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Abstract

Random walks on graphs are often used to analyse and predict epidemic spreads and to

investigate possible control actions to mitigate them. In this study, we first show that models

based on random walks with a single stochastic agent (such as Google’s popular PageR-

ank) may provide a poor description of certain features of epidemic spread: most notably,

spreading times. Then, we discuss another Markov chain based method that does reflect

the correct mean infection times for the disease to spread between individuals in a network,

and we determine a procedure that allows one to compute them efficiently via a sampling

strategy. Finally, we present a novel centrality measure based on infection times, and we

compare its node ranking properties with other centrality measures based on random walks.

Our results are provided for a simple SI model for epidemic spreading.

1 Introduction

1.1 Motivation

Markov chain models of dynamic processes on graphs have been exploited in a number of suc-

cessful applications, of which the most notable one is perhaps Google’s PageRank algorithm

[1]. Other successful applications include the modeling of power grids [2], connections of neu-

rons in neuroscience [3], social networks [4], road networks [5], and epidemic networks [6].

These models rely upon the idea that a system may be modeled as a random walk, where

the system transitions from state to state in discrete time-steps (possibly itself again) with a

given probability that only depends on the current node of the system. In the aforementioned

examples, this could be an Internet ‘surfer’ who chooses a link from one web-page to pass to

the next web-page [7], or a car that at each intersection chooses the next road segment [5], or

in electric circuits the incoming current at each junction is split in the out-going branches. In

such examples, known parameters of graph theory and Markov chains may be used to infer

interesting properties of the modeled case study, such as (for instance) mean first passage

times, or the second-largest eigenvalue modulus, or Kemeny’s constant. For example, in [5],

Kemeny’s constant is used as a measure of how well-connected the road network is, and the
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change in Kemeny’s constant upon removal of a road segment from the network is used as a

measure of the importance of that road, thus using a well-understood Markov chain parameter

associated with the network to make design and control decisions in the system.

Of particular interest is the consideration of spreading phenomena in a network: for exam-

ple, the spread of disease in a contact network, the dissemination of rumours in an online

social network, and so on. The starting point of this manuscript is the observation that a

model based on a single random walker may not be strictly appropriate in such applications,

and that one should interpret the properties of the random walk on a given graph carefully,

rather than naively equating the behaviour of the random walk with the behaviour of the

dynamical system it models.

In the literature, two main categories of random-walk models have been proposed to

analyse epidemic networks. First, models based on a single random walker have been used,

often derived from the expanding field of centrality measures [8]; they have been shown to

provide interesting insight of the population networks; see, e.g., [6, 9, 10]. These models are

particularly attractive because the relevant quantities are simple to compute also for relatively

large networks. However, as we shall show in Section 3, these models fail to accurately predict

the number of steps required to infect individuals in a network, as they do not consider the

simultaneous presence of infected individuals in the network.

A second class of random-walk models includes models where several random walks occur

simultaneously in the network, mimicking the actual dynamics of viruses and agents [11–13].

This approach fits into the general theory of agent-based methods: many variants have been

proposed in the literature, sometimes with high degrees of sophistication; see, e.g., [14–18].

However, the math can be worked out to obtain closed formulas only in cases with particular

topology or symmetries [19, 20]. In most cases, the relevant quantities can only be estimated

through intensive Monte Carlo simulations, and can not be computed exactly using close for-

mulas. Hence these models often suffer from scalability issues.

1.2 Contribution

In this manuscript we investigate random-walk based models for epidemic spreading and pro-

vide the following contributions to the state of the art:

1. First, we show through several examples why models based on a single random walker fail

to accurately reproduce the dynamics of a virus in terms of infection times;

2. Second, we consider a classic 2n-state Markov chain SI model on a network, and establish

closed-form expressions for computing relevant infection times. Such times are based on

matrices that grow exponentially with the size of the population. Thus, we also provide an

algorithm based on a sampling strategy that retains the actual mean infection times and is

more computationally efficient than Monte Carlo simulations;

3. Finally, we propose a centrality measure called the mean infection covering time to rank

nodes in a network by their influence in disease spread. Also, we compare it with other con-

ventional indicators on several examples.

The paper is organized as follows: in Section 2, we give the mathematical formulation of

Markov chains and random walks on graphs, along with the associated indicators that are used

for quantitative and qualitative insights into systems modelled by these. In Section 3, we pro-

vide several motivating examples in which we compare naïve interpretations of random-walk

parameters with simulated outcomes in the context of disease spread, in order to highlight

some of the ways that this model does not capture the true dynamics. In Section 4, we describe
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a classic Markov chain model for disease spread which does effectively capture the disease

dynamics. This model results in a Markov chain with 2n states, as the state space describes the

state (susceptible or infected) of every individual in the network with a binary representation.

Such models do not scale efficiently with the size of the network, so we also provide an algo-

rithm based on a sampling strategy to estimate mean infection times from one individual to

another one, or from one group of individuals to another. In Section 5, we use the same con-

cept to calculate the time for a single individual to infect the entire network, and propose these

mean infection covering times (MICTs) as a centrality measure, and discuss how they compare

with other random walk indicators that have been used in the literature for control measures

such as vaccination or testing. Finally, in Section 6 we conclude our manuscript and outline

interesting future lines of research.

2 Preliminaries

2.1 Graph theory

A graph G is a collection of vertices V, indexed v1, v2, . . ., vn, with a set of edges E consisting of

pairs of vertices {vi, vj}. If {u, v} 2 E, the vertices u and v are said to be adjacent; we also write u*
v, and say that v is a neighbour of u. The degree of a vertex u, denoted by deg(u), is the number of

neighbours of u. The adjacency matrix of a graph is the matrix A(G) = [ai,j] such that

ai;j ¼
�

1; if vi � vj;

0; otherwise:

Throughout this article, we consider only graphs which are simple (no loops or multiple edges

between vertices), undirected (there is no orientation associated with an edge), and connected (for

any pair of vertices u and v, it is possible to reach u from v via a sequence of adjacent vertices). We

occasionally use ‘network’ and ‘graph’ interchangeably, and also substitute ‘vertex’ for ‘node’. The

convention in the literature is that a graph refers to the abstract mathematical object, while a net-
work is rooted in the real world in some way.

2.2 Markov chains

Suppose that we model a system as a stochastic process in which, at any given time, the system

occupies one of a finite number of states s1, s2, . . ., sn, and transitions between these states in dis-

crete time-steps with some fixed transition probabilities; that is, ti,j denotes the probability of occu-

pying sj in the next time-step, given that the system is currently in si. This may be represented as a

sequence of random variables {X(t)jt = 0, 1, 2, . . .}, indexed by time-step and taking values from

the state space {s1, s2, . . ., sn}. Implicit in the description above is the so-calledMarkov property:

P½Xðkþ 1Þ ¼ xkþ1 j XðkÞ ¼ xk; . . . ;Xð1Þ ¼ x1;Xð0Þ ¼ x0�

¼ P½Xðkþ 1Þ ¼ xkþ1 j XðkÞ ¼ xk�:

Note that P½A j B� denotes the conditional probability that event A occurs, given that event B
occurs. The above re-states the assertion that the probability the system occupies a given state in

the next time-step (at time t = k + 1) depends only on the current state of the system (at time t =

k), and not on the state of the system in any previous step.

The probability transition matrix T = [ti,j] is central in the analysis of the behaviour of the

Markov chain. The (i, j) entry of Tk gives the probability that the system occupies the state sj of

the chain after exactly k time-steps, given that the initial state was si. Given an initial probability

distribution vector u = [u1 u2 � � � un]> in which ui is the probability of occupying si initially, the

vector u>Tk gives the probability distribution across the state space at time k. Under certain
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conditions on the transition matrix T (primitivity), the Perron-Frobenius theorem indicates

that as k!1, and independently of the initial distribution u, u>Tk converges to the unique

stationary distribution π> of the Markov chain, which may be calculated as the unique left

eigenvector of T corresponding to the eigenvalue 1, normalized so that the entries sum to 1.

Since u>Tk represents the probability distribution at time k, this stationary distribution π repre-

sents the long-term probability distribution across the states; that is, πi represents the probabil-

ity of the system occupying the state si in the long run, or the proportion of time spent in si.
To quantify the short-term behaviour of the system modelled by a Markov chain, we con-

sider mean first passage times. For a Markov chain {X(t)jt = 0, 1, 2, . . .}, the first passage time
from si to sj is the random variable Fi,j taking on the value of t for which X(t) = sj, given that X
(0) = si and X(k) 6¼ sj for all k = 0, 1, . . ., t − 1. The mean first passage time, then, is the expected

value of Fi,j, denoted mi,j. While this definition is probabilistic in nature, it can be shown that

the mean first passage times can be computed using the transition matrix T:

mi;j ¼
e>i ðI � TðjÞÞ

� 11; i < j;

e>i� 1
ðI � TðjÞÞ

� 11; i > j:

(

ð1Þ

Here ei denotes the ith standard basis vector, 1 the all-ones vector, and T(j) denotes the princi-

pal submatrix of T obtained by deleting the jth row and column. Here mi,j is calculated as the

row sum of (I − T(j))
−1 corresponding to si. We note that in this article we take the convention

that mi,i = 0; alternatively we can define the mean first return time to si, which can be shown to

be equal to 1

pi
. The matrix of mean first passage times is the matrix M = [mi,j], and while each

entry can be computed as above, it is also well-known that

M ¼ ðI � Z þ JZdgÞW � 1; ð2Þ

where Z is the so-called fundamental matrix of the Markov chain (see [21]), Zdg is the diagonal

matrix whose entries consist of the diagonal entries of Z, and W is the diagonal matrix whose

entries consist of the entries of π.

Given an irreducible Markov chain with transition matrix T, stationary vector π, and mean

first passage matrix M = [mi,j], one can define, for a fixed index i, the quantity

ki ¼
Xn

j¼1

pjmi;j:

This can be interpreted as the expected time to reach a randomly-chosen state j, starting from

a fixed state i. Introduced in the 1960s in [21], this was remarkably shown to be independent

of the choice of initial state i. As such, it is named Kemeny’s constant, and is denoted as KðTÞ.
Noting that p>1 ¼ 1, it can be shown that

KðTÞ ¼
Xn

i¼1

Xn

j¼1

pimi;jpj; ð3Þ

admitting the interpretation of KðTÞ as the expected time of a random trip in the Markov

chain, where the initial and terminal states of the trip are chosen at random, with respect to

the stationary distribution.

A random walk on a given graph G = (V, E) is an example of a Markov chain. A

random walker traverses the vertices of G, at each step choosing an adjacent vertex to move to

uniformly at random. Thus the state space consists of the vertices v1, . . ., vn, and ti;j ¼ 1

degðviÞ

whenever {i, j} 2 E. Letting D be the diagonal matrix of vertex degrees, and A(G) the adjacency
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matrix of G, the probability transition matrix is given by T = D−1 A(G). Note that the stationary

distribution vector is

p ¼
1

2jEj
degðv1Þdegðv2Þ � � � degðvnÞ½ �

>
:

Kemeny’s constant for the simple random walk on a graph G can be interpreted as a graph

invariant indicating the ‘connectedness’ of the graph [5, 22], or how fast information ‘mixes’

in the graph [23, 24].

2.3 Absorbing Markov chains

A state sj of a Markov chain is called absorbing if tjj = 1; thus when the chain enters state sj, it

remains there in every subsequent time-step. A Markov chain is called an absorbing Markov
chain if its state space contains at least one absorbing state, and if for every si which is not

absorbing, there exists some absorbing state sj and some k> 0 such that tðkÞi;j > 0; that is, there

is a nonzero probability that the Markov chain will reach one of the absorbing states in finite

time, for any the initial state. While the analysis of irreducible Markov chains focuses on the

limiting stationary distribution and mean first passage times, for absorbing Markov chains the

limiting behaviour is always that the chain is eventually absorbed into one of the absorbing

states, and one concerns oneself with the probabilities of absorption into the different absorb-

ing states, and the expected time to absorption from some initial transient state.

Suppose the states are indexed so that the absorbing states are listed last in the ordering.

This produces a block transition matrix as follows:

T ¼
Q R

O I

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

;

where Q is a square matrix representing transitions between transient states, R represents tran-

sitions from transient states to absorbing states, and I is the identity matrix, whose order is

determined by the number of absorbing states. The analysis of the behaviour of the chain

before absorption occurs centres around the computation of the matrix (I − Q)−1, the so-called

fundamental matrix for absorbing chains (see [21]). Since

ðI � QÞ� 1
¼ I þ Qþ Q2 þ � � � ;

the (i, j) entry of this matrix captures the expected number of visits to the jth transient state

before absorption, given that the chain starts in the ith transient state. Thus the ith row of (I −
Q)−1 R produces the probability distribution for the eventual absorbing state the chain ends

up in, given that it starts in the ith transient state, and the expected time to absorption given

that the chain starts in the ith transient state is computed as the ith row sum of (I − Q)−1, or

e>i ðI � QÞ
� 11.

Remark 2.1. Note that for an irreducible Markov chain, the expression for mean first pas-

sage times in (1) can be derived using these absorbing chain techniques described above, by

designating the state sj as an absorbing state and replacing the jth row of T by zeros with a 1 in

the jth position. Then the mean first passage times can be computed as the expected time to
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absorption, where the matrix Q is the principal submatrix T(j). Furthermore, if one requires

the expected time to reach a collection J of states, this can be determined by the appropriate

row sum of ðI � TðJ ÞÞ
� 1

, where by TðJ Þ we denote the principal submatrix of T with the rows

and columns indexed by J removed. This is a key observation which we will use to calculate

mean infection times in the 2n-state model in Section 4. This result is well-known in the litera-

ture; see for example the discussion found in [25].

2.4 Epidemic modelling

In this article our focus is on exploring the ability of Markov chain models to reflect the

dynamics of virus spreading in populations. For this purpose we shall only consider elemen-

tary SI epidemic models for the disease, where individuals may either be susceptible (S) or

infected (I); and once an individual is infected, it remains infected indefinitely [26]. If two indi-

viduals are in contact and one is susceptible and the other infected, there is a fixed infection

probability β that the susceptible individual also becomes infected. Throughout this work,

when simulations are done we assume the infection probability is β = 0.1.

Compartmental models of disease spread such as SI models traditionally make the assump-

tion that the population is well-mixed, which means that every individual comes into contact

with every other individual (making β the rate of transmission). In a network representation

of the population, each individual is represented by a node, and an infected individual may

infect another susceptible individual in the next time-step if the two of them are adjacent. This

underlying graph is a contact network determining which individuals in the population have

been in close contact that is sufficient to facilitate the spread of disease, and this network can

be inferred from data in some way (see for example [27]).

Given a connected graph and at least one initially-infected individual, at some point all of

the individuals in the network will be infected as well. That is, the equilibrium of the model is

the state in which every individual is infected. The focus of our analysis of the above model of

epidemics is on quantities dictating how fast the disease will spread. By considering quantities

such as the time until the entire network is infected (i.e. until equilibrium is reached), or the

time until a particular individual becomes infected, we can better measure and understand the

role of an individual node in the dynamical process. We note that these concepts may apply

naturally to other domains such as fake news spreading in online social networks, as similar

epidemic models have been used in [28, 29] regarding such applications.

3 Infection time predictions for single random walk models

In this section, we show that there is a discrepancy between the infection times predicted by

random walk models with single walkers and the actual times observed in SI models. We first

consider the graph in Fig 1 as a supporting example to clarify our discussion.

The probability transition matrix for the simple random walk on this graph is

TRW ¼

0 1=3 1=3 1=3

1=2 0 1=2 0

1=2 1=2 0 0

1 0 0 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

In comparing this random walk with the movement of disease, there are some issues to

note. If the (i, j) entry of TRW is naïvely interpreted as the probability of the disease spreading
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from individual i to individual j, then immediately we see that a contact of the same duration

between individuals 1 and 4 produces two different probabilities t14 and t41, due to the differ-

ent degrees of the two nodes.

To overcome the problems of having contact of the same durations associated with different

probabilities of spreading the virus, we can consider modifying the transition matrix to create

Fig 1. A graph with 4 nodes used in Section 3 as a simply clarifying example.

https://doi.org/10.1371/journal.pone.0280277.g001
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a symmetric one, which we denote Tsym, adapting the example of [30]. The following definition

can be used to account for the infection probability and constructs a symmetric probability

transition matrix, so that the probability of i to infect j is the same as that of j to infect i. In fact,

the matrix is defined so that every off-diagonal entry is equal. This matrix is necessarily dou-

bly-stochastic (both the rows and columns sum to 1). We define

Tsym ¼ aAðGÞ þ ðI � aDÞ;

for some 0 < a � 1

dmax
where dmax is the maximum node degree, and D is the diagonal matrix

of vertex degrees. Note that αA(G) is a substochastic matrix with zero diagonal, while I − αD is

a diagonal matrix. One can interpret this definition as a transition matrix for a random walk

on a graph where, at each vertex, the random walker has some fixed constant probability α of

choosing any of the neighbours of the current vertex, but with the residual probability can

choose instead to remain in place. For the graph in Fig 1, choosing α = 0.1, we have

Tsym ¼

0:7 0:1 0:1 0:1

0:1 0:8 0:1 0

0:1 0:1 0:8 0

0:1 0 0 0:9

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

Remark 3.1. We note that in this example, every off-diagonal entry is equal to the infection

probability β = 0.1 that we wish to use in the disease model. In the case that the desired infec-

tion probability is larger than 1

dmax
, it is not possible to choose tij = β for transition probabilities

between individuals joined by an edge. However, we remark here that mean first passage times

between distinct states for transition matrices of this form scale in a natural way with varying

choices of α. That is, if T1 = α1 A(G) + (I − α1 D) and T2 = α2 A(G) + (I − α2 D), then for i 6¼ j,
mðT1Þ

i;j ¼
a2

a1
mðT2Þ

i;j . Thus for the sake of proportional comparison of mean first passage times with

the infection times obtained from simulations, the value of α is irrelevant.

We now intend to uncover an inaccuracy of the models based on random walks. For this

purpose, we compute the mean first passage times mi,j for a random walk on the graph. To

compare, we also extensively simulate the spreading of the virus, and compute from simula-

tions the average time Mi,j for individual j to be infected, given that we start with only individ-

ual i infected. These are the values which are compared in order to examine the efficacy of

random-walk-based methods.

Let MRW and Msym be the matrices of MFPTs for the random walk and the symmetric ran-

dom walk on the graph in Fig 1, respectively. Then, MRW and Msym can be computed using (1)

or (2) to produce:

MRW ¼

0 3:3333 3:3333 7

2 0 2:6667 9

2 2:6667 0 9

1 4:3333 4:3333 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; Msym ¼

0 16:6667 16:6667 30

10 0 13:3333 40

10 13:3333 0 40

10 26:6667 26:6667 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

On the other hand, we can estimate the time for an initially-infected individual i to

cause individual j to become infected using simulations. Assuming that the probability of

spreading the virus is equal to 0.1, we ran 100000 Monte Carlo simulations with Algorithm 1.
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We estimated a matrix Minf of these expected times regarding infection as follows:

Minf �

0 7:7922 7:7766 10:0051

7:7503 0 7:7358 17:7442

7:7383 7:7284 0 17:7707

10:0059 17:7454 17:7628 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð4Þ

Algorithm 1: Monte Carlo estimation of Minf = [Mi,j]

Data: A graph G = (V, E); infection probability β; a number of
iterations N.
Minf  0;
for k = 1, 2, . . ., N do
for i 2 V do
x  ei; t  0;
while x 6¼ 1 do
t  t + 1;
for {vl, vj} 2 E with xl = 1 and xj = 0 do
Assign 1 to xj with probability β;
if xj = 1 then

MðkÞ
i;j  t;;

end
end

end
end
Minf  Minf + M(k);

end
Minf Minf/N;

Apart from scaling factors (one could normalize MRW or Msym for comparison purposes), it

is still obvious that there is a disparity between the estimated values and the theoretical mean

first passage times associated with the simple or symmetric random walks. Different predic-

tions are obtained in general; as a single example, the ratio of m1,3 to m1,4 in MRW and the ratio

of the corresponding entries in Msym are both close to 2, while the ratio of the corresponding

entries in Minf is close to 1.

We consider another example which arises in the context of traffic flow in urban road net-

works, another domain of application in which random walks have been shown to be an effec-

tive model. Let L(m, n) denote an m × n lattice graph or grid graph; see Fig 2. We now

consider a random walk on this lattice, under the assumption that the next state is chosen

among the available neighbours with the same probability p = 0.1, while with the residual

probability the state will not change (i.e., the random walker stays in place). For instance, this

may correspond to a vehicle travelling in a lattice-like road network, where edges correspond

to roads and nodes to intersections. At each intersection, the car will choose the next road with

the same probability 0.1, and with the residual probability will remain in the same place. For

example, for nodes in the middle of the lattice L(3, 4) in Fig 2 which have 4 neighbours, this

corresponds to saying that with probability 0.6 the state will not change in one step, and with

probability 0.4 it will change state, with the same probability 0.1 of choosing any one of the

four neighbours. In this case, it was shown in [5] that the mean first passage times (MFPTs) to

travel from any state to any other state according to such a random walk, can be computed by
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using the transition matrix T given by T = 0.1A(G) + (I − 0.1D) where G is L(3, 4). The values

of such MFPTs are depicted on the left of Fig 3.

We now consider the same graph, but we assume now that the graph depicts the social

interactions between individuals, and we compute how long it would take for a virus to spread

from individual i to individual j in reality. We assume again that the probability of spreading

the virus in one step is β = 0.1, but in this context, one individual can infect more than one

neighbour in a single step. Accordingly, the mean time to infection from one individual to any

other individual are shown on the right of Fig 3. Mean infection times (MITs) from i to j are

computed using Algorithm 1 under the assumption the i is the only infected individual at the

first time-step, and it is straightforward to see that such times are much smaller than those that

would have been estimated through a conventional random walk model.

Another example that displays clearly how MFPTs and MITs are qualitatively different is

the following.

Example 3.2. Consider a complete graph on k nodes, and to one of these nodes (which we

shall call A) attach a new node (which we shall call B). An example with k = 5 is depicted in

Fig 4.

Fig 2. The graph L(3, 4).

https://doi.org/10.1371/journal.pone.0280277.g002
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We shall show that the MIT from node A to B is constant, while the MFPT between the

same two nodes grow quadratically with k.

Suppose that A is the only initially infected individual. Then, at each time-step B has a prob-

ability β of becoming infected, hence the MIT from A to B is the expected value of a geometric

distribution with parameter β, that is, E½GeoðbÞ� ¼ 1

b
. This probability is independent of k. On

the other hand, the mean time needed for a random walk starting from A to reach B increases

as k grows: indeed, for large k, the random walk on the clique takes more time to return to A,

since there are more nodes available to visit. More precisely, let M be the mean first passage

time from A to B. Starting from A, the random walk either reaches B immediately in time 1,

with probability 1

k, or moves to another node of the clique with probability k� 1

k . Then, at each

subsequent time-step, it has probability 1

k� 1
to return to A, hence the time of first return to A

from another node of the clique is E Geo 1

k� 1

� �� �
¼ k � 1. After the process has returned to

A, by the Markov property we need again an average time M to reach B. This argument

produces the equation M ¼ 1

k 1þ k� 1

k ð1þ ðk � 1Þ þMÞ, which can be solved for M. Hence,

M = k2 − k+ 1.

3.1 Discussion

Even in very simple examples, it is obvious to see that modelling the spreading of the virus in a

population as a random walk with a single agent leads to some coarse approximations in terms

of the expected mean first passage times. This is rather important to note, as many researchers

have used indicators based on random walks, and MFPTs explicitly, in a number of epidemic

applications (e.g., vaccination or testing strategies). For instance, this comment holds for indi-

cators such as Kemeny’s constant [6], or the random walk centrality (RWC) [31]. Also,

Fig 3. Comparison of mean first passage times for T and mean infection times in L(3, 4).

https://doi.org/10.1371/journal.pone.0280277.g003
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random walk betweenness (RWB), originally introduced by Newman [32] is a classic indicator

based on random walks that is known to be one of the best indicators for which individuals

should be vaccinated in a population [33].

All such indicators may still provide interesting insights in the dynamics of a virus based on

the underlying structure of the contact network—for example, in [6] it is shown that Kemeny’s

constant can be used to detect bridges between disparate communities in contact networks.

The effectiveness of these indicators lies in the fact that they are obviously based on the topo-

logical structure of a population and of its average contacts; still, one may wonder about the

impact of decisions that could be made on more precise models of the disease dynamics, rather

than simply the network structure which is revealed through random walk methods. While we

do not come to a conclusive answer to that question in this article, we provide the tools by

which one can appropriately model and measure the disease spread using a different Markov

chain model, and we explore some examples for which random walk indicators disagree with

those determined from the more intuitive model.

4 Exact Markov chain models and efficient algorithms to compute

mean infection times

We suggest that the primary reason that a random walk seems to be ineffective as a model

for disease spread in a network is that previously-infected individuals remain infectious

Fig 4. A graph constructed from a complete graph on k = 5 nodes by adding a new node.

https://doi.org/10.1371/journal.pone.0280277.g004
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throughout the process, continuing to infect their contacts and affecting the overall dynamics

of the disease in future time-steps. Even multi-agent systems modelled with multiple random

walkers will not accurately capture this aspect of the disease spread context. As such, we

require a model which retains information about every individual’s status at once. In this sec-

tion, we describe such a model which is known in the literature, and which has been used in a

variety of settings and in many forms. We will review some of these results, and our contribu-

tion to the literature is to then define and investigate an analogue of mean first passage times

in this setting. We determine how to compute these exactly (the values which were simulated

in Section 3), and discuss some computational issues, as well as determine an algorithm in Sec-

tions 4.2 and 4.3 to effectively approximate these in the case that it is computationally expen-

sive to compute exactly. We then proceed in Section 5 to establish how these quantities can be

developed to determine a centrality indicator for use in control measures in disease spread

settings.

4.1 2n-state model of epidemic dynamics

Let G = (V, E) be a graph, and suppose its vertices are labelled v1, v2, . . ., vn. Let X(t) = (X1(t),
. . ., Xn(t)) 2 {0, 1}n where

XiðtÞ ¼
�

1; if node vi is infected at time t;

0; otherwise:

Since we consider the SI model, we assume that the probability of recovery is 0; hence if Xi(t0)

= 1, then Xi(t) = 1 for all t> t0 (models with nonzero recovery probabilities are used in [34–

36]). Assume that in any contact between a susceptible individual and an infected individual,

the probability of infection is some constant β. Then, {X(t)jt = 0, 1, . . .} is a discrete-time,

time-homogeneous Markov chain with a finite state space S = {0, 1}n; that is, each state is rep-

resented by a binary vector or n-tuple in which the kth entry is 1 if vk is infected, and 0 if vk is

suspectible.

For a subset A� V, we denote by sA the n-tuple in S whose kth component is 1 if vk 2 A,

and zero if vk =2 A. For simplicity, we write s{vi} as si. In what follows, we assume that P½Xðt þ
1Þ ¼ si j XðtÞ ¼ ð0; . . . ; 0Þ� ¼ 1

n for 1� i� n, so that if initially no one is infected, an individ-

ual is chosen uniformly at random to be infected in the next step. Then, {X(t)} is an absorbing

Markov chain with exactly one absorbing state sV = (1, . . ., 1).

Suppose that node vi is susceptible, and has ni infected neighbours at time t. Since the infec-

tions are independent, the probability that vi is not infected at time t + 1 is ð1 � bÞ
ni . Hence

P Xi t þ 1ð Þ ¼ yi j X tð Þ ¼ x½ � ¼

1; if yi ¼ xi ¼ 1;

1 � 1 � bð Þ
ni ; if yi ¼ 1; xi ¼ 0;

1 � bð Þ
ni ; if yi ¼ 0; xi ¼ 0;

0; if yi ¼ 0; xi ¼ 1:

8
>>>>>>><

>>>>>>>:

ð5Þ

Then, again by the independence of infections, for each x, y 2 S, the transition probability

from x to y is given by

P½Xðt þ 1Þ ¼ y j XðtÞ ¼ x� ¼
Yn

i¼1

P½Xiðt þ 1Þ ¼ yi j XðtÞ ¼ x� ð6Þ

We note that if y does not have at least the same infected population as x, then
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P½Xðt þ 1Þ ¼ y j XðtÞ ¼ x� ¼ 0. This means that the states can be ordered in such a way that

the probability transition matrix T is an upper triangular matrix.

We now provide a method to obtain the expected time for a group of some infected individ-

uals to infect—directly or indirectly—another group of susceptible individuals. That is, given a

subset of individuals A who are initially infected, we compute the expected time until a subset

B of individuals are infected, where B� A. If we choose A = {vi} and B = {vi, vj}, this enables us

to exactly compute the matrix Minf in (4). We define terminology for such expected times in

order to distinguish from the mean first passage times used in the previous sections.

Definition 4.1. Let G = (V, E) be a connected graph, and let A, B� V with A� B. The

mean infection time (MIT) from A to B, denoted as μA, B, is the expected time for all nodes in B
\A to get infected, given that all nodes in A are initially infected. As an analogous concept to

the mean first passage matrix, we define the MIT matrix to be the matrix Minf = [Mi,j] where

Mi;j ¼ mfvig;fvi ;vjg.

Definition 4.2. Let G = (V, E) be a connected graph, and let u 2 V. The mean infection cov-
ering time (MICT) of u, denoted mu, is the mean infection time from A = {u} to B = V; that is,

mu = μ{u}, V, and represents the expected time until the entire network is infected, given that u
is the only initially-infected node.

We now give a closed form expression for μA, B, for A, B� V with A� B. Let us consider

the set SB� S that consists of binary vectors with ones in the positions corresponding to B;

that is, states in which at least the vertices corresponding to B are infected, and possibly others

infected too. Then, the mean infection time from A to B is the expected value of the first time

(hitting time) at which the system arrives at one of states in SB, starting from the state sA. This

is the mean first passage time in the Markov chain with 2n states, from the state sA to the collec-
tion of states SB. As discussed in Remark 2.1, we have

mA;B ¼ e>sAðI � TðSBÞÞ
� 11ð7Þ

where esA is the column vector whose entry corresponding to the state sA is 1 and zeros else-

where; T(SB) is the principal submatrix of T obtained by removing rows and columns corre-

sponding to states in SB; and 1 is the all-ones vector.

This general expression can be used to calculate the entries of the MIT matrix for a given

network, and can be used to calculate the mean infection covering times with the set A repre-

senting a single vertex, and B is the entire vertex set. The remainder of this article focuses on

these two cases, but there are many uses for (7) in the context of disease spread and other

spreading processes. For example, by setting SB to be the set of all binary vectors with more

than p% ones (i.e. states in which more than p% of individuals are infected), and A to be some

initially-infected set of interest, we can determine the time until some threshold of infections is

reached (for some diseases, this is of interest for herd immunity).

Due to the increased size of the state space (from n states to 2n states, where n is the size of

the population), the calculation of these mean infection times becomes computationally

expensive. In the remainder of this section, we discuss some computing strategies for the exact

computation, then introduce and discuss approximation strategies in Sections 4.2 and 4.3,

respectively.

We first note that we need not consider the entire matrix T SBð Þ
for finding μA, B. In an SI epi-

demic model, for any state x such that xk = 0 for some k 2 A, the transition probability from sA
to x is 0. That is, if SA is the set of states consisting of binary vectors with ones in the positions

corresponding to A, and �SA ¼ S n SA is its set complement, then if the initial state is sA we may

remove from consideration any states of the Markov chain from �SA without affecting the

outcome of the computation. These correspond to states in which some individual who was
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initially infected is now not infected, which is impossible in the SI model. Hence, instead of

T SBð Þ
in (7), we may use the matrix Tð�SA[SBÞ obtained from T by deleting rows and columns cor-

responding to the states in �SA [ SB. This substochastic matrix has rows and columns indexed

by the states in SA. Therefore,

mA;B ¼ eTsAðI � Tð�SA[SBÞÞ
� 11: ð8Þ

Note that esA , I and 1 are re-sized appropriately (their size determined in context), and that esA
is the standard basis vector with a 1 in the position corresponding to the state sA, according to

where it appears in the reduced state list.

Now let us consider a mean infection covering time μ{vi}, V. The size of the matrix T is

exponential, so it is impractical to store data for T when the number of nodes in the corre-

sponding graph is sufficiently large. Note that T is an upper triangular matrix, and computa-

tional experiments show that the sparsity of T is between 1% and 5% for Erdős–Rényi random

graphs on 10 nodes with probability 0.5. Thus one could consider using a Sparse Triangular

Matrix Solver (SpTrSV) (see [37] for a brief introduction and algorithms). In order to imple-

ment SpTrSV, it requires particular data formats [38] such as the compressed sparse row

(CSR) or the compressed sparse column (CSC), which are two formats for storing nonzero

entries of a sparse matrix into three row vectors. However, as the size of the matrix increases

exponentially, the number of nonzero entries would increase exponentially since the graphs

we consider are connected. Hence, SpTrSV would also eventually become infeasible for the

computation of mean infection covering times as in (10).

In order to see how using the transition matrix T might not be practical, we consider a par-

ticular example of a tree, which is a minimally-connected graph (that is, it has the least number

of edges necessary to be a connected graph). Let G be a star with vertex set {1, . . ., n}—that is,

one vertex is of degree n − 1 and the others have degree 1. Suppose that vertex 1 is of degree 1;

and vertex 2 is of degree n − 1. Assume that X(0) = (1, 0, . . ., 0) and consider the 2n−1 × 2n−1

submatrix of the transition matrix. It can be seen that there are 2n−2 + 1 nonzero entries on the

off-diagonal. In empirical settings, the storage of data like this becomes an issue. Even though

G is one of the sparsest graphs, we may not be able to calculate explicitly our desired mean

infection times for sufficiently large orders of G by using (10).

Example 4.3. Consider the graph G in Fig 1. Let V = {v1, v2, v3, v4}, A = {v1}, and B = {v1,

v2}. For simplicity, we shall remove parentheses and commas of all states in S. Then, sA = 1000,

SA = {1000, 1100, 1010, 1001, 1110, 1101, 1011, 1111}, and SB = {1100, 1110, 1101, 1111}. One

can verify that we obtain the matrix

Tð�SA[SBÞ ¼

0:729 0:081 0:081 0:009

0 0:729 0 0:081

0 0 0:81 0:09

0 0 0 0:81

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

:

This substochastic matrix represents transitions between all possible states in which v1 is

infected, but v2 is not yet infected. Rows and columns correspond to the states 1000, 1010,

1001, 1011, in that order. Note that these states correspond to the set SA\SB. From (8), we have

μA, B = 7.7562 (rounded to four decimal places), which is the expected time for susceptible

individual 2 to get infected, provided the only infected node is 1. So, μA, B corresponds to the

(1, 2) entry of Minf in (4). In this manner, one can calculate the matrix Minf (rounded up to 4
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decimal places) as follows:

Minf ¼

0 7:7562 7:7562 10

7:7562 0 7:7562 17:7562

7:7562 7:7562 0 17:7562

10 17:7562 17:7562 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

: ð9Þ

Moreover, one can also find the MICTs: mv1
¼ 14:3534, mv2

¼ mv3
¼ 18:5014, and

mv4
¼ 20:2493. This suggests that v1 is the most critical node in the sense that a single individ-

ual quickly spreads the virus to the whole network.

4.2 A sampling strategy for the 2n-state model

In this subsection, we give an alternative construction of the 2n-state model, which allows us to

use a sampling method for more efficient approximation of the mean infection times, and can

be used to prove a nontrivial symmetry property. This construction is a discrete-time analogue

of the continuous version appearing in [39, Theorem II.2] which the authors describe as ‘folk-

lore in some circles’.

Let us consider a single edge {vi, vj} 2 E in the network. Assuming that one of its two end-

points is infected and the other is not, the time τi,j taken for the infection to spread across the

edge follows a geometric distribution, i.e., P½ti;j ¼ k� ¼ ð1 � bÞk� 1
b for each k = 1, 2, . . .. We

call τi,j the potential infection time over the edge i, j, because we are working under the assump-

tion that the infection spreads over this edge of the network from one of its endpoints to the

other.

In this new alternative construction, we first assign independently a value τi,j to each edge

{vi, vj} 2 E, sampling according to the geometric distribution described above. Once these val-

ues τi,j have been chosen, we can reconstruct the dynamics of the infection starting from an

initial infected set X̂ð0Þ ¼ sA for some A� V: an infection happens across edge {vi, vj} after

time τi,j if one of the two endpoints is infected and the other is not. Hence the infection spreads

from a vertex vk to another vertex vℓ in time t equal to the graph distance dist(vk, vℓ) on the

graph G, with weights (edge lengths) given by τi,j.
The Markov process that describes the infected individuals at time t in this construction is

thus X̂ðtÞ ¼ sfv2V : distðA;vÞ�tg, where dist(A, v) = minw2Adist(w, v). An example of possible sam-

ple values of the potential infection times τi,j and the resulting dynamic of the process X̂ðtÞ is

depicted in Fig 5.

The following proposition shows that this alternative construction provides the same result.

This result could be considered intuitive by some, but we provide a formal proof.

Theorem 4.4. The stochastic processes X(t) and X̂ðtÞ (with the same initial state
Xð0Þ ¼ X̂ð0Þ ¼ sA) are equidistributed.

Proof. We shall show that the transition probabilities from X̂ðtÞ to X̂ðt þ 1Þ coincide with

those in (6) and are independent of previous history. Let us condition on the state X̂ðtÞ ¼ x,

and consider the probability that X̂ðt þ 1Þ ¼ y has its jth component equal to 0, i.e., that dist

(A, vj)> t + 1. If xj = 1, then dist(A, vj)� t, hence it is impossible (probability 0) that this dis-

tance is larger than t + 1. Otherwise, let us call nj the number of edges that join vj with another

node vi with xi = 1. For vj to stay un-infected, it must be the case that dist(A, vi)+ τi,j> t + 1

for each such edge; and since we are assuming that xj = 0 it must already be the case that dist
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(A, vi) + τi,j> t. By the memoryless property of the geometric distribution,

P½ti;j > t � distðA; viÞ þ 1 j ti;j > t � distðA; viÞ� ¼ 1 � b;

and τi,j is independent from the potential infection times of all other edges by construction.

Hence

P½X̂ jðt þ 1Þ ¼ 0 j X̂ iðtÞ ¼ 0� ¼ ð1 � bÞ
nj :

Hence we have proved the last two cases in (5); the first two cases follow by difference. The

product formula (6) follows from the fact that each factor depends on different potential infec-

tion times τi,j, which are independent.

The alternate construction leads immediately to an algorithm for more efficient Monte

Carlo simulation of the system, which we describe in Algorithm 2. Some remarks are in

order.

• The most expensive part of Algorithm 2 is the all-pairs shortest-path matrix computation,

for a total cost of O(N|V||E|) using the algorithm in [40] where N is the number of simula-

tions. We report in Section 4.3 on how the computation time compares with both the exact

computation of (8) and the Monte Carlo simulations of Algorithm 1, and also discuss accu-

racy and precision.

• As the M(k) are repeated samplings of a random variable, the central limit theorem (see, e.g.,

[25, Theorem 4.4.1]) applies, hence the estimate M̂inf computed with this algorithm is

Fig 5. An example of the process X̂ðtÞ. A random choice of the potential infection times τi,j in our example graph, displayed in blue, and the resulting

infection dynamic starting from X̂ð0Þ ¼ s2. Node 1 gets infected at time 3, node 4 gets infected at time 3 + 1 = 4, and node 3 gets infected at time 3

+ 3 = 6 via node 1. The infection does not spread across edge {2, 3}, since both endpoints are already infected at time 7 when the potential infection is

due to happen.

https://doi.org/10.1371/journal.pone.0280277.g005
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affected by an error jðM̂inf Þij � ðMinf Þijj that scales as
sijffiffiffi
N
p , where σij is the standard deviation of

the infection time from i to j. This standard deviation can in turn be estimated using the

computed samplings, providing an estimate of the error.

• With the same strategy one can estimate not only the MICT μ, but any quantity that depends

only on the infection times; for instance, the mean time after which a given percentage p% of

the nodes becomes infected.

• The construction that leads to Algorithm 2 can be generalized easily to directed graphs, and

to deal with edge-dependent infection probabilities βi,j (as long as they are independent from

one another). In fact, the construction can also be generalized to any distribution of the

potential infection times τi,j, not necessarily a geometric one. This provides an avenue to

incorporate a large number of extensions into this simple model, from superspreaders to

SIR. For instance, a disease with a recovery time of T can be modeled by choosing a distribu-

tion such that P½ti;j > T� ¼ 0.

• From this alternate description, one can prove easily the following result, which is a discrete-

time analogue of part of [39, Theorem 2.3].

Corollary 4.5 On an undirected graph (possibly with edge-dependent infection probabilities
βi,j), the MIT matrix Minf is symmetric.
proof. The MIT matrix Minf is the mean over all possible samples t

ðkÞ
i;j of the sample MIT

matrix M(k), which is symmetric for each k.

We remark that in general for random walks on graphs, the mean first passage matrix is typi-

cally not symmetric (i.e. mi,j 6¼mj, i), further delineating the contrast between mean first passage

times obtained from simple random walks, and the mean infection times developed here.

Algorithm 2: Efficient Monte Carlo estimation of the mean infection time matrix Minf

(with Mi,j = μ({vi}, {vi, vj})) and MICT vector m with mi = μ({vi}, V).

Data: A graph G = (V, E); infection probability β; a number of
samples N.
Result: Estimates of the MIT matrix Minf 2 R

n�n, and of the MICT

vector m ¼ ½m1;m2; . . . ;mn� 2 R
n.

Minf  0; m  0;
for k = 1, 2, . . ., N do; // Possibly in parallel
for {vi, vj} 2 E do

Generate a random sample t
ðkÞ
i;j from a geometric distribution

with parameter β;
end
Compute the all-pairs shortest-path matrix M(k) of the graph

(V, E) with weights t
ðkÞ
i;j ;;

Compute row-by-row maxima mðkÞi ¼ maxjM
ðkÞ
i;j ;

Minf  Minf + M(k); m  m+ m(k);
end
Minf  Minf/N; m  m/N;

4.3 Accuracy and computational burden of the sampling strategy

For actual computation of mean infection times for a network, we have to deal with a transi-

tion matrix whose order is exponential with respect to the number of vertices of the network,

as seen in (8). The computation is only feasible up to graphs of order n� 15, due to storage
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problems. So, it is necessary to turn to algorithms to estimate MITs. Hence, we compare the

two Monte Carlo estimations for mean infection times, in terms of speed and accuracy.

In order to see which algorithm is more accurate, we need to have the actual MITs, so we

shall consider various graphs on at most 12 vertices. For each of the two algorithms, we report

in Table 1 the mean μ and the variance σ2 of relative errors for entries between the actual and

estimated MIT matrices, running 300 simulations.

We now compare running times. The running time of Algorithm 1 mainly depends on the

infection probability—that is, the smaller β is, the longer each simulation of the time taken for

an individual j to become infected takes. In contrast, the most expensive part of Algorithm 2 is

to compute the all-pairs shortest-path matrix, which does not depend on infection probability.

For demonstration, we pick four contact networks [41], which are available at https://

networkrepository.com. When a network is disconnected, we choose its largest component. In

Table 2, we measure the computation times of the MIT matrix, running 100 simulations/sam-

plings with different infection probabilities 0.2, 0.1, and 0.05.

Table 2 shows that the approach based on the sampling strategy in Algorithm 2 is very

efficient and scales very well with the size of the population of individuals, thus paving the

way for a Markovian analysis of epidemic networks that does not suffer from the curse of

dimensionality.

5 Exploring the ranking of nodes according to mean infection

covering times

Ranking nodes in a graph has many applications in epidemic models, in terms of control strat-

egies such as testing, vaccinating, and so on (see [6, 30, 33]). In this section, we investigate the

mean infection covering times as defined in 4.2 and how they can be used as a measure of how

pivotal each node is in the network to the spread of disease. The mean infection covering time

Table 1. Accuracy for Algorithms 1 and 2.

Graphs ðm1; s
2
1
Þ ðm2; s

2
2
Þ

Fig 1 (0.0376, 0.0008) (0.0333, 0.0005)

Paley graph of order 9 (0.0264, 0.0006) (0.0214, 0.0003)

Petersen graph (0.0241, 0.0005) (0.0278, 0.0005)

Star of order 12 (0.0385, 0.0008) (0.0229, 0.0003)

L(3, 4) (0.0239, 0.0004) (0.0155, 0.0002)

ðm1;s
2
1
Þ corresponds to Algorithm 1 and ðm2; s

2
2
Þ corresponds to Algorithm 2.

https://doi.org/10.1371/journal.pone.0280277.t001

Table 2. Comparison of running times for Algorithms 1 and 2.

Networks (|V|, |E|) ðtð0:2Þ1 ; tð0:2Þ2 Þ ðtð0:1Þ1 ; tð0:1Þ2 Þ ðtð0:05Þ

1 ; tð0:05Þ

2 Þ

G1 (92, 755) (8.56, 0.0677) (15.30, 0.0838) (29.93, 0.0844)

G2 (113, 2196) (25.87, 0.1076) (48.97, 0.1267) (95.02, 0.1111)

G3 (274, 2124) (433.8, 0.2370) (911.2, 0.3281) (1849.5, 0.3014)

G4 (327, 5818) (191, 0.5188) (344.8, 0.6023) (647, 0.6193)

The graphs G1, G2, G3 and G4 correspond to ‘ia-workplace-contacts’, ‘ia-contacts_hypertext2009’, ‘ia-contact’ and ‘contacts-prox-high-school-2013’, respectively. We use

ðtðpÞ1 ; t
ðpÞ
2 Þ to indicate a pair of times in seconds for computing MIT matrix by 100 simulations/samplings with Algorithms 1 and 2 respectively, where p is the infection

probability.

https://doi.org/10.1371/journal.pone.0280277.t002
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of vi is calculated using (8) and the observations following it as

mi ¼ mfvig;V ¼ e>svi ðI � Tð�Svi[sV ÞÞ
� 11: ð10Þ

Then, mi indicates the expected time for all individuals to get infected, starting from an

initially infected node vi. We note that the author of [12] investigated the mean infection time

for the case that the infection probability is 1. Moreover, as an analogous notion of the mean

infection times, one may consider the cover time of a Markov chain [42], which is the expected

value of the first time at which all the states have been visited.

5.1 Comparison with other indicators on 2-community networks

Here we compare what nodes are regarded as ‘most important’ according to different ranking

indicators. In many social networks, node degree is an important metric to determine popular

nodes, i.e., individuals who typically meet a large number of other individuals during a day, or

who have many social ties on online social platforms. At the same time, it is also known that in

networks with strong community structures, immunization interventions targeted at individu-

als bridging communities (e.g., families, school classes, working environment) are more effec-

tive than those simply targeting highly-connected individuals [33]. The reason for this is that

regardless of the number of contacts one has, an individual bridging communities may pass

the virus from one community to another community, and cause the infection to spread to a

fully-susceptible community.

In what follows, we shall consider four random-walk based indicators or centrality mea-

sures, namely, the mean infection covering times introduced in this section, Kemeny’s con-

stant, random walk betweenness (RWB), and random walk centrality (RWC). Here we

provide formulae for RWB and RWC; see (3) for the description of Kemeny’s constant.

The random walk betweenness of node i in a network, denoted bi, measures the ‘expected

net number of times a random walk passes through vertex i on its way from a source vertex s
to a target vertex t, averaged over all s and t’, which is given [32] by

bi ¼
2

jVjðjVj � 1Þ

X

s<t

IðstÞi ;

where IðstÞi is the current flow through vertex i starting from vertex s and ending at vertex t.
This method for computing random walk betweenness depends on considering the graph as

an electrical network in which each edge has a resistance of 1, and calculating the flow through

each vertex (see [32] for details). This is then shown to be equivalent to the random walk inter-

pretation given above.

The random walk centrality of node i in a network quantifies how easily or how quickly a

random walker arrives at i from elsewhere in the network [31], which is given [43] by the

reciprocal of the so-called accessibility index αi of node i:

ai ¼
X

k6¼i

pkmk;i

where πk is the stationary distribution for node k and mk, j is the mean first passage time from

k to i. The accessibility index can be interpreted as the expected time for the random walker to

arrive at node i, starting from a randomly-chosen node j, where this starting node is chosen

with respect to the stationary distribution vector (i.e. with respect to the degree of the node).

Since the random walk centrality of a node i is 1

ai
, a large value for RWC indicates that the
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vertex in question is highly central, where ‘centrality’ is understood in terms of random walks

terminating at a target vertex.

Regarding Kemeny’s constant, we score important nodes according to how their removal

from the network affects the value of Kemeny’s constant: ci ¼ KðG0Þ � KðGÞ where G0 is the

graph obtained from G by removing node i. That is, the higher the increment in Kemeny’s

constant after deletion of a node is, the more critical the node is (recall that large values of

Kemeny’s constant correspond to graphs which are not well-connected).

In the comparison that follows, we estimate MICTs by Algorithm 2 with 300 samplings. For

RWB, RWC and Kemeny’s constant, larger values of the indicator correspond to more impor-

tant nodes, while the reverse occurs for MICTs (i.e., lower values of MICT correspond to more

important nodes).

As a first example, consider the lattice graph L(6, 6). Fig 6 shows that all indicators agree

that nodes placed in the center of the structure are the most important nodes.

We now consider networks formed by two communities as follows: given two lattice graphs

L(n1, n1) and L(n2, n2), we let an edge e1 join a vertex v1 at a corner of L(n1, n1) and a vertex v2

at a corner of L(n2, n2), and we also let e2 join a vertex adjacent to v1 in L(n1, n1) and a vertex

adjacent to v2 in L(n2, n2). We denote by G(n1, n2) the resulting 2-community structure, and

Fig 6. Ranking nodes in L(6, 6).

https://doi.org/10.1371/journal.pone.0280277.g006
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we shall refer to e1 and e2 as the community bridges. In particular, we now consider two types

of 2-community structures: (1) two groups have the same size (i.e., G(7, 7)), and (2) one of two

groups has a larger size than the other (i.e., G(10, 3)). Let us first consider the case of G(7, 7).

As seen in Fig 7, all indicators show that the most critical nodes are positioned near the com-

munity bridges, and in particular, vertices v1 and v2 are the most critical ones. However, RWC

indicates that the third and fourth ranked nodes are not incident to e2, while the other indica-

tors do. Moreover, Kemeny’s constant suggests that nodes farther away from the community

bridges have similar criticality scores of the nodes near the bridges; while MICTs provide

more diversified scores that change gradually (in terms of criticality) as nodes are farther away

from the bridges.

We finally consider the case of G(10, 3), shown in Fig 8. The four cases now provide differ-

ent indications about what should be classified as the most critical nodes. In particular, the

positions of the most critical nodes according to Kemeny’s constant, RWB, MICT, and RWC,

respectively, vary in distance from the community bridges toward the central area of the larger

community. This result appears to suggest that a criticality measure based on Kemeny’s con-

stant via node removal could be useful for detecting community bridges regardless of the sizes

of the groups in a community structure (which is in accordance with [6]). Conversely, RWC

appears to rank highly the nodes that lie in the central area of the relatively larger community.

Fig 7. Ranking nodes in G(7, 7) based on the random walk-based indicators.

https://doi.org/10.1371/journal.pone.0280277.g007
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MICT and RWB provide intermediate indications that take into account both the sizes of the

groups and the presence of bridges (where RWB gives more importance to the community

bridges than MICT). Finally, the values of the scores from MICT are spread more evenly across

their (linear) scale.

5.2 Comparison with other indicators on a contact network

In this subsection, we present a contact network ‘ia-infect-dublin’ with 410 nodes and 2765

edges (available at https://networkrepository.com), and see how the random walk-based indi-

cators suggest critical nodes based on our understanding in the previous section. Instead of

colouring nodes according to indicators’ values, we display graphs with colouring by their own

rankings. For MICT computations, we ran 300 simulations. Regarding computation times, it

takes approximately 32.5, 1.5, 0.15, and 52.8 seconds for ranking nodes based on Kemeny’s

constant, MICT, RWC, and RWB, respectively. This suggests that node centrality for

Kemeny’s constant and RWB would be infeasible as the number of nodes in a network is

larger.

As discussed in the previous section with 2-community structures, and indeed as seen in

Fig 9, MICT and RWC are inclined to highlight important nodes in the central area rather

Fig 8. Ranking nodes in G(10, 3) based on the random walk-based indicators.

https://doi.org/10.1371/journal.pone.0280277.g008
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than nodes nearby community bridges, while Kemeny’s constant and RWB are not. As a result,

red-coloured nodes for MICT and RWC are more clustered in the central area while ones for

Kemeny’s constant and RWB scatter around community bridges.

We can understand their different behaviours between Kemeny’s constant and RWB,

and between MICT and RWC, considering communities in peripheral areas. Consider

the community at the bottom left. Then, we can see that Kemeny’s constant does not

suggest nodes in the centre of the community as important ones while RWB does, for the

reason that the Kemeny-based indicator is the most affected by community bridges as seen

in Fig 8.

Consider two communities at the bottom left and the top right. We can see that MICT

ranks less important nodes in the communities than RWC does. Since RWC is the least

affected by community bridges among the random walk-based indicators from Fig 9, one can

interpret the difference in that MICT ranks more important nodes in the central area because

they have more community bridges.

Finally, since one might expect that the result of rankings from MICT is relevant to node

degrees, we consider ranking nodes according to node degrees. Its result is the most similar to

the one from RWC.

Fig 9. Comparison of ranking nodes based on the random walk-based indicators and node degrees in the contact network ‘ia-infect-dublin’.

https://doi.org/10.1371/journal.pone.0280277.g009
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6 Conclusions and future work

Random walks on graphs have been widely used in the literature to analyse and predict epi-

demic spreads, and to plan, design and compare the outcomes of different mitigation policies

in terms of their ability to control the spreading of a virus. As we show in this manuscript, sim-

plistic models based on single random walkers are very convenient in terms of computational

aspects, and thus have a significant predictive power in networks of realistic size. However,

they are not consistent with the actual dynamics of the virus, in terms of the number of steps

which is actually required before the virus spreads from one individual to another individual

in the network. Conversely, other models accurately depict the actual spreading of the virus,

also in terms of expected steps for transmission, but grow exponentially with the number of

individuals, and thus are not feasible for accurate predictions in large networks, unless special

symmetries in the graph reduce the computational burden.

In this work we thoroughly review both the aforementioned models, and we describe a

sampling strategy that allows one to adopt the more accurate model, in terms of expected

steps for infection, to also analyse larger graphs without incurring in an exponential growth

of the state space. In addition, we introduce a novel indicator of criticality of nodes, which is

based on the expected number of steps for infection to reach the entire population. A com-

parison of the properties of this indicator with other similar importance indicators is also

provided.

Our work can be extended in a number of directions. First of all, while all the results we

have provided have been obtained from a simple SI model, where individuals are either

infected or susceptible, the same approach can be easily generalized to more sophisticated, and

realistic, epidemic models where also recovered, exposed, or individuals at other stages of the

infection, are considered. In these cases, we are interested in ascertaining whether the pro-

posed random-walk based model, which is now evaluable also for larger networks, does pro-

vide further insights in the dynamics of a virus. In particular, it would be interesting to study if

there is a correlation between the identified critical nodes via MICTs, and actual supersprea-

ders and superspreading events in real networks, which are known to having played an impor-

tant role in the spreading of a virus [44–46]. Finally, computational aspects, convergence to

the actual MICTs, and analytical tight bounds on the covering times are all aspects which still

partially remain open questions, and we are interested in addressing in the future.
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