (3.3 mmol) solution in anhydrous DME (3.3 mL) and the organozinc
halide solution [13] (5.8 mL, 5 mmol) were added. The mixture was heated at 50 ◦C and
stirred for the time indicated for each trial (Scheme 2) before being quenched with NH4Cl
and extracted with EtOAc (3 × 10 mL). Flash chromatography purification on silica gel
with hexane/ethyl acetate mixtures afforded the pure compounds.

4.3.1. (E)-1-(4-Methoxyphenyl)-3-phenylprop-2-en-1-one (3a)

It was prepared according to the general procedure from cinnamoyl chloride and
4-(methoxy)phenylzinc iodide: 723 mg (3.04 mmol, 92%) of white solid were obtained after
flash chromatography (SiO2, Hex:EtOAc 9:1) [27] 1H NMR (500 MHz, CDCl3) δ 8.08–8.01
(m, 2H), 7.80 (d, J = 15.6 Hz, 1H), 7.68–7.60 (m, 2H), 7.55 (d, J = 15.7 Hz, 1H), 7.45–7.36 (m,
3H), 7.01–6.93 (m, 2H), 3.86 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 188.8, 163.5, 144.0, 135.2,
131.2, 130.9, 130.5, 129.0, 128.5, 121.9, 114.0, 55.6.

4.3.2. Methyl (E)-4-(3-(2-Methoxyphenyl)acryloyl)benzoate (3b)

It was prepared according to the general procedure from (E)-3-(2-methoxyphenyl)-
acryloyl chloride and (4-(methoxycarbonyl)phenyl)zinc iodide: 684 mg (2.31 mmol, 70%)
of pale yellow solid were obtained after flash chromatography (SiO2, Hex:EtOAc 8:2) [28].
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1H NMR (400 MHz, CDCl3) δ 8.22–7.98 (m, 5H), 7.69–7.54 (m, 2H), 7.45–7.36 (m, 1H),
7.04–6.90 (m, 2H), 3.96 (s, 3H), 3.92 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 190.8, 166.4,
158.9, 142.1, 141.4, 133.3, 132.1, 129.8, 129.4, 128.4, 123.6, 122.7, 120.8, 111.3, 55.6, 52.4.

4.3.3. (E)-1-(2-Methoxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (3c)

It was prepared according to the general procedure from (E)-3-(4-methoxyphenyl)-
acryloyl chloride and 2-(methoxy)phenylzinc iodide: 744 mg (2.77 mmol, 84%) of pale
yellow oil were obtained after flash chromatography (SiO2, Hex:EtOAc 8:2) [29]. 1H NMR
(400 MHz, CDCl3) δ: 7.58-7.52 (m, 3H), 7.45 (t, 1H, J = 7.8 Hz), 7.04-6.97 (m, 2H), 6.90 (d,
2H, J = 8.4 Hz), 3.88 (s, 3H), 3.83 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 193.2, 161.6, 158.0,
143.4, 132.6, 130.2, 130.1, 129.7, 127.9, 125.0, 120.7, 114.4, 111.7, 55.8, 55.4.

4.3.4. (E)-1-(3-Chlorophenyl)-3-phenylprop-2-en-1-one (3d)

It was prepared according to the general procedure from cinnamoyl chloride and
3-chlorophenylzinc iodide: 641 mg (2.64 mmol, 80%) of pale yellow solid were obtained
after flash chromatography (SiO2, Hex) [30]. 1H NMR (400 MHz, CDCl3) δ 7.99 (t,
J = 1.9 Hz, 1H), 7.89 (dt, J = 7.7, 1.4 Hz, 1H), 7.83 (d, J = 15.6 Hz, 1H), 7.69–7.61 (m, 2H), 7.56
(ddd, J = 8.0, 2.2, 1.1 Hz, 1H), 7.50–7.39 (m, 5H). 13C NMR (100 MHz, CDCl3) δ 189.0, 145.7,
139.8, 134.9, 134.6, 132.7, 130.9, 130.0, 129.1, 128.6, 128.6, 126.6, 121.4.

4.3.5. Methyl (E)-4-(3-(Naphthalen-1-yl)acryloyl)benzoate (3e)

It was prepared according to the general procedure from (E)-3-(naphthalen-1-yl)acryloyl
chloride and (4-(methoxycarbonyl)phenyl)zinc iodide: 887 mg (2.81 mmol, 85%) of pale yel-
low solid were obtained after flash chromatography (SiO2, Hex:EtOAc 8:2) [28].
1H NMR (400 MHz, CDCl3) δ 8.69 (d, J = 15.5 Hz, 1H), 8.24 (dd, J = 8.4, 1.2 Hz, 1H),
8.21–8.09 (m, 4H), 7.98–7.86 (m, 3H), 7.66–7.49 (m, 4H), 3.97 (s, 3H). 13C NMR (100 MHz,
CDCl3) δ 189.9, 166.4, 142.7, 141.7, 133.9, 133.7, 132.1, 131.9, 131.3, 130.0, 128.9, 128.6, 127.2,
126.5, 125.5, 125.3, 124.4, 123.5, 52.6.

4.3.6. Methyl (E)-4-(3-(Thiophen-2-yl)acryloyl)benzoate (3f)

It was prepared according to the general procedure from (E)-3-(thiophen-2-yl)acryloyl
chloride and (4-(methoxycarbonyl)phenyl)zinc iodide: 737 mg (2.71 mmol, 82%) of pale yel-
low solid were obtained after flash chromatography (SiO2, Hex:EtOAc 8:2) [31].
1H NMR (400 MHz, CDCl3) δ 8.18–8.01 (m, 4H), 7.96 (dt, J = 15.3, 0.8 Hz, 1H), 7.45
(dt, J = 5.0, 1.0 Hz, 1H), 7.40–7.36 (m, 1H), 7.30 (d, J = 15.3 Hz, 1H), 7.10 (dd, J = 5.1, 3.6 Hz,
1H), 3.96 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 189.5, 166.4, 141.7, 140.2, 138.2, 133.6, 132.7,
129.9, 129.4, 128.6, 128.4, 120.5, 52.6.

4.3.7. (E)-3-(4-Chlorophenyl)-1-phenylprop-2-en-1-one (3g)

It was prepared according to the general procedure from (E)-3-(4-chloro)acryloyl
chloride and phenylzinc iodide: 649 mg (2.67 mmol, 81%) of pale yellow oil were obtained
after flash chromatography (SiO2, Hex:EtOAc 8:2) [32]. 1H NMR (500 MHz, CDCl3) δ
8.06–7.98 (m, 2H), 7.76 (d, J = 15.7 Hz, 1H), 7.63–7.55 (m, 3H), 7.55–7.47 (m, 3H), 7.43–7.36
(m, 2H). 13C NMR (125 MHz, CDCl3) δ 190.3, 143.4, 138.1, 136.5, 133.5, 133.1, 129.7, 129.4,
128.8, 128.6, 122.5.

4.3.8. (E)-3-Phenyl-1-(thiophen-2-yl)prop-2-en-1-one (3h)

It was prepared according to the general procedure from cinnamoyl chloride and
thiophen-2-ylzinc iodide: 566 mg (2.64 mmol, 80%) of pale yellow solid were obtained
after flash chromatography (SiO2, Hex). 1H NMR (400 MHz, CDCl3) δ 7.88–7.80 (m, 2H),
7.68–7.59 (m, 3H), 7.45–7.37 (m, 4H), 7.16 (dd, J = 4.9, 3.8 Hz, 1H) [7]. 13C NMR (100 MHz,
CDCl3) δ 182.1, 145.7, 144.2, 134.8, 134.1, 132.0, 130.7, 129.1, 128.6, 128.4, 121.7.
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4.3.9. (E)-3-(4-Methoxyphenyl)-1-phenylprop-2-en-1-one (3i)

It was prepared according to the general procedure from (E)-3-(4-methoxyphenyl)-
acryloyl chloride and phenylzinc iodide: 668 mg (2.81 mmol, 85%) of pale yellow oil were
obtained after flash chromatography (SiO2, Hex:EtOAc 8:2) [33]. 1H NMR (400 MHz,
CDCl3) δ 8.06–7.95 (m, 2H), 7.79 (d, J = 15.7 Hz, 1H), 7.63–7.54 (m, 3H), 7.53–7.46 (m, 2H),
7.42 (d, J = 15.6 Hz, 1H), 6.97–6.89 (m, 2H), 3.84 (s, 3H). 13C NMR (100 MHz, CDCl3)
δ 190.7, 161.8, 144.8, 138.6, 132.7, 130.4, 128.7, 128.5, 127.7, 119.9, 114.5, 55.5.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/org3020006/s1: 1H-NMR and 13C-NMR spectra of syn-
thetized compounds.
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