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THE SEMI-INFINITE COHOMOLOGY OF WEYL MODULES

WITH TWO SINGULAR POINTS

GIORGIA FORTUNA, DAVIDE LOMBARDO,
ANDREA MAFFEI, VALERIO MELANI

A Claudio Procesi, con ammirazione.

“a volte due punti sono più vicini di quanto non sembri,
ma per unirli ci vuole un’idea. Lui era la persona giusta.”

Nonmaterial lifeform, di F. B. Amadou, Urania.

Abstract. In their study of spherical representations of an affine Lie algebra
at the critical level and of unramified opers, Frenkel and Gaitsgory introduced
what they called the Weyl module Vλ corresponding to a dominant weight
λ. This object plays an important role in the theory. In [4], we introduced a

possible analogue V
λ,µ
2

of the Weyl module in the setting of opers with two
singular points, and in the case of sl(2) we proved that it has the ‘correct’
endomorphism ring. In this paper, we compute the semi-infinite cohomology

of Vλ,µ
2

and we show that it does not share some of the properties of the semi-
infinite cohomology of the Weyl module of Frenkel and Gaitsgory. For this

reason, we introduce a new module Ṽ
λ,µ
2

which, in the case of sl(2), enjoys all
the expected properties of a Weyl module.

1. Introduction

Let g be a complex simple Lie algebra and let ĝ be its affinization. Choose a
Borel subalgebra and a maximal toral subalgebra, and let G be a simply connected
algebraic group with Lie algebra equal to g. As a particular case of a more general
conjecture, Frenkel and Gaitsgory proved in [6] that the semi-infinite cohomology

gives an isomorphism between the category ĝcrit-modJG of spherical representations
of ĝ at the critical level (that is, representations of ĝ at the critical level with a
compatible action of JG = G(C[[t]])) and the category of quasi-coherent sheaves
on the space of unramified opers Opunr1 over gL, the Langlands dual of g. As
they explain, the space of unramified opers is the disjoint union of its connected

components Opλ,unr1 , and the category of spherical representations is the product of

certain subcategories ĝcrit-modJG,λ, where in both cases λ ranges over all dominant
weights of G. The equivalence given by semi-infinite cohomology specialises to an
equivalence between ĝcrit-modJG,λ and the category of quasi-coherent sheaves over

Opλ,unr1 . The space Opλ,unr1 is a non-reduced indscheme, and its reduced version,

denoted by Opλ1 , is an affine scheme. In this paper we will denote by Zλ1 its
coordinate ring.

In this theory, an important role is played by the Weyl module Vλ1 . This module
enjoys the following fundamental properties:

Endĝ(V
λ
1 ) ≃ Z

λ
1 and Ψ0(Vλ1 ) ≃ Z

λ
1 ,

where Ψn is the n-th semi-infinite cohomology group. Moreover the semi-infinite
cohomology groups Ψn(Vλ1 ) are trivial for n 6= 0.

Dennis Gaitsgory suggested to Giorgia Fortuna to study the space of unramified
opers and spherical representations in a more general context, see [3]; in fact, the
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definition of unramified opers as well as the definition of spherical representations
can be generalized in the presence of more than one singularity, raising the question
on whether or not certain statements remain true and what happens when these
singularities collide.

In [4] we took some steps in this direction, by studying the case of sl(2). In

particular, we introduced a version of the Weyl module V
λ,µ
2 of critical level of the

affine Lie algebra with two singularities ĝ2. Thinking of t as a coordinate near the
first singularity and s as a coordinate near the second singularity, this is the version
of the affine Lie algebra over the ring A = C[[a]], where a = (t−s). As an A module
is equal to K2⊗C⊕AC2 where K2 = C[[a, t]][1/t(t−a)] and C2 is a central element
(see [4], Section 3.3 for the complete definition).

We also introduced reduced scheme over A of unramified opers Opλ,µ2 which gener-

alize the schemes Opλ1 . Both objects depend on two integral dominant weights λ,
µ of G, and we proved that

Endĝ2
(Vλ,µ2 ) ≃ Zλ,µ2 ,

where Zλ,µ2 is the coordinate ring of Opλ,µ2 .

In this article we study the semi-infinite cohomology of Vλ,µ2 and its relation with

the ring Zλ,µ2 in order to understand how the equivalence Ψ0(Vλ1 ) ≃ Z
λ
1 generalizes.

This is done in Section 4, where we compute the cohomology of Vλ,µ2 ; in Section 5

we study the action of Z2, the center of a completion Û2 of the enveloping algebra
of ĝ2 at the critical level on this module (see Section 2.2).
In particular, we prove that the specialisation at a = 0 and the localization at

a 6= 0 of the semi-infinite cohomology of Vλ,µ2 are isomorphic to the specialisation

and localization of Zλ,µ2 , respectively. However, in contrast to our intuition, we also

show the following result which says that Ψ0(Vλ,µ2 ) doesn’t exactly generalize the
equivalence Ψ0(Vλ1 ) ≃ Z

λ
1 as expected:

Theorem A (Theorem 4.9 and Proposition 5.3). We have Ψn(Vλ,µ2 ) = 0 for n 6= 0.

Moreover, Ψ0(Vλ,µ2 ) is not isomorphic to Zλ,µ2 as a Z2-module.

For this computation, we rely on the formalism introduced by Casarin in [1],
which makes it possible to use vertex algebras also in the context of opers with
two singularities. Once this formalism is in place, for the computation of the semi-
infinite cohomology we can follow closely the approach taken by Frenkel and Ben
Zvi in [5, Chapter 15] for the case of one singularity.

In the last section, we restrict our attention to the Lie algebra sl(2) and introduce

a submodule Ṽ
λ,µ
2 of Vλ,µ2 , which is generated by the highest weight vector. We

prove that this module is the correct one to consider, in the sense that it has the
expected cohomology groups and endomorphism ring, as the following result shows.

Theorem B (Proposition 6.3, Theorem 6.5 and Proposition 6.6). If g = sl(2) then

we have Ψn(Ṽλ,µ2 ) = 0 for n 6= 0. Moreover, we have

Endĝ2
(Ṽλ,µ2 ) ≃ Zλ,µ2 and Ψ0(Ṽλ,µ2 ) ≃ Zλ,µ2 .

We now briefly explain the connection between these results and Conjecture 3.6.1
in Fortuna’s Thesis [3]. As a particular case the conjecture predicts an equivalence
between quasi-coherent sheaves over the space of unramified opers with two singu-
larities and the category of spherical representations over ĝ2: that is the space of
smooth representations of ĝ2 with a compatible action of J2G = G(C[[a, t]]).

The conjecture stated in [3] predicts an equivalence of similar categories not only
in the presence of two singularities but in the presence of n-possible singularities.
In particular for any finite set with n elements I we can define the space of opers
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on the formal disc with n-singularities OpI and the subspace of unramified opers
OpunrI (see Section 3.5 in [3]). These are spaces over the product of n-copies of
the formal disc. These are easily seen to be factorization spaces, which means that
this spaces specialise nicely when restricted along or outside the diagonals of this
product (see Section 3.1.5 in [3]). There are not substantial differences between
the treatment we do here or in [4] of Op2 and the general case. The only minor
difference is that we fix a singularity to be 0. These spaces are indschemes, and
so we can define the categories QCoh(OpI), and QCoh(OpunrI ) of quasi-coherent
sheaves on OpI and OpurI (see Section 3.5.3 in [3] for the actual definition), and the
nice factorization properties which make them factorization categories (see Section
3.1.2 in [3]).

Similarly, for a finite set I we can define a Lie algebra ĝI and study its smooth
representations at the critical level. The objects constructed in this way live also
on the product of n copies of the formal disc, and they also have nice factorization
properties, in particular the collection of (completions of the) enveloping algebras

specialized at the critical level ÛI of the algebras ĝI , is what is called a factorization
algebra (see Section 3.1.3 in [3]). As a conseguence the collection of the categories of
smooth representations at the critical of the Lie algebras ĝI , denoted by ĝI,crit-mod

and their subcategories of spherical representations ĝI,crit-modJG can be organized
also in a factorization category. The semi-infinite cohomology can be defined also
in this generality and defines a functor

ΨI : ĝI,crit-mod −→ D(QCoh(OpI))

compatible with the factorization properties. While in Fortuna’s thesis all these
constructions are obtained somehow for free using the language of chiral algebras
(see Section 3.1.6 in [3]), in this paper we use the language of vertex algebras and
the formalism introduced by Casarin [1]. Let us notice that, from this point of
view, there are no differences in treating the case with two singular points and the
case with an arbitrary finite number of singular points. For example, the proof of
Theorem A above can be repeated verbatim in the case of n singular points. More
generally we believe that all the technical difficulties in the study of this problem
already appear in the case of two singularities.

It is easy to see from the factorization properties and the analogous statement
for the case of one singularty by Frenkel and Gaitsgory (see [7]) that the semi-
infinite cohomology of a ĝI -spherical module is supported on OpunrI . Hence semi-

infinite cohomology restricts to a functor ΨI : ĝI,crit-modJG −→ D(QCoh(OpunrI )).
Conjecture 3.6.1 in [3] states that this functor is exact and that

Ψ0
I : ĝI,crit-modJG −→ QCoh(OpunrI )

is an equivalence of categories. In fact, it can be seen that the first part of Theorem
A implies that ΨI is exact. Moreover, in the case of g = sl(2), Theorem B yields
that the restriction of Ψ0

I to modules with reduced support is an equivalence. The
details will be given in a forthcoming paper.

The paper is organized as follows. In the first section we recall some definitions
from [4]. In Section 3 we recall the formalism introduced by Casarin [1] and we
use it to define semi-infinite cohomology and prove some of its basic properties. In

Sections 3 and 4 we compute the semi-infinite cohomology of Vλ,µ2 and in Section

5 we compute the semi-infinite cohomology of Ṽλ,µ2 .
We thank Luca Casarin for many useful discussions and in particular for explain-

ing to us the formalism introduced in [1]. It seems to us that Casarin’s approach
provides a natural framework to treat questions concerning opers with several singu-
larities, making the theory much more transparent than it was in [4]. In particular,
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the results of [1] allowed us to streamline several arguments and calculations which
would have been quite hard to carry out using the direct approach of [4].

2. Basic constructions

In this section we recall some basic constructions from [4], to which we refer
for further details, and we introduce the notion of semi-infinite cohomology in the
context of affine Lie algebras with more than one singular point.

2.1. Rings. We follow [4, Section 1], to which the reader is referred for more details.
We introduce the rings

A = C[[a]], Q = C((a)), R2 = C[[t, s]], K2 = C[[t, s]][1/ts],

where a = t − s. Recall that we have expansion maps (given by suitable natural
inclusions) and a specialisation map (which sends a to 0 and t, s to t, see Section
1.1 in [4])

Et : K2[a
−1] −→ Q((t)), Es : K2[a

−1] −→ Q((s)), Sp : K2 −→ C((t)).

We also write E = Et × Es : K2[a
−1] −→ Q((t)) ×Q((s)). Recall from [4, Section

1.1] that Sp induces an isomorphism K2/(a) ≃ C((t)). These rings have natural
topologies: with respect to these, the image of E is dense, and E(R2[a

−1]) is dense
in Q((t))×Q((s)).

These rings are also equipped with residue maps

Res2 : K2 → A Res1 : C((t))→ C, Rest : Q((t))→ Q, Ress : Q((s))→ Q,

which behave nicely with respect to specialisation and expansion (see [4, Section
1.2]). Finally, we recall Lemma 1.10 in [4].

Lemma 2.1 ([4], Lemma 1.10). Let M,N be two A-modules and ϕ : M −→ N be
a morphism of A-modules. Then

a) if M is flat and ϕa :M [a−1] −→ N [a−1] is injective, then ϕ is injective.
b) if N is flat, ϕa : M [a−1] −→ N [a−1] is surjective, and ϕ : M/aM −→ N/aN is

injective, then ϕ is surjective.

In particular, if M and N are flat, ϕa : M [a−1] −→ N [a−1] is an isomorphism,
and ϕ :M/aM −→ N/aN is injective, then ϕ is an isomorphism.

2.2. Affine Lie algebras and completion of the enveloping algebra. We
follow [4, Section 3]. Let g be a finite-dimensional Lie algebra over the complex
numbers and denote by κ the Killing form of g. Recall from [4, Sections 3.1 and 3.3]
that for each of the rings of the previous section we introduce an affine Lie algebra:
ĝ1 is the usual affine Lie algebra (we take for convenience the version defined by
Laurent polynomial and not Laurent series), ĝt and ĝs are also versions of the usual
affine Lie algebra, while ĝ2 is an A-Lie algebra having as underlying A-module the
space

ĝ2 = C[t, s][1/ts]⊗C g⊕AC2.

We also introduce the Lie algebra ĝt,s = ĝt ⊕ ĝs/(Ct − Cs) (see [4, Section 3.3]).
For each of these Lie algebras, we introduce the corresponding universal envel-

oping algebra, which we suitably complete and then specialize at the critical level
by imposing that the central element acts as −1/2 (see Sections 3.1 and 3.3 in [4]).
In particular

Û2 = lim
←−
n

U(ĝ2)

(C2 = −1/2, tnsnC[t, s]⊗ g)left.id.

Recall from [4, Section 3.4] that the expansion maps and the specialisation maps
induce morphisms at the level of Lie algebras. In particular, the specialisation
map Sp : Û2 −→ Û1 induces an isomorphism between Û2/aÛ2 and Û1, while the
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expansion map induces a morphism E : Û2[a
−1] −→ Ût,s which is injective and has

dense image.
Moreover, the natural inclusions ĝt →֒ ĝt,s and ĝs →֒ ĝt,s induce a morphism

Ût ⊗ Ûs −→ Ût,s

which is also injective and with dense image (see [4, Section 3.3]).

2.3. Weyl modules. We follow [4, Section 6]. We choose a Borel subalgebra and
a maximal toral subalgebra of g, which we denote by b and t respectively. This
data induces a choice of weights, integral weights and dominant weights. For every
integral dominant weight λ, [7] introduced the Weyl module Vλ1 over the affine Lie
algebra ĝ1. The representation V = V0

1, which has a structure of vertex algebra, will
play a particularly important role for us. This vertex algebra enjoys the following
universal property.

Lemma 2.2. Let U be a vertex algebra such that there exists a linear map x 7→ ux
from g to U such that

(ux)(0)(uy) = u[x,y] (ux)(1)(uy) = −
1

2
κ(x, y)|0〉U (ux)(n)(uy) = 0

for all n > 2. There exists a unique morphism of vertex algebras α : V → U such
that α(xt−1|0〉V) = ux for all x ∈ g.

Weyl modules Vλt and Vλs can also be defined for the Lie algebras ĝt and ĝs,
without any significant change from [7]. In [4], we introduced a generalization of
these modules. Given two dominant weights λ, µ, we consider the irreducible repres-
entations V λ and V µ of the Lie algebra g having highest weights λ, µ, respectively.
In [4, Definition 6.2], given two dominant integral weights λ, µ we introduced the
module

V
λ,µ
2 = Indĝ2

ĝ
+

2

(
A⊗C V

λ ⊗C V
µ
)
,

where ĝ+2 = C[t, s]⊗ g⊕AC2 acts on A⊗C V
λ ⊗C V

µ as

f(t, s)x · (p(a)⊗ u⊗ v) = f(0,−a)p(a)⊗ xu⊗ v + f(a, 0)p(a)⊗ u⊗ xv,

while C2 acts as −1/2. In [4] we called this object the Weyl module of weights (λ, µ),
although, as we will see, it does not have the same properties as its 1-singularity
analogue.

We also define

W
λ,µ
1 = Indĝ1

ĝ
+

1

(
V λ ⊗C V

µ
)
,

where ĝ+1 = C[t] ⊗ g⊕ CC1 acts on V λ ⊗C V
µ as f(t)x · (u ⊗ v) = f(0)x · (u ⊗ v)

and C1 acts as −1/2.
The specialisation and expansion maps are defined also for Weyl modules, and

induce the following isomorphisms [4, Lemma 6.3]:

V
λ,µ
2

aVλ,µ2

≃W
λ,µ
1 , V

λ,µ
2 [a−1] ≃ V

λ
t ⊗Q V

µ
s . (2.1)

2.4. Clifford algebra. We now define the Clifford algebra with two singularities,
generalizing the construction of the classical case (see for example [5, Chapter 15]).
Let n+ be the nilpotent radical of b and set

X2 = K2 ⊗C n+ ⊕K2 ⊗C n∗+.

We equip X2 with the unique A-bilinear form such that K2 ⊗C n+ and K2 ⊗C n∗+
are isotropic subspaces and

(f ⊗ x; g ⊗ ϕ) = Res2(fg)ϕ(x)
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for all f, g ∈ K2, x ∈ n+ and ϕ ∈ n∗+. We denote by Cℓ2 the associated Clifford
algebra over A.

There are obvious variants of the same construction where we replaceK2 with the
ring C[t±1] or one of the rings Q[t±1], Q[s±1], Q[t±1]×Q[s±1]. We obtain Clifford
algebras that we denote by Cℓ1, Cℓt, Cℓs, Cℓt,s. The algebra CℓU in [5, Section 15.1.1]
is a completion of Cℓ1.

These Clifford algebras have a natural grading called the charge and denoted by
ch. It can be defined as follows: the elements of the base ring have charge 0, while
for ψ ∈ n and ψ∗ ∈ n∗ we have

chψ = −1, chψ∗ = 1. (2.2)

The relations defining each Clifford algebra are homogeneous, hence the charge
induces a well-defined grading on the Clifford algebra.

We now introduce completions of the tensor product Û2 ⊗A Cℓ2. We define

Û2⊗̂ACℓ2 = lim
←−
n

Û2 ⊗A Cℓ2(
(ts)nR2g⊗ 1, 1⊗ (ts)nR2n+, 1⊗ (ts)nR2n

∗
+

)
left ideal

and we notice that, as in the case of the algebra Û2, this A-module has a nat-
ural structure of A-algebra. We introduce the completed Clifford algebras Û1⊗̂Cℓ1,
Ût⊗̂QCℓt, Ûs⊗̂QCℓs, and Ût,s⊗̂QCℓt,s. The specialisation and expansion map de-
termine morphisms

Sp : Û2⊗̂ACℓ2 −→ Û1⊗̂Cℓ1 and E : (Û2⊗̂ACℓ2)[a
−1] −→ Ût,s⊗̂QCℓt,s.

Arguing exacly as in [4, Lemmas 3.7 and 3.9] we see that E is injective with dense

image, while the specialisation map induces an isomorphism Û2⊗̂ACℓ2/a(Û2⊗̂ACℓ2) ≃

Û1⊗̂Cℓ1. Finally, we have an injective map I : Ût⊗̂QCℓt → Ût,s⊗̂QCℓt,s induced by
the natural inclusion Kt → Kt,s = Kt×Ks given by f 7→ (f, 0). Similarly, we have

an injective map J : Ûs⊗̂QCℓs → Ût,s⊗̂QCℓt,s. As in Section 3.3 of [4], the product

of these maps I ⊗ J : (Ût⊗̂QCℓt) ⊗Q (Ûs⊗̂QCℓs) → Ût,s⊗̂QCℓt,s is injective with
dense image.

2.5. Fock module. We now describe the “fermionic” Fock spaces corresponding to
the Clifford algebras defined in the previous section. As above, for the construction
in the case of one singularity we refer to [5, Section 15.1.4]: here we mimic this
definition in the case of two singularities. We define Cℓ+2 as the A-subalgebra of Cℓ2
generated by R2 ⊗ n+ and R2 ⊗ n∗+ and we define the Fock module

Λ2 = Cℓ2 ⊗Cℓ+
2

A |0〉Λ2

where R2⊗ n+ and R2⊗ n∗+ acts trivially on |0〉Λ2
. The charge (see equation (2.2))

induces a grading on the Fock space by setting

ch |0〉Λ2
= 0.

We denote by Λn2 the subspace of homogeneous elements of charge equal to n.
Similar constructions can be given for all the other Clifford algebras Cℓ1, Cℓt, Cℓs,
and Cℓt,s, giving Fock modules Λ1, Λt, Λs, and Λt,s.

Specialisation and expansion, induce maps also at the level of the Fock spaces.

Arguing as in [4, Section 6] (where we considered the module V
λ,µ
2 ), it is easy to

prove the following Lemma:

Lemma 2.3.

a) The specialisation map Sp : Λ•
2 −→ Λ•

1 is homogeneous of degree zero and
induces an isomorphism Λ•

2/aΛ
•
2 ≃ Λ•

1.
b) We have a homogeneous isomorphism of degree zero Λ•

t,s ≃ Λ•
t ⊗Q Λ•

s.
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c) The expansion map E : Λ•
2[a

−1] −→ Λ•
t ⊗QΛ•

s is a homogeneous isomorphism
of degree zero.

Recall also that the Fock space Λ = Λ1 has a natural structure of vertex super-
algebra with the following universal property.

Lemma 2.4. Let U be a vertex superalgebra such that there exists a linear map
x 7→ ux from n∗+ ⊕ n∗+ to the space of odd elements of U such that

(1) for all ϕ, ψ ∈ n and for all ϕ∗, ψ∗ ∈ n∗+

(uψ)(n)(uϕ) = (uψ∗)(n)(uϕ∗) = (uψ)(m)(uψ∗) = (uψ∗)(m)(uψ) = 0

for all n > 0 and for all m > 1;
(2) (uψ)(0)(uψ∗) = (uψ∗)(0)(uψ) = 〈ψ, ψ

∗〉|0〉U for all ψ ∈ n and ψ∗ ∈ n∗+.

Then there exists a unique morhism of vertex superalgebras α : Λ → U such that
α(ψt−1|0〉Λ) = uψ and α(ψ∗t−1|0〉Λ) = uψ∗ .

2.6. Bases. For each of the objects introduced above – base rings, enveloping al-
gebras, Clifford algebras, and Fock spaces – it is not hard to construct explicit
bases (or topological bases). We give the details in the case of two singularities.
The construction of a basis depends on the choice of a basis of C[t, s][1/ts] as an
A-module. Following [4], Section 1.1 and Equation (4.1) we introduce the following
bases, indexed by 1

2Z: for n ∈ Z we define
{
zn = tnsn

zn+ 1
2
= tn+1sn

{
wn = tnsn

wn+ 1
2
= tnsn+1

The elements zm for m ∈ 1
2Z form a basis of C[t, s][1/ts] as an A-module, and

the elements wn are the dual basis with respect to the residue bilinear form: more
precisely, one has

Res2(znw
−m−

1
2
) = δn,m.

This specific choice of basis is not particularly important, and several others would
be possible. However, some properties need to be satisfied for our approach to
work. In particolar with our choice, the elements zm (or wm) with m > 0 form an
A-basis of C[t, s].

Since K2 is an A-free module, we deduce that the enveloping algebras of g2 and
Cℓ2 are A-free modules. Moreover, as R2 is a direct summand of K2, we also deduce

that Vλ,µ2 and Λ2 are also A-free modules. Explicit bases of these modules, as well

as an explicit topological basis of the algebra Û2⊗̂ACℓ2, can be obtained using the
Poincaré-Birkhoff-Witt theorem and its analogue for Clifford algebras.

3. Vertex algebras and semi-infinite cohomology

In this section, we recall some results obtained by Casarin [1] which allow us to
use the formalism of vertex algebras also in the context of several singularities. In
particular, using this formalism we develop a notion of semi-infinite cohomology for
Û2-modules.

3.1. Distributions and vertex algebra morphisms. LetR be a complete topo-
logical associativeA-algebra. Following [1, Definition 3.0.4], we denote by FA(K2,R)
the space of continuous A-linear morphisms from K2 to R and call it the space of
2-fields. We refer to [1] for the definitions of mutually local 2-fields (Definition
3.1.1), of the n-products X(n)Y of two 2-fields (Definitions 3.1.2 and 3.1.7) and
of the derivative ∂(X) of a 2-field (before Definition 3.0.3). The definition in [1]
applies also to the other rings we are considering: K1,Kt,Ks,Kt,s.
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In particular to define n products it is necessary to choose what in [1], Definition
2.3.8, is called a global coordinate. We choose always t as a global coordinate.
More explicitly for the rings K2,K1,Kt and Ks we choose t = s + a as a global
coordinate, and for the ring Kt,s = Kt ×Ks we choose (t, t) = (t, s+ a).

We also use some foundational results proved in this context in [1]. In particular,
the following result will be crucial for us.

Theorem 3.1 ([1], Theorem 3.2.3). Let F be a C-linear subspace of FA(K2,R) of
mutually local 2-fields closed under derivation and n-products. Let 1 be a field such
that 1(f) is central for every f ∈ K2, that ∂1 = 0 and such that 1(n)X = δn,−1X for
all X ∈ F . Then the vector space F +C1, endowed with n-products and derivation
T = ∂, is a C-vertex algebra with 1 as vacuum vector.

It is straightforward to generalize the constructions and results in [1] to the case
of superalgebras R.

We are interested in the case where R is the superalgebra Û2⊗̂ACℓ2. For x ∈ g,
ψ ∈ n+ and ψ∗ ∈ n∗+ we define the 2-fields

x(2)(g) = (x⊗g)⊗1Cℓ2 , ψ[2](g) = 1Û2
⊗(ψ⊗g), (ψ∗)[2](g) = 1Û2

⊗(ψ∗⊗g) (3.1)

for all g ∈ K2. The first of these fields has even parity with respect to the superal-
gebra structure, while the second and third ones are odd. These fields are mutually
local. We consider the minimal C-linear subspace F (2) of Û2⊗̂ACℓ2 closed under
n-products and derivation and containing the fields (3.1). Moreover, we define

12(f) = Res2(f)
(
1Û2
⊗ 1Cℓ2

)
.

It is easy to check that this data satisfies the hypothesis of Theorem 3.1. Therefore,
V(2) = F (2) + C12 has a structure of vertex superalgebra, and by the universal
properties of the vertex algebra V (Lemma 2.2) and of the vertex superalgebra Λ•

(Lemma 2.4) it follows that there exists a morphism of vertex superalgebras

Φ(2) : V⊗C Λ• −→ V(2). (3.2)

This homomorphism will allow us to easily introduce many elements in V(2), hence
also in Û2⊗̂ACℓ2.

Similar constructions apply if the algebra Û2⊗̂ACℓ2 is replaced by the algebras
Û1⊗̂Cℓ1, Ût⊗̂QCℓt, etc. Hence, we construct the fields x

(1), ψ[1], x(t), ψ[t], the vertex

superalgebras V(1), V(t), and homomorphisms of vertex algebras Φ(1) : V⊗CΛ
• −→

V(1), Φ(t) : V⊗C Λ• −→ V(t), etc.
Notice that we have a specialisation morphism SpF : FA(K2, Û2⊗̂Cℓ2) −→

FC(K1, Û2⊗̂Cℓ1) and an expansion mapEF : FA(K2, Û2⊗̂ACℓ2) −→ FQ(Kt,s, Û2⊗̂QCℓt,s),
determined by the conditions

(
SpF (X)

)
(Sp(f)) = Sp(X(f)) and

(
EF (X)

)
(E(f)) = E(X(f)).

These maps commute with n-products and derivations and satisfy SpF(12) = 11

and EF (12) = 1t,s. Moreover, by construction they satisfy

SpF (x
(2)) = x(1) and EF (x

(2)) = x(t,s)

for x ∈ g. Similar relations hold for ψ[2] and (ψ∗)[2]. This implies in particular that
the homomorphisms SpF and EF restrict to homomorphisms of vertex algebras
Sp : V(2) −→ V(1) and E : V(2) −→ V(t,s) such that

Sp ◦Φ(2) = Φ(1) E ◦ Φ(2) = Φ(t,s).

We can also describe the morphism Φ(2) through the morphisms Φ(t) and Φ(s).
Recall from the end of Section 2.4 the maps I, J from Ût⊗̂QCℓt and Ûs⊗̂QCℓs to

Ût,s⊗̂QCℓt,s. These maps induce maps at the level of fields IF : FQ(Kt, Ût⊗̂QCℓt)→
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FQ(Kt,s, Ût,s⊗̂QCℓt,s) and JF : FQ(Ks, Ûs⊗̂QCℓs) → FQ(Kt,s, Ût,s⊗̂QCℓt,s), given
by

IF (X)(f, g) = I(X(f)) and JF (X)(f, g) = J(X(g))

for all (f, g) ∈ Kt×Ks = Kt,s. The maps IF and JF preserve n-products, commute
with derivations, and satisfy IF (1t)+JF (1s) = 1t,s. Moreover we notice that I(u)

and J(v) commute for all u ∈ Ût⊗̂QCℓt and v ∈ Ûs⊗̂QCℓs. By the discussion in [1,
Section 7.2], this implies

IF ◦ Φ
(t) + JF ◦ Φ

(s) = Φ(t,s).

This is the only statement where it is relevant the choice of the global coordinate
we have done in Section 3.1.

3.2. Semi-infinite cohomology. We now define a notion of semi-infinite cohomo-

logy for Û2-modules, in analogy with the analogous notion for Û1-modules described
for example in [5, Chapter 15]. To this end, we introduce some notation for elements

in the vertex superalgebra V⊗Λ•. As in the case of Û1, to describe these elements
we choose a basis Ja of g compatible with the decomposition g = n−⊕ t⊕n+, where
n+ is the nilpotent radical of b and n− is the radical of the opposite nilpotent borel
subalgebra. We denote by cb,de the structure coefficients of the Lie bracket with
respect to this basis. We denote by Φ⊔ Γ the indexing set of the basis Ja, so that,
if α ∈ Φ, then Jα = eα = f−α is a root vector of weight α and, if α ∈ Γ, then
Jα ∈ t. We also denote by ψ∗

α for α ∈ Φ+ the basis of n∗+ dual to the basis eα of
n+.

With each element in n+ ⊗ · · · ⊗ n+ ⊗ n∗+ ⊗ · · · ⊗ n∗+ we associate an element in
the vertex superalgebra Λ as follows:

N(ψ1 ⊗ . . . ψℓ ⊗ ψ
∗
1 ⊗ · · · ⊗ ψ

∗
m) = (ψ1t

−1) · · · (ψℓt
−1) · (ψ∗

1t
−1) · · · (ψ∗

mt
−1) · |0〉Λ.

Similarly, with an element in g ⊗ n∗+ we associate an element in the vertex
superalgebra V⊗ Λ∗ by setting

M(x⊗ ψ∗) = (xt−1) · |0〉V ⊗ (ψ∗t−1) · |0〉Λ.

Following [5, Chapter 15] we define

q =M(I)−
1

2
|0〉V ⊗N(B) =

∑

α∈Φ+

(eαt
−1) · |0〉V ⊗ (ψ∗

αt
−1) · |0〉Λ

−
1

2

∑

α,β∈Φ+

cα,βα+β |0〉V ⊗ (eα+βt
−1) · (ψ∗

αt
−1) · (ψ∗

βt
−1) · |0〉Λ,

where I ∈ g⊗ n∗+ represents the inclusion of n+ in g and B ∈ n+ ⊗ n∗+ ⊗ n∗+ is the

Lie bracket. We now define the boundary operator d
(2)
std ∈ Û2⊗̂ACℓ2 as follows:

d
(2)
std :=

(
Φ(2)(q)

)
(1).

The boundary operator that we will use to define the semi-infinite cohomology

is a deformation of d
(2)
std. Let ψ

∗
pr =

∑
α simple ψ

∗
α ∈ n∗+, and define

χ(2) = 1Û2
⊗ ψ∗

pr = Φ(2)(N(ψ∗
pr))(1) ∈ Û2 ⊗A Cℓ2.

Similar constructions yield χ(s), χ(t), χ(s), and χ(s,t). Finally set

d(2) = d
(2)
std + χ(2).

As we will check in Section 3.3, this is an element that squares to zero, and therefore,
it can be used to define the semi-infinite cohomology of a Û2-module.
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Similarly we can define d
(1)
std, χ

(1), d(1), d
(t)
std, χ

(t), d(t), and so on, as elements of
the corresponding superalgebras. By the discussion at the end of Section 3.1 we
have

Sp(d(2)) = d(1), E(d(2)) = d(t,s), and I(d(t)) + J(d(s)) = d(t,s).

Definition 3.2. Let M be an Û2 module. Consider the Û2⊗̂ACℓ2-graded module
M⊗AΛ

•
2, where the grading is given by charge on Λ•

2. The element d(2) acts on this
module as a boundary operator of degree one. Define Ψn(M) as the corresponding
cohomology of degree n.

Similar constructions apply to modules over the algebras Û1, Ût, Ûs or Ût,s.

Let Z2 be the center of the algebra Û2, and similarly introduce the center Z1 of
Û1 and the centers Zt and Zs of Ût and Ûs. If M is an Û2-module, the action of Z2

on M ⊗A Λ•
2 commutes with the differential d(2) and preserves the charge, hence

induces an action of Z2 on the semi-infinite cohomology groups of M . A similar
action is defined in the case of Û1-modules or Ût-modules.

Recall that a module M over a topological algebra R is said to be smooth if the
action of R on M is continuous with respect to the discrete topology on M . Notice
that, if M is a smooth Û2-module, then, since the map E has dense image, the
action of Û2 on M extends to a smooth action of Ût,s on M [a−1]. Similarly, if Mt

is a smooth Ût-module and Ms is a smooth Ûs-module, then there is an induced
action of Ût,s on Mt⊗QMs. In the next section we will use the following properties
of the semi-infinite cohomology.

Lemma 3.3.

a) Given a short exact sequence of Û2-modules, there is an induced long exact
sequence in semi-infinite cohomology.

b) Let M be an Û1-module. The semi-infinite cohomology of M as an Û1-module

is isomorphic to the semi-infinite cohomology of M considered as an Û2-
module through the map Sp.

c) Let M be an Ût,s-module. The semi-infinite cohomology of M as an Ût,s-
module is isomorphic to the semi-infinite cohomology of M considered as an
Û2-module through the map E. In particular, this applies to the case where
M = N [a−1] is the localization of a smooth Û2-module N .

d) Let Mt be a smooth Ût-module, Ms be a smooth Ûs-module, and let M :=

Mt ⊗Q Ms, regarded as a Ût,s-module. The complex computing the semi-
infinite cohomology of M is the total complex associated with the double com-
plex given by the tensor product of the complex computing the semi-infinite
cohomology of Mt and that of Ms. In particular, being the base ring Q a
field, if Mt and Ms have non zero semi-infinite cohomology only in degree
zero, then M considered as an Ût,s-module has semi-infinite cohomology only
in degree zero and the cohomology in degree zero is isomorphic to the product
of the tensor product of Ψ0(Mt) and Ψ0(Ms).

Proof. Part a) follows from the fact that Λ2 is a free module over A.
Part b) follows from the fact that, since a ∈ A acts trivially on M , by Lemma

2.3 a) we have

M ⊗A Λ•
2 ≃M ⊗C

Λ•
2

aΛ•
2

≃M ⊗C Λ•
1

and moreover, by construction, d(1) = Sp(d(2)).
Part c) follows from the fact that, since the action of a on M is invertible, by

Lemma 2.3 c) we have

M ⊗A Λ•
2 =M ⊗A Λ•

2[a
−1] =M ⊗A Λ•

t,s
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and, moreover, by construction, d(t,s) = E(d(2)).
Finally, from Lemma 2.3 c) we have

(Mt ⊗Q Λ•
t )⊗Q (Ms ⊗Q Λ•

s) ≃M ⊗Q Λ•
t,s.

Part d) then follows from the equality d(t,s) = I(d(t)) + J(d(s)). �

3.3. Commutation relations. For their computation of the semi-infinite cohomo-
logy of V, Frenkel and Ben Zvi (see [5] Chapter 15) relied on the choice of a clever
basis of V⊗ Λ. For all x ∈ g, they define

x̂ = xt−1 · |0〉V ⊗ |0〉Λ +N(αx),

where αx ∈ n+⊗n
∗
+ represents the linear map n+ → n+ obtained as the composition

of adx : n+ −→ n+, the natural projection π : g −→ g/b−, and the inverse of the
isomorphism n+ ∼= g/b− induced by π. Using the map Φ(2) from Equation (3.2) we
define

x̂(2) = Φ(2)(x̂).

To compute the semi-infinite cohomology of Vλ,µ2 we will need some information

about the commutation relations among the elements x̂(2), ψ[2], and (ψ∗)[2], and
the boundary operators. These are easy to compute because all these objects are
constructed through the map Φ(2). Let us make this remark precise. Given an
element x in V⊗Λ, denote by x(z) the corresponding field in the vertex superalgebra

and by x(2) : K2 −→ Û2⊗̂Cℓ2 the 2-field Φ(2)(x). For any choice of elements
x, y ∈ V⊗ Λ, the commutator of the corresponding fields is given by

[x(z), y(w)] =
∑

n>0

1

n!
(x(n)y)(w)∂

n
wδ(z − w).

We have a similar Operator Product Expansion formula for 2-fields (see [1], Pro-
position 3.1.3)

[x(2)(f), y(2)(g)] =
∑

n>0

1

n!

(
(x(2))(n)(y

(2))
)
(g ∂nf),

where the product (x(2))(n)(y
(2))) is the product of 2-fields defined in [1]. However,

since Φ(2) is a map of vertex algebras we get (x(2))(n)(y
(2)) = (x(n)y)

(2). Hence, if

we know the commutator of x(z), y(w), we immediately deduce that of x(2) and
y(2).

Similar considerations apply when we want to compute [x(2)(1), y(2)(g)] assuming
we know the commutator of x(0) and y(w). In this case, the usual OPE formula
gives [x(0), y(w)] = (x(0)y)(w), while the OPE formula for 2-fields gives

[x(2)(1), y(2)(g)] =
(
(x(2))(0)(y

(2))
)
(g).

Using again the fact that Φ(2) is a map of vertex algebras, we get

[x(2)(1), y(2)] = Φ(2)

((
[x(0), y(w)](|0〉V ⊗ |0〉Λ)

)
|w=0

)
.

These formulas are enough to determine all commutation relations among the ele-
ments x̂(2), ψ[2], (ψ∗)[2] and the boundary operators from those obtained by Frenkel
and Ben Zvi in [5, Chapter 15], without the need of any further computation. We
summarise these results in Proposition 3.4 below, which (in light of the above)
follows from Sections 15.2.4 and 15.2.9 of [5]. In the statement, we denote by
epr, hpr, fpr the sl(2)-triple such that fpr =

∑
α simple λαfα, κ(fpr, eα) = 1 for all

simple root α and hpr ∈ t.
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Proposition 3.4. for all x ∈ g, y ∈ b, z ∈ n+, w ∈ b−, ψ ∈ n+ and ψ∗ ∈ n∗+ we
have:

a) (d
(2)
std)

2 = 0, [d
(2)
std, χ

(2)]+ = 0,

b) (χ(2))2 = 0, (d(2))2 = 0,

c) [χ(2), ψ[2]]+ = 〈ψ∗
pr, ψ〉1, [χ(2), (ψ∗)[2]]+ = 0,

d) [χ(2), ẑ(2)] = 0, [χ(2), ŵ(2)] =
∑

α∈Φ+

κ([fpr, z], eα)ψ
∗
α,

e) [d
(2)
std, ψ

[2]]+ = ψ̂(2), [d
(2)
std, (ψ

∗)[2]]+ = −
1

2
Φ
(
1Û2
⊗N(ψ∗ ◦B)

)
,

f) [d
(2)
std, ŷ

(2)]+ = 0

where in the second formula of e) the element ψ∗ ◦ B ∈ n∗+ ⊗ n∗+ represents the
composition of the bracket with the map ψ∗. Moreover, if we choose a basis Ja as
at the beginnin of Section 3.2, for all γ ∈ Φ+ we have

[d
(2)
std, f̂

(2)
γ ]+ =

∑

α∈Φ+,a∈Φ−⊔Γ

cα,−γa (Ĵa)(2)(−1)(ψ
∗
α)

[2]

−
1

2
κ(e−γ , fγ) ∂(ψ

∗
−γ)

[2] −
∑

α,β∈Φ+, a∈Φ⊔Γ

cα,aβ cβ,−γa ∂(ψ∗
α)

[2]

By specialisation and localization we obtain that similar formulas hold also in

the case of our various other superalgebras Ût⊗̂Cℓt, Ût,s ⊗ Cℓt,s, . . .

4. The semi-infinite cohomology of V
λ,µ
2

In this section we compute the semi-infinite cohomology of Vλ,µ2 . We denote by

C•
2 = C•

2 (λ, µ) the complex V
λ,µ
2 ⊗A Λ•

2 and similarly we introduce the complexes
C•
t = C•

t (λ) = Vλt ⊗Q Λ•
t and C•

s = C•
s (µ) = Vµs ⊗Q Λ•

s. We further introduce

the complexes C•
1 (ν) = Vν1 ⊗C Λ•

1 and C•
1 (λ, µ) = W

λ,µ
1 ⊗C Λ•

1. Hence, we have
C•

1 (λ, µ) ≃ ⊕C
•
1 (ν), where the sum ranges over the irreducible factors of V λ ⊗ V µ

counted with multiplicity.
We denote by Op1 the indscheme of opers on the punctured disc and, for every

integral dominant weight ν, we write Opν1 for the associated connected component
of the space of unramified opers without monodromy, equipped with its reduced
structure (see, for example, [7] for a more complete definition). We also denote by
vν a highest weight vector in the g-module V ν . Feigin and Frenkel [2] constructed
an isomorphism F1 : Funct(Op1) −→ Z1 between the space of functions over Op1
and the center Z1 of Û1. Recall the following result, which combines Theorem 1,
Theorem 2 and the proof of Proposition 1 in [7].

Theorem 4.1 (Frenkel and Gaitsgory [7]). The action of Z1 on Vν1 and the Feigin-
Frenkel isomorphism induce an isomorphism

G1 : Funct(Opν1) −→ Endĝ1
(Vν1).

Moreover, the element vν⊗|0〉Λ is a cocycle in C•
1 (ν) and the map z 7→ [z ·vν⊗|0〉Λ]

from Z1 to Ψ0(Vν1) induces isomorphisms of Z1-modules

Funct(Opν1) ≃ Endĝ1
(Vν1) ≃ Ψ0(Vν1).

Finally, Ψn(Vν1) vanishes for all n 6= 0.

The result of Frenkel and Gaitsgory generalises easily to the case of the modules
Vλt and Vµs .
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By Lemma 2.1 and Lemma 2.3, as in the proof of Lemma 3.3, by the compatibility
of boundary operators we get homomorphisms of complexes Sp : C•

2 → C•
1 (λ, µ)

and E : C•
2 → C•

t (λ)⊗Q C
•
s (µ). These induce isomorphisms

C•
2 [a

−1] ≃ C•
t (λ) ⊗Q C

•
s (µ) and

C•
2

aC•
2

≃ C•
1 (λ, µ). (4.1)

From these isomorphisms and Theorem 4.1 it follows easily that Ψn(Vλ,µ2 ) is zero
for n 6= 0, 1, and we could also get information on the cohomology in degrees zero
and one.

However, it is easier to compute these cohomology groups directly by adapting
the strategy employed by Frenkel and Ben Zvi in [5, Chapter 15]. In order to do
this, we now introduce certain subcomplexes of C•

2 . We denote by 1
V

0,0
2

the element

1 ∈ A⊗C C⊗C C ⊂ V
0,0
2 .

Definition 4.2. We denote by E•
2 the subcomplex of C•

2 (0, 0) spanned by elements
of the form

x̂
(2)
1 (g1) · · · x̂

(2)
a (ga) · 1V0,0

2

⊗ ψ
(2)
1 (ℓ1) · · ·ψ

(2)
b (ℓb) · |0〉Λ2

(4.2)

where xi, ψi ∈ n+ and g1, . . . , ga, ℓ1, . . . ℓb ∈ K2. By the commutation relations of
Section 3.3 we see that E•

2 is a subcomplex of C•
2 (0, 0).

We define also analogous complexes E•
t , E

•
s and E•

1 . These complexes were de-
noted by C′ in [5] and by C0 in [7]. By construction, these subcomplexes are compat-
ible with specialisation and localization, and there are isomorphisms E•

2/aE
•
2 ≃ E

•
1

and E•
2 [a

−1] ≃ E•
t ⊗Q E

•
s .

Definition 4.3. We denote by D•
2 = D•

2(λ, µ) the subcomplex of C•
2 (λ, µ) spanned

by elements of the form

ŷ
(2)
1 (h1) · · · ŷ

(2)
c (hc) · w ⊗ (ψ∗

1)
(2)(k1) · · · (ψ

∗
d)

(2)(kd) · |0〉Λ2
(4.3)

where w ∈ V λ ⊗ V µ, yi ∈ b− = n− + t, ψ∗
i ∈ n∗+ and h1, . . . , hc, k1, . . . , kd ∈ K2.

By the commutation relations of Section 3.3 we see that E•
2 is a subcomplex of

C•
2 (λ, µ).

We define also analogous complexes D•
t (λ), D

•
s(µ) and D

•
1(ν). These complexes

were denoted by C0 in [5] and by C′ in [7]. Finally, we denote by D•
1(λ, µ) the

analogous subcomplex of C•
1 (λ, µ). By construction, these subcomplexes are com-

patible with specialisation and localization, and there are isomorphisms D•
2/aD

•
2 ≃

D•
1(λ, µ) and D

•
2 [a

−1] ≃ D•
t (λ) ⊗Q D

•
s (µ).

There is an isomorphism of complexes E•
2 ⊗D

•
2 −→ C•

2 defined by
(
x · 1

V
0,0
2

⊗ ψ · |0〉Λ2

)
⊗
(
y · w ⊗ ψ∗ · |0〉Λ2

)
7−→ x · y · w ⊗ ψ · ψ∗ · |0〉Λ2

,

where x = x̂
(2)
1 (g1) · · · x̂

(2)
a (ga) and ψ = ψ

(2)
1 (ℓ1) · · ·ψ

(2)
b (ℓb) are as in Equation (4.2),

y = ŷ
(2)
1 (h1) · · · ŷ

(2)
c (hc) and ψ∗ = (ψ∗)(2)(k1) · · · (ψ

∗)(2)(kd) are as in Equation

(4.3), and w is an element of V λ ⊗ V µ.
We now compute the cohomology of the complex E•

2 . We will need the following
result by Frenkel and Ben Zvi.

Lemma 4.4 ([5, Section 15.2.6]). Hn(E•
1 ) = 0 for n 6= 0 and Ψ0(E•

1 ) = C[|0〉V ⊗
|0〉Λ].

This result generalizes easily to the case of E•
t and E•

s . Localizing and special-
izing, we deduce the following lemma.

Lemma 4.5. Hn(E•
2 ) = 0 for n 6= 0 and H0(E•

2 ) = A[1
V

0,0
2

⊗ |0〉Λ2
].
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Proof. By definition, the complexE•
2 is concentrated in non-positive degrees. Hence,

the long exact sequence induced by

0 // E•
2

a·
// E•

2
// E•

1
// 0

implies that Hn(E•
2 ) is torsion free for every n, and that the specialisation of

H0(E•
2 ) is isomorphic to H0(E•

1 ). Since semi-infinite cohomology commutes with
localization (Lemma 3.3), using Lemma 2.1 and Lemma 4.4 we get the desired
result. �

We now compute the cohomology of D•
2 . The strategy is similar, but the ar-

gument is less straightforward since we do not have an explicit representative for
H0(D•

1). Following the strategy in [5], we introduce the following bigraded struc-
ture on D•

2 . Recall that the height ht(α) of a root α is equal to the sum of the
coefficients of α when written as a sum of simple roots. Let also epr, hpr, fpr be an
sl(2)-triple such that fpr =

∑
α simple fα and hpr belongs to t.

Definition 4.6. We define a bidegree, with values in 1
2Z ×

1
2Z and denoted by

bideg, as follows. On elements of ĝ2, we set

bideg(x⊗ g) = (−n, n)

if x ∈ g is such that [hpr, x] = 2nx and g ∈ K2. We set also the bidegree of the
central element C2 ∈ ĝ2 to be (0, 0). This induces a bidegree on U(ĝ2). On the
space X2 = K2 ⊗ n+ ⊕K2 ⊗ n∗+ (see Section 2.4) we define

bideg eα ⊗ g = (− ht(α),−1 + ht(α))

bidegψ∗
α ⊗ g = (ht(α), 1 − ht(α))

for α a positive root and g any element of K2. This induces a bidegree on the
Clifford algebra Cℓ2. Moreover, if W is any finite-dimensional representation of g,
then we set

bidegw = (−n, n)

if w ∈ W is such that hpr · w = 2nw. These choices induces a bidegree on the

module C•
2 (λ, µ), and the element x̂(2)(g) is homogeneous of bidegree (−n, n) if

[hpr, x] = 2nx. Finally, notice that if an element has bidegree (p, q), then it has

charge p+ q. In particular, we introduce the submodule Dp,q
2 of elements of Dp+q

2

of bidegree (p, q).

We notice also that bideg d
(2)
std = (0, 1) and that bidegχ(2) = (1, 0). In particu-

lar, D•,•
2 is a double complex and D•

2 is the associated total complex. Following
Frenkel and Ben Zvi [5, Chapter 15], the cohomology of the rows of this double
complex is easy to describe. Let a be the centralizer of fpr in g. Recall from [5,
Lemma 15.1.3 and Section 15.2.9] that the space spanned by monomials of the form
(p̂1)n1

· · · (p̂k)nk
· |0〉V⊗|0〉Λ with pi ∈ a generates a commutative vertex subalgebra

F1 of V⊗Λ• isomorphic to S•(a⊗ t−1C[t−1]). As in Section 3.3, it follows that for
x, y ∈ a the fields x̂(2) and ŷ(2) commute.

We define F2(λ, µ) as the span of elements of the form

x̂
(2)
1 (g1) · · · x̂

(2)
k (gk) · (v ⊗ |0〉Λ2

) ∈ V
λ,µ
2 ⊗A Λ•

2

with x1, . . . , xk ∈ a and v ∈ V λ ⊗ V µ. Notice that all these elements have
charge equal to zero, and that the space F2(λ, µ) splits as a direct sum F2(λ, µ) =⊕

q F
−q,q
2 (λ, µ) according to the bidegree introduced above. Moreover, by Propos-

ition 3.4 d), these elements are annihilated by the action of χ(2).

Similarly we construct subspaces F−q,q
1 (ν) ⊂ Vν1 ⊗C Λ•

1, F
−q,q
t (λ) ⊂ Vλt ⊗Q Λ•

t ,

F−q,q
s (µ) ⊂ Vλs ⊗Q Λ•

s, and F
−q,q
1 (λ, µ) ⊂W

λ,µ
1 ⊗C Λ•

1, In particular, F−q,q
1 (λ, µ) =
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⊕
ν F

−q,q
1 (ν) where the sum is over all irreducible factors of V λ ⊗C V

µ. By con-
struction, the specialisation and localization maps induce isomorphisms

F−q,q
2 (λ, µ)

aF−q,q
2 (λ, µ)

≃ F−q,q
1 (λ, µ) and F−q,q

2 (λ, µ)[a−1] ≃
⊕

b+c=q

F−b,b
t (λ)⊗Q F

−c,c
s (µ).

Recall the following result on the cohomology of D•,q
1 with respect to the bound-

ary χ(1).

Lemma 4.7 ([5, Lemma 15.2.10] and [7]). Let 2pν = 〈ν, hpr〉.

a) Dp,q
1 (ν) = 0 for q > pν and for p < −q. In particular, Dp,q

1 = 0 for q > pλ+µ
and for p < −q;

b) Hn(D•,q
1 (ν)) = 0 for n 6= −q. In particular, Hn(D•,q

1 (λ, µ)) = 0 for n 6= −q;

c) The map v 7→ [v] from F−q,q
1 (ν) to H−q(D•,q

1 (ν)) is an isomorphism.

Finally, it follows from c) that the map v 7→ [v] from F−q,q
1 (λ, µ) to H−q(D•,q

1 (λ, µ))
is also an isomorphism.

Similar results hold for the complexes D•,q
t (λ) and D•,q

s (µ). From this result we
deduce the cohomology of the complex D•,q

q with respect to the boundary operator

χ(2).

Lemma 4.8. Let 2p0 = 〈λ+ µ, hpr〉 as above.

a) Dp,q
2 = 0 for q > p0 and for p < −q;

b) Hn(D•,q
2 ) = 0 for n 6= −q;

c) The map v 7→ [v] from F−q,q
2 (λ, µ) to H−q(D•,q

2 (λ, µ)) is an isomorphism of
A-modules.

Proof. Part a) is clear for the definition of Dp,q
2 = 0. For parts b) and c), we start

by studying the localization of the cohomology groups ofD•,q
2 . Equivalently, we aim

to compute the cohomology of the localization of the row D•,q
2 . This localization

can be rewritten as ⊕

b+c=q

D•,b
t (λ)⊗D•,c

s (µ).

In particular, it follows from Lemma 4.7 that its cohomology is concentrated in
degree −q, and that its cohomology in this degree is given by

⊕

b+c=q

F−b,b
t (λ) ⊗ F−c,c

s (µ),

which is the localization of F−q,q
2 (λ, µ). Since specialisation is compatible with

bideg, we have an isomorphism D•,q
2 /aD•,q

2 ≃ D•,q
1 (λ, µ). Using Lemma 4.7, the

associated long exact sequence shows that Hn(D•,q
2 ) is torsion-free for n 6= −q+1,

and that the map

ι : H−q(D•,q
2 )/aH−q(D•,q

2 )→ H−q(D•,q
1 (λ, µ))

is injective.
We now prove c). Notice that both F−q,q

2 (λ, µ) and H−q(D•,q
2 (λ, µ)) are torsion-

free. We have already shown that the localization of the natural maps between them
is an isomorphism. To study its specialisation, we compose it with the injection ι.
This composition is the isomorphism of the last remark of Lemma 4.7. We conclude
by applying Lemma 2.1.

In order to prove b), it is enough to notice that from the above discussion we
know that, for n 6= −q, the module Hn(D•,q

2 ) = 0 is torsion-free, and that its
localization is trivial. �
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Let now be ϕ
(q)
i be an A-basis of F−q,q

2 (λ, µ). Since the cohomology in degree

−q of the complex D•,q+1
2 is zero, there exists an element ϕ

(q)
i,1 ∈ D

−q−1,q+1
2 such

that χ(2)(ϕ
(q)
i,1 ) = −d

(2)
std(ϕ

(q)
i ). By induction, we can construct elements ϕ

(q)
i,0 = ϕ

(q)
i

and ϕ
(q)
i,ℓ ∈ D

−q−ℓ,q+ℓ
2 such that their sum

ϕ̃
(q)
i =

p0−q∑

ℓ=0

ϕ
(q)
i,ℓ

satisfies d(2)(ϕ̃
(q)
i ) = 0. We now prove the main result of this section.

Theorem 4.9. The following hold.

a) Ψn(Vλ,µ2 ) = 0 for n 6= 0.
b) We have an isomorphism

Ψ0(Vλ,µ2 )

aΨ0(Vλ,µ2 )
≃ Ψ0(Wλ,µ

1 ) ≃
⊕

ν

Ψ0(Vν1)

where the sum ranges over all irreducible components V ν of V λ⊗V µ, counted
with multiplicity.

c) The elements
[
ϕ̃
(q)
i

]
are an A-basis of Ψ0(Vλ,µ).

Proof. From Lemma 4.8 we deduce that the classes of the elements ϕ̃
(q)
i form an

A-basis of H0(D•
2), and that Hn(D•

2) = 0 for n 6= 0. As the complex D•
2 is con-

centrated in non-negative degrees, by a standard homological argument we deduce

that Hn(Vλ,µ2 ) is isomorphic to the n-th cohomology of the complex H0(D•
2)⊗AE

•
2 .

Using Lemma 4.5, we immediately obtain parts a) and c).
The second isomorphism appearing in part b) is clear, while the first follows from

a) and the long exact sequence associated with the isomorphism

C•
2

aC•
2

≃ C•
1 (λ, µ). �

We will use the following Corollary in the next Section.

Corollary 4.10. The element [vλ ⊗ vµ] ∈ Ψ0(Vλ,µ) is indivisible.

Proof. By the previous theorem we can choose [vλ⊗ vµ] as an element of a basis of
the free A module Ψ0(Vλ,µ). �

5. The action of the center

In this section we study the action of the center Z2 on the semi-infinite cohomo-

logy of the module V
λ,µ
2 .

In this section we show that Vλ,µ2 is not a perfect analogue of the Weyl module

Vν1 . Indeed, we show that, as a Z2-module, the semi-infinite cohomology of Vλ,µ2 is

not isomorphic to Endĝ2
(Vλ,µ2 ) or to Funct(Opλ,µ2 ).

We begin by observing that the module Ψ0(Vν1) has no non-trivial Z1-equivariant
automorphisms.

First we notice, that by construction, the action of Z2 commutes with localization
and specialisation, as introduced before Equation (4.1). Concretely, we have:

Et(z · x) = Et(z) ·Et(x), Es(z · x) = Es(z) · Es(x), Sp(z · x) = Sp(z) · Sp(x)

for all z ∈ Z2 and for all x ∈ Ψ0(Vλ,µ2 ).

Lemma 5.1. If K : Endĝt
(Vλt )⊗QEndĝs

(Vµs ) −→ Ψ0(Vλt )⊗QΨ
0(Vµs ) is a (Zt⊗Zs)-

equivariant isomorphism, then K(IdVλ
t
⊗ IdVµ

s
) = q[vλ]⊗ [vµ] for some q ∈ Qr {0}.
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Proof. It follows from Theorem 4.1 that Endĝt×ĝs
(Vλt ⊗Q Vµs) is isomorphic to

Funct(Opλt ×SpecQOpµs ) = Funct(Opλt ) ⊗Q Funct(Opµs ) and this is a polynomial
ring in infinitely many variables over the field Q. In particular, its only invertible
elements are the non-zero scalars in Q.

Moreover, Theorem 4.1 also implies that Funct(Opλt ) is isomorphic as a Zt-
module to Ψ0(Vλt ), with an isomorphism given by z −→ Gt(z) · [vλ]. The claim
follows. �

Before proving that V
λ,µ
2 does not have the “right” semi-infinite cohomology

we recall some properties of the modules Vν1 that will be needed also in the next
section.

Remark 5.2. We denote by Zν1 the coordinate ring of the scheme Opν1 . Recall
that the schemes Opν1 for different values of ν are disjoint, so that the map Z1 −→
Zν11 × · · · ×Z

νk
1 is surjective if the weights νi are distinct. Recall also that the ring

Zν1 is a polynomial ring in infinitely many variables. This implies that

(1) There are no nontrivial ĝ1-morphisms between the Û1-modules Vν1 and Vν
′

1

if ν 6= ν′.
(2) There are no nontrivial extensions between the Û1-modules Vν1 and Vν

′

1 if
ν 6= ν′.

(3) Assume that α :
∏
Zνi −→

∏
Zνi is a map of Z-modules and that the

weights νi are distinct. If 1 is in the image of α then α is an isomorphism
and α(Zνi1 ) = Zνi1 .

By the Feigin-Frenkel Theorem (see [4] Theorem 5.2) the ring Funct(Op2) is
isomorphic to Z2. In the sequel we will identify these rings through this isomorph-

ism. In particular the ring Funct(Opλ,µ2 ) is a quotient of Z2. We will denote

Funct(Opλ,µ2 ) by Zλ,µ2 .

We now prove that Zλ,µ2 and Ψ0(Vλ,µ2 ) are not isomorphic.

Proposition 5.3. Assume that V λ ⊗ V µ is not irreducible. Then the two Z2-

modules Endĝ2
(Vλ,µ2 ) and Ψ0(Vλ,µ2 ) are not isomorphic. Similarly the two Z2-

modules Zλ,µ2 and Ψ0(Vλ,µ2 ) are not isomorphic.

Proof. Suppose H : Endĝ2
(Vλ,µ2 ) −→ Ψ0(Vλ,µ2 ) is a Z2-equivariant isomorphism.

Recall from Lemma 4.28 in [4] that Z2[1/a] is dense in Zt,s, and therefore the
localization of H is a (Zt ⊗Q Zs)-equivariant isomorphism

Endĝt
(Vλt )⊗Q Endĝs

(Vµs ) −→ Ψ0(Vλt )⊗Q Ψ0(Vµs ),

where we used the identification of the localization of Ψ0(Vλ,µ2 ) with Ψ0(Vλt ) ⊗Q
Ψ0(Vµs ).

From Lemma 5.1 and 4.10 we deduce that H(Id
V

λ,µ
2

) = [q vλ ⊗ vµ], where q ∈ A

and qvλ ⊗ vµ ∈ V
λ,µ
2 . We set w = qvλ ⊗ vµ ∈ V

λ,µ
2 .

By specialisation, H gives a Z1-equivariant isomorphism

H :
Endĝ2

(Vλ,µ2 )

aEndĝ2
(Vλ,µ2 )

−→
Ψ0(Vλ,µ2 )

aΨ0(Vλ,µ2 )
. (5.1)

This isomorphism sends Id
V

λ,µ
2

to w. Now consider the decomposition V λ ⊗ V µ =
⊕
V ν as g-modules. By Theorem 4.9, the target of the map H in (5.1) decomposes

as
⊕

Ψ0(Vν1). The element w is a multiple of vλ ⊗ vµ hence its class belongs to

Ψ0(Vλ+µ1 ). As H is Z1-equivariant and V
λ+µ
1 is stable by the action of ĝ1, we get

that the image of H is contained in the direct summand Ψ0(Vλ+µ1 ). In particular,

if V λ ⊗ V µ is not irreducible, the map H cannot be surjective. This proves the
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first claim. The second claim follows since the map from Zλ,µ2 to Ψ0(Vλ,µ2 ) factors

through Endĝ2
(Vλ,µ2 ). �

6. A Weyl module for sl(2)

In this Section, we propose an alternative Weyl module in the context of opers
with two singularities, in the case of g = sl(2). We fix the following notation:
e, h, f is an sl(2)-triple such that h ∈ t and e ∈ n+, while ψ

∗ ∈ n∗+ is the dual of
e. We identify dominant weights with natural numbers and we assume from now
on that λ > µ. In this case, the differential of the complex computing semi-infinite
cohomology takes the simpler form d(2) = ψ∗ +

∑
ewn ⊗ ψ

∗z−n−1/2.

Let Ṽ
λ,µ
2 be the Û2-submodule of Vλ,µ2 generated by the highest weight vector

1 ⊗ vλ ⊗ vµ ∈ A ⊗ V λ ⊗ V µ. We will prove that this module has the “correct”
semi-infinite cohomology and the “correct” endomorphism ring.

We start by giving a more explicit description of the module Ṽ
λ,µ
2 . If X is a

subspace of U(g) and Y is a subspace of a g-module Z we denote by X · Y the
subspace of Z generated by the products x · y with x ∈ X and y ∈ Y . We define

an increasing filtration F i of Ṽλ,µ2 as follows

F i = U(g) · (C Id⊗ Id + Id⊗ g)i · (vλ ⊗ vµ).

This is an increasing filtration of V λ ⊗ V µ by g-modules and for i large enough we
have F i = V λ ⊗ V µ. Choose a g-stable complement Gi+1 of F i in F i+1 and set

G0 = F 0, so that F i =
⊕i

j=0G
j . If we set F i(V µ) = (CId + n−)

ivµ, it is easy to
check by induction on i that

F i = U(g) · (Id⊗ Id + Id⊗ n−)
i(vλ ⊗ vµ) = U(g) ·

(
Cvλ ⊗ F

i(V µ)
)
.

In the case of g = sl(2) we have Gi ≃ V λ+µ−2i and Fµ = V λ ⊗ V µ.
Let U−

2 ⊂ U(ĝ2) be the A-span of Poincaré-Birkhoff-Witt monomials of the
form (x1wa1) · · · (xkwak) with xi ∈ g and ai < 0. This is a complement of U(ĝ+2 )
in U(ĝ2), so that in particular we have

V
λ,µ
2 = U−

2 ⊗C (V λ ⊗ V µ).

Lemma 6.1. If λ > µ then

Ṽ
λ,µ
2 =

µ∑

i=0

aiU−

2 ⊗C F
i =

µ⊕

i=0

aiU−

2 ⊗C G
i

Proof. To understand the module Ṽ
λ,µ
2 we need to compute the ĝ+2 -submodule of

A⊗C V
λ⊗C V

µ generated by 1⊗vλ⊗vµ. Notice that every element of the form xg,
with x ∈ g and g ∈ C[[t, s]] divisible by ts, acts trivially on A ⊗ V λ ⊗ V µ. Hence
we need to understand the action of elements of the form

z = x1 · · ·xℓ · (y1t) · · · (ymt) · (vλ ⊗ vµ),

with xi, yi ∈ g. Moreover, elements of g act in the standard way on the tensor
product V λ ⊗ V µ, while elements of the form xt with x ∈ g act via −a(Id ⊗ x).
This implies the lemma. �

We now describe the specialisation of the module Ṽ
λ,µ
2 . We introduce the fol-

lowing decreasing filtration of Ṽλ,µ2 :

Fi = Ṽ
λ,µ
2 ∩ aiVλ,µ2 . (6.1)
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By Lemma 6.1 we have the following description of the terms of this filtration as
A-modules:

Fi = aiU−

2 ⊗C F
i ⊕

µ⊕

j=i+1

ajU−

2 ⊗C G
j

In particular we have F0 = Ṽ
λ,µ
2 , Fj = ajVλ,µ2 for j > µ.

Lemma 6.2. a) Let ui ∈ Gi be the highest weight vector and set w̃i = aiui.

Then w̃i ∈ Ṽ
λ,µ
2 and ai−1ui /∈ Ṽ

λ,µ
2 .

b) There is an isomorphism of Û1-modules

Fi + aṼλ,µ2

aṼλ,µ2

≃

µ⊕

j=i

V
λ+µ−2j
1 .

The quotient
Fi+aṼ

λ,µ
2

aṼλ,µ
2

is generated as a Û1-module by the classes of w̃i, . . . , w̃µ.

In particular Ṽ
λ,µ
2 /aṼλ,µ2 ≃W

λ,µ
1 is generated by w̃0, . . . , w̃µ.

Proof. The first claim follows from Lemma 6.1.
We prove part b) by decreasing induction on i. By Lemma 6.1, for i > µ the

quotient is zero and the claim is true. For i 6 µ, consider the map

U−
2 ⊗G

i −→
Fi + ai+1V

λ,µ
2

ai+1V
λ,µ
2 + Fi ∩ aṼ

λ,µ
2

≃
(Fi + aṼλ,µ2 )/aṼλ,µ2

(Fi+1 + aṼλ,µ2 )/aṼλ,µ2

sending an element u⊗ v to the class of aiu⊗ v. This map induces an isomorphism

U−

2

aU−

2

⊗Gi ≃
(Fi + aṼλ,µ2 )/aṼλ,µ2

(Fi+1 + aṼλ,µ2 )/aṼλ,µ2

. (6.2)

Moreover, notice that
U−

2

aU−

2

⊗Gi ≃ U−

1 ⊗G
i, where U−

1 = U(t−1g[t−1]) ⊂ U(ĝ1) =

U1, and that U−

1 ⊗G
i has a natural structure of U1-module, as it can be identified

with V
λ+µ−2i
1 . With this U1-action, the isomorphism 6.2 is U1-equivariant. Now

the claim follows by the inductive hypothesis, combined with the fact that there
are no nontrivial extensions between modules Vν1 and Vν

′

1 if ν 6= ν′ and that the
highest weight vector of V ν generates the module Vν1 as an U1-module. �

Notice that, although the specialisations at a = 0 of V
λ,µ
2 and Ṽ

λ,µ
2 are iso-

morphic, the specialisation of Ṽλ,µ2 , is generated by vλ ⊗ vµ while in the first case

this vector generates the submodule V
λ+µ
1 .

As a corollary, we get the following result.

Proposition 6.3. The following hold:

a) Ψn(Ṽλ,µ2 ) = 0 for n 6= 0.

b) The inclusion of Ṽλ,µ2 in V
λ,µ
2 induces isomorphisms

Ψ0(Ṽλ,µ2 )[a−1] ≃ Ψ0(Vλ,µ2 )[a−1] ≃ Ψ0(Vλt )⊗Q Ψ0(Vµs ).

c) Ψ0(Ṽλ,µ2 ) is torsion-free with respect to the action of A, and the natural pro-
jection induces isomorphisms

Ψ0(Ṽλ,µ2 )

aΨ0(Ṽλ,µ2 )
≃ Ψ0

(
Ṽ
λ,µ
2

aṼλ,µ2

)
≃ Ψ0(Wλ,µ

1 ).

Proof. We use the filtration introduced in Equation (6.1). Notice that

Fi

Fi+1
=

aiU−
2 ⊗ F

i

ai+1U−

2 ⊗ F
i
≃ U−

1 ⊗C F
i ≃ Indĝ1

ĝ
+

1

F i,
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where we consider F i as a ĝ+1 -module on which tg[t] acts trivially. Notice that

Indĝ1

ĝ
+

1

F i is a sum of modules of the form Vν1 , hence in particular has trivial non-

zero cohomology.
Hence, arguing by decreasing induction on i, starting from i = µ, it follows that

Fi has trivial semi-infinite cohomology in degree different from zero. Indeed for

i = µ we have Fµ = aµVλ,µ2 ≃ V
λ,µ
2 and this is the content of Theorem 4.9. For

i = 0 this implies claim a).
Part b) follows from the fact that semi-infinite cohomology commutes with local-

ization (see Lemma 3.3) combined with the isomorphism Ṽ
λ,µ
2 [a−1] = V

λ,µ
2 [a−1] ≃

V
λ
t ⊗Q V

µ
s .

To prove c), consider the exact sequence

0 // Ṽ
λ,µ
2

·a
// Ṽ
λ,µ
2

//
Ṽ

λ,µ
2

aṼλ,µ
2

// 0

By Lemma 6.2, the last module in this sequence is isomorphic to W
λ,µ
1 . In par-

ticular, the semi-infinite cohomology groups Ψn of the modules appearing in this
sequence are zero for n 6= 0, and c) follows. �

To prove that the semi-infinite cohomology of Ṽλ,µ2 is isomorphic to Zλ,µ2 we will
use the action of a particular central element in Z2. Recall from [4] the definition
of the 2-Sugawara operator

S
(2)
1/2 =

∑

n∈
1
2Z,b

: (Jbwn)(Jbz−n) : (6.3)

where J1, J2, J3 are the basis elements e, h, f and J1, J2, J3 are the dual basis

elements f, h/2, e. As proved in [4], the element S
(2)
1/2 is central. Its specialisation

is the Sugawara operator

S
(1)
1 =

∑

n∈Z,b

: (Jbtn) (Jbt
−n) : (6.4)

which is an element of Z1. It is straightforward to check that the action of S
(1)
1 on

the Weyl module Vν1 is given by multiplication by ν(ν + 1).

Lemma 6.4. The element ŵℓ =
(
et−1

)ℓ
w̃ℓ belongs to Z2 · (vλ ⊗ vµ) + aṼλ,µ2 for

ℓ = 0, . . . , µ,

Proof. We notice first that the element vλ ⊗ f
ℓvµ belongs to F ℓ \ F ℓ−1 and has

weight λ+ µ− 2ℓ. Hence, up to a non-zero constant we have vλ ⊗ f
ℓvµ = uℓ + u′ℓ,

where we recall that uℓ is the highest weight vector in Gℓ ≃ V λ+µ−2ℓ ⊂ V λ ⊗ V µ

and u′ℓ ∈ F
ℓ−1. In particular, recall from Lemma 6.2 that aℓ−1F ℓ ⊂ Ṽ

λ,µ
2 , hence

aℓ
(
et−1

)ℓ
vλ ⊗ f

ℓvµ =
(
et−1

)ℓ
w̃ℓ +

(
et−1

)ℓ
(aℓu′ℓ) ≡

(
et−1

)ℓ
w̃ℓ mod aṼλ,µ2 .

Hence, the lemma is equivalent to the fact that ŵℓ = aℓ
(
et−1

)ℓ
vλ ⊗ f ℓvµ is in

Z2 · vλ ⊗ vµ + aṼλ,µ2 . We prove this statement by induction on ℓ. For ℓ = 0 it is

trivially true. Now assume ŵℓ is in Z2 · vλ ⊗ vµ + aṼλ,µ2 . We compute S
(2)
1/2(ŵℓ). In

order to do this, we notice that the action of xtisj on Ṽ
λ,µ
2 /aṼλ,µ2 is equal to the

action of xti+j on the same module, and that vλ ⊗ e f
ℓvµ is in F ℓ−1. We have

S
(2)
1/2ŵℓ = 2

∑

n>0

et−n · ftn · ŵℓ + 2
∑

n>0

ft−n · etn · ŵℓ +
∑

n>0

ht−n · htn · ŵℓ

+ e · f · ŵℓ + e · f · ŵℓ +
1

2
h · h · ŵℓ.
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In the second infinite sum above, the element etn commutes with et−1, hence etn ·

ŵℓ ∈ aṼ
λ,µ
2 for all n > 0. The summands of the third series are of the form

htn · (et−1)ℓ · ŵℓ = (et−1)ℓhtn · ŵℓ + 2ℓ(et−1)ℓ−1etn−1 · ŵℓ,

hence they vanish for n > 3, while for n = 1, 2 they are easily checked to be elements

of aṼλ,µ2 . The summands of the first series are given by

ftn ·(et−1)ℓ ·ŵℓ = (et−1)ℓftn ·ŵℓ−ℓ(et
−1)ℓ−1htn−1 ·ŵℓ−ℓ(ℓ−1)(et−1)ℓ−2etn−2 ·ŵℓ,

and all terms are zero or in aṼλ,µ2 but for the case n = 1, for which we get

(et−1) · (ft) · (et−1)ℓ · ŵℓ = aℓ+1(et−1)ℓ+1 · (vλ ⊗ f
ℓ+1vµ)

− ℓ(et−1)ℓh · (vλ ⊗ f
ℓvµ)− ℓ(ℓ− 1)(et−1)ℓ · ŵℓ = ŵℓ+1 +K1ŵℓ

for some constantK1. Finally, e ·f ·ŵℓ+e ·f ·ŵℓ+
1
2h ·h ·ŵℓ belongs to K2ŵℓ+aṼ

λ,µ
2

for some constant K2. Hence we get

S
(2)
1/2ŵℓ ≡ ŵℓ+1 +Kŵℓ mod aṼλ,µ2

for some constant K, proving our claim. �

We now prove that the zero-th semi-infinite cohomology of the module Ṽ
λ,µ
2 is

isomorphic to Zλ,µ2 .

Theorem 6.5. For g = sl(2) the map Φ : Zλ,µ2 −→ Ψ0
(
Ṽ
λ,µ
2

)
given by Φ(z) =

z · [vλ ⊗ vµ] is an isomorphism.

Proof. By [4], Theorem 6.4, the action of Z2 on V
λ,µ
2 , hence on Ṽ

λ,µ
2 , factors through

Zλ,µ2 . Moreover vλ ⊗ vµ is a cycle, so the map Φ is well defined. Since we know
that both modules are torsion-free, to prove that Φ is an isomorphism it suffices to
prove that the localization Φa and the specialisation Φ are isomorphisms.

The fact that Φa is an isomorphism is the content of part b) of Proposition 6.3.
We need to prove that Φ is an isomorphism. By Lemma 6.2, Proposition 6.3 and

[4, Theorem 2.13] we have

Zλ,µ2

aZλ,µ2

≃

µ∏

i=0

Zλ+µ−2i
1 and

Ψ0(Ṽλ,µ2 )

aΨ0(Ṽλ,µ2 )
≃

µ⊕

i=0

Ψ0(Vλ+µ−2i
1 ).

In particular, by Theorem 4.1 these two Z1-modules are isomorphic, but we need to
prove that our specific map Φ provides an isomorphism between them. By Remark
5.2 it is enough to prove that Φ is surjective. We prove that the image of Φ contains

Ψ0(Fℓ+aṼ
λ,µ
2 /aṼλ,µ2 ) arguing by reverse induction on ℓ. For ℓ = 0 we get our claim.

For ℓ > µ there is nothing to prove. Now assume ℓ 6 µ. Consider again the exact
sequence

0 //
Fℓ+1+aṼ

λ,µ
2

aṼλ,µ
2

//
Fℓ+aṼ

λ,µ
2

aṼλ,µ
2

//aℓU−
2 ⊗C G

ℓ //0.

We know that the last module is isomorphic to

aℓU−
2 ⊗C G

ℓ ≃ V
λ+µ−2ℓ
1 = Indĝ1

ĝ
+

1

(V λ+µ−2ℓ)

and that it is generated by the element w̃ℓ ∈ aℓGℓ. Notice this sequence of Z1-
modules splits by Remark 5.2. Taking semi-infinite cohomology we get a short
exact sequence

0 //Ψ0
(

Fℓ+1+aṼ
λ,µ
2

aṼλ,µ
2

)
//Ψ0
(

Fℓ+aṼ
λ,µ
2

aṼλ,µ
2

)
//Ψ0
(
aℓU−

2 ⊗C G
ℓ
)

//0.

and we know that the last Z2-module is generated by w̃ℓ. Hence it is enough to

prove that this element is in the image of Zλ,µ2 (vλ⊗vµ) in Ψ0
(
Ṽ
λ,µ
2 /Fℓ+1+aṼ

λ,µ
2

)
.
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By Lemma 6.4 we know that ŵℓ is in this image. Now we prove that w̃ℓ and ŵℓ
define the same element in the semi-infinite cohomology of aℓU−

2 ⊗C G
ℓ. This is a

claim about the cohomology of the module Vν1 for ν = λ + µ − 2ℓ. For any ν we

prove that
(
et−1

)h
vν+

(
et−1

)h−1
vν is a coboundary. Indeed the boundary operator

in the case of sl(2) is equal to

d(1) = ψ∗ +
∑

n∈Z

(etn)⊗ ψ∗t−1−n,

so a simple computation shows

d(1)
((
et−1

)h−1
vν ⊗ (ψt−1)|0〉Λ

)
=
(
et−1

)h−1
vν ⊗ |0〉Λ +

(
et−1

)h
vν ⊗ |0〉Λ,

which implies our claim. �

Recall that in [4] we computed the endomorphism ring of Vλ,µ2 , showing that it

is isomorphic to Zλ,µ2 . We now prove the same result for the module Ṽ
λ,µ
2 .

Proposition 6.6. The action of the center Z2 on Ṽ
λ,µ
2 induces an isomorphism

Zλ,µ2 ≃ Endĝ2
(Ṽλ,µ2 ).

Proof. We already recalled at the beginning of the proof of Theorem 6.5 that the

action of Z2 on Ṽ
λ,µ
2 factors through Zλ,µ2 . We denote by α : Zλ,µ2 −→ End(Ṽλ,µ2 )

this action. Since both modules have no A-torsion, in order to prove that α is
an isomorphism it suffices to show that its localization and its specialisation are
isomorphisms. Moreover, since our modules are finitely generated and have no
torsion we have

Endĝ2

(
Ṽ
λ,µ
2

)
[a−1] ≃ Endĝ2[a−1]

(
Ṽ
λ,µ
2 [a−1]

)
≃ Endĝt,s

(
V
λ ⊗Q V

µ
s

)

≃ Zλt ⊗Q Z
µ
t ≃ Z

λ,µ
2 [a−1],

hence the localization of α is an isomorphism.
Finally, we prove that the specialisation of α is also an isomorphism. We have

already recalled that by [4, Theorem 2.13] we have Zλ,µ2 /aZλ,µ2 ≃
∏µ
i=0 Z

λ+µ−2i
1 .

Hence by Theorem 4.1 we have the following abstract isomorphisms of Z1-modules:

Zλ,µ2

aZλ,µ2

≃

µ∏

i=0

Zλ+µ−2i
1 ≃

µ∏

i=0

Endĝ1
(Vλ+µ−2i

1 ).

Moreover, since Ṽ
λ,µ
2 has no nontrivial A-torsion, by Lemma 6.2 and Remark 5.2

part (1) we have the inclusion

Endĝ1

(
Ṽ
λ,µ
2

)

aEndĝ1

(
Ṽ
λ,µ
2

) ⊂ Endĝ1

(
Ṽ
λ,µ
2

aṼλ,µ2

)
≃

µ∏

i=0

Endĝ1
(Vλ+µ−2i

1 ).

Hence, composing the specialisation of the map α with this inclusion and the iso-

morphisms above we get a Z1-equivariant endomorphism of
∏µ
i=0 Z

λ+µ−2i
1 . Moreover,

α(1) = 1, hence we conclude by Remark 5.2 (3) that the specialisation of α is also
an isomorphism. �
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