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Abstract
We consider optimal control problems for discrete-time random dynamical systems,
finding unique perturbations that provokemaximal responses of statistical properties of
the system.We treat systemswhose transfer operator has an L2 kernel, andwe consider
the problems of finding (i) the infinitesimal perturbation maximising the expectation
of a given observable and (ii) the infinitesimal perturbation maximising the spectral
gap, and hence the exponential mixing rate of the system. Our perturbations are either
(a) perturbations of the kernel or (b) perturbations of a deterministic map subjected to
additive noise.We develop a general setting inwhich these optimisation problems have
a unique solution and construct explicit formulae for the unique optimal perturbations.
We apply our results to a Pomeau–Manneville map and an interval exchangemap, both
subjected to additive noise, to explicitly compute the perturbations provokingmaximal
responses.

Keywords Stochastic dynamical system · Optimal linear response · Transfer
operator ·Mixing rate · Optimal control
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1 Introduction

The statistical properties of the long-term behaviour of deterministic or stochastic
dynamical systems are strongly related to the properties of invariant or stationary
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measures and to the spectral properties of the associated transfer operator. When the
dynamical system is perturbed it is useful to understand and predict the response of
the statistical properties of the system through these objects. When such responses
are differentiable, we say that the system exhibits a linear response to the class of
perturbations. To first order, this response can be described by a suitable derivative
expressing the infinitesimal rate of change in e.g. the natural invariant measure or in
the spectrum. Understanding the response of statistical properties to perturbation has
particular importance in applications, including to climate science (see e.g. Ghil and
Lucarini 2020; Hairer and Majda 2010 and the references therein).

In the present paper we go beyond quantifying responses and address natural prob-
lems concerning the optimal response, namely which perturbations elicit a maximal
response. For example, given an observation function, which perturbation produces
the greatest change in the expectation of this observation, and which perturbation pro-
duces the greatest change in the rate of convergence to equilibrium. Continuing the
climate science application, one may wish to know which small climate action (which
perturbation) would produce the greatest reduction in the average temperature (the
expected observation value). We note that by considering trajectories of a perturbed
map and using ergodicity, one may view the problem of maximising the response
in the expectation of an observation as an infinite-horizon optimal control problem,
averaging an observation along trajectories.

The linear response of dynamical systems is an area of intense research and we
present a brief overview of the literature that is related to the present work. Early results
concerning the response of invariant measures to the perturbation of a deterministic
system have been obtained by Ruelle (1997) in the uniformly hyperbolic case. More
recently, these results have been extended to several other situations in which one has
some hyperbolicity and sufficient regularity of the system and its perturbations. We
refer the reader to the survey (Baladi 2014) for an extended discussion of the literature
about linear response (and its failure) for deterministic systems.

The mathematical literature on linear response of invariant measures of stochastic
or random dynamical systems is more recent. In the framework of continuous-time
random processes and stochastic differential equations, linear response results were
proved in Hairer and Majda (2010) and Koltai et al. (2019). Results related to the
linear response of the stationary measure for diffusion in random media appear in
Komorowski and Olla (2005), Gantert et al. (2012), Gantert et al. (2017), Faggionato
et al. (2019) and Mathieu and Piatnitski (2018). In the discrete-time case, examples of
linear response for small random perturbations of uniformly hyperbolic deterministic
systems appeared in Gouëzel and Liverani (2006). In Bahsoun et al. (2020), linear
response results are given for random compositions of expanding or non-uniformly
expanding maps. In Zmarrou and Homburg (2007) the smoothness of the invariant
measure response under suitable perturbations is proved for a class of random dif-
feomorphisms, but no explicit formula is given for the derivatives; an application to
the smoothness of the rotation number of Arnold circle maps with additive noise is
presented. Systems generated by the iteration of a deterministic map subjected to i.i.d.
additive randomperturbations are one class of stochastic systems studied in the present
paper (see Sect. 6). The linear response of such systems is considered systematically
in Galatolo and Giulietti (2019) and linear response results are proved for perturba-
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tions to the deterministic map or to the additive noise. These results are used to by
Marangio et al. (2019) to extend some results of Zmarrou and Homburg (2007) out-
side the diffeomorphism case and applied to an idealised model of El Niño-Southern
Oscillation, given by a noninvertible circle map with additive noise. Higher derivative
results for the response of systems with additive noise are presented in Galatolo and
Sedro (2020). Response results for random systems in the so-called quenched point of
view appeared recently in Sedro (2019) and Sedro and Rugh (2020) where the random
composition of expanding maps is considered using Hilbert cone techniques and in
Dragicevic and Sedro (2020) where the random composition of hyperbolic maps is
considered by a transfer operator based approach.

We remark that the addition of random perturbations is not necessarily sufficient to
guarantee a linear response. An i.i.d. composition of the identity map and a rotation
on the circle is considered in Galatolo (2018), and it is shown that using observables
with square-integrable first derivative, one only has Hölder continuity of the response
with respect to C0 perturbations of the circle rotation.

One can similarly consider the linear response of the dominant eigenvalues of the
transfer operator under perturbation. In the literature, there are several results describ-
ing the way eigenvalues and eigenvectors of suitable classes of operators change when
those operators are perturbed in some way, for example classical results concerning
compact operators subjected to analytic perturbations (Kato 1995), and quasi-compact
Markov operators subjected to Ck perturbations (Hennion and Hervé 2001). In spe-
cific classes of dynamics, differentiability of isolated spectral data is demonstated in
Gouëzel and Liverani (2006) for transfer operators of Anosov maps where the map is
subjected to Ck perturbations and in Koltai et al. (2019) for transfer operators arising
from SDEs subjected to Ck perturbations of the drift.

Optimal linear response questions have been considered in the dynamical setting of
homogeneous (and inhomogeneous) finite-state Markov chains (Antown et al. 2018),
where explicit formulae are provided for the unique maximising perturbations that (i)
maximise the normof the response, (ii)maximise the expectation of a givenobservable,
and (iii) maximise the spectral gap. The efficient Lagrangemultiplier approach created
in Antown et al. (2018) for questions (ii) and (iii) will be developed for the infinite-
dimensional setting of stochastic integral operators in the present paper. In continuous
time, Froyland andSantitissadeekorn (2017)maximised the spectral gap of a numerical
discretisation of a periodically forced Fokker-Planck equation (perturbing the velocity
field to maximally speed up or slow down the exponential mixing rate). The same
problem is considered by Froyland et al. (2020), but for general aperiodic forcing
over a finite time, using the Lagrange multiplier approach of Antown et al. (2018). A
non-spectral approach to increasing mixing rates by optimal kernel perturbations in
discrete time is Froyland et al. (2016).

Related optimal control problems have been considered in Galatolo and Pollicott
(2017) where the goal was to find a minimal perturbation realising a specific response
to the invariant measure of a deterministic system (about the problem of finding an
infinitesimal perturbation realising a given response see also Kloeckner 2018). These
kinds of questions and other similar ones were also briefly considered in Galatolo
and Giulietti (2019) for random dynamical systems consisting of deterministic maps
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perturbed by additive noise. Similar problems in the case of probabilistic cellular
automata were considered in MacKay (2018).

The present work takes the point of view of Antown et al. (2018), but seeks to
treat stochastic dynamical systems on smooth domains, instead of Markov chains on
domains consisting of a finite number of states. We prove the existence of unique
optimal perturbations, derive explicit formulae for these optimal perturbations, and
illustrate the formulae and their conclusions via two topical examples. The move from
stochastic matrices in Antown et al. (2018) to stochastic integral operators creates
considerable additional technical challenges for the existence of the linear responses,
as well as for posing and solving the infinite-dimensional optimisation problems that
now arise. We consider the class of stochastic dynamical systems with transfer opera-
tors representable by an L2-compact, integral operator, which includes deterministic
systems perturbed by additive noise. The transfer operator L has the form

L f (x) =
∫

k(x, y) f (y) dy, (1)

where k is a stochastic kernel; in the case of deterministic systems T with additive
noise, k(x, y) = ρ(x−T (y)), withρ a probability density representing the distribution
of the noise intensity (see Sect. 6). We consider perturbations of two types: firstly,
perturbations to the kernel k, and secondly, perturbations to the map T .

An outline of the paper is as follows. In Sect. 2 we consider general compact,
integral-preserving operators L : L2 → L2 (see (3)) and state general linear response
statements for the normalised fixed points and the leading eigenvalues of these opera-
tors (Theorem 2.2 and Proposition 2.6). In Sect. 3, we derive response formulae for the
normalised fixed points (Corollary 3.5) and spectral values (Corollary 3.6) of operators
of the form (1), under perturbation of the kernel k. In Sect. 4 we consider the problem
of finding the perturbation that provokes amaximal response in the average of a given
observable (General Problem 1) and the spectral gap (General Problem 2). We show
that if the feasible set of perturbations is convex, an optimal solution exists, and that
this optimum is unique if the feasible set is strictly convex. In Sect. 5.1, using Lagrange
multipliers we derive an explicit formula for the unique optimal kernel perturbation
that maximises the expectation of an observable (Theorem 5.4). In Sect. 5.2 we prove
an explicit formula for the perturbation that maximise the change in spectral gap (and
therefore the rate of mixing) of the system (Theorem 5.6).

In Sect. 6, we specialise our integral operators to annealed transfer operators corre-
sponding to deterministic maps T with additive noise. For these systems, the kernel k
has the form k(x, y) = ρ(x − T (y)) for some nonsingular transformation T , and we
consider perturbations of the map T directly. Response formulas for these perturba-
tions are developed in Proposition 6.3 andProposition 6.6 for the invariantmeasure and
the dominating eigenvalues, respectively. In this framework we again prove existence
and uniqueness of the map perturbation maximising the derivative of the expecta-
tion of an observation (Proposition 7.3) and then derive an explicit formula for the
extremiser (Theorem 7.4). Proposition 7.6 and Theorem 7.7 state results analogous to
Proposition 7.3 and Theorem 7.4 for the optimisation of the spectral gap and mixing
rate.
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InSect. 8we apply and illustrate the theoretical findings of thisworkon thePomeau–
Manneville map and a weakly mixing interval exchange, each perturbed by additive
noise. For each map we numerically estimate (i) the optimal stochastic perturbation
(perturbing the kernel k) and (ii) the optimal deterministic perturbation (perturbing
the map T ) that maximises the derivatives of the expectation of an observable and the
mixing rate. One of the interesting lessons is that to maximally increase the mixing
rate of the noisy Pomeau–Manneville map, one should perturb the kernel (stochastic
perturbation) to move mass away from the indifferent fixed point or deform the map
to transport mass away from the fixed point (deterministic perturbation); see Figs. 4
and 7, respectively. Further numerical outcomes are discussed and explained in Sect. 8.

2 Linear Response for Compact Integral-Preserving Operators

In this section, we introduce general response results for integral-preserving compact
operators. We consider both the response of the invariant function to the perturbations
and the response of the dominant eigenvalues.

2.1 Existence of Linear Response for the Invariant Function

In the following, we consider integral-preserving compact operators acting on L2,
which are not necessarily positive. We will give a general linear response statement
for their invariant functions. In Sect. 3 we show how these results can be applied to
Hilbert–Schmidt integral operators, which will later be transfer operators of suitable
random dynamical systems.

Let L2([0, 1]) be the space of square-integrable functions over the unit interval
(considered with the Lebesgue measure m); for brevity, we will denote it as simply
L2. We remark that the analysis in the rest of the paper can be extended to manifolds,
but we keep the setting simple so as not to obscure the main ideas.

Let us consider the space of zero-average functions

V :=
{
f ∈ L2 s.t .

∫
f dm = 0

}
.

Definition 2.1 We say that an operator L : L2 → L2 has exponential contraction of
the zero average space V if there are C ≥ 0 and λ < 0 such that ∀g ∈ V

‖Lng‖2 ≤ Ceλn‖g‖2 (2)

for all n ≥ 0.

For δ̄ > 0 and δ ∈ [0, δ̄), we consider a family of integral-preserving, compact
operators Lδ : L2 → L2; we think of Lδ as perturbations of L0.We say that fδ ∈ L2 is
an invariant function of Lδ if Lδ fδ = fδ . We will see that under natural assumptions,
the operators Lδ , δ ∈ [0, δ̄), have a family of normalised invariant functions fδ ∈ L2.
Furthermore, for suitable perturbations the invariant functions vary smoothly in L2
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and we get an explicit formula for the resulting derivative d fδ
dδ

. We remark that since
the operators we consider are not necessarily positive, the invariant functions are not
necessarily positive.

Theorem 2.2 (Linear response for integral-preserving compact operators) Let us con-
sider a family of compact operators Lδ : L2 → L2, with δ ∈ [

0, δ
)
, preserving the

integral: for each g ∈ L2

∫
Lδg dm =

∫
g dm. (3)

Then,

(I) The operators have invariant functions in L2: for each δ ∈ [0, δ̄) there is gδ �= 0
such that Lδgδ = gδ .

(II) Suppose L0 also satisfies the following:

(A1) (mixing of the unperturbed operator) For every g ∈ V ,

lim
n→∞‖L

n
0g‖2 = 0.

Under this assumption, the unperturbed operator L0 has a unique normalised
invariant function f0 such that

∫
f0 dm = 1. Furthermore, L0 has exponential

contraction of the zero average space V .

(III) Suppose the family of operators Lδ also satisfy the following:

(A2) (Lδ are small perturbations and existence of derivative operator at f0) Suppose
there is a K ≥ 0 such that ||Lδ − L0||L2→L2 ≤ K δ for small δ. Furthermore,
suppose there exist f̂ ∈ V such that

lim
δ→0

(Lδ − L0)

δ
f0 = f̂ .

Under these assumptions, the following hold:

(a) There exists a δ2 > 0 such that for each 0 ≤ δ < δ2, the operators Lδ have
unique invariant functions fδ such that

∫
fδ dm = 1. Furthermore, Lδ has

exponential contraction on V for 0 < δ < δ2.
(b) The resolvent operator (I d − L0)

−1 : V → V is continuous.

(c) lim
δ→0

∥∥∥∥ fδ − f0
δ

− (I d − L0)
−1 f̂

∥∥∥∥
2
= 0;

thus, (I d − L0)
−1 f̂ represents the first-order term in the perturbation of the

invariant function for the family of systems Lδ .

Proof Claim (I): We start by proving the existence of the invariant functions gδ for
the operators Lδ . Since the operators are compact and integral preserving, Lδ has an
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eigenvalue 1 for each δ. Indeed, let us consider the adjoint operators L∗δ : L2 → L2

defined by the duality relation 〈Lδ f , g〉 = 〈 f , L∗δg〉 for all f , g ∈ L2. Because of
the integral-preserving assumption, we have 〈 f , L∗δ1〉 = 〈Lδ f , 1〉 =

∫
Lδ f dm =∫

f dm = 〈 f , 1〉.1 This implies L∗δ1 = 1 and thus, 1 is in the spectrum of L∗δ and Lδ .
Since Lδ is compact, its spectrum equals the eigenvalues and we have nontrivial fixed
points for the operators Lδ .
Claim (III)(a) for δ = 0: Now we prove the uniqueness of the normalised invari-
ant function of L0. Above we proved that L0 has some invariant function g0 �= 0.
The mixing assumption (A1) implies that

∫
g0 dm �= 0; to see this, we note that if∫

g0 dm = 0, then g0 ∈ V , and, by (A1), g0 cannot be a nontrivial fixed point of
L0. We claim that f0 = g0∫

g0 d
is the unique normalised invariant function for L0. To

see this, suppose there was a second normalised invariant function f ′0; then, f ′0 − f0
would be an invariant function in V , which is a contradiction.
Claim (II): To show that L0 has exponential contraction on V , we first note that for
f ∈ L2, we can write f = f0

∫
f dm+[ f − f0

∫
f dm]. Since [ f − f0

∫
f dm] ∈ V ,

it follows from (A1) that Ln
0 f →L2 f0

∫
f dm. Thus, the spectrum of L0 is contained

in the unit disk by the spectral radius theorem. Now suppose λ is in the spectrum of
L0 and |λ| = 1. By the compactness assumption, there is an eigenvector fλ for λ and
then we have ||Ln

0( fλ)||2 = || fλ||2. However, Ln
0( fλ) →L2 f0

∫
fλ dm, which is not

possible unlessλ = 1.Hence, the spectrumof L0|V is strictly contained in the unit disk.
Thus, by the spectral radius theorem, there is an n > 0 such that ||Ln

0|V ||L2→L2 ≤ 1
2

and we have exponential contraction of L0 on V .
Claim (III)(a) for δ ∈ [0, δ̄]: From the assumptions we have ||Lδ−L0||L2→L2 ≤ K δ,
and by Part (II) there is an n such that ||Ln

0|V ||L2→L2 ≤ 1
2 . These facts imply that

for small enough δ one has ||Ln
δ |V ||L2→L2 ≤ 2

3 and therefore, Lδ is exponentially
contracting (and also mixing).

We can apply the argument in Part (II) to the operators Lδ and obtain, for each
small enough δ, a unique normalised invariant function fδ .
Claim (III)(b): Using the exponential contraction of L0 on V , we now show that
(Id − L0)

−1 : V → V is continuous. Indeed, for f ∈ V , we get (Id − L0)
−1 f =

f +∑∞
n=1 Ln

0 f . Since L0 is exponentially contracting on V , and
∑∞

n=1 Ceλn := M <

∞, the sum
∑∞

n=1 Ln
0 f converges in V with respect to the L2 norm. The resolvent

(Id−L0)
−1 : V → V is then a continuous operator and ||(Id−L0)

−1||V→V ≤ 1+M .

We remark that since f̂ ∈ V , the resolvent can be computed at f̂ .
Claim (III)(c): Now we are ready to prove the linear response formula. Furthermore,
we have

‖ fδ − f0‖2 ≤ ‖Ln
δ fδ − Ln

0 f0‖2
≤ ‖Ln

δ f0 − Ln
0 f0‖2 + ‖Ln

δ fδ − Ln
δ f0‖2

≤ ‖Ln
δ − Ln

0‖2‖ f0‖2 + ‖Ln
δ |V ‖L2→L2‖ fδ − f0‖2

≤ ‖Ln
δ − Ln

0‖2‖ f0‖2 +
2

3
‖ fδ − f0‖2,

1 We use the notation 1 for the constant function and 1A for the indicator function of the set A.
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from which we obtain ‖ fδ − f0‖2 ≤ 3‖Ln
δ − Ln

0‖L2→L2‖ f0‖2. Since ‖Lδ −
L0‖L2→L2 ≤ K δ and ‖Ln

δ − Ln
0‖L2→L2 ≤ ∑n

i=1 ‖Ln−i
δ (Lδ − L0)L

i−1
0 ‖L2→L2 , we

see that ‖Ln
δ − Ln

0‖L2→L2 → 0 as δ → 0 and thus ‖ fδ − f0‖2 → 0 as δ → 0.
Since f0 and fδ are the invariant functions of L0 and Lδ , we have

(Id− L0)
fδ − f0

δ
= 1

δ
(Lδ − L0) fδ.

By applying the resolvent to both sides we obtain

fδ − f0
δ

= (Id− L0)
−1 Lδ − L0

δ
fδ

= (Id− L0)
−1 Lδ − L0

δ
f0 + (Id− L0)

−1 Lδ − L0

δ
( fδ − f0).

Moreover, from assumption (A2), we have for sufficiently small δ that

∥∥∥∥(Id− L0)
−1 Lδ − L0

δ
( fδ − f0)

∥∥∥∥
2
≤ ‖(Id− L0)

−1‖V→V K‖ fδ − f0‖2.

Since we already proved that limδ→0 ‖ fδ − f0‖2 = 0, we are left with

lim
δ→0

fδ − f0
δ

= (Id− L0)
−1 f̂

converging in the L2 norm. ��

We remark that the strategy of proof of Theorem 2.2 is similar to the one of Theorem
3 of Galatolo and Giulietti (2019) although the assumptions made are quite different,
here we consider a compact integral preserving operator on L2, while in Galatolo and
Giulietti (2019) several norms are considered to allow low regularity perturbations
and the operator is required to be positive.

It is worth to remark that the above proof gives a description of the spectral picture
of L0. By Theorem 2.2, if L0 satisfies (A1) then the invariant function is unique, up
to normalisation; this shows that 1 is a simple eigenvalue. Furthermore, L0 preserves
the direct sum L2 = span{ f0} ⊕ V and the spectrum of L0 is strictly inside the unit
disk when L0 is restricted to V . Hence, the spectrum of L0 is contained in the unit
disk and there is a spectral gap.

Remark 2.3 The mixing assumption in (A1) is required only for the unperturbed oper-
ator L0. This assumption is satisfied, for example, if L0 is an integral operator and an
iterate of this operator has a strictly positive kernel, see Corollary 5.7.1 of Lasota and
Mackey (1985). Later in Remark 6.4 we show this assumption is verified for a wide
range of examples of stochastic dynamical systems.
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2.2 Existence of Linear Response of the Dominant Eigenvalues

In this section, we consider the existence of linear response for the second largest
eigenvalues (inmagnitude) and provide a formula for the linear response.An important
object needed to quantify linear response statements is a “derivative” of the operator
Lδ with respect to the perturbation.

Definition 2.4 We define L̇ : L2 → V as the unique linear operator satisfying

lim
δ→0

∥∥∥∥ (Lδ − L0)

δ
− L̇

∥∥∥∥
L2→V

= 0.

Let B(L2) denote the space of bounded linear operators from the Banach space
L2 to itself and r(L) denote the spectral radius of an operator L; we begin with the
following definition.

Definition 2.5 (Hennion and Hervé 2001, Definition III.7) Let s ∈ N, s ≥ 1. We say
that L ∈ B(L2([0, 1],C)) has s dominating simple eigenvalues if there exists closed
subspaces E and Ẽ such that

1. L2([0, 1],C) = E ⊕ Ẽ ,
2. L(E) ⊂ E , L(Ẽ) ⊂ Ẽ ,
3. dim(E) = s and L|E has s geometrically simple eigenvalues λi , i = 1, . . . , s,
4. r(L|Ẽ ) < min{|λi | : i = 1, . . . , s}.
Adapting Theorem III.8 and Corollary III.11 of Hennion and Hervé (2001) to our

situation, we can now state a linear response result for these eigenvalues.

Proposition 2.6 Let Lδ : L2([0, 1],C) → L2([0, 1],C), where δ ∈ [0, δ̄) =: I0,
be integral-preserving (see equation (3)) compact operators. Assume that the map
δ �→ Lδ is in C1(I0,B(L2([0, 1],C))) and L0 is mixing (see (A1) in Theorem 2.2).
Then, λ1,0 := 1 ∈ σ(L0) and r(L0) = 1. Let I ⊂ σ(L0) \ {1} be the eigenvalue(s) of
maximal modulus strictly inside the unit disk; assume they are geometrically simple
and let s := |I| + 1. Then there exists an interval I1 := [0, δ1), I1 ⊂ I0 such that
for δ ∈ I1, Lδ has s dominating simple eigenvalues. Thus, there exists functions
ei,(·), êi,(·) ∈ C1(I1, L2([0, 1],C)) and λi,(·) ∈ C1(I1,C) such that for δ ∈ I1 and
i, j = 2, . . . , s

(i) Lδei,δ = λi,δei,δ , L∗δ êi,δ = λi,δ êi,δ ,
(ii) 〈ei,δ, ê j,δ〉L2([0,1],C) = δi, j , where δi, j is the Kronecker delta.

Furthermore, let λ̇i ∈ C satisfy

lim
δ→0

∣∣∣∣λi,δ − λi,0

δ
− λ̇i

∣∣∣∣ = 0,

then

λ̇i = 〈êi,0, L̇ei,0〉L2([0,1],C), (4)
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where L̇ is as in Definition 2.4.

Proof From Theorem 2.2 and the discussion following it, 1 ∈ σ(L0) and r(L0) = 1.
We now use Theorem III.8 in Hennion and Hervé (2001) to obtain the existence of

linear response and Corollary III.11 (Hennion and Hervé 2001) to obtain the formula.
We begin by verifying the two hypotheses of Theorem III.8 (Hennion andHervé 2001).
We remark that our map δ �→ Lδ belonging to C1([0, δ̄),B(L2([0, 1],C))) can be
extended to a map C1((−δ̄, δ̄),B(L2([0, 1],C))).

Doing so, hypothesis (H1) of Theorem III.8 (Hennion and Hervé 2001) is satis-
fied. Since r(L0) = 1, we just need to show that L0 has s dominating eigenvalues.
Since L0 is a compact operator, the eigenvalues λi,0 ∈ I are isolated. Let �i be the
eigenprojection onto the eigenspace of λi,0 and Ei := �i (L2([0, 1],C)). Define the
eigenspaces E :=⊕s

i=1 Ei and Ẽ := (Id−∑s
i=1 �i )(L2([0, 1],C)). We thus have:

(1) L2([0, 1],C) = E ⊕ Ẽ .
(2) L0 (E) ⊂ E and L0(Ẽ) ⊂ Ẽ .
(3) dim(E) = s and L0|E has s simple eigenvalues λ1,0 ∪ I. This point follows from

the assumption that the eigenvalues in I are geometrically simple and the fact that
λ1,0 is simple (see Theorem 2.2).

(4) r(L0|Ẽ ) < |λi,0| where λi,0 ∈ I.
Thus, L0 satisfies hypothesis (H2) of Theorem III.8 since it has s dominating simple
eigenvalues and r(L0) = 1. Hence, from Theorem III.8 (Hennion and Hervé 2001),
the map δ �→ λi,δ is differentiable at δ = 0.

We can now apply the argument in Corollary III.11 (Hennion and Hervé 2001) for
λi,0 to obtain (15) (the result and proof of Corollary III.11 (Hennion and Hervé 2001)
is for the top eigenvalue, however the argument still holds for any eigenvalue λi,0, ∈ I
by changing the index value in the proof of the corollary). ��

3 Application to Hilbert–Schmidt Integral Operators

In this section, we apply the results of the previous section to Hilbert–Schmidt integral
operators and suitable perturbations. The operators we consider are compact operators
on L2([0, 1],R) (or L2([0, 1],C)); for brevity we will denote2 L2 := L2([0, 1],R).
To avoid confusion we point out that in the following we will also consider the space
L2([0, 1]2) of square integrable real functions on the unit square; this space contains
the kernels of the operators we consider.

Let k ∈ L2([0, 1]2) and consider the operator L : L2 → L2 defined in the following
way: for f ∈ L2

L f (x) =
∫

k(x, y) f (y)dy; (5)

such an operator is called a Hilbert–Schmidt integral operator. Such operators may
represent the annealed transfer operators of systems perturbed by additive noise (see
Sect. 6).

2 We will also denote L p := L p([0, 1],R); this notation will not be used for L2([0, 1],C).
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We now list some well-known and basic facts about Hilbert–Schmidt integral oper-
ators with kernels in L2([0, 1]2):
• The operator L : L2 → L2 is bounded and

||L f ||2 ≤ ||k||L2([0,1]2)|| f ||2 (6)

(see Proposition 4.7 in II.§4 Conway 2013).
• If k ∈ L∞([0, 1]2), then

||L f ||∞ ≤ ||k||L∞([0,1]2)|| f ||1 (7)

and the operator L : L1 → L∞ is bounded. Furthermore, ‖L‖L p→L∞ ≤
‖k‖L∞([0,1]2) for 1 ≤ p ≤ ∞.

• If for almost every y ∈ [0, 1] we have
∫

k(x, y)dx = 1,

then the Hilbert–Schmidt integral operator associated to the kernel k is integral
preserving (satisfies (3)).

• The operator L : L2 → L2 is compact (see Kolmogorov and Fomin 1961).

Combining the last two points, we have from Theorem 2.2 that such an operator has
an invariant function in L2. Furthermore, for k ∈ L∞([0, 1]2) we have an analogous
result.

Lemma 3.1 Let L : L2 → L2 be an integral operator, with integral-preserving kernel
k ∈ L∞([0, 1]2), that is mixing (satisfies (A1) of Theorem 2.2). Then, there exists a
unique fixed point f ∈ L∞ of L satisfying

∫
f dm = 1. Furthermore, if the kernel is

nonnegative, then f is nonnegative.

Proof Since k is an integral-preserving kernel, L0 satisfies (3). Thus, we can apply
Theorem 2.2 to conclude that there exists a unique f ∈ L2,

∫
f dm = 1, such that

L f = f . Noting that k ∈ L∞([0, 1]2), we have from inequality (7) that f ∈ L∞.
We now assume k is nonnegative. Let k j be the kernel of the operator L j . Since k

is an integral-preserving kernel, we have

|k2(x, y)| =
∣∣∣∣
∫

k(x, z)k(z, y)dz

∣∣∣∣ ≤
∫
|k(x, z)k(z, y)|dz

≤ ‖k‖L∞([0,1]2)
∫

k(z, y)dz = ‖k‖L∞([0,1]2);

it easily follows that ‖k j‖L∞([0,1]2) ≤ ‖k‖L∞([0,1]2). Thus, for any probability density
g ∈ L1, we have ‖L j g‖∞ ≤ ‖k‖L∞([0,1]2); thus, by Corollary 5.2.2 in Lasota and

Mackey (1985), there exists a probability density f̂ ∈ L1 such that L f̂ = f̂ . Since f
is the unique invariant function with integral 1, we have f̂ = f ; thus, f is a probability
density. ��

123



   79 Page 12 of 60 Journal of Nonlinear Science            (2022) 32:79 

3.1 CharacterisingValid Perturbations and the Derivative Operator

In this subsection we consider perturbations of integral-preserving Hilbert–Schmidt
integral operators such that assumption (A2) of Theorem 2.2 can be verified and the
derivative operator L̇ computed. We begin, however, by first characterising the set of
perturbations for which the integral preserving property of the operators is preserved.

Consider the set Vker of kernels having zero average in the x direction, defined as

Vker :=
{
k ∈ L2([0, 1]2) :

∫
k(x, y)dx = 0 f or a.e. y

}
.

Lemma 3.2 Consider a kernel operator A : L2([0, 1]) → L2([0, 1]) defined by
A f (x) = ∫

k(x, y) f (y)dy. Then, the following are equivalent

1. A(L2([0, 1])) ⊆ V ,
2. k ∈ Vker.

Proof Clearly, the second condition implies the first. For the other direction we
prove the contrapositive. If

∫
k(x, y)dx �= 0 on a set of positive measure, then

for a small ε > 0 there is a set S of positive measure m(S) > 0 such that∫
k(x, y)dx ≥ ε or

∫
k(x, y)dx ≤ −ε for each y ∈ S. Suppose

∫
k(x, y)dx ≥ ε

in this set, consider f := 1S and g := A f . Then, g(x) = ∫
k(x, y)1S(y)dy and

we have
∫
g(x)dx = ∫

S

∫
k(x, y)dxdy ≥ ε m(S) and g /∈ V . The other case∫

k(x, y)dx ≤ −ε is analogous. ��
We now prove that Vker is closed.

Lemma 3.3 The set Vker is a closed vector subspace of L2([0, 1]2).
Proof The fact that Vker is a vector space is trivial. For fixed f ∈ L2([0, 1]), the set
of k ∈ L2([0, 1]2) such that

∫
k(x, y) f (y)dx ∈ V is closed. To see this, define the

function K f : L2([0, 1]2) → L2([0, 1]) as

K f (k) =
∫

k(x, y) f (y)dy. (8)

By (6), K f is continuous. Since V is closed in L2([0, 1]), this implies that K−1f (V )

is closed in L2([0, 1]2). Finally, Vker is closed in L2([0, 1]2) because Vker =
∩ f ∈L2([0,1])K−1f (V ). ��

We now introduce the type of perturbations which we will investigate throughout
the paper. Let Lδ : L2 → L2 be a family of integral operators, with kernels kδ ∈
L2([0, 1]2), given by

Lδ f (x) =
∫

kδ(x, y) f (y)dy.
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Lemma 3.4 Let kδ ∈ L2([0, 1]2) for each δ ∈ [0, δ̄). Suppose that

kδ = k0 + δ · k̇ + rδ (9)

where k̇, rδ ∈ L2([0, 1]2) and ||rδ||L2([0,1]2) = o(δ). The bounded linear operator
L̇ : L2 → V defined by

L̇ f (x) :=
∫

k̇(x, y) f (y)dy (10)

satisfies

lim
δ→0

∥∥∥∥ Lδ − L0

δ
− L̇

∥∥∥∥
L2→V

= 0.

If additionally the derivative of themap δ �→ kδ with respect to δ varies continuously in
a neighborhood of δ = 0, then δ �→ Lδ has a continuous derivative in a neighborhood
of δ = 0.

Proof By integral preservation of Lδ and the fact that k̇ ∈ L2([0, 1]2), one sees that
L̇ : L2 → V and is bounded. By (9),

∥∥∥∥ Lδ − L0

δ
− L̇

∥∥∥∥
L2→V

= sup
‖ f ‖L2=1

∥∥∥∥
∫

kδ(x, y)− k0(x, y)

δ
f (y) dy −

∫
k̇(x, y) f (y) dy

∥∥∥∥
L2

= sup
‖ f ‖L2=1

∥∥∥∥
∫

rδ(x, y) f (y) dy

∥∥∥∥
L2

≤ ‖rδ‖L2([0,1]2) = o(δ).

Proceeding similarly, one shows that if the map δ �→ kδ has a continuous derivative
with respect to δ in a neighborhood of δ = 0, then δ �→ Lδ has a continuous derivative.
Indeed we are supposing that for each δ ∈ [0, δ) there is k̇δ such that for small enough
h

kδ+h = kδ + h · k̇δ + rδ,h

where k̇δ, rδ,h ∈ L2([0, 1]2), ||rδ,h ||L2([0,1]2) = o(h) and furthermore δ �→ k̇δ is
continuous. We have then by (6) that the associated operators L̇δ defined as

L̇δ f (x) :=
∫

k̇δ(x, y) f (y)dy (11)

also varies in a continuous way as δ increases. ��
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3.2 A Formula for the Linear Response of the Invariant Function and Its Continuity

Now we apply Theorem 2.2 to Hilbert–Schmidt integral operators to obtain a linear
response formula for L2 perturbations.

Corollary 3.5 (Linear response formula for kernel operators) Suppose Lδ : L2 → L2

are integral-preserving (satisfying (3)) integral operators with stochastic kernels kδ ∈
L2([0, 1]2) as in (9). Suppose L0 satisfies assumption (A1) of Theorem 2.2. Then
k̇ ∈ Vker, the system has linear response for this perturbation and an explicit formula
for it is given by

lim
δ→0

fδ − f0
δ

= (Id− L0)
−1

∫
k̇(x, y) f0(y)dy (12)

with convergence in L2.

Proof Since Lδ , δ ∈ [0, δ̄), is integral preserving, we have (Lδ − L0)(L2) ⊂ V and
therefore, kδ − k0 ∈ Vker by Lemma 3.2, i.e. δ · k̇ + rδ ∈ Vker. Then k̇ + rδ

δ
∈ Vker

for each δ. Since rδ
δ
→ 0 in L2 and Vker is a closed subspace we have k̇ ∈ Vker.

Furthermore by (9) there is a K ≥ 0 such that

||L0 − Lδ||L2→L2 ≤ K δ. (13)

Hence the family of operators satisfy the first part of assumption (A2). The second
part of this assumption is established by the first result of Lemma 3.4.

Since the operators Lδ are compact, integral preserving, and satisfy assumptions
(A1) and (A2) we can conclude by applying Theorem 2.2 to this family of operators,
obtaining

lim
δ→0

∥∥∥∥ fδ − f0
δ

− (Id− L0)
−1

∫
k̇(x, y) f0(y)dy

∥∥∥∥
2
= 0.

��
Now we show that the linear response of the invariant function is continuous with

respect to the kernel perturbation. This will be used in Sect. 4 for the proof of the
existence of solutions of our main optimisation problems.

Consider the operator L0, having a kernel k0 ∈ L2([0, 1]2), and a set of infinitesimal
perturbations P ⊂ Vker of k0. We will endow P with the topology induced by its
inclusion in L2([0, 1]2). Suppose Lδ is a perturbation of L0 satisfying the assumptions
of Lemma 3.4. By Corollary 3.5, the linear response will depend on the first-order term
of the perturbation, k̇ ∈ P , allowing us to define the function R : P → V by

R(k̇) := (Id− L0)
−1

∫
k̇(x, y) f0(y)dy. (14)

By (6) and the continuity of the resolvent operator it follows directly that the response
function R : (P, ‖ · ‖L2([0,1]2)) → (V , ‖ · ‖L2) is continuous.
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3.3 A Formula for the Linear Response of the Dominant Eigenvalues and Its
Continuity

We apply Proposition 2.6 to Hilbert–Schmidt integral operators and obtain a linear
response formula for the dominant eigenvalues in the case of L2 perturbations. Denote
by �(·) and �(·) the functions that return the real and imaginary parts of complex
arguments.

Corollary 3.6 Suppose Lδ : L2([0, 1],C) → L2([0, 1],C) are integral-preserving
(satisfying (3)) integral operators with kernels kδ ∈ L2([0, 1]2) satisfying δ �→ kδ ∈
C1([0, δ̄), L2([0, 1]2)). Suppose L0 satisfies (A1) of Theorem 2.2. Let λ0 ∈ C be an
eigenvalue of L0 with the largest magnitude strictly inside the unit circle and assume
that λ0 is geometrically simple. Then, there exists λ̇ ∈ C such that

lim
δ→0

∣∣∣∣λδ − λ0

δ
− λ̇

∣∣∣∣ = 0.

Furthermore,

λ̇ =
∫ 1

0

∫ 1

0
k̇(x, y)

(�(ê)(x)�(e)(y)+ �(ê)(x)�(e)(y)
)
dydx

+ i
∫ 1

0

∫ 1

0
k̇(x, y)

(�(ê)(x)�(e)(y)−�(ê)(x)�(e)(y)
)
dydx,

(15)

where e ∈ L2([0, 1],C) is the eigenvector of L0 associated to the eigenvalue λ0,
ê ∈ L2([0, 1],C) is the eigenvector of L∗0 associated to the eigenvalue λ0 and L̇ is the
operator in Lemma 3.4.

Proof Since kδ ∈ L2([0, 1]2), the operator Lδ : L2([0, 1],C) → L2([0, 1],C) is
compact; by assumption, it also satisfies (3). From Lemma 3.4, the map δ �→ Lδ is
C1. Hence, by Proposition 2.6, we have λ̇ = 〈ê, L̇e〉L2([0,1],C). Finally, we compute

λ̇ = 〈ê, L̇e〉L2([0,1],C) =
∫ 1

0
ê(x)L̇e(x)dx

=
∫ 1

0
ê(x)

∫ 1

0
k̇(x, y)e(y)dydx

=
∫ 1

0

∫ 1

0
k̇(x, y)ê(x)ē(y)dydx

=
∫ 1

0

∫ 1

0
k̇(x, y)

(�(ê)(x)�(e)(y)+ �(ê)(x)�(e)(y)
)
dydx

+ i
∫ 1

0

∫ 1

0
k̇(x, y)

(�(ê)(x)�(e)(y)−�(ê)(x)�(e)(y)
)
dydx .

��
From the expression in the final line of the proof above, it is clear that if we consider

λ̇ as a function of k̇, the map λ̇ : (Vker, ‖ · ‖)L2([0,1]2) → C is continuous.
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4 Optimal Response: Optimising the Expectation of Observables and
Mixing Rate

Having described the responses of our dynamical systems to perturbations, it is natural
to consider the optimisation problem of finding perturbations that provoke maximal
responses. We consider the problems of finding the infinitesimal perturbation that
maximises the expectation of a given observable and the infinitesimal perturbation
that maximally enhances mixing. In doing so, we extend the approach in Antown et al.
(2018) from the setting of finite-state Markov chains to the integral operators consid-
ered in the present paper.We are now in the realm of infinite-dimensional optimisation,
which is considerably more challenging than the finite-dimensional optimisation in
Antown et al. (2018).

We show that at an abstract level these problems reduce to the optimisation of a linear
continuous functional J on a convex set P of feasible perturbations; this problem has
a solution and the solution is unique if the set P of allowed infinitesimal perturbations
is strictly convex. The convexity assumption on P is natural because if two different
perturbations of the system are possible, then their convex combination (applying the
two perturbations with different intensities) will also be possible. After introducing
the abstract setting, we construct the objective functions for our two optimal response
problems and state general existence and uniqueness results for the optima. Later, in
Sect. 5 we focus on the construction of the set of feasible perturbations and provide
explicit formulae for the maximising perturbations.

4.1 General Optimisation Setting, Existence and Uniqueness

We recall some general results (adapted for our purposes) on optimising a linear
continuous function on convex sets; see also Lemma 6.2 (Froyland et al. 2020). The
abstract problem is to find k̇ such that

J (k̇) = max
ḣ∈P

J (ḣ), (16)

where J : H→ R is a continuous linear function,H is a separable Hilbert space and
P ⊂ H.

Proposition 4.1 (Existence of the optimal solution) Let P be bounded, convex, and
closed inH. Then, problem considered at (16) has at least one solution.

Proof Since P is bounded andJ is continuous, we have that supk∈P J (k) <∞. Con-
sider a maximising sequence kn such that limn→∞ J (kn) = supk∈P J (k). Then, kn
has a subsequence kn j converging in the weak topology. Since P is strongly closed and
convex inH, we have that it is weakly closed. This implies that k := lim j→∞ kn j ∈ P.

Also, since J (k) is continuous and linear, it is continuous in the weak topology. Then
we have that J (k) = lim j→∞ J (kn j ) = supk∈P J (k) and we realise a maximum. ��

Uniqueness of the optimal solution will be provided by strict convexity of the
feasible set.
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Definition 4.2 We say that a convex closed set A ⊆ H is strictly convex if for each
pair x, y ∈ A and for all 0 < γ < 1, the points γ x + (1 − γ )y ∈ int(A), where the
relative interior3 is meant.

Proposition 4.3 (Uniqueness of the optimal solution) Suppose P is closed, bounded,
and strictly convex subset of H, and that P contains the zero vector in its relative
interior. If J is not uniformly vanishing on P then the optimal solution to (16) is
unique.

Proof Suppose that there are two distinct maxima k̇1, k̇2 ∈ P with J (k̇1) = J (k̇2) =
α. Let 0 < γ < 1 and set z = γ k̇1 + (1− γ )k̇2. By strict convexity of P , z ∈ int(P),
and by linearity of J ,J (z) = α. Let Br (z) denote a (relative in P) open ball of radius
r centred at z, with r > 0 chosen small enough so that Br (z) ⊂ int(P). Because the
zero vector lies in the relative interior of P , and J does not uniformly vanish on P ,
there exists a vector v ∈ Br (z) such that J (v) > 0. Now z + rv

2‖v‖ ∈ int(P) and

J (z + rv
2‖v‖ ) > α, contradicting maximality of k̇1. ��

In the following subsections we apply the general results of this section to our
specific optimisation problems.

4.2 Optimising the Response of the Expectation of an Observable

Let c ∈ L2 be a given observable. We consider the problem of finding an infinitesimal
perturbation that maximises the expectation of c. The perturbations we consider are
perturbations to the kernels of Hilbert–Schmidt integral operators, of the form (9). If
we denote the average of c with respect to the perturbed invariant density fδ by

Ec,δ :=
∫

c fδ dm,

we have

dEc,δ

dδ

∣∣∣∣
δ=0

= lim
δ→0

Ec,δ − Ec,0

δ
= lim

δ→0

∫
c

fδ − f0
δ

dm =
∫

c R(k̇) dm,

where the last equality follows from Corollary 3.5 and (14).
The function J (k̇) = 〈c, R(k̇)〉 is clearly continuous as a map from

(Vker, ‖ · ‖)L2([0,1]2) to R. Suppose that P is a closed, bounded, convex subset of
Vker containing the zero perturbation, and that J is not uniformly vanishing on P . We
wish to solve the following problem:

General Problem 1 Find k̇ ∈ P such that

〈
c, R(k̇)

〉
L2([0,1],R)

= max
ḣ∈P

〈
c, R(ḣ)

〉
L2([0,1],R)

. (17)

3 The relative interior of a closed convex set C is the interior of C relative to the closed affine hull of C ,
see e.g. Borwein and Goebel (2003).
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We may immediately apply Proposition 4.1 to obtain that there exists a solution to
(17). If, in addition, P is strictly convex, then by Proposition 4.3 the solution to (17)
is unique.

To end this subsection we note that without loss of generality, we may assume that
c ∈ span{ f0}⊥. This is because for c ∈ L2, we have

〈c, R(k̇)〉L2([0,1],R) = 〈c − 〈c, f0〉L2([0,1],R)1, R(k̇)〉L2([0,1],R),

since R(k̇) ∈ V . From
∫

f0(x)dx = 1, we have that f �→ 〈 f , f0〉L2([0,1],R)1 is
a projection onto span{1} and so f �→ f − 〈 f , f0〉L2([0,1],R)1 is a projection onto
span{ f0}⊥.

4.3 Optimising the Response of the Rate of Mixing

Wenowconsider the linear response problemof optimising the rate ofmixing. Letλ0 ∈
Cdenote an eigenvalue of L0 strictly inside the unit circlewith largestmagnitude. From
now on, whenever discussing the linear response of eigenvalues to kernel perturbations
we assume the conditions of Corollary 3.6.We recall that e and ê are the eigenfunctions
of L0 and L∗0, respectively, corresponding to the eigenvalue λ0.

Tofind thekernel perturbations that enhancemixing,we follow thegeneral approach
taken in Antown et al. (2018) (see also Froyland and Santitissadeekorn 2017; Froyland
et al. 2020 in the continuous time setting), namely perturbing our original dynamics
L0 in such a way that the modulus of the second eigenvalue of the perturbed dynamics
decreases. Equivalently, we want to decrease the real part of the logarithm of the
perturbed second eigenvalue. The following result provides an explicit formula for
this instantaneous rate of change. Define

E(x, y) := (�(ê)(x)�(e)(y)+ �(ê)(x)�(e)(y)
)�(λ0)

+ (�(ê)(x)�(e)(y)−�(ê)(x)�(e)(y)
)�(λ0). (18)

Lemma 4.4 One has

d

dδ
� (log λδ)

∣∣∣∣
δ=0

=
〈
k̇, E

〉
L2([0,1]2,R)

|λ0|2 .

Proof From (15), we have that

�(λ̇0) =
∫ 1

0

∫ 1

0
k̇(x, y)

(�(ê)(x)�(e)(y)+ �(ê)(x)�(e)(y)
)
dydx (19)

and

�(λ̇0) =
∫ 1

0

∫ 1

0
k̇(x, y)

(�(ê)(x)�(e)(y)−�(ê)(x)�(e)(y)
)
dydx . (20)
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Next, we note that

d

dδ
�(log λδ) = �

(
d

dδ
log λδ

)
= �

(
dλδ

dδ

1

λδ

)
. (21)

From (19)-(21), we obtain

d

dδ
� (log λδ)

∣∣∣∣
δ=0

= �
(

λ̇0

λ0

)
= �

(
λ̇0

λ0

λ0

λ0

)
= �(λ̇0)�(λ0)+ �(λ̇0)�(λ0)

|λ0|2

=
〈
k̇, E

〉
L2([0,1]2,R)

|λ0|2 .

��
The functionJ (k̇) = 〈k̇, E〉 is clearly continuous as amap from (Vker, ‖·‖L2([0,1]2))

to R. As in Sect. 4.2, suppose that P is a closed, bounded, strictly convex subset of
Vker containing the zero element, and that J is not uniformly vanishing on P . We
wish to solve the following problem:

General Problem 2 Find k̇ ∈ P such that

〈k̇, E〉L2([0,1]2,R) = min
ḣ∈P
〈k̇, E〉L2([0,1]2,R). (22)

We may immediately apply Proposition 4.1 to obtain that there exists a solution to
(17). If, in addition, P is strictly convex, then by Proposition 4.3 the solution to (22)
is unique.

5 Explicit Formulae for the Optimal Perturbations

Thus far we have not been specific about the feasible set P; we take up this issue in this
and the succeeding subsections to provide explicit formulae for the optimal responses
in both problems (17) and (22). First, we have not required that the perturbed kernel
kδ in (9) be nonnegative for δ > 0, however, this is a natural assumption. To facilitate
this, for 0 < l < 1, define

Fl := {(x, y) ∈ [0, 1]2 : k0(x, y) ≥ l} and

Sk0,l := {k ∈ L2([0, 1]2) : supp(k) ⊆ Fl}. (23)

The set of allowable perturbations that we will consider in the sequel is

Pl := Vker ∩ Sk0,l ∩ B1, (24)

where B1 is the closed unit ball in L2([0, 1]2). For modelling purposes, one may use
also the parameter l to restrict the class of allowed perturbations to those that are more
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likely to occur according to k0. Note that in the particular situation where the support
of k0 is sparse—for example when significant determinism is present—this sparsity
will be respected by the perturbations in Pl .

We now begin verifying the conditions on Pl and J required by Proposition 4.3.
First, Pl is clearly bounded in L2([0, 1]2). Second, we note that as long as Fl has
positive Lebesgue measure, the zero kernel is in the relative interior of Pl . Third, the
following lemma handles closedness of Pl . Fourth, from this, since Vker and Sk0,l are
closed subspaces, Vker ∩ Sk0,l is itself a Hilbert space, and hence, Pl is strictly convex.
Finally, sufficient conditions for the objective function to not uniformly vanish are
given in Lemma 5.2.

Lemma 5.1 The set Sk0,l is a closed subspace of L2([0, 1]2).
Proof The fact that Sk0,l is a subspace is trivial. Let {kn} ⊂ Sk0,l and suppose kn →L2

k ∈ L2([0, 1]2). Further suppose {(x, y) ∈ [0, 1]2 : k0(x, y) < l} is not a null set;
otherwise Sk0,l = L2([0, 1]2) and the result immediately follows. Then, we have

∫
{k0≥l}

(kn(x, y)− k(x, y))2dydx +
∫
{k0<l}

k(x, y)2dxdy → 0.

Since
∫
{k0≥l}(kn(x, y) − k(x, y))2dydx ≥ 0, if

∫
{k0<l} k(x, y)

2dxdy > 0 then we

obtain a contradiction; thus,
∫
{k0<l} k(x, y)

2dxdy = 0 and therefore k = 0 a.e. on

{(x, y) ∈ [0, 1]2 : k0(x, y) < l}. Hence, Sk0,l is closed. ��
Let

Fy
l := {x ∈ [0, 1] : (x, y) ∈ Fl}, (25)

and for Fl ⊂ [0, 1]2, define


(Fl) = {y ∈ [0, 1] : m(Fy
l ) > 0}.

The following lemma provides sufficient conditions for a functional of the general
form we wish to optimise to not uniformly vanish. The general objective has the form
J (k̇) = ∫ ∫

k̇(x, y)E(x, y) dy dx ; in our first specific objective (optimising response
of expectations) we put E(x, y) = ((Id−L∗0)−1c)(x) · f0(y) and in our second specific
objective (optimising mixing) we put E(x, y) = E(x, y) from (18). Let E+ and E−
denote the positive and negative parts ofE . For y ∈ 
(Fl), let A(y) = ∫

Fy
l
E+(x, y) dx

and a(y) = ∫
Fy
l
E−(x, y) dx .

Lemma 5.2 Assume that there is
′ ⊂ 
(Fl) such thatm(
′) > 0 and A(y), a(y) > 0
for y ∈ 
′. Then there is a k̇ ∈ Pl such that J (k̇) > 0.

Proof For y ∈ 
(Fl), set k̇(x, y) = 1Fy
l
(x)

(
a(y)E+(x, y)− A(y)E−(x, y)

)
. To

show k̇ ∈ Pl we need to check that (i) the support of k̇ is contained in Fl and (ii)∫
Fy
l
k̇(x, y) dx = 0 for a.e. y ∈ 
(Fl); these points show k̇ ∈ Sk0,l ∩ Vker and by
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trivial scaling we may obtain k̇ ∈ B1. Item (i) is obvious from the definition of k̇. For
item (ii) we compute

∫
Fy
l

k̇(x, y) dx =
∫
Fy
l

(a(y)E+(x, y)− A(y)E−(x, y)) dx

= a(y)A(y)− A(y)a(y) = 0.

Finally, we check that J (k̇) > 0. One has

∫
Fl
k̇(x, y)E(x, y) dx dy

=
∫
Fl

(
a(y)E+(x, y)− A(y)E−(x, y)

) · E(x, y) dx dy

=
∫
Fl
a(y)(E+(x, y))2 + A(y)(E−(x, y))2 dx dy

=
∫


(Fl )

[(∫
Fy
l

E−(x, y) dx

)
·
(∫

Fy
l

(E+(x, y))2 dx

)

+
(∫

Fy
l

E+(x, y) dx

)
·
(∫

Fy
l

(E−(x, y))2 dx

)]
dy.

This final expression is positive due by the hypotheses of the Lemma. ��
Remark 5.3 We note that in the situation where E(x, y) is in separable form E(x, y) =
h1(x)h2(y)—as in the case of optimising the derivative of the expectation of an
observable c , and in the case of optimising the derivative of a real eigenvalue—
then A(y) = h2(y)

∫
Fy
l
h+1 (x) dx and a(y) = h2(y)

∫
Fy
l
h−1 (x) dx . Because h2 = f0

and h2 = e are not the zero function, and h1 = (Id − L∗0)−1c and h1 = ê are both
nontrivial signed functions, the conditions of Lemma 5.2 are relatively easy to satisfy.

5.1 Maximising the Expectation of an Observable

In this section, we provide an explicit formula for the optimal kernel perturbation to
increase the expectation of an observation function c by the greatest amount. Since the
objective function in (17) is linear in k̇, a maximum will occur on ∂B1 ∩ Vker ∩ Sk0,l
(i.e. we only need to consider the optimisation over the unit sphere and not the unit
ball). Thus, we consider the following reformulation of the general problem 1:

Problem A Given l > 0 and c ∈ span{ f0}⊥, solve

min
k̇∈Vker∩Sk0,l

−〈c, R(k̇)
〉
L2([0,1],R)

(26)

subject to ‖k̇‖2L2([0,1]2) − 1 = 0. (27)
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Our first main result is:

Theorem 5.4 Let L0 : L2 → L2 be an integral operator with the stochastic kernel
k0 ∈ L2([0, 1]2). Suppose that L0 satisfies (A1) of Theorem 2.2 and that there is a

′ ⊂ 
(Fl) with m(
′) > 0 and f0(y) > 0,

∫
Fy
l
((Id − L∗0)−1c)+(x) dx > 0, and∫

Fy
l
((Id− L∗0)−1c)−(x) dx > 0 for y ∈ 
′. Then the unique solution to Problem A is

k̇(x, y) =

⎧⎪⎨
⎪⎩

f0(y)
α

(
((Id− L∗0)−1c)(x)−

∫
F
y
l

((Id−L∗0)−1c)(z)dz

m(Fy
l )

)
(x, y) ∈ Fl ,

0 otherwise,

(28)

where α > 0 is selected so that ‖k̇‖L2([0,1]2) = 1. Furthermore, if c ∈ W :=
span{ f0}⊥ ∩ L∞, k0 ∈ L∞([0, 1]2), and k0 is such that L0 : L1 → L1 is com-
pact, then k̇ ∈ L∞([0, 1]2).
Proof See Appendix A. ��

Note that the expression for the optimal perturbation k̇ in (28) depends only on
k0 and c. This is in part a consequence of the fact that the linear response formula
(12) depends only on the first-order term k̇ (the “direction” of the perturbation) in
the expansion of kδ . Thus, in order to find the unique perturbation that optimises our
linear response, we seek the best “direction” for the perturbation. Similar comments
hold for our other three optimal linear perturbation results in later sections.

Remark 5.5 In certain situationswemaydesire tomakenon-infinitesimal perturbations
kδ := k0+δ · k̇ that remain stochastic for small δ > 0. If k̇ ∈ L∞([0, 1]2)∩Vker∩Sk0,l ,
clearly kδ = k0 + δ · k̇ satisfies

∫
kδ(x, y)dx = 1 for a.e. y. Also, as we are only

perturbing at values where k0 ≥ l > 0, and since k̇ is essentially bounded, there exists
a δ̄ > 0 such that kδ ≥ 0 a.e. for all δ ∈ (0, δ̄). In summary, for δ ∈ (0, δ̄), kδ is a
stochastic kernel.

The compactness condition on L0 : L1 → L1 required for essential boundedness
of k̇ can be addressed as follows. A criterion for L0 to be compact on L1([0, 1]) is
the following (see Eveson 1995): Given ε > 0 there exists β > 0 such that for a.e.
y ∈ [0, 1] and γ ∈ R with |γ | < β,

∫
R

∣∣k̃(x + γ, y)− k̃(x, y)
∣∣dx < ε,

where k̃ : R× [0, 1] → R is defined by

k̃(x, y) =
{
k0(x, y) x ∈ [0, 1],
0 otherwise.

Aclass of kernels that satisfy this are essentially bounded kernels k0 : [0, 1]×[0, 1] →
R that are uniformly continuous in the first coordinate. Such a class naturally arises
in our dynamical systems settings.
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5.2 Maximally Increasing theMixing Rate

Let λ0 ∈ C denote a geometrically simple eigenvalue of L0 strictly inside the unit
circle and e and ê denote the corresponding eigenvectors of L0 and L∗0, respectively.
Our results concerning optimal rate ofmovement ofλ0 under systemperturbationwork
for any λ0 as above, but eigenvalues of largest magnitude inside the unit circle have
the additional significance of controlling the exponential rate of mixing. We therefore
primarily focus on these eigenvalues, and in this section, we consider again the linear
response problem for enhancing the rate of mixing, now providing explicit formulae
for optimal perturbations and the response.

Since we are again interested in kernel perturbations that will ensure that the per-
turbed kernel kδ is nonnegative, we consider the constraint set Pl , as in Sect. 4.1,
where 0 < l < 1. The objective function of (22) is linear and therefore, we only
need to consider the optimisation problem on Vker ∩ Sk0,l ∩ ∂B1. Thus, to obtain the
perturbation k̇ that will enhance the mixing rate, we solve the following optimisation
problem:

Problem B Given l > 0, solve

min
k̇∈Vker∩Sk0,l

〈
k̇, E

〉
L2([0,1]2,R)

(29)

such that ‖k̇‖2L2([0,1]2,R)
− 1 = 0, (30)

where E is defined in (18).

Theorem 5.6 Let L0 : L2([0, 1],C) → L2([0, 1],C) be an integral operator with the
stochastic kernel k0 ∈ L2([0, 1]2,R). Suppose that L0 satisfies (A1) of Theorem 2.2
and that there is a 
′ ⊂ 
(Fl) with m(
′) > 0, and

∫
Fy
l
E(x, y)+ dx > 0 and∫

Fy
l
E(x, y)− dx > 0 for y ∈ 
′. Then, the unique solution to Problem B is

k̇(x, y) =
⎧⎨
⎩

1
α

(
1

m(Fy
l )

∫
Fy
l
E(x, y)dx − E(x, y)

)
(x, y) ∈ Fl

0 otherwise,
(31)

where E is given in (18) andα > 0 is selected so that ‖k̇‖L2([0,1]2,R) = 1. Furthermore,
if k0 ∈ L∞([0, 1]2,R) then k̇ ∈ L∞([0, 1]2,R).

Proof See Appendix B. ��
If λ0 is real, the optimal kernel has a simpler form:

Corollary 5.7 If λ0 is real and k0 ≥ l, then the solution to Problem B is

k̇(x, y) = sgn(λ0)
e(y)

‖e‖2

( 〈ê, 1〉L2([0,1],R)1− ê(x)

‖〈ê, 1〉L2([0,1],R)1− ê‖2

)
. (32)
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Proof We have E(x, y) = λ0ê(x)e(y); thus, the solution to the optimisation problem
(29)- (30) is

k̇(x, y) = (λ0/α)

(∫ 1

0
ê(x)dx − ê(x)

)
e(y),

where α > 0 is the normalisation constant such that ‖k̇‖2
L2([0,1]2,R)

= 1. ��

6 Linear Response for Map Perturbations

In this section, we consider random dynamics governed by the composition of a deter-
ministic map Tδ , δ ∈ [0, δ̄), and additive i.i.d. stochastic perturbations, or “additive
noise”. We will assume that the noise is distributed according to a certain Lipschitz
kernel ρ and impose a reflecting boundary condition that ensures that the dynamics
remain in the interval [0, 1]. More precisely, we consider a random dynamical system
whose trajectories are given by

xn+1 = Tδ(xn) +̂ ωn, (33)

where +̂ is the “boundary reflecting" sum, defined by a+̂b := π(a+b), and π : R→
[0, 1] is the piecewise linear map π(x) = mini∈Z |x−2i |. We assume throughout that

(T1) Tδ : [0, 1] → [0, 1] is a Borel-measurable map for each δ ∈ [0, δ̄),
(T2) ωn is an i.i.d. process distributed according to a probability density ρ ∈ Lip(R),

supported on [−1, 1] with Lipschitz constant K .

6.1 Expressing theMap Perturbation as a Kernel Perturbation

In this subsectionwe describe precisely the kernel of the transfer operator of the system
(33). Associated with the process (33) is an integral-type transfer operator Lδ , which
wewill derive (following themethod of §10.5 in Lasota andMackey 1985). Noting that
|π ′(z)| = 1 for all z ∈ R, the Perron-Frobenius operator Pπ : L1(R) → L1([0, 1])
associated to the map π is given by

Pπ f (x) =
∑

z∈π−1(x)
f (z) =

∑
i∈2Z

( f (i + x)+ f (i − x)). (34)

For b ∈ R consider the shift operator τb defined by (τbg)(y) := g(y + b) for g ∈
Lip(R). For the process (33), suppose that xn has the distribution fn : [0, 1] → R

+
(i.e. fn ∈ L1, fn ≥ 0 and

∫
fn dm = 1). We note that Tδ(xn) and ωn are independent

and thus the joint density of (xn, ωn) ∈ [0, 1]×[−1, 1] is fn ·ρ. Let h : [0, 1] → R be
a bounded, measurable function and letE denote expectation with respect to Lebesgue
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measure; we then compute

E(h(xn+1)) =
∫ ∞

−∞

∫ 1

0
h(π(Tδ(y)+ z)) fn(y)ρ(z)dydz

=
∫ 1

0

∫ ∞

−∞
h(π(z′)) fn(y)ρ(z′ − Tδ(y))dz

′dy

=
∫ 1

0
fn(y)

∫ ∞

−∞
h(π(z′))(τ−Tδ(y)ρ)(z′)dz′dy

=
∫ 1

0
fn(y)

∫ 1

0
h(z′)(Pπτ−Tδ(y)ρ)(z′)dz′dy,

where the last equality follows from the duality of the Perron-Frobenius and the Koop-
man operators for π . Since E(h(xn+1)) =

∫ 1
0 h(x) fn+1(x)dx , and h is arbitrary, the

map fn �→ fn+1 is given by

fn+1(z′) =
∫ 1

0
(Pπτ−Tδ(y)ρ)(z′) fn(y)dy

for all z′ ∈ [0, 1]. Thus, for δ ∈ [0, δ̄) the integral operator Lδ : L2([0, 1]) →
L2([0, 1]) associated to the process (33) is given by

Lδ f (x) =
∫

kδ(x, y) f (y)dy, (35)

where

kδ(x, y) = (Pπτ−Tδ(y)ρ)(x) (36)

and x, y ∈ [0, 1].
Lemma 6.1 The kernel (36) is a stochastic kernel in L∞([0, 1]2).
Proof Stochasticity and nonnegativity of kδ follow from stochasticity and nonneg-
ativity of ρ and the fact that Perron-Frobenius operators preserve these properties.
Essential boundedness of kδ follows from the facts that ρ is Lipschitz (thus essentially
bounded), τ is a shift, and Pπ is constructed from a finite sum because ρ has compact
support. ��
Proposition 6.2 Assume that kδ arising from the system (Tδ, ρ) is given by (36). Sup-
pose that the family of interval maps {Tδ}δ∈[0,δ̄) satisfies

Tδ = T0 + δ · Ṫ + tδ,

where Ṫ , tδ ∈ L2 and ‖tδ‖2 = o(δ). Then

kδ = k0 + δ · k̇ + rδ
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where k̇ ∈ L2([0, 1]2) is given by

k̇(x, y) = −
(
Pπ

(
τ−T0(y)

dρ

dx

))
(x) · Ṫ (y) (37)

and rδ ∈ L2([0, 1]2) satisfies ‖rδ‖L2([0,1]2) = o(δ).
If additionally, dρ/dx is Lipschitz and the derivative of the map δ �→ Tδ with

respect to δ varies continuously in L2 in a neighborhood of δ = 0, then δ �→ kδ has
a continuous derivative with respect to δ in a neighborhood of δ = 0.

Proof We show that ‖kδ(x, y)− k0(x, y)− δ · k̇(x, y)‖L2([0,1]2) = o(δ), where k̇ is as
in (37). We have

∥∥kδ(x, y)− k0(x, y)− δ · k̇(x, y)∥∥L2([0,1]2)
≤
∥∥∥(Pπτ−Tδ(y)ρ)(x)− (Pπτ−(T0(y)+δ·Ṫ (y))ρ)(x)

∥∥∥
L2([0,1]2)

+
∥∥∥(Pπτ−(T0(y)+δ·Ṫ (y))ρ)(x)

−(Pπτ−T0(y)ρ)(x)− δ

(
−
(
Pπ

(
τ−T0(y)

dρ

dx

))
(x) · Ṫ (y)

)∥∥∥∥
L2([0,1]2)

. (38)

We begin by showing that the first term on the right hand side of (38) is o(δ). Since ρ

is Lipschitz with constant K , one has

∣∣(τ−(Tδ(y))ρ)(x)− (τ−(T0(y)+δ·Ṫ (y))ρ)(x)
∣∣

= ∣∣ρ(x − Tδ(y))− ρ(x − T0(y)− δ · Ṫ (y))
∣∣ ≤ K |tδ(y)|. (39)

Because the support of τ−(Tδ(y))ρ − τ−(T0(y)+δ·Ṫ (y))ρ is contained in 2 intervals, each
of length 2, by (39) and Lemma C.1, we therefore see that

∥∥∥(Pπτ−Tδ(y)ρ)(x)− (Pπτ−(T0(y)+δ·Ṫ (y))ρ)(x)
∥∥∥
L2([0,1]2) ≤ 6K‖tδ‖L2 = o(δ).

Next we show that the second term on the right hand side of (38) is o(δ). Using the
definition of the derivative and the fact that ρ is differentiable a.e. we see that

lim
δ→0

D(δ) := lim
δ→0

[
ρ(x − T0(y)− δ · Ṫ (y))− ρ(x − T0(y))

δ

−
(
−dρ

dx
(x − T0(y))Ṫ (y)

)]
= 0 (40)

for a.e. x, y. Since

∣∣∣∣ρ(x−T0(y)−δ·Ṫ (y))−ρ(x−T0(y))
δ

∣∣∣∣ ≤ K Ṫ (y), by dominated conver-

gence the limit (40) also converges in L2. Hence, applying Lemma C.1 to the second
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term on the right hand side of (38), noting that D(δ) in (40) is square-integrable and
supported in at most 3 intervals of length at most 2, we obtain

∥∥∥(Pπτ−(T0(y)+δ·Ṫ (y))ρ)(x)− (Pπτ−T0(y)ρ)(x)

−δ

(
−
(
Pπ

(
τ−T0(y)

dρ

dx

))
(x) · Ṫ (y)

)∥∥∥∥
L2([0,1]2)

≤ 9δD(δ) = o(δ).

Regarding the final statement, suppose that δ �→ Tδ has a continuous derivative with
respect to δ at a neighborhood of δ = 0. This implies that Ṫ exists and varies contin-
uously on a small interval [0, δ∗], with 0 < δ∗ ≤ δ̄. Denote the derivative dTδ/dδ at δ
by Ṫδ , and similarly for k̇. One has

‖k̇δ − k̇0‖L2([0,1]2)

=
∥∥∥∥
(
Pπ

(
τ−Tδ(y)

dρ

dx

))
(x) · Ṫδ(y)−

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x) · Ṫ0(y)

∥∥∥∥
L2([0,1]2)

≤
∥∥∥∥
(
Pπ

(
τ−Tδ(y)

dρ

dx

))
(x) · (Ṫδ(y)− Ṫ0(y))

∥∥∥∥
L2([0,1]2)

+
∥∥∥∥
[(

Pπ

(
τ−Tδ(y)

dρ

dx

))
(x)−

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)

]
· Ṫ0(y)

∥∥∥∥
L2([0,1]2)

≤ 3‖dρ/dx‖2‖Ṫδ − Ṫ0‖2 + 6Lip(dρ/dx)‖δ · Ṫ0 + rδ‖2‖Ṫ0‖2,

where the final inequality follows fromLemmaC.1 applied to each term in the previous
line, noting that ρ is supported in a single interval of length 2. The first term in the
final inequality goes to zero as δ → 0 by continuity of Ṫ , and the second term goes
to zero as δ → 0 since ‖rδ‖2 → 0. ��

6.2 A Formula for the Linear Response of the Invariant Probability Density and
Continuity with Respect to Map Perturbations

By considering the kernel form of map perturbations, we can apply Corollary 3.5 to
obtain the following.

Proposition 6.3 Let Lδ : L2 → L2, δ ∈ [0, δ̄), be the integral operators in (35) with
the kernels kδ as in (36). Suppose that L0 satisfies (A1) of Theorem 2.2. Then the
kernel k̇ in (37) is in Vker and

lim
δ→0

fδ − f0
δ

= −(Id− L0)
−1

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)Ṫ (y) f0(y)dy,

with convergence in L2.
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Proof The result is a direct application of Corollary 3.5; we verify its assumptions.
From Lemma 6.1, kδ ∈ L2([0, 1]2) is a stochastic kernel and so Lδ is an integral-
preserving compact operator. From Proposition 6.2, kδ has the form (9). Thus, we can
apply Corollary 3.5 to obtain the result. ��

Remark 6.4 If T is covering4 and ρ is strictly positive in a neighbourhood of zero one
can show the corresponding transfer operator L0 satisfies assumption (A1) of Theo-
rem 2.2, using arguments similar to e.g. Zmarrou and Homburg (2007) Proposition
8.1, Froyland (2013) Lemmas 3 and 10, or Galatolo and Giulietti (2019), Lemma 41.
Let f ∈ L1 have zero average:

∫
[0,1] f = 0. If f is 0 almost everywhere, Ln

0( f ) = 0
and we are done. Otherwise, given ε < 0, we can find an f1 such that ‖ f − f1‖1 < ε

and f1 is positive in some small interval I ⊂ [0, 1]. Since ρ is positive in a neigh-
bourhood of zero, supp(L0( f

+
1 )) ⊃ T (I ). By the covering condition there is some

n′ ∈ N such that supp(Ln′
0 ( f +1 )) = [0, 1]. It is then standard to deduce that there is

an n0 ≥ n′ such that ‖Ln
0( f1)‖1 < ε for n ≥ n0. Since the transfer operator contracts

the L1 norm, then ||Ln
0 f ||1 ≤ 2ε for n ≥ n0 and since ε was arbitrary, this implies

that L0 satisfies (A1).

Let the linear response R̂ : L2 → L2 of the invariant density be defined as

R̂(Ṫ ) := −(Id− L0)
−1

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)Ṫ (y) f0(y)dy. (41)

Lemma 6.5 The function R̂ : L2 → L2 is continuous.

Proof We have

R̂(Ṫ1)− R̂(Ṫ2) = −(Id− L0)
−1

∫ 1

0
k̃(x, y)

(
Ṫ1(y)− Ṫ2(y)

)
dy,

where k̃(x, y) :=
(
Pπ

(
τ−T0(y)

dρ
dx

))
(x) f0(y). Since dρ

dx ∈ L∞, we have(
Pπ

(
τ−T0(y)

dρ
dx

))
(x) ∈ L∞([0, 1]2). From inequality (7), we then have f0 ∈ L∞

and so k̃ ∈ L∞([0, 1]2). We finally have

‖R̂(Ṫ1)− R̂(Ṫ2)‖2 ≤ l‖(Id− L0)
−1‖V→V ‖k̃‖L2([0,1]2) · ‖Ṫ1 − Ṫ2‖2.

��
4 We say T is covering if for each small open interval I ⊆ [0, 1] there is n = n(I ) such that T n(I ) = [0, 1].
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6.3 A Formula for the Linear Response of the Dominant Eigenvalues and
Continuity with Respect to Map Perturbations

We are also able to express the linear response of the dominant eigenvalues as a
function of the perturbing map Ṫ . Define

H(y) = −ē(y)
∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)ê(x)dx .

Proposition 6.6 Let Lδ : L2([0, 1],C) → L2([0, 1],C), δ ∈ [0, δ̄), be integral opera-
tors generated by the kernels kδ as in (36), assume that dρ/dx is Lipschitz and δ �→ Tδ

is C1. Let λδ be an eigenvalue of Lδ with second largest magnitude strictly inside the
unit disk. Suppose that L0 satisfies (A1) of Theorem2.2 andλ0 is geometrically simple.
Then

dλδ

dδ

∣∣∣∣
δ=0

= 〈H , Ṫ 〉L2([0,1],C), (42)

where e is the eigenvector of L0 associated to the eigenvalueλ0 and ê is the eigenvector
of L∗0 associated to the eigenvalue λ0.

Proof Since kδ ∈ L2([0, 1]2,R), Lδ : L2([0, 1],C) → L2([0, 1],C) is compact.
From Lemma 6.1 we have that kδ is a stochastic kernel and so Lδ preserves the
integral (i.e. it satisfies (3)). By Proposition 6.2 the kernel kδ is in the form (9) and the
map δ �→ kδ is C1. By Lemma 3.4 we see that δ �→ Lδ is C1, where the derivative
operator L̇ is the integral operator with the kernel k̇. Using the assumption that L0 is
mixing and λ0 is geometrically simple, we apply Proposition 2.6 to obtain dλδ

dδ

∣∣
δ=0 =

〈ê, L̇e〉L2([0,1],C). Finally, we compute

〈ê, L̇e〉L2([0,1],C) =
∫ 1

0
ê(x)

∫ 1

0
k̇(x, y)e(y)dydx

=
∫ 1

0

∫ 1

0
ê(x)k̇(x, y)ē(y)dxdy

= −
∫ 1

0
ē(y)

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)ê(x)dx Ṫ (y)dy

= 〈H , Ṫ 〉L2([0,1],C).

��
From (42), the linear response of the dominant eigenvalues is continuous with

respect to map perturbations.

Lemma 6.7 The eigenvalue response function Ř : L2 → C given by Ř(Ṫ ) = 〈H , Ṫ 〉
is continuous.
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Proof This follows from Cauchy-Schwarz and the fact that H ∈ L2([0, 1],C); the

latter claim follows from the fact that
(
Pπ

(
τ−T0(y)

dρ
dx

))
(x) ∈ L∞([0, 1]2,R) (see

proof of Lemma 6.5) and that e, ê ∈ L∞([0, 1],C) (which follows from (7) and the
fact that k0 ∈ L∞([0, 1]2,R), see Lemma 6.1). ��

7 Optimal Linear Response for Map Perturbations

In this section, we derive formulae for the map perturbations that maximise our two
types of linear response. We begin by formalising the set of allowable map perturba-
tions then state the formulae.

7.1 The Feasible Set of Map Perturbations

Before we formulate the optimisation problem, we note that in this setting, we require
some restriction on the space of allowable perturbations to T0 if we are to interpret
T0 + δṪ as a map of the unit interval for some δ strictly greater than 0 (a non-
infinitesimal map perturbation). With this in mind, let � > 0 and F̃� := {x ∈ [0, 1] :
� ≤ T0(x) ≤ 1− �}; it will turn out that we obtain for free that Ṫ ∈ L∞. Note that in
principle, � > 0 can be taken as small as one likes, and indeed if onewishes to consider
only infinitesimal map perturbations Ṫ then one may set F̃� = F̃0 = [0, 1]. Of course
if T : S1 → S1 then may may use F̃� = F̃0 = [0, 1] even for non-infinitesimal
perturbations. Recalling that in Proposition 6.2 we are considering L2 perturbations
Ṫ of the map T0, we define

ST0,� := {T ∈ L2 : supp(T ) ⊆ F̃�}. (43)

Lemma 7.1 ST0,� is a closed subspace of L2.

Proof It is clear that ST0,� is a subspace. To show it is closed, let { fn} ⊂ ST0,� and
suppose that fn →L2 f ∈ L2. Further, suppose that F̃� is not [0, 1] up to measure
zero; otherwise ST0,� = L2, which is closed. Then, we have

‖ fn − f ‖22 =
∫
F̃�

( fn(x)− f (x))2dx +
∫
F̃c

�

f (x)2 dx → 0.

If
∫
F̃c

�
f (x)2dx > 0, we obtain a contradiction since

∫
F̃�

( fn(x)− f (x))2dx ≥ 0; thus,∫
F̃c

�
f (x)2dx = 0 and so f = 0 a.e. on F̃c

� . Hence, ST0,� is closed. ��
For the remainder of this section, the set of allowable map perturbations that we

consider is

P� := ST0,� ∩ B1, (44)

where B1 is the unit ball in L2. Since ST0,� is a closed subspace of L2, it is itself a
Hilbert space and so P� is strictly convex. The following lemma concerns the existence
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of a perturbation Ṫ for which our objectives will be nonzero; that is, our objective J
is not uniformly vanishing. Denote P(x, y) := Pπ

(
τ−T0(y)

dρ
dx

)
(x) and let

J (Ṫ ) :=
∫


(F̃�)

∫ 1

0
P(x, y)Ṫ (y)E(x, y) dx dy

be our objective. In our first specific objective (optimising response of expectations)
we will insert E(x, y) = ((Id− L∗0)−1c)(x) f0(y) and in our second specific objective
(optimising mixing) we will insert E(x, y) = E(x, y) from (18).

Lemma 7.2 Assume that there is F ′ ⊂ F̃� such that m(F ′) > 0 and E(·, y) /∈
span{P(·, y)}⊥ for all y ∈ F ′. Then there is a Ṫ ∈ P� such that J (Ṫ ) > 0.

Proof Because

J (Ṫ ) =
∫


(F̃�)

Ṫ (y)

(∫ 1

0
P(x, y)E(x, y) dx

)
dy,

we may set Ṫ (y) = ∫ 1
0 P(x, y)E(x, y) dx for y ∈ F ′ and Ṫ (y) = 0 otherwise to

obtain J (Ṫ ) > 0. Trivial scaling yields Ṫ ∈ B1. ��
We expect the hypotheses of Lemma 7.2 to be satisfied “generically”.

7.2 Explicit Formula for the Optimal Map Perturbation that Maximally Increases
the Expectation of an Observable

In this section, we consider the problem of finding the optimal map perturbation that
maximises the expectation of some observable c ∈ L2. We first present a result that
ensures a unique solution exists and then derive an explicit expression for the optimal
map perturbation.

We begin by noting that R̂(Ṫ ) ∈ V ; this follows from the fact that(
Pπ

(
τ−T0(y)

dρ
dx

))
(x) f0(y) ∈ Vker (since k̇ ∈ Vker, see Proposition 6.3) and therefore∫ 1

0

(
Pπ

(
τ−T0(y)

dρ
dx

))
(x) f0(y)g(y)dy ∈ V for g ∈ L2 (see Lemma 3.2). Hence, we

only need to consider c ∈ span{ f0}⊥ (see the discussion at the end of Sect. 4.2).

Proposition 7.3 Let c ∈ span{ f0}⊥ and P� be the set in (44). Assume that the function
J (Ṫ ) := 〈

c, R̂(Ṫ )
〉
L2([0,1],R)

is not uniformly vanishing on P�. Then the optimisation
problem

〈
c, R̂(Ṫ )

〉
L2([0,1],R)

= max
ḣ∈P�

〈
c, R̂(ḣ)

〉
L2([0,1],R)

, (45)

where R̂ is as in (41), has a unique solution Ṫ ∈ L2.
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Proof Let H = L2, P = P� and J (ḣ) = 〈c, R̂(ḣ)〉L2([0,1],R). Using Lemma 7.1 we
note that P� is closed, as well as bounded, strictly convex and that it contains the zero
element of H. From Lemma 6.5, it follows that 〈c, R̂(ḣ)〉L2([0,1],R) is continuous as
a function of ḣ; note that it is also linear in ḣ. By hypothesis, J is not uniformly
vanishing on P�. We can therefore apply Propositions 4.1 and 4.3 to conclude that
(45) has a unique solution. ��

Before we present the explicit formula for the optimal solution, we will reformulate
the optimisation problem (45) to simplify the analysis. We first note that since the
objective function in (45) is linear in Ṫ , the maximum will occur on ST0,� ∩ ∂B1.
Combining this with the fact that we only need c ∈ span{ f0}⊥, we consider the
following reformulation of (45):

Problem C Given � ≥ 0 and c ∈ span{ f0}⊥ solve

min
Ṫ∈ST0,�

−〈c, R̂(Ṫ )
〉
L2([0,1],R)

(46)

subject to ‖Ṫ ‖22 − 1 = 0. (47)

Theorem 7.4 Suppose the transfer operator L0 associated with the system (T0, ρ) has
a kernel k0 as in (36), which satisfies (A1) of Theorem 2.2, and there is a F ′ ⊂ F̃� such
that m(F ′) > 0, and f0(y) > 0 and (Id − L∗0)−1c /∈ span{P(·, y)}⊥ for all y ∈ F ′.
Let G : L2 → L2 be defined as

G f (y) :=
∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x) f (x)dx . (48)

Then, the unique solution to Problem C is

Ṫ (y) =
{
− f0(y)G((Id− L∗0)−1c)(y)/‖ f0G((Id− L∗0)−1c)1F̃�

‖2 y ∈ F̃�,

0 otherwise.
(49)

Furthermore, Ṫ ∈ L∞.

Proof See Appendix D. ��

7.3 Explicit Formula for the Optimal Map Perturbation that Maximally Increases
theMixing Rate

In this section,we set up the optimisation problem formixing enhancement andderive a
formula for the optimal map perturbation. We remark that related spectral approaches
to mixing enhancement for continuous-time flows were developed in Froyland and
Santitissadeekorn (2017), Froyland et al. (2020).
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Recall that to enhance mixing in Sect. 5.2, we perturbed k0 so that the logarithm of
the real part of the second eigenvalue decreases. From Lemma 4.4, we have

d

dδ
�(log λδ)

∣∣∣∣
δ=0

= 〈k̇, E〉L2([0,1]2,R)

|λ0|2 , (50)

where λδ denotes the second largest eigenvalue in magnitude (assumed to be simple)
of the integral operator Lδ with the kernel kδ = k0+ δ · k̇+ o(δ), where δ �→ kδ is C1

at δ = 0. Since we want to perturb T0 by Ṫ , we reformulate the above inner product.
Define

Ê(y) = −
∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)E(x, y)dx, (51)

where E(x, y) is as in (18).

Proposition 7.5 Let Lδ : L2([0, 1],C) → L2([0, 1],C), δ ∈ [0, δ̄), be integral opera-
tors generated by the kernels kδ as in (36), assume that dρ/dx is Lipschitz and δ �→ Tδ

is C1. Let λδ be an eigenvalue of Lδ with second largest magnitude strictly inside the
unit disk. Suppose that L0 satisfies (A1) of Theorem 2.2 and λ0 is geometrically sim-
ple. Let e and ê be the eigenvectors of L0 and L∗0, respectively, corresponding to the
eigenvalue λ0. Then Ê ∈ L∞([0, 1],R) and

〈
k̇, E

〉
L2([0,1]2,R)

= 〈
Ṫ , Ê

〉
L2([0,1],R)

.

Proof We first show that Ê ∈ L∞([0, 1],R). We can write

−
∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)E(x, y)dx

= −
4∑

i=1
βi hi (y)

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)gi (x)dx

= −
4∑

i=1
βi hi (y)(Ggi )(y),

where β1 = β2 = �(λ0), β3 = −β4 = �(λ0), g1 = g4 = �(ê), g2 = g3 = �(ê),
h1 = h3 = �(e), h2 = h4 = �(e). From the proof of Theorem 7.4, we have
Ggi ∈ L∞([0, 1],R). Also, from Lemma 6.1, we have that k0 ∈ L∞([0, 1]2) and
therefore hi ∈ L∞([0, 1],R); thus, Ê ∈ L∞([0, 1],R).

Finally, we compute

〈k̇, E〉L2([0,1]2,R) =
∫ 1

0

∫ 1

0
k̇(x, y)E(x, y)dxdy

= −
∫ 1

0

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)Ṫ (y)E(x, y)dxdy
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=
∫ 1

0
Ṫ (y)Ê(y)dy = 〈

Ṫ , Ê
〉
L2([0,1],R)

.

��
From equation (50), in order to maximally increase the spectral gap, by Proposi-

tion 7.5, we should choose the map perturbation Ṫ to minimise 〈Ṫ , Ê〉. We first show
this optimisation problem has a unique solution.

Proposition 7.6 Let P� be the set in (44) and assume that J (Ṫ ) = 〈Ṫ , Ê〉 does not
uniformly vanish on P�. Then, the problem of finding Ṫ ∈ P� such that

〈
Ṫ , Ê

〉
L2([0,1],R)

= min
ḣ∈P�

〈
ḣ, Ê

〉
L2([0,1],R)

(52)

has a unique solution.

Proof Note that P� is closed (by Lemma 7.1), bounded, strictly convex and contains
the zero element of L2. Now, since J (ḣ) := 〈ḣ, Ê〉L2([0,1],R) is linear and continuous
and by hypothesis does not vanish everywhere on P�, we may apply Propositions 4.1
and 4.3 to obtain the result. ��

Since the objective function in (52) is linear, all optima will lie in ST0,� ∩ ∂B1.
Hence, we equivalently consider the following optimisation problem:

Problem D Given � ≥ 0, solve

min
Ṫ∈ST0,�

〈
Ṫ , Ê

〉
L2([0,1],R)

(53)

such that ‖Ṫ ‖22 − 1 = 0. (54)

We now state a formula for the unique optimum.

Theorem 7.7 Let (T0, ρ) be a deterministic system with additive noise satisfying
(T 1) and (T 2). Suppose the associated transfer operator L0 : L2([0, 1],C) →
L2([0, 1],C), with the kernel k0 as in (36), satisfies (A1) of Theorem 2.2, and that
there is a F ′ ⊂ F̃� with m(F ′) > 0 and E(·, y) /∈ span{P(·, y)}⊥ for all y ∈ F ′.
Suppose λ0 is geometrically simple. Then, the unique solution to the optimisation
problem D is

Ṫ (y) =
{

1
α

∫ 1
0

(
Pπ

(
τ−T0(y)

dρ
dx

))
(x)E(x, y)dx y ∈ F̃�,

0 otherwise,
(55)

where E(x, y) is as in (18) and α > 0 is selected so that ‖Ṫ ‖2 = 1. Furthermore,
Ṫ ∈ L∞.

Proof See Appendix E. ��
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Corollary 7.8 If λ0 is real, then

Ṫ (y) =
{
sgn(λ0)

e(y)(Gê)(y)
‖eGê1F̃�

‖2 y ∈ F̃�,

0 otherwise,

where G is the operator in (48). Furthermore, if there exists an � > 0 such that
� ≤ T0(x) ≤ 1− � for x ∈ [0, 1], then

Ṫ = sgn(λ0)
e · Gê
‖e · Gê‖2 . (56)

Proof Since e, ê and λ0 are real, we have E(x, y) = ê(x)e(y)λ0 and the expression
for Ṫ follows from (55). Finally, if � ≤ T0(x) ≤ 1− �, then F̃� = [0, 1] and we have
(56). ��

8 Applications and Numerical Experiments

In this section, we will consider two stochastically perturbed deterministic systems,
namely the Pomeau–Manneville map and a weakly mixing interval exchange map.
For each of these maps we numerically estimate:

1. The unique kernel perturbation that maximises the change in expectation of a
prescribed observation function (see Problem A). An expression for this optimal
kernel is given by (28).

2. The unique kernel perturbation that maximally increases the mixing rate (see
Problem B). An expression for this optimal kernel is given by (31) and (32).

3. The unique map perturbation that maximises the change in expectation of a pre-
scribed observation function (see Problem C). An expression for this optimal map
perturbation is given by (49).

4. The unique map perturbation that maximally increases the mixing rate (see Prob-
lem D). An expression for this optimal map perturbation is given by (55) and
(56).

The numerics will be explained as we proceed through these four optimisation prob-
lems. We refer the reader to Antown et al. (2018) for additional details on the
implementation and related experiments.

8.1 Pomeau-Manneville Map

We consider the Pomeau-Manneville map (Liverani et al. 1999)

T0(x) =
{
x(1+ (2x)α), x ∈ [0, 1/2);
2x − 1, x ∈ [1/2, 1] , (57)

with parameter value α = 1/2. For this parameter choice it is known that the map
T0 admits a unique absolutely continuous invariant probability measure, but only
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Fig. 1 Transition matrix Ln for the system (33) generated by the Pomeau-Manneville map T0 (57) using
n = 500 subintervals of equal length. The matrix entries are located according to the subinterval positions
in the domain [0, 1], so that the image appears as a “blurred” version of the graph of T0. The additive noise
in (33) is drawn according to ρε with ε = 1/10

algebraic decay of correlations (Liverani et al. 1999). With the addition of noise as
per (33), the transfer operator defined by (35) and (36) for δ = 0 becomes compact as
an operator on L2. In our numerical experiments we will use the smooth noise kernel
ρε : [−ε, ε] → R, defined by ρε(x) = N (ε) exp(−ε2/(ε2 − x2)), where N (ε) is a
normalisation factor ensuring

∫
ρε(x) dx = 1.

We now begin to set up our numerical procedure for estimating L0, which is a
standard application of Ulam’s method (Ulam 1960). Let Bn = {I1, . . . , In} denote an
equipartition of [0, 1] into n subintervals, and set Bn = span{1I1 , . . . , 1In }. We define

the (Ulam) projectionπn : L2([0, 1]) → Bn byπn(g) =∑n
i=1

(
1

m(Ii )

∫
Ii
g(x)dx

)
1Ii .

The finite-rank transfer operator Ln := πnL0 : L2([0, 1]) → Bn can be
computed numerically. We use MATLAB’s built-in functions integral.m and
integral2.m to perform the ρ-convolution (using an explicit form of ρε) and the
Ulam projections, respectively. Figure 1 displays the nonzero entries in the column-
stochastic matrix corresponding to Ln for ε = 0.1.

Approximations to the invariant probability densities for our stochastic dynamics
are displayed in Fig. 2 (left) for large and small noise supports. A lower level of noise
permits greater concentrationof invariant probabilitymass near thefixedpoint x = 0of
themap T0.Also shown inFig. 2 (right) are the estimated eigenfunctions corresponding
to the second-largest eigenvalue of Ln . The signs of these second eigenfunctions split
the interval [0, 1] into left and right hand portions, broadly indicating that the slow
mixing is due to positive mass near x = 0 and negative mass away from x = 0
(Dellnitz et al. 2000); see Froyland et al. (2011) for further discussion of this point in
the Pomeau-Manneville setting.
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Fig. 2 Approximate invariant densities (left) and eigenfunctions corresponding to the 2nd largest eigenvalue
of L0 (right) for the system (33) with T0 given by the Pomeau-Manneville map (57). The additive noise in
(33) is drawn according to ρε with ε taking the values 1/10 (blue) and

√
6/100 (red). The Ulam matrix Ln

is constructed with 500 subintervals (Color figure online)

8.1.1 Kernel Perturbations

In the framework of Problems A and B we use the (arbitrarily chosen) monotonically
increasing observation function c(x) = − cos(x). In order to estimate k̇ as in (28) we
use the code from Algorithm 3 (Antown et al. 2018); the inputs are the Ulam matrix
Ln and cn (obtained as πn(c)). Equivalently, directly using (28) one may substitute fn
(obtained as the leading eigenvector of Ln) for f , Ln for L , cn as above for c, and solve
(I d− L∗n)−1cn (obtained as a vector y ∈ R

n by numerically solving the linear system
(I d − L∗n)y = cn, f �n y = 0). Figure 3 shows the optimal kernel perturbations k̇n for
n = 500. Because c is an increasing function, intuitively one might expect the kernel
perturbation to try to shift mass in the invariant density from left to right. Broadly
speaking, this is what one sees in the high-noise case in Fig. 3 (left): vertical strips
typically have red above blue, corresponding to a shift of mass to the right in [0, 1].
The main exception to this is around the y-axis value of 1/2, where red is strongly
below blue along vertical strips. This is because at the next iteration, these red regions
will be mapped near x = 1 and achieve the highest value of c, while the blue regions
will be mapped near to x = 0 with the least value of c. In the low-noise case of Fig. 3
(right), we see a similar solution with higher spatial frequencies, and strong kernel
perturbations near the critical values of x = 0 and T0(x) = 1/2.

To investigate the optimal kernel perturbation to maximally increase the rate of
mixing in the stochastic system,we use the expression k̇ in (31). A natural approximate
version (31) requires estimates of the left and right eigenfunctions of L0 corresponding
to the second largest eigenvalue λ2; these are obtained directly as eigenvectors of Ln .
Figure 4 shows the resulting optimal kernel perturbations, computed using the code
from Algorithm 4 (Antown et al. 2018) with input Ln . Because the fixed point at
x = 0 is responsible for the slow algebraic decay of correlations for the deterministic
dynamics of T0, the fixed point will also play a dominant role in the mixing rate
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Fig. 3 Optimal kernel perturbations for the Pomeau-Manneville map to maximise the change in expectation
of c(x) = − cos(x), based on an Ulam approximation of (28) with n = 500 subintervals. Left: ε = 1/10,
right: ε = √6/100

Fig. 4 Optimal kernel perturbation for the Pomeau-Manneville map to maximally increase the mixing rate,
computed with n = 500 subintervals. Left: ε = 1/10, right: ε = √6/100

of the stochastic system for low to moderate levels of noise. Indeed, Fig. 4 shows
that the optimal kernel perturbation concentrates its effort in a neighbourhood of the
fixed point, and pushes mass away from the fixed point as much as possible. This is
particularly extreme in the low noise case of Fig. 4 (right) with the perturbation almost
exclusively concentrated in a small neighbourhood of x = 0.

8.1.2 Map Perturbations

We now turn to the problem of finding the unique map perturbation Ṫ that maximises
the change in expectation of the observation c(x) = − cos(x) (see Problem C for a
precise formulation) and maximises the speed of mixing (see Problem D). We use the
natural Ulam discretisation of the expression5 (49). The objects fn and (I d−L∗n)−1cn
are computed exactly as before in Sect. 8.1.1. The action of the operator G in (49) is

5 Note that since T−10 ({0, 1}) is a finite set, we may take � > 0 as small as we like. In the computations
we set � = 0, so that F̃� = [0, 1] mod m.
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Fig. 5 Left: Optimal map perturbation Ṫ for the Pomeau-Manneville map to maximise the change in
expectation of c(x) = − cos(x), computed using (49) with n = 500. Right: Illustration of T0 + Ṫ /100

Fig. 6 Kernel perturbations corresponding to the optimal map perturbations in Fig. 5. Left: ε = 1/10, right:
ε = √6/100

computed using MATLAB’s built-in function integral.m using an explicit form
of dρε/dx for dρ/dx in (49).

Figure 5 (left) shows the optimal Ṫ for the two noise amplitudes ε = 1/10 and
ε = √

6/100. Note that for the noise amplitude ε = 0.1 (blue curve in Fig. 5) the
map perturbation Ṫ is mostly positive, corresponding to moving probability mass to
the right, as expected because we are maximising the change in expectation of an
increasing observation function c. The blue curve is most negative in neighbourhoods
of the two preimages of x = 1/2, corresponding to moving probability mass to the
left. The reason for this is identical to the discussion of the “blue above red” effect in
Fig. 3, namely moving mass to the left creates a very large increase in the objective
function value at the next iterate. This “look ahead” effect is even more pronounced
in the low noise case (red curve of Fig. 5), where Ṫ is mostly positive, but has deep
negative map perturbations at multiple preimages of x = 1/2 reaching further into the
past.
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Fig. 7 Left: Optimal map perturbation Ṫ for the Pomeau-Manneville map to maximise the change in the
mixing rate, computed using (56) with n = 500. Right: illustration of T0 + Ṫ /100

Figure 5 (right) illustrates the Pomeau-Mannevillemap (black)with perturbedmaps
T0 + Ṫ /100. We have chosen a scale factor of 1/100 for visualisation purposes; one
should keep inmindwe have optimised for an infinitesimal change in themap. Figure 6
shows the kernel derivatives k̇ corresponding to the optimal map derivatives Ṫ for the
two noise levels. These kernel derivatives have a restricted form because they arise
purely from a derivative in the map. One may compare Fig. 6 with Fig. 3 and note
that the kernel derivative in Fig. 6 (left) attempts to follow the general structure of the
kernel derivative in Fig. 3 (left), while obeying its structural restrictions arising from
the less flexiblemap perturbation. Broadly speaking, in Fig. 6 (left), red lies above blue
(mass is shifted to the right). Exceptions are near y = 1/2 because at the next iteration
these red points will land near x = 1, achieving very high objective value, while the
blue region will get mapped to near x = 0, encountering the lowest value of c. Note
that the map perturbation decreases from a peak to very close to zero near x = 0.
This is because in a small neighbourhood of x = 0 there is already some stochastic
perturbation away from x = 0 “for free” due to the reflecting boundary conditions
imposed by π . Thus, the map perturbation Ṫ does not need to invest energy in large
perturbations very close to x = 0.

The map perturbation that maximally increases the rate of mixing is a particularly
interesting question. Our computations use the natural Ulam discretisation of (56). The
computations follow as in Sect. 8.1.1 with the action of G computed as above. Figure 7
(left) shows the optimal Ṫ for the two noise amplitudes ε = 1/10 and ε = √6/100.
A sharp map perturbation away from x = 0 is seen for both noise levels, with the
perturbation sharper for the lower noise case. In both cases, the map perturbations far
from x = 0 are weak (low magnitude values of Ṫ ). This result corresponds well with
the results seen for the optimal kernel perturbations in Fig. 4,wheremasswas primarily
moved away from x = 0. As in the optimal solution shown in Fig. 5 (left), the optimal
map perturbation in Fig. 7 decreases from a sharp peak down to zero near x = 0. This
is again because in a small neighbourhood of x = 0 the system experiences “free”
stochastic perturbations away from x = 0 due to the reflecting boundary conditions,
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Fig. 8 Kernel perturbations corresponding to the optimal map perturbations in Fig. 7. Left: ε = 1/10, right:
ε = √6/100

and thus the map perturbation Ṫ need not need invest energy in large perturbations
very close to x = 0. Figure 7 (right) illustrates the Pomeau-Manneville map (black)
with perturbed maps T0 + Ṫ /100, where again the factor 1/100 is just for illustrative
purposes; we are optimising an infinitesimal map perturbation. When inspecting the
kernel derivatives k̇ corresponding to the optimal map perturbations Ṫ in Fig. 8, we
see similar behaviour to those in Fig. 7.

8.2 Interval ExchangeMap

In our second example, we consider a weak-mixing interval exchange map. This is
because of an existing literature in mixing optimisation for these classes of maps with
the addition of noise. Avila and Forni (2007) prove that a typical interval exchange is
either weak mixing or an irrational rotation. We use a specific weak-mixing (Sinai and
Ulcigrai 2005) interval exchange map T0 with interval permutation (1234) �→ (4321)
and interval lengths given by the normalised entries of the leading eigenvector of the

matrix

⎛
⎜⎜⎝
13 37 77 47
10 30 60 37
3 10 24 14
4 10 19 12

⎞
⎟⎟⎠; see equation (51) in Sinai and Ulcigrai (2005). We again

form a stochastic system using the same noise kernels as for the Pomeau-Manneville
map in Sect. 8.1. The mixing properties of this map have been studied in Froyland
et al. (2016). Figure 9 shows the column-stochastic matrix corresponding to Ln for
n = 500 and ε = 0.1.

8.2.1 Kernel Perturbations

In the framework of ProblemA,weuse the sameobservation function c(x) = − cos(x)
as in the Pomeau-Manneville case study, and estimate the optimal kernel perturbation
k̇ that maximally increases the expectation of c in an identical fashion. In broad terms,
one again sees that k̇ attempts to shift invariant probability mass to the right in [0, 1].
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Fig. 9 Transition matrix for the system (33) for δ = 0 and T0 given by the interval exchange map above
using n = 500 subintervals. The additive noise is drawn from the density ρε with ε = 1/10

Fig. 10 Optimal kernel perturbation for the interval exchange map to maximise the change in expectation
of c(x) = − cos(x), computed with n = 500 Ulam subintervals. Left: ε = 1/10, right: ε = √6/100

In Fig. 10 (left), in each smooth part of the support of k̇, red is “above” blue, meaning
mass is pushed to the right.

Clear exceptions to the “red above blue” scheme are seen as three sharp horizontal
lines. The y-coordinates of these three sharp horizontal lines coincide with the three
points of discontinuity in the domain of the interval exchange at approximately x =
0.43, 0.77, 0.89. Consider the sharp horizontal “blue above red” line at y ≈ 0.43.
According to Fig. 9, under the action of the kernel k0, mass in the vicinity of x = 0.6
will be transported near to x = 0.43. The perturbation k̇ shown in Fig. 10 will then
tend to push this mass to the left of x = 0.43. Thus, on the next iteration there will be a
bias for mass to be mapped near to x = 1 rather than near x = 0.25, achieving a much
larger objective value at this iterate. A similar reasoning applies to the “blue above
red” horizontal lines at y ≈ 0.77 and 0.89; the contrast is a little weaker because the
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Fig. 11 Approximate second eigenfunctions of the transfer operator L0 of the system (33) with T0 given
by the interval exchange map above. The additive noise in (33) is drawn from the density ρε with ε taking
the values 1/10 (blue) and

√
6/100 (red) (Color figure online)

potential gain at the next iterate is also weaker. In the low noise case, Fig. 10 (right),
displays similar behaviour to the higher noise case of Fig. 10 (left). With lower noise,
the deterministic dynamics plays a greater role and additional preimages are taken
into account, leading to a more oscillatory optimal k̇.

To investigate the optimal kernel perturbation to maximally increase the rate of
mixing in the stochastic system (in the framework of ProblemB)we use the expression
k̇ in (31). The method of numerical approximation is identical to that used for the
Pomeau-Manneville map. Figure 11 shows the signed distribution of mass that is
responsible for the slowest real6 exponential rate of decay in the stochastic system.
This eigenfunction becomes more oscillatory as the level of noise decreases, and
as must be the case, the magnitude of the corresponding eigenvalue increases from
λ ≈ 0.7476 (ε = 1/10) to λ ≈ 0.9574 (ε = √

6/100). Because the sign of these
eigenvalues is negative, one expects a pair of almost-2-cyclic sets (Dellnitz and Junge
1999), consisting of three subintervals each, given by the positive and negative supports
of the eigenfunctions.

Figure 12 shows the approximate optimal kernel perturbations. In the high-noise
situation of Fig. 12 (left), the sharp horizontal changes are present at preimages of
the deterministic dynamics, as they were in to Fig. 10 (left). The importance of the

6 In our numerical experiments the largest magnitude real eigenvalue appears as the sixth (resp. fourth)
eigenvector of L500 for ε = 1/10 (resp. ε = √6/100). Slightly larger complex eigenvalues are present—
with magnitudes 0.8411 and 0.9609 respectively—but we do not investigate these in order to make the
dynamic interpretation more straightforward.
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Fig. 12 Optimal kernel perturbation for the interval exchange map to maximally increase the mixing rate,
computed with n = 500 Ulam subintervals. Left: ε = 1/10, right: ε = √6/100

break points to the overall mixing rate is thus clearly borne out in the optimal k̇; a
precise interpretation of the optimal k̇ is not very straightforward. For the low noise
case (Fig. 12 (right)) it appears that there is an alternating shifting ofmass left and right
with alternating “red above blue” and “blue above red”. This leads to greater mixing at
smaller spatial scales than is possible in a single iteration of the deterministic interval
exchange.We anticipate that decreasing the noise amplitude further will result in more
rapid alternation of “red above blue” and “blue above red”. As the diffusion amplitude
decreases, the efficient large-scale diffusive mixing is no longer possible and so a
transition is made to small-scale mixing, accessed by increasing oscillation in the
kernel.

8.2.2 Map Perturbations

The computations in this section follow those of Sect. 8.1.2. Figure 13 (left) shows the
optimal map perturbations Ṫ at two different noise levels. Figure 13 (right) illustrates
T0+ Ṫ /100 for the two different levels of noise. The kernel perturbations generated by
these optimal map perturbations are displayed in Fig. 14. If one compares the kernel
perturbations in Fig. 14 with those more flexible kernel perturbations in Fig. 10,
one sees that the two sets of kernel perturbations are broadly equivalent with one
another in terms of the relative positions of the positive and negative (red and blue)
perturbations. Note that themore restrictive kernel derivative in Fig. 14 by construction
cannot replicate the sharp horizontal red-blue switches in Fig. 10. It turns out that the
strongest of these red-blue switches, namely the one at y ≈ 0.43 in Fig. 10 (left) is
approximated as best as is allowed by a map perturbation, see Fig. 14 (left), while the
other two (weaker) horizontal red/blue switches seen in 10 are ignored.

We now turn to optimal map perturbations for the mixing rate. The combined effect
of the “cutting and shuffling” of interval exchanges with diffusion on mixing rates has
been widely studied, e.g. Ashwin et al. (2002), Sturman (2012), Froyland et al. (2016),
Kreczak et al. (2017),Wang andChristov (2018), including investigations of the impact
of changing the diffusion or the interval exchange on mixing. The very general type
of formal map optimisation we consider here has not been attempted before, and we
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Fig. 13 Left: optimal map perturbation Ṫ for the interval exchange map to maximise the change in expec-
tation of c(x) = − cos(x), computed using (49) with n = 500. Right: illustration of T0 + Ṫ /100

Fig. 14 Kernel perturbations corresponding to the optimal map perturbations in Fig. 13. Left: ε = 1/10,
right: ε = √6/100

hope that our novel techniques will stimulate interesting new research questions and
motivate more sophisticated experiments in the field of mixing optimisation.

Under repeated iteration, the original interval exchange T0 cuts and shuffles the
unit interval into an increasing number of smaller pieces, assisting the small scale
mixing of diffusion. Our results in Fig. 15 (left) show an oscillatory Ṫ , with increasing
oscillations as the noise amplitude decreases. This increased oscillation effect is also
seen when comparing the left and right panes of Fig. 16. Thus, the optimisation
attempts to include some additional mixing by rapid local warping of the phase space.
It is plausible that this additional warping effect enhances mixing beyond the rigid
shuffling of the interval exchange. An illustration of T0 + Ṫ /100 is given in Fig. 15.
We emphasise that the factor 1/100 is only for visualisation purposes and for smaller
factors, the perturbed map would remain a piecewise homeomorphism (modulo small
overshoots at the boundaries, which are taken care of by the reflecting boundary
conditions on the noise).
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Fig. 15 Left: Optimal map perturbation Ṫ for the interval exchange map to maximise the change in the
mixing rate, computed using (56) with n = 500. Right: illustration of T0 + Ṫ /100

Fig. 16 Kernel perturbations corresponding to the optimal map perturbations in Fig. 15. Left: ε = 1/10,
right: ε = √6/100
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Appendix A: Proof of Theorem 5.4

First we need a technical lemma.We note that the statement of the lemma is analogous
to the continuity of (Id− L0)

−1, which was treated in the proof of Theorem 2.2.

Lemma A.1 Consider the closed subspace span{ f0}⊥ ⊂ L2 equipped with the L2

norm. Then, the operator (Id− L∗0)−1 : span{ f0}⊥ → span{ f0}⊥ is bounded.

Proof We begin by finding the kernel and range of the operator Id − L∗0. Recall that
L0(V ) ⊂ V and that L0 preserves a one-dimensional eigenspace span{ f0}, with
eigenvalue 1. Thus, we have ker(Id−L0) = span{ f0} and ran(Id−L0) ⊂ V . Recalling
that L0 : V → V is compact and f0 /∈ V , we have by the Fredholm alternative (see
Dragicevic and Sedro 2020, VII.11) that for any g ∈ V , there exists a unique h ∈ V
such that g = (Id − L0)h. Hence, ran(Id − L0) = V . Since V is closed, the range
of Id − L0 is closed and so, by the Closed Range Theorem (Theorem 5.13, IV-§5.2,
Kato 1995), we have ran((Id − L0)

∗) = ker(Id − L0)
⊥ = span{ f0}⊥, which is a

co-dimension 1 space, and ker((Id− L0)
∗) = ran(Id− L0)

⊥ = V⊥ = span{1}⊥⊥ =
span{1}, where the last equality follows from Corollary 1.41 in III-§1.8 (Kato 1995)
and the fact that span{1} is a finite-dimensional closed subspace of L2.

To prove that (Id − L∗0)−1 : span{ f0}⊥ → span{ f0}⊥ is bounded, we will use
the Inverse Mapping Theorem (Theorem III.11, Reed and Simon 1980). Since the
integral operator L∗0 has an L2 kernel, by (6) and the triangle inequality it follows that
Id − L∗0 is bounded. Also, from the Fredholm alternative argument above, Id − L∗0 :
span{ f0}⊥ → span{ f0}⊥ is surjective. Thus, to apply the Inverse Mapping Theorem,
we just need to show that Id− L∗0 is injective on span{ f0}⊥. Let f1, f2 ∈ span{ f0}⊥
be such that (Id − L∗0) f1 = (Id − L∗0) f2. Thus, f1 − f2 ∈ ker(Id − L∗0) = span{1}
and so f1 − f2 = γ 1 for some γ ∈ R. Since f1 − f2 ∈ span{ f0}⊥, we have that
0 = ∫

( f1(x)− f2(x)) f0(x)dx = γ
∫

f0(x)dx and so γ = 0 (since
∫

f0(x)dx = 1),
i.e. f1 = f2; thus, (Id− L∗0) is injective and the result follows. ��
Proof of Theorem 5.4 We will use the method of Lagrange multipliers to derive the
expression (28) from the first-order necessary conditions for optimality and then show
that such a k̇ satisfies the second-order sufficient conditions. To this end, we consider
the following Lagrangian function

L(k̇, μ) := f (k̇)+ μg(k̇),

where f (k̇) := −〈c, R(k̇)
〉
L2([0,1],R)

, g(k̇) := ‖k̇‖2
L2([0,1]2) − 1 and k̇ ∈ Vker ∩ Sk0,l .

Necessary conditions: We verify the conditions in Theorem 2, §7.7, (Luenburger
1969). We want to find k̇ and μ that satisfy the first-order necessary conditions:

g(k̇) = 0

Dk̇L(k̇, μ)k̃ = 0 for all k̃ ∈ Vker ∩ Sk0,l ,

where Dk̇L(k̇, μ) ∈ B(L2([0, 1]2),R) is the Frechet derivative with respect to the
variable k̇. Since f is linear,wehave (Dk̇ f )k̃ = f (k̃).Also, (Dk̇g)k̃ = 2〈k̇, k̃〉L2([0,1]2)
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since

|g(k̇ + k̃)− g(k̇)− 2〈k̇, k̃〉L2([0,1]2)|
‖k̃‖L2([0,1]2)

=
|‖k̇ + k̃‖2

L2([0,1]2) − ‖k̇‖2L2([0,1]2) − 2〈k̇, k̃〉L2([0,1]2)|
‖k̃‖L2([0,1]2)

= |〈k̇ + k̃, k̇ + k̃〉L2([0,1]2) − 〈k̇, k̇〉L2([0,1]2) − 2〈k̇, k̃〉L2([0,1]2)|
‖k̃‖L2([0,1]2)

= |〈k̃, k̃〉L2([0,1]2)|
‖k̃‖L2([0,1]2)

= ‖k̃‖L2([0,1]2).

Thus, for the necessary conditions of the Lagrange multiplier method to be satisfied,
we need that

Dk̇L(k̇, μ)k̃ = (Dk̇ f )k̃ + μ(Dk̇g)k̃ = f (k̃)+ 2μ〈k̇, k̃〉L2([0,1]2) = 0 (58)

for all k̃ ∈ Vker ∩ Sk0,l and

g(k̇) = 0. (59)

Noting Lemma A.1 and the fact that c ∈ span{ f0}⊥, we have

f (k̃)+ 2μ〈k̇, k̃〉L2([0,1]2)
= −〈c, R(k̃)〉L2([0,1],R) + 2μ〈k̇, k̃〉L2([0,1]2)

= −
〈
c, (Id− L0)

−1
∫

k̃(x, y) f0(y)dy

〉
L2([0,1],R)

+ 2μ〈k̇, k̃〉L2([0,1]2)

=
∫ ∫

−((Id− L∗0)−1c)(x)k̃(x, y) f0(y)dydx +
∫ ∫

2μk̇(x, y)k̃(x, y)dydx

=
∫ ∫ [

−((Id− L∗0)−1c)(x) f0(y)+ 2μk̇(x, y)
]
k̃(x, y)dydx .

(60)

We claim that

k̇(x, y) = 1

2μ
1Fl (x, y) f0(y)

(
((Id− L∗0)−1c)(x)−

1

m(Fy
l )

∫
Fy
l

((Id− L∗0)−1c)(z)dz
)

satisfies the necessary condition (58) and lies in Vker ∩ Sk0,l . Before we verify this, we
show that

M(x, y) := 1Fl (x, y) f0(y)
(
((Id− L∗0)−1c)(x)− ĝ(y)

)
,
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where ĝ(y) := 1
m(Fy

l )

∫
Fy
l
((Id − L∗0)−1c)(z)dz, is in L2([0, 1]2). Since f0, (Id −

L∗0)−1c ∈ L2, we just need to show that 1Fl (x, y) f0(y)ĝ(y) is in L2([0, 1]2). First,
we note that

|ĝ(y)| ≤ 1

m(Fy
l )

∫ ∣∣1Fy
l
(z)((Id− L∗0)−1c)(z)

∣∣dz

≤ 1

m(Fy
l )
‖(Id− L∗0)−1c‖2‖1Fy

l
‖2

= 1

m(Fy
l )
‖(Id− L∗0)−1c‖2

√
m(Fy

l )

= ‖(Id− L∗0)−1c‖2√
m(Fy

l )

and therefore

ĝ(y)2 ≤ ‖(Id− L∗0)−1c‖22
m(Fy

l )
.

We then have
∫ ∫

1Fl (x, y)ĝ(y)
2 f0(y)

2dxdy =
∫


(Fl )

∫
Fy
l

ĝ(y)2 f0(y)
2dxdy

=
∫


(Fl )
m(Fy

l )ĝ(y)2 f0(y)
2dy

≤
∫


(Fl )
m(Fy

l )
‖(Id− L∗0)−1c‖22

m(Fy
l )

f0(y)
2dy

≤ ‖(Id− L∗0)−1c‖22‖ f0‖22.

Thus, 1Fl (x, y) f0(y)ĝ(y) is in L2([0, 1]2) and therefore M ∈ L2([0, 1]2).
Now, to verify k̇ satisfies (58), we compute, for k̃ ∈ Vker ∩ Sk0,l ,

f (k̃)+ 2μ〈k̇, k̃〉L2([0,1]2)

=
∫
Fl

[
−((Id− L∗0)−1c)(x) f0(y)+ 2μk̇(x, y)

]
k̃(x, y)dxdy

=
∫
Fl

[
− ((Id− L∗0)−1c)(x) f0(y)

+ f0(y)

(
((Id− L∗0)−1c)(x)−

1

m(Fy
l )

∫
Fy
l

((Id− L∗0)−1c)(z)dz
)]

k̃(x, y)dxdy

= −
∫


(Fl )

[∫
Fy
l

(
f0(y)

1

m(Fy
l )

∫
Fy
l

((Id− L∗0)−1c)(z)dz
)
k̃(x, y)dx

]
dy
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= −
∫


(Fl )

(
f0(y)

1

m(Fy
l )

∫
Fy
l

((Id− L∗0)−1c)(z)dz
)[∫

Fy
l

k̃(x, y)dx

]
dy

= 0,

where the last equality follows from k̃ ∈ Vker ∩ Sk0,l . To conclude checking that
k̇ satisfies the necessary condition (58), we need to check that μ �= 0. Since M ∈
L2([0, 1]2), note that the necessary condition (59) yields μ = ± 1

2‖M‖L2([0,1]2); thus,
to finish the proof that k̇ satisfies both necessary conditions (58)-(59), we will show
that ‖M‖L2([0,1]2) �= 0. From the hypotheses on f0 and (Id − L∗0)−1c we conclude
that

‖M‖2L2([0,1]2)

=
∫
Fl

f0(y)
2

(
((Id− L∗0)−1c)(x)−

1

m(Fy
l )

∫
Fy
l

((Id− L∗0)−1c)(z)dz
)2

dxdy

�= 0.

Hence, μ = ± 1
2‖M‖L2([0,1]2) �= 0. The sign of μ is determined by checking the

sufficient conditions.
We can now verify that k̇ ∈ Vker ∩ Sk0,l . We note from M ∈ L2([0, 1]2) and μ �= 0

that k̇ ∈ L2([0, 1]2). By construction supp(k̇) ⊆ Fl . Finally, we have

∫
k̇(x, y)dx = 1

2μ
f0(y)

(∫
Fy
l

((Id− L∗0)−1c)(x)dx

−
∫
Fy
l

((Id− L∗0)−1c)(z)dz

∫
Fy
l
1Fl (x, y)dx

m(Fy
l )

)

= 0.

Sufficient conditions:Wewant to show that k̇ in (28) is a solution to the optimisation
problem (26)- (27) by checking that it satisfies the second-order sufficient conditions.
We first demonstrate the set of Lagrange multipliers �(k̇) (in Definition 3.8, §3.1
Bonnans and Shapiro 2013) is not empty in our setting; this will enable us to use the
second-order sufficient conditions of Lemma 3.65 (Bonnans and Shapiro 2013). Note
that in terms of the notation used in Bonnans and Shapiro (2013) versus our notation,
Q = X = Vker ∩ Sk0,l , x0 = k̇, Y ∗ = R, G(x0) = g(k̇), K = {0}, NK (G(x0)) = R,
TK (G(x0)) = {0} and NQ(x0) = {0} (since Q = X , see discussion in §3.1 following
Definition 3.8). Thus, to show that �(k̇) is not empty, we need to show that k̇ and μ

satisfy

Dk̇L(k̇, μ)k̇ = 0, g(k̇) = 0, μ ∈ {0}−, μg(k̇) = 0, (61)

where {0}− := {a ∈ R : ax ≤ 0 ∀x ∈ {0}} = R (this simplification of conditions
(3.16) inBonnans andShapiro (2013) follows from the discussion followingDefinition
3.8 in §3.1 and the fact that {0} is a convex cone). Since the second condition in (61)
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implies the fourth, and since μ ∈ R, we only need to check the first two equalities
in (61). However, these two conditions are implied from the first-order necessary
conditions. Hence, �(k̇) is not empty and thus, to show that k̇ is a solution to (26)-
(27), we need to show that it satisfies the following second-order conditions (see
Lemma 3.65): there exists constants ν > 0, η > 0 and β > 0 such that

sup
|μ|≤ν, μ∈�(k̇)

D2
k̇k̇
L(k̇, μ)(k̃, k̃) ≥ β‖k̃‖2L2([0,1]2), ∀k̃ ∈ Cη(k̇), (62)

where Cη(k̇) :=
{
v ∈ Vker ∩ Sk0,l : |2〈k̇, v〉Vker ∩Sk0,l

| ≤ η‖v‖Vker∩Sk0,l and f (v) ≤
η‖v‖Vker∩Sk0,l

}
is the approximate critical cone (see equation (3.131) in §3.3 Bonnans

and Shapiro 2013). Since Dk̇L(k̇, μ)k̃ = f (k̃)+ 2μ〈k̇, k̃〉L2([0,1]2) and 〈k̇, k̃〉L2([0,1]2)
is linear in k̇ , we have that D2

k̇k̇
L(k̇, μ)(k̃, k̃) = 2μ〈k̃, k̃〉L2([0,1]2) . Thus, we conclude

that the second-order condition (62) holdswithμ > 0, ν = |μ| = 1
2‖M‖Vker∩Sk0,l ,β =

2μ and η = max
{
2‖k̇‖Vker∩Sk0,l , ‖c‖2‖ f0‖2‖(Id− L0)

−1‖V→V
}
. Since k̇ satisfies the

necessary conditions (58) and (59) with μ > 0, we conclude that k̇ is a solution to the
optimisation problem (26)- (27).

Uniqueness of the solution: The set Pl = Vker ∩ Sk0,l ∩ B1 is a closed (Lemma 5.1),
bounded, strictly convex set, containing k̇ = 0. The objective J (k̇) = 〈c, R(k̇)〉 is
continuous (since J is linear and R is continuous (see comment following (14))) and
not uniformly vanishing (Lemma 5.2). Therefore by Propositions 4.1 and 4.3, k̇ is the
unique optimum.

L∞ boundedness of the solution: Suppose that c ∈ W and k0 ∈ L∞([0, 1]2).
From L0 f0 = f0 and k0 ∈ L∞([0, 1]2), we have by (7) that f0 ∈ L∞. Let V1 :=
{ f ∈ L1 : ∫ f dm = 0}. We would like to show that (Id − L0)

−1 : V1 → V1
is bounded. To obtain this, we first need the exponential contraction of L0 on V1.
Since L0 is integral preserving and compact on L1, from the argument in the proof of
Theorem 2.2we only need to verify the L1 version of assumption (A1) on V1. To verify
this, we note that for h ∈ V1, we have ‖L0h‖2 ≤ ‖L0h‖∞ ≤ ‖k0‖L∞([0,1]2)‖h‖1
and therefore, L0h ∈ V since L0 preserves the integral. Thus, for any h ∈ V1,
limn→∞ ‖Ln

0h‖1 ≤ limn→∞ ‖Ln−1
0 (L0h)‖2 = 0 since L0 satisfies (A1) on V . Hence,

the L1 version of (A1) holds and L0 has exponential contraction on V1. We then have

‖(Id− L0)
−1‖V1→V1 ≤ ‖Id‖V1→V1 +

∥∥∥∥
∞∑
n=1

Ln
0

∥∥∥∥
V1→V1

= 1+ sup
f ∈V1‖ f ‖1=1

∥∥∥∥
∞∑
n=1

Ln
0 f

∥∥∥∥
1

≤ 1+ sup
f ∈V1‖ f ‖1=1

∞∑
n=1

Ceλn‖ f ‖1

= 1+
∞∑
n=1

Ceλn <∞,

(63)
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where the last inequality follows from λ < 0; thus, (Id−L0)
−1 : V1 → V1 is bounded.

Next we would like to find the subspace where the operator (Id−L∗0)−1 is bounded.
We will replicate the result of Lemma A.1, however, (Id− L0)

−1 is now acting on L1,
so we note that for a subspace S of L1, we have that

S⊥ :=
{
h ∈ L∞ :

∫
h(x)w(x)dx = 0 ∀w ∈ S

}
, (64)

where we are using the fact that (L1)∗ = L∞. Also, S⊥ is a closed subspace of L∞
(see III-§1.4, Kato 1995).

Now, as in the proof of Lemma A.1, we have ker(Id− L0) = span{ f0} and ran(Id−
L0) = V1.Wealsohave ran((Id−L0)

∗) = span{ f0}⊥ = {h ∈ L∞ : ∫ h(x) f0(x)dx =
0} =: W and ker((Id − L0)

∗) = V⊥1 = {h ∈ L∞ : ∫ h(x)w(x)dx = 0 ∀ w ∈ V1}.
Next, for h ∈ W , we have

∫
(L∗0h)(x) f0(x)dx =

∫
h(x)(L0 f0)(x)dx =

∫
h(x) f0(x)dx = 0;

thus, (Id − L∗0)(W ) ⊂ W . We again, as in Lemma A.1, apply the Inverse Mapping
Theorem to prove that (Id− L∗0)−1 : W → W is bounded. From (7), and the triangle
inequality, the operator Id − L∗0 : W → W is bounded. Noting that V1 is a closed
co-dimension 1 subspace of L1, we have codim(V1) = dim(V⊥1 ) (see Lemma 1.40
III-§1.8 Kato 1995); hence, dim(ker(Id − L∗0)) = dim(V⊥1 ) = codim(V1) = 1 and
therefore, 1 is a geometrically simple eigenvalue of L∗0. Thus, ker(Id− L∗0) = span{1}
because L∗01 = 1. Since

∫
f0 dm = 1, 1 /∈ span{ f0}⊥ and so, by the Fredholm

alternative, Id − L∗0 is a bijection on W . Hence, by the Inverse Mapping Theorem,
(Id− L∗0)−1 is bounded on W . Since c ∈ W , we have ‖(Id− L∗0)−1c‖∞ <∞.

To conclude the proof, we now show that ĝ(y) := 1
m(Fy

l )

∫
Fy
l
((Id− L∗0)−1c)(z)dz

is in L∞. We compute

|ĝ(y)| =
∣∣∣∣ 1

m(Fy
l )

∫
Fy
l

((Id− L∗0)−1c)(z)dz
∣∣∣∣ ≤ ‖(Id− L∗0)−1c‖∞.

Since (Id− L∗0)−1c ∈ L∞, we conclude that ĝ ∈ L∞; thus, k̇ ∈ L∞([0, 1]2). ��

Appendix B: Proof of Theorem 5.6

Proof The optimisation problem is very similar to that considered in Theorem 5.4;
thus, we will refer to the proof of that theorem with the following modifications.

Consider the Lagrangian function

L(k̇, μ) := f (k̇)+ μg(k̇),

where, in this setting,we have f (k̇) = 〈k̇, E〉L2([0,1]2,R) and g(k̇) = ‖k̇‖2L2([0,1]2,R)
−1.

Thus, for the necessary conditions of the Lagrange multiplier method to be satisfied,
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we need that

f (k̃)+ 2μ〈k̇, k̃〉L2([0,1]2) = 〈k̃, E〉L2([0,1]2,R) + 2μ〈k̇, k̃〉L2([0,1]2,R) = 0 (65)

for all k̃ ∈ Vker ∩ Sk0,l and

g(k̇) = 0. (66)

We claim that

k̇(x, y) = −1Fl (x, y)
1

2μ

(
E(x, y)− 1

m(Fy
l )

∫
Fy
l

E(x, y)dx

)
(67)

satisfies the necessary condition (65), and lies in Vker ∩ Sk0,l . Before we verify this,
we will show that

M(x, y) := 1Fl (x, y)(E(x, y)− h(y)),

where h(y) := 1
m(Fy

l )

∫
Fy
l
E(x, y)dx , is in L2([0, 1]2). Since E ∈ L2([0, 1]2), we just

need to show that 1Fl (x, y)h(y) is in L2([0, 1]2). We have

∫ ∫
1Fl (x, y)h(y)2dxdy =

∫

(Fl )

∫
Fy
l

h(y)2dxdy =
∫


(Fl )
m(Fy

l )h(y)2dy.

Substituting (18) into h, the terms in h(y)2 are a linear combination of functions of the
form g̃i1(y)g̃i2(y) fi3(y) fi4(y), i1, . . . , i4 ∈ {1, . . . , 4} where f j = �(ê),�(e),�(ê)
or �(e), j = 1, . . . , 4, respectively, and g̃ j (y) = 1

m(Fy
l )

∫
Fy
l
f j (x)dx , j = 1, . . . , 4.

Thus, to show 1Fl (x, y)h(y) is in L2([0, 1]2) (and therefore M ∈ L2([0, 1]2)), we
need to bound

I :=
∫


(Fl )
m(Fy

l )|g̃i1(y)||g̃i2(y)| fi3(y)|| fi4(y)|dy.

We note that

|g̃ j (y)| ≤ 1

m(Fy
l )

∫
|1Fy

l
(x) f j (x)|dx ≤ 1

m(Fy
l )
‖1Fy

l
‖2‖ f j‖2 = ‖ f j‖2√

m(Fy
l )

.

Thus, we have

I ≤
∫


(Fl )
m(Fy

l )
‖ fi1‖2√
m(Fy

l )

‖ fi2‖2√
m(Fy

l )

| fi3(y)|| fi4(y)|dy

= ‖ fi1‖2‖ fi2‖2
∫


(Fl )
| fi3(y) fi4(y)|dy ≤ ‖ fi1‖2‖ fi2‖2‖ fi3‖2‖ fi4‖2.
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Since f j ∈ L2, j = 1, . . . , 4, we conclude that M ∈ L2([0, 1]2).
Now, to verify k̇ satisfies the first necessary condition, we compute, for k̃ ∈ Vker ∩

Sk0,l , the central term in (65)

〈k̃, E + 2μk̇〉L2([0,1]2,R) =
∫
Fl
k̃(x, y)

(
E(x, y)+ 2μk̇(x, y)

)
dxdy

=
∫


(Fl )

∫
Fy
l

k̃(x, y) (E(x, y)− E(x, y)+ h(y)) dxdy

=
∫


(Fl )

[∫
Fy
l

k̃(x, y)dx

]
h(y)dy = 0,

where the last equality is from k̃ ∈ Vker ∩ Sk0,l . To conclude the check that k̇ satisfies
the necessary condition (65), we need to check that μ �= 0. Since M ∈ L2([0, 1]2),
note that the necessary condition (66) yields μ = ± 1

2‖M‖L2([0,1]2,R); thus, to fin-
ish the proof that k̇ satisfies both necessary conditions (65)-(66), we will show that
‖M‖L2([0,1]2,R) �= 0. From the hypotheses on E we conclude

‖M‖2L2([0,1]2,R)
=
∫
Fl

(
E(x, y)− 1

m(Fy
l )

∫
Fy
l

E(z, y)dz

)2

dxdy �= 0.

Hence μ = ± 1
2‖M‖L2([0,1]2,R) �= 0. The sign of μ is determined by checking the

sufficient conditions.
We can now verify that k̇ ∈ Vker ∩ Sk0,l . We note from M ∈ L2([0, 1]2) and μ �= 0,

k̇ ∈ L2([0, 1]2). By construction, supp(k̇) ⊆ Fl . Finally, we have

∫
k̇(x, y)dx = − 1

2μ

(∫
Fy
l

E(x, y)dx − 1

m(Fy
l )

∫
Fy
l

E(z, y)dz
∫

1Fl (x, y)dx

)

= − 1

2μ

(∫
Fy
l

E(x, y)dx − 1

m(Fy
l )

∫
Fy
l

E(z, y)dz m(Fy
l )

)

= 0.

For the sufficient conditions, we note that in this setting D2
k̇k̇
L(k̇, λ)(k̃, k̃) is the

same as in the proof of Theorem 5.4 (since the objectives considered in both this
and the other optimisation problem are linear). Hence, the second-order sufficient
conditions are satisfied with μ > 0. Thus, with 2μ = ‖M‖L2([0,1]2,R), (31) satisfies
the necessary and sufficient conditions. Next, we note that the set Pl = Vker∩Sk0,l∩B1
is a closed (Lemma 5.1), bounded, strictly convex set, containing k̇ = 0. The objective
J (k̇) = 〈k̇, E〉L2([0,1]2,R) is continuous and not uniformly vanishing (Lemma 5.2).
Therefore by Propositions 4.1 and 4.3, (31) is the unique solution to the optimisation
problem (29)-(30).
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We finally show that E ∈ L∞([0, 1]2,R) by supposing k0 ∈ L2([0, 1]∞,R).
Recall that

E(x, y) = (�(ê)(x)�(e)(y)+ �(ê)(x)�(e)(y)
)�(λ0)

+(�(ê)(x)�(e)(y)−�(ê)(x)�(e)(y)
)�(λ0).

Since L0e = λ0e and L∗0ê = λ0ê, we have from inequality (7) that e, ê ∈
L∞([0, 1],C) since k0 ∈ L∞([0, 1]2,R). Hence, we have that�(e),�(ê),�(e),�(ê)
∈ L∞([0, 1],R) and thus E ∈ L∞([0, 1]2,R). ��

Appendix C: Upper Bound for the Norm of the Reflection Operator

Lemma C.1 Let Pπ be as in (34) and assume that the support of f ∈ L2(R) is
contained in N intervals of lengths a j , j = 1, . . . , N. Then, ‖Pπ f ‖L2([0,1]) ≤(∑N

j=1!a j + 1"
)
‖ f ‖L2(R), where !x" denotes the smallest integer greater than or

equal to x.

Proof Using translation invariance of Lebesgue measure, and the fact that for each
fixed x there are at most

∑N
j=1!a j + 1" nonzero evaluations of f in the infinite sum

below,

∫ 1

0
(Pπ f )(x)2 dx =

∫ 1

0

(∑
i∈2Z

( f (i + x)+ f (i − x))

)2

dx

≤
∫ ∞

−∞

⎛
⎝ N∑

j=1
!a j + 1"

⎞
⎠

2

f (x)2 dx

=
⎛
⎝ N∑

j=1
!a j + 1"

⎞
⎠

2

‖ f ‖2L2 .

��

Appendix D: Proof of Theorem 7.4

Proof The proof will follow the structure of the proof of Theorem 5.4 . To this end,
we consider the following Lagrangian function

L(Ṫ , μ) := f (Ṫ )+ μg(Ṫ ),

where f (Ṫ ) := −〈c, R̂(Ṫ )
〉
L2([0,1],R)

, g(Ṫ ) := ‖Ṫ ‖22 − 1 and Ṫ ∈ ST0,�.
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Necessary conditions: We want to find Ṫ andμ that satisfy the first-order necessary
conditions:

g(Ṫ ) = 0

DṪL(Ṫ , μ)T̃ = 0 for all T̃ ∈ ST0,�,

where DṪL(Ṫ , μ) ∈ B(L2,R) is the Frechet derivative with respect to the variable
Ṫ . Since f is linear, we have (DṪ f )T̃ = f (T̃ ). Also, we have that (DṪ g)T̃ =
2〈Ṫ , T̃ 〉L2([0,1],R) (following the computation in the proof of Theorem 5.4). Thus, for
the necessary conditions of the Lagrange multiplier method to be satisfied, we need
that

DṪL(Ṫ , μ)T̃ = (DṪ f )T̃ + μ(DṪ g)T̃ = f (T̃ )+ 2μ〈Ṫ , T̃ 〉L2([0,1],R) = 0 (68)

for all T̃ ∈ ST0,� and

g(Ṫ ) = 0. (69)

Following the proof of Theorem 5.4, we will solve for Ṫ by rewriting f (T̃ ) +
2μ〈Ṫ , T̃ 〉L2([0,1],R) as an inner product on L2. To this end, we have that

f (T̃ )+ 2μ〈Ṫ , T̃ 〉L2([0,1],R)

=
〈
c, (Id− L0)

−1
∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)T̃ (y) f0(y)dy

〉
L2([0,1],R)

+ 2μ〈Ṫ , T̃ 〉L2([0,1],R)

=
〈
(Id− L∗0)−1c,

∫ 1

0

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)T̃ (y) f0(y)dy

〉
L2([0,1],R)

+ 〈2μṪ , T̃ 〉L2([0,1],R)

=
∫ 1

0

∫ 1

0
((Id− L∗0)−1c)(x)

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)T̃ (y) f0(y)dydx

+ 〈2μṪ , T̃ 〉L2([0,1],R)

=
∫ 1

0

[∫ 1

0
((Id− L∗0)−1c)(x)

(
Pπ

(
τ−T0(y)

dρ

dx

))
(x)dx f0(y)+ 2μṪ (y)

]
T̃ (y)dy

=
∫ 1

0

[
f0(y)G((Id− L∗0)−1c)(y)+ 2μṪ (y)

]
T̃ (y)dy.

(70)

We note that since c ∈ span{ f0}⊥, we have from Lemma A.1 that (Id− L∗0)−1c ∈ L2

and the above expression is well defined. Now, from (70), we have that f (T̃ ) +
2μ〈Ṫ , T̃ 〉L2([0,1],R) = 〈 f0 G((Id − L∗0)−1c) + 2μṪ , T̃ 〉L2([0,1],R). From this we can
conclude that finding Ṫ and μ that satisfy (68) and (69) reduces to finding Ṫ ∈ ST0,�
andμ ∈ R that satisfy 〈 f0 G((Id−L∗0)−1c)+2μṪ , T̃ 〉L2([0,1],R) = 0 for all T̃ ∈ ST0,�
and (69). Using the non-degeneracy of the inner product, we find that
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Ṫ = − M

2μ
,

where

M = 1F̃�
f0 G((Id− L∗0)−1c). (71)

To conclude that the above Ṫ satisfies the necessary condition (68), we need to check
that μ �= 0. Since M ∈ L∞ (see the Boundedness of the solution paragraph below),
the necessary condition (69) yields μ = ± 1

2‖M‖2; thus, to finish the proof that Ṫ
satisfies both necessary conditions (68)-(69), we will show that ‖M‖2 �= 0. From the

hypotheses on f0 and (Id−L∗0)−1c, and recalling thatP(x, y) = Pπ

(
τ−T0(y)

dρ
dx

)
(x),

we conclude that

‖M‖22 =
∫
F̃�

f0(y)
2
(∫

P(x, y)((Id− L∗0)−1c)(x)dx
)2

dy �= 0.

Hence μ = ± 1
2‖M‖2 �= 0; the sign of μ is determined by checking the sufficient

conditions. We thus have verified that Ṫ ∈ ST0,� because Ṫ ∈ L2 and the term 1F̃�
in

(71) guarantees supp(Ṫ ) ⊆ F̃�.
Sufficient conditions: As in the proof of Theorem 5.4, we will show that Ṫ in (49)

is the solution to the optimisation problem (46)-(47) by checking that it satisfies the
second-order sufficient conditions. We first note that in this setting we have Q = X =
ST0,�, x0 = Ṫ , Y ∗ = R,G(x0) = g(Ṫ ), K = {0}, NK (G(x0)) = R, TK (G(x0)) = {0}
and NQ(x0) = {0}. Thus, to show that �(Ṫ ) is not empty, we need to show that Ṫ
and μ satisfy

DṪL(Ṫ , μ)Ṫ = 0, g(Ṫ ) = 0, μ ∈ {0}−, μg(Ṫ ) = 0, (72)

where {0}− := {α ∈ R : αx ≤ 0 ∀x ∈ {0}} = R. Following the argument in the proof
of Theorem 5.4, it is easily verifiable that �(Ṫ ) is not empty. Thus, to show that Ṫ
is a solution to (46)-(47), we need to show that it satisfies the following second-order
conditions: there exists constants ν > 0, η > 0 and β > 0 such that

sup
|μ|≤ν, μ∈�(Ṫ )

D2
Ṫ Ṫ

L(Ṫ , μ)(T̃ , T̃ ) ≥ β‖T̃ ‖22, ∀ T̃ ∈ Cη(Ṫ ), (73)

where Cη(Ṫ ) := {
v ∈ ST0,� : |2〈Ṫ , v〉ST0,�

| ≤ η‖v‖ST0,�
and f (v) ≤ η‖v‖ST0,�

}
is

the approximate critical cone. Since DṪL(Ṫ , μ)T̃ = f (T̃ )+2μ〈Ṫ , T̃ 〉L2([0,1],R) and

〈Ṫ , T̃ 〉L2([0,1],R) is linear in Ṫ ,wehave thatD
2
Ṫ Ṫ

L(Ṫ , μ)(T̃ , T̃ ) = 2μ〈T̃ , T̃ 〉L2([0,1],R).
Thus, we conclude that the second-order condition (73) holds with μ > 0, ν = |μ| =
1
2‖M‖ST0,�

, β = 2μ and η = max
{
2‖Ṫ ‖ST0,�

, ‖M‖ST0,�

}
. Since Ṫ satisfies the neces-

sary conditions (68) and (69), with μ > 0, Ṫ is a solution to the optimisation problem
(46)-(47). Using Lemma 7.2 and Proposition 7.3, we conclude that this solution is
unique.
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Boundedness of the solution: We have that
(
Pπ

(
τ−T0(y)

dρ
dx

))
(x) ∈ L∞([0, 1]2)

(see proof of Lemma 6.5). From inequality (7), with the kernel
(
Pπ

(
τ−T0(y)

dρ
dx

))
(x),

we have that Gh ∈ L∞ for any h ∈ L2. Since f0 ∈ L∞, we have that f0 G((Id −
L∗0)−1c) ∈ L∞. Thus, M = 1F̃�

f0 G((Id − L∗0)−1c) ∈ L∞ and therefore Ṫ ∈ L∞.
��

Appendix E: Proof of Theorem 7.7

Proof We use arguments similar to those in the proofs of Theorems 7.4 and 5.6. Let
Ê be as in (51). For the necessary conditions, we will need that

〈T̃ , Ê + 2μṪ 〉L2([0,1],R) = 0 (74)

for all T̃ ∈ ST0,� and

‖Ṫ ‖22 = 1. (75)

Thus, from (74) and the nondegeneracy of the inner productwe have that Ṫ = −1F̃�

Ê
2μ .

To conclude that Ṫ satisfies the necessary condition (74), we need to check that μ �=
0. Since Ê ∈ L2 (as it is essentially bounded, see Proposition 7.5), the necessary
condition (75) yields μ = ± 1

2‖Ê‖2. Thus, to finish the proof that Ṫ satisfies both
necessary conditions (74)-(75), we will show that ‖Ê‖2 �= 0. From the hypotheses on

E , and recalling that P(x, y) = Pπ

(
τ−T0(y)

dρ
dx

)
(x), we conclude that

‖Ê‖22 =
∫
F̃�

(∫ 1

0
P(x, y)E(x, y)dx

)2

dy �= 0.

Hence μ = ± 1
2‖Ê‖2 �= 0 and Ṫ = ∓1F̃�

Ê∥∥Ê∥∥
2

; the sign of μ is determined by

checking the sufficient conditions. Clearly Ṫ ∈ L2 and has support contained in F̃l ,
thus Ṫ ∈ ST0,l . For the sufficient conditions, as in the proof of Theorem 7.4, since
the objective is linear, we require that μ > 0. Using Lemma 7.2 and Proposition 7.6
we conclude that (55) is the unique solution. The essential boundedness of Ṫ follows
from the essential boundedness of Ê (see Proposition 7.5). ��
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