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ABSTRACT
Hybrid TDDFT/MM approaches are very popular methods for describing electronic transitions
of molecules in solution or embedded in more complex (bio)matrices. However, when combined
with a polarizable force field some problems can appear depending on the type of environment
response scheme that is used. In particular, specific a posteriori corrections are generally needed
to accurately describe charge-transfer states implying a large reorganization of the electron
density in the excited state. Here, we present a possible strategy to solve this issue introducing
a ∆SCF formulation. As the ∆SCF strategy has the advantage of being intrinsically state
specific, its coupling to a polarizable model is expected to be particularly suited to describe all
cases where the standard, linear response, formulation of a polarizable TDDFT/MM approach
is not sufficient.
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1. Introduction

Linear-response time-dependent DFT (from now on TDDFT) is a very widely employed ap-
proach for obtaining electronic transition energies and densities in a computationally efficient
way. TDDFT obtains transition energies and properties via the linear response (LR) of a ground
state DFT solution to time-dependent electric fields. TDDFT however has some well-known
shortcomings. First of all, the method is limited to describing single excitations, making it im-
possible to model doubly (or higher) excited states. Moreover, the LR formulation becomes less
and less accurate with increasing difference between excited and ground state densities, which
occurs for example with charge transfer (CT) transitions. In these cases, the results of TDDFT
become extremely dependent on the selected DFT functional.

A further problematic aspect of TDDFT arises when the method is coupled to a polarizable
classical model to account for environment effects. Since the very first formulations using con-
tinuum solvation models, it appeared clearly that the non-linear character of the QM/classical
Hamiltonian generated by the density-dependent term due to the polarizable embedding intro-
duces a theoretical problem not present in the standard TDDFT formulation [1, 2]. A solution
that is consistent with the linear-response (LR) nature of the TDDFT approach was proposed
and is generally known as LR scheme. Within such a framework, the response of the polarizable
environment to the excitation follows the field generated by the transition density that charac-
terizes the excitation, rather than the excited state density. Because of this characteristic, the
LR response has been also classified as an excited-state “dispersion” or “resonance” contribu-
tion [2, 3]. Successively the LR scheme was extended to polarizable TDDFT/MM formulations
[4, 5].

The LR scheme is extremely effective, as it naturally merges within the TDDFT equations,
but it has the limit of accounting only for one component of the environment effect. In fact, in
the excitation process, the electron density will change, and this change should be reflected in the
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polarization of the environment. However, this effect is neglected in the LR scheme, which can
lead to a non-negligible error in the estimation of the transition energies especially for excitations
involving a large change in the densities, such as a CT. Different approximate models have been
proposed to introduce this additional state-specific (SS) response within a TDDFT framework.
Once more, the first proposals came from continuum solvation models: among them, one of the
most successful schemes thanks of its simplicity and computational efficiency is the so called
corrected LR (cLR) proposed by Caricato et al. [6]. The approach is based on a first-order
perturbative scheme and introduces an a posteriori correction to the TDDFT energies using
the polarization of the environment due to the difference between excited and ground state
densities. The cLR approach was later extended to polarizable QM/MM descriptions [5, 7].
The cLR correction represents a physically separate environment contribution to the transition
energy, and can be added to the LR energy, in the so-called cLR2 approach [8].

An alternative strategy for introducing SS effects is to abandon the TDDFT formulation
and to use state-specific orbital optimized DFT approaches [9]. The idea beyond this class of
methods is that one can converge the self-consistent field (SCF) procedure to an excited state,
and obtain the excitation energies as the difference between the excited-state and ground-state
SCF energies. For this reason, this approach is also known as ∆SCF. An excited-state SCF
solution can be obtained by using a non-Aufbau ad-hoc criterion, such as choosing the orbitals
that maximize the overlap with the ones that were occupied at the previous step, as done in the
Maximum Overlap Method (MOM) [10, 11], or with those of the guess determinant, as done in
the Initial Maximum Overlap Method (IMOM) [12]. These methods have been shown to give
accurate excitation energies not only for low-lying valence excitations [13] but also for some
doubly excited states [14, 15], low-lying charge transfer states [9, 16], and Rydberg states [17].
Recently, ∆SCF methods have been applied to the calculation of electronic couplings [18], to
the calculations of singlet-triplet energy gaps in solution [16], and to nonadiabatic excited-state
dynamics in condensed phase [19, 20].

As the ∆SCF strategy has the advantage of being intrinsically state specific, its coupling to
a polarizable model automatically includes the effects of a SS response of the environment.

In this paper we present a comparative analysis of this approach with respect to the different
TDDFT response schemes (LR and cLR2).

Here we employ the AMOEBA polarizable force field [21, 22] which uses an induced-dipole
formulation to account for the polarization of the MM atoms. However, our conclusions can be
extended to other polarizable QM/MM methods [4, 7, 23–25].

We consider three distinct scenarios for the description of excited states. We first focus on
the valence excitation in three green fluorescent protein (GFP) mutants. Then, we focus our
attention to the dual emission from a locally excited (LE) state and an intramolecular CT (ICT)
state of the dimethylaminobenzonitrile (DMABN) molecule in solution, and finally we consider
an intermolecular CT state in the AppA photosensory protein. By analyzing these scenarios,
we highlight the strengths and weaknesses of the ∆SCF and TDDFT approaches in describing
excitations within a polarizable environment.

2. Methods

In this section, we briefly review the main aspects of the DFT/AMOEBA and its extension to
excited states both within a TDDFT and ∆SCF formulation. For TDDFT, both LR and cLR2

schemes will be presented.
In the AMOEBA FF, each MM atom bears static multipoles up to the quadrupole and an

isotropic polarizability, which in the presence of an electric field gives rise to an induced dipole.
A peculiarity of AMOEBA is that the MM contribution to the electric field that induces the
dipoles, Ed, is different from the one that appears in the definition of the AMOEBA polarization
energy, Ep, which makes the force field non variational. In particular, the two fields Ed, Ep differ
for the exclusion rules used in their definition, being them based on polarization group for Ed

and on the connectivity for Ep, respectively. The coupling of the AMOEBA FF to a SCF-based
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description can therefore be achieved through a polarization Lagrangian [5, 26–28]

L(P, µd, µp) =EQM(P ) + Eself(M) + ⟨q, V (P )⟩ − ⟨µs, E(P )⟩+ ⟨Θ, G(P )⟩

− 1

2
⟨µd, Ep + E(P )⟩+ 1

2
⟨µp, Tµd − Ed − E(P )⟩. (1)

In eq. 1, P is the SCF density matrix, q, µs, and Θ are the static charges, dipoles and quadrupoles
that make the multipolar distribution, µd are the induced dipoles, µp a set of Lagrange mul-
tipliers that enforce the polarization equations Tµd = Ed + E(P ), V (P ), E(P ), and G(P ) are
the potential, field and field gradient produced by the quantum mechanical density of charge,
and T is the polarization matrix, that has the inverse polarizabilities on the diagonal block and
(damped) dipole-dipole interaction tensors on the off-diagonal ones. The brackets are shorthand
notation for the scalar product. All the detailed expressions for the aforementioned quantities
can be found in ref. 5. A thorough, complete discussion of the Lagrangian formalism can be
found in ref. [28].

The coupled QM/AMOEBA equations are easily obtained by imposing the stationarity of
the Lagrangian in eq. 1 with respect to the induced dipoles µd, to the associated Lagrange
multiplier µp, and, under the usual orthonormality constraints, to the density matrix. The
resulting equations are

FC = SCE, P = CC†,

Tµd = Ed + E(P ),

Tµp = Ep + E(P ), (2)

where the elements of the effective Fock (or Kohn-Sham) matrix F are given by

Fµν = F vac
µν + ⟨q, Vµν⟩ − ⟨µs, Eµν⟩+ ⟨Θ, Gµν⟩ −

1

2
⟨µp + µd, Eµν⟩. (3)

In eq. 3, F vac is the usual Fock or KS matrix, while Vµν , Eµν , and Gµν are one-electron elec-
trostatic potential, field and field gradient integrals, respectively. As the effective Fock matrix
depends on the induced dipoles while at the same time the induced dipoles depend on the
electronic density, mutual polarization is included when the coupled equations are solved self-
consistently. This in turn requires one to solve, at each SCF iteration, the polarization equations
and the corresponding linear equations for the Lagrange multipliers, which, for large systems,
can be an overwhelming computational burden. In our implementation, thanks to the use of
an efficient preconditioned conjugate gradient iterative solvent [29, 30] and the Fast Multipole
Method to compute matrix-vector products [31–33], all the operations introduced by the polar-
izable embedding are performed at a linear-scaling computational cost, which makes it possible
to treat very large systems with a modest computational overhead.

The DFT/AMOEBA formulation has been extended to obtain transition energies and tran-
sition densities using the TDDFT formulation [5, 34].

Using Casida’s formalism [35] and assuming that real orbitals are used, the
TDDFT/AMOEBA equations are given by(

A B
B A

)(
X
Y

)
= ω

(
1 0
0 −1

)(
X
Y

)
, (4)

where the A and B matrices are given by

Aia,jb = δijδab(ϵa − ϵi) + (ia|jb)− cx(ab|ij) + clf
xc
aibj + Venv

iajb,

Bia,jb = (ia|jb)− cx(aj|ib) + clf
xc
aibj + Venv

iajb. (5)
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In eq. 5, we use the indices i, j to refer to occupied molecular orbitals (MO), and a, b to refer to
virtual one. ϵ are orbital energies, (pq|rs) two-electron integrals in the MO basis in the Mulliken
notation, and fxc

aibj is the exchange–correlation kernel. The coefficients cx and cl control the

amount of exact exchange for hybrid functionals by interpolating between HF (cx = 1, cl = 0)
and pure functionals (cx = 0, cl = 1).

The use of a polarizable embedding such as AMOEBA affects the TDDFT equations in two
ways. The first effect is visible in the molecular orbitals and their energies which are solutions of
the effective Fock operator reported in eq.3. Moreover, a new term appears in A and B matrices,
namely [4, 5]:

Venv
iajb = −⟨µjb, Eia⟩, (6)

where µjb are the AMOEBA dipoles induced by the field arising from orbitals ϕjϕb, and Eia is
the field arising from ϕiϕa orbitals. At convergence of Casida’s equations, this LR environment
term gives rise to an excitation energy contribution of the type [36]

∆ωLR = −⟨µX+Y , EX+Y ⟩, (7)

where EX+Y
k is the electric field generated by the transition density (X + Y ) at the polarizable

site k, and µX+Y
k is the k-th dipole induced by the same field. Such LR term can be interpreted

as the instantaneous response of the AMOEBA polarizable sites to the transition density of
the electronic excitation. In the literature, this term has also been described as a dispersion-
like interaction [2]. Being proportional to the square of the transition density, for dark CT
excitations the LR term is negligible.

A polarizable environment presents an additional type of response, namely the one due to
the change in the electronic charge densities of the ground and excited states. This further effect
is commonly described as a state-specific response [2, 37]. Within TDDFT, the SS response can
be added as a posteriori correction to the transition energies following an approach based on
first-order perturbation theory. The resulting corrected LR approach was originally proposed
for continuum solvation models [6] but later it has been extended to polarizable QM/MM
descriptions [5, 7]. Within AMOEBA, the cLR correction to the excitation energy reads:

∆ωcLR = −1

2
⟨µ∆, E∆⟩, (8)

where E∆
k is the electric field generated by the change in the electronic charge densities of the

ground and excited states at the polarizable site k and µ∆ are the induced dipoles generated
by the same field.

As the LR and the SS responses describe two different physical interactions, they should be
simultaneously taken into account in order to get a complete description of the environment
effect on an electronic transition. The most straightforward way of doing that is to sum the
cLR correction 8 correction to the TDDFT/AMOEBA excitation energy obtained by solving
eq.4. This computational protocol has been proposed for continuum solvation models and called
cLR2 [8], but it can equivalently be applied to a QM/AMOEBA description.

In order to quantify the effect of the LR response on excitation energies, it is useful to
compute excitation energies after removing the Venv

iajb terms from the TDDFT equations (4).
The resulting excitation energy contains the effect of induced dipoles in the orbital energies
only, and we denote it as ω0.

Computing excitation energies using a ∆SCF approach in combination with AMOEBA has
the advantage of being intrinsically state specific. In fact, each electronic state is variationally
obtained, together with the proper polarization. This means that the ∆SCF excitation energies
automatically include the effects of a SS response of the environment. In contrast to the cLR,
which is a first-order correction, here the SS response is fully self consistent. On the other hand,
the ∆SCF excitation energies completely neglect the LR effect.
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3. Results

In this section we report three applications of the ∆SCF/AMOEBA approach and its comparison
with three different TDDFT/AMOEBA schemes. These schemes correspond to the LR and
cLR2 models described in the Methods section along with the “ω0” excitation energy obtained
by solving TDDFT equations without the explicit AMOEBA term, Venv

iajb reported in eq.6.

The three selected applications refer to (a) vertical excitations in three different mutants
of the green fluorescent protein (GFP), (b) the emission process of DMABN in acetonitrile
solution and (c) a photo-induced intermolecular electron transfer between tyrosine and flavine
in the AppA protein (see fig. 1).
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Figure 1. General structure of GFP (a1) and molecular structures of the chromophores (a2) of the three investigated
mutants — mTFP, Dronpa and PhiYFP. The QM part includes also the atoms reported in gray. Structures of DMABN in

the locally excited (b1) and intramolecular charge transfer (b2) excited states, these respectively have the dimethylamino
moiety coplanar and twisted with respect to the phenyl ring. Illustration of the AppA protein (c). The flavine chromophore

and the tyrosine and glutamine residues which are included in the QM part are highlighted.

3.1. Computational details

To characterize the excited states of the selected systems, we performed a series of calculations
using two hybrid (B3LYP and PBE0) and two long-range corrected (CAM-B3LYP, ωB97XD)
functionals combined with the 6-311+G(d,p) basis set and with an environment described using
the AMOEBA force field [21, 22].

The ∆SCF is computed as the difference between the regular SCF energy and the IMOM
SCF energy [12]. In both cases, the AMOEBA induced dipoles are calculated self-consistently
with the specific state. IMOM calculations are performed on top of a guess density in which
one α electron is promoted to the LUMO. For what concerns the IMOM calculations, we used a
decreased convergence threshold for the SCF density of 10−6 in the root-mean square norm of the
density difference between two subsequent iterations, which is justified by the fact the in these
cases we only use the value of the SCF energy, without performing further post-SCF calculations.
A more conservative 10−8 SCF threshold has been used for the TDDFT calculations.

To characterize the solvatochromic shifts, we computed reference values in vacuum. Since
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ω0, LR and cLR2 on the one side and ∆SCF on the other side correspond to two different QM
levels of theory, two different reference values are needed: a TDDFT calculation in vacuum for
the first set of models and a ∆SCF calculation in vacuum.

Finally, to further investigate the origin of the solvatochromic shifts, we calculated the
electrostatic potential due to the induced dipoles at the QM atoms for the different molecules.
This analysis has been performed only with the CAM-B3LYP functional.

All the calculations have been performed with a locally modified version of the Gaussian
code [38].

3.2. Absorption in Mutants of the Green Fluorescent Protein

In this section, we present a study of the light absorption in three different mutants of the green
fluorescent protein (GFP).

The structures of the three GFP mutants, namely mTFP, Dronpa and PhiYFP, were taken
from previous works [39, 40]. Here, we included an AMOEBA shell of around ∼20 Å; the exact
radius of the shell for each mutant was chosen to have a global neutral system (charge of the
QM part -1, charge of the MM part +1). The resulting values are 20.9 Å, 7376 MM atoms for
mtFP, 25.5 Å, 11574 MM atoms for Dronpa and 20.0 Å, 6855 MM atoms for PhiYFP [40]. The
protein tertiary structure is similar among the three mutants but the molecular structure of the
chromophore presents some differences (see figure 1a).

The investigated excitations of the three GFPs present a strong HOMO–LUMO π–π∗ com-
ponent, therefore the guesses used for the IMOM calculations were obtained by promoting one
α electron from the HOMO to the LUMO.
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Figure 2. a): GFP excitation energies (in eV) for the three investigated systems — mTFP, Dronpa and PhiYFP —
reported using different colors. The horizontal dotted lines indicate the measured excitation energies[41–43]. b): GFP
solvatochromic shifts for the three investigated systems. The reference values are a vacuum TDDFT calculation for ω0, LR

and cLR values, and an in vacuum ∆SCF calculation for the ∆SCF values. In both figures the four investigated functionals
are reported using different markers: long-range corrected functionals are indicated with empty markers.

Figure 2 reports the excitation energies (top panel) computed for the three different mu-
tants with the four selected DFT functionals and the different models. We also analyze the
solvatochromic shifts (bottom panel) in order to remove the dependence of the absolute transi-
tion energy on the functional or method.

The three TDDFT sets of energies show a relatively weak sensitivity to the selected func-
tional for all the three mutants. Conversely, the ∆SCF description shows significant higher
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energies when long-range corrected functionals are used. This is in contrast to most findings,
which suggest a weaker dependence of ∆SCF transition energies on the functional [9, 15, 44].

As expected on the basis of the π–π∗ nature of the excitation, which has a strong transition
dipole, the TDDFT-LR energies are significantly lower than the ω0 ones. On the contrary,
adding a SS correction does not further affect the energies: cLR2 and LR values are almost
indistinguishable. For the same reason, we do not expect ∆SCF to be an accurate approach for
this excitation as it includes only a SS response. This is confirmed in the solvathocromic shift,
where the ∆SCF results are very similar to the ones obtained using a ω0 description. However, by
cancellation of errors, the absolute ∆SCF transition energies obtained with long-range corrected
functionals are very close to the experiment.

Figure 3 reports plots of the values of electrostatic potential generated by the AMOEBA
induced dipoles at the chromophore atoms of the three GFP mutants. The potential from
induced dipoles depends on the inducing QM density, so we distinguish the dipoles induced by
the ground state density of each mutant (first column) and the ones induced by the excited state
density, calculated either at TDDFT or IMOM level (second and third column, respectively).

As it can be observed, the three systems present a qualitatively similar picture but with
some not negligible differences which can be related to the different solvatochromic shifts. We
also note that moving from the GS induced dipoles to the ES ones virtually no differences are
observed, meaning that the ground and excited state densities are very similar. This explains
why the SS contributions to the transition energies are negligible.
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Figure 3. Electrostatic potential from the environment at the chromophore atoms for the three mutants. The potential

reported is from the dipoles induced by the GS density (first column), by the ES density computed using TDDFT (second

column) and by the ES density computed using IMOM (third column). We present only results obtained with the CAM-
B3LYP functional. The color map is in arbitrary units, red values are positive, blue values are negative. All the plots are
normalized to the same value.
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3.3. Emission of DMABN

In this section, we focus on the emission from two excited states — a locally excited (LE) state
and an intermolecular charge transfer (ICT) state — for DMABN in acetonitrile solution. The
molecular structures of the two excited states are reported in figure 1b. We note that the two
structures present a dimethylamino moiety which is twisted in the ICT state, and coplanar with
the phenyl ring in the LE state.

The solute-solvent configurations were taken from 6 excited-state QM/AMOEBA Born-
Oppenheimer MD trajectories presented in a previous work [34]. Those trajectories describe the
adiabatic interconversion from the LE to the ICT states of DMABN. From each trajectory, we
selected 5 frames in the 50–75 fs time window after the initial excitation and 5 frames in the
5000-5025 fs window. In the first set of frames, the solute is still in the LE state vertically reached
from the ground state, with little vibrational relaxation. In the second set of frames, instead
the solute has converted into the ICT state, and it features a twisted geometry. In addition,
the acetonitrile solvent has reoriented to solvate the ICT state. All the reported values are the
average over 30 frames for each state, and in the plots, the error bars report the standard error.

In both the LE and ICT cases, the investigated transition is from the first excited state
dominated by a HOMO–LUMO component. For this reason, the initial excited-state guess for
each of these IMOM calculations was obtained by promoting one α electron from the HOMO
to the LUMO.
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Figure 4. DMABN average emission energies from the LE and ICT states (a) and corresponding average solvatochromic

shifts (b). In both panels, LE results are reported in green and ICT results in blue. The four investigated functionals are

reported using different markers: long-range corrected functionals are reported using empty markers. The standard error is
reported through error bars. For the emission energies, available experimental values are also reported as dashed line[45].

For the solvatochromic shifts, the reference values are an in vacuum TDDFT calculation for ω0, LR and cLR values, and

an in vacuum ∆SCF calculation for the ∆SCF values.

Figure 4 reports the average LE and ICT emission energies and the corresponding average
solvatochromic shifts computed with the four selected functionals and the different models.

We first compare TDDFT and ∆SCF behaviors with respect to the choice of the DFT
functional. Contrarily to the GFP case, here the ∆SCF results depend very weakly on the
functional, whereas the TDDFT results for ICT strongly depend on the amount of long-range
exact exchange. The latter finding is due to the well known limits of hybrid functionals in
describing CT states. On the contrary, the ∆SCF approximation seems to make hybrid and
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long-range corrected functionals very similar for the ICT. This result is more in line with the
literature findings [9].

Moving to the different environment models, the TDDFT sets of data show what is expected
on the basis of the very different nature of LE and ICT states. The former presents similar LR
and cLR2 results while for the the latter the LR component of the solvatochromic shift is
negligible (LR and ω0 are in fact almost identical) and the SS effect is very strong which leads
to very different LR and cLR2 solvatochromic shifts.

The ∆SCF description behaves differently for the two states. For LE, we observe a simi-
lar behavior with respect to TDDFT descriptions even if the absolute excitation energies are
significantly smaller with all the DFT functionals. For ICT, instead, the excitation energies
calculated with ∆SCF are very similar for all DFT functionals and similar to the TDDFT-cLR2

ones obtained with long-range corrected functionals.
When we move to solvatochromic shifts, ∆SCF and all TDDFT schemes behave similarly

for the LE state. The solvatochromic shifts are all quite similar, with the ∆SCF and cLR2 both
predicting a shift of ∼-0.2 eV. However, in the case of cLR2 this shift also contains the LR
contribution, which is not included in ∆SCF.

The picture changes for the ICT state, where ∆SCF becomes more sensitive to the DFT
functional than TDDFT. For this dark state, the LR component of the solvatochromic shift
is negligible, therefore one would expect ∆SCF and cLR2 to give the same results. This is
not exactly true. We attribute this discrepancy to the fact that in ∆SCF the state-specific
contribution is calculated self-consistently, whereas in cLR2 it is estimated to first order on the
basis of the TDDFT difference density.

LE
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GS Dipoles
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ES Dipoles (TDDFT) ES Dipoles (IMOM)

Figure 5. Electrostatic potential from the environment at the DMABN atoms for the LE and ICT structures/states.

The potential reported is from the dipoles induced by the GS density (first column), by the ES density computed using
TDDFT (second column) and by the ES density computed using IMOM (third column). We present only results obtained

with the CAM-B3LYP functional. The color map is in arbitrary units, red values are positive, blue values are negative. All
the plots are normalized to the same value.

Figure 5 reports a representation of the electrostatic potential due to the AMOEBA induced
dipoles at the QM atoms. The electrostatic potentials are reported for two sample structures,
corresponding respectively to a LE and an ICT state.

The induced dipoles in the GS behave differently for the two structures: in the LE one,
they show a clear dipolar distribution, whereas in the ICT, they show a much less dipolar
distribution. The two structures/states instead generate very similar induced dipoles when the
excited state density is used. Moreover, TDDFT and IMOM give very similar pictures. In the
LE case, the dipolar character observed in the GS becomes more accentuated and the induced
dipoles stabilize this effect, whereas in the ICT case, the neutral character found in the GS is
completely replaced by a strong dipolar character, and the induced dipoles strongly stabilize
this state.
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3.4. Charge Transfer in AppA

The last investigated process is an intermolecular charge transfer state in the AppA protein. The
state corresponds to an electron transfer from a tyrosine residue to the flavine mononucleotide
(FMN) chromophore. Figure 1c shows the system and the QM part which includes also a
glutamine residue hydrogen-bonded to both tyrosine and flavine.

To study this process, we selected 10 frames from a classical NVT MD trajectory, then, for
each of them, we performed a QM/AMOEBA minimization until a root-mean square norm on
the forces of 4 kcal/mol/Å and finally a 2 ps QM/AMOEBA NPT equilibration to obtain the
structures which are used in this work. In this case, the AMOEBA shell has a radius of 30 Å,
of which 22 Å are polarizable. In the QM/AMOEBA MD simulations, the non polarizable shell
is kept frozen to provide non periodic boundary conditions.

Here, the intermolecular CT is not guaranteed to be the first excited state, therefore we
performed a series of preliminary LR calculations, solving for 6 excited states, using both a
QM/AMOEBA and in vacuum descriptions. From the results of the preliminary calculations,
we identified the states with the largest electron density displacement (∆r > 5 Å) [46], which
correspond to the charge transfer state. This information was used to set up the state-specific
cLR and IMOM calculations.
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Figure 6. Average absorption energies (a) and solvatochromic shifts for the charge transfer state of AppA (b), the

standard error is reported through error bars. The four investigated functionals are reported using different marks; long-
range corrected functionals are reported using empty markers. The reference values are a in vacuum TDDFT calculation
for ω0, LR and cLR values, and a in vacuum ∆SCF calculation for the ∆SCF values.

Figure 6 reports the excitation energies to the CT state and the corresponding solva-
tochromic shifts for the various models.

The excitation energies behave very similarly to what previously found for the ICT state
of DMABN: the three TDDFT schemes show large differences between hybrid and long-range
corrected functionals. Moreover, ω0 and LR energies are almost indistinguishable, whereas in-
troducing the SS shift in cLR2 leads to substantially smaller excitation energies. As for ICT in
DMABN, ∆SCF gives excitation energies which are insensitive to the functional and similar to
the TDDFT-cLR2 ones obtained with long-range corrected functionals.

The results obtained for the solvatochromic shifts qualitatively follow the ones found for ICT
in DMABN, as well, but this time the differences between the three different TDDFT schemes
are largely amplified. Here in fact, ω0 and LR (which are almost indistinguishable) give a large
and positive shift which becomes slightly negative when SS effects are introduced with cLR2.
This larger SS effect compared to the DMABN case arises from the intermolecular CT nature
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Multipoles GS dipoles

ES dipoles (TDDFT) ES dipoles (IMOM)

Figure 7. Electrostatic potential from the environment at the QM atoms. The potential reported is from the static
multipoles and from the induced dipoles. The latter are respectively induced by the GS density, by the ES density computed

using TDDFT and by the ES density computed using IMOM. We present only results obtained with the CAM-B3LYP

functional. The color map is in arbitrary units, red values are positive, blue values are negative. All the plots are normalized
to the same value, the tyrosine is plotted with larger markers to highlight its position in space.

of the state considered here, where negative and positive charges are well separated.
Figure 7 shows the electrostatic potential due to the AMOEBA atoms at the QM atoms. To

explain the positive shift (∼0.5 eV) seen at the ω0 and LR levels, in this case, we also investigated
the field generated by the fixed AMOEBA multipoles. It is evident that the electron transfer
from the tyrosine to the FMN is greatly hampered by the static field of the protein pocket. In
fact, the potential from the fixed multipoles goes against the electron transfer.

Including a SS polarizable description greatly stabilizes the CT state, as the dipoles reorient
to counter the resulting displacement of charge. This can be seen from the electrostatic potential
from the ES and IMOM dipoles, and by the solvatochromic shift computed using the cLR2 and
∆SCF strategies.

4. Conclusions

In this work we have used the combination of ∆SCF and a polarizable MM force field for
describing electronic transitions of embedded molecules and compared it with the same hybrid
approach but within a TDDFT formulation. For TDDFT we have considered two different
schemes for the environment response, accounting for the linear response only (LR scheme) or
for both the linear and the state specific responses (cLR2 scheme), respectively. We focused
on three distinct systems characterized by bright valence excitations, intra- and intermolecular
charge transfer states.

Our results highlight very different behavior for bright valence excitations and CT states.
For valence excitations, excitation energies are more strongly dependent on the functional for
∆SCF than for TDDFT. In addition, ∆SCF misses the most important contribution to the
solvatochromic shift, i.e. the LR one. For both intra- and inter-molecular CT states, ∆SCF
proves very robust with respect to the choice of functional. Moreover, the ∆SCF solvatochromic
effect on CT energies is very similar to those obtained with the most complete TDDFT cLR2

scheme. Although we have considered a limited set of electronic transitions, our sample spans
excitations with different characters and allows us to demonstrate clear trends. A larger sample
of chromophores in diverse environments will allow confirming these trends in the general case.

This analysis shows that the polarizable ∆SCF/MM can represent a very effective approach
to describe electronic transitions of molecules in solution or embedded in more complex environ-
ments when excitation showing a significant CT character are investigated. When bright valence
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states are considered, instead, a further improvement seems necessary, namely the inclusion of
the LR component of the environment response. This can be achieved with a correction based
on LR TDDFT calculations, or by explicitly computing it from the transition density at the
∆SCF level [13].
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