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Abstract. Deployable cable nets have been proposed as promising systems for the active
removal of space debris. The modelling and analysis of such systems during deployment, capture,
and post-capture phases are crucial for the effective design of an operative mission. To this aim,
accurate and effective simulation tools are necessary. We propose a finite element model of the
cable net with lumped nodal masses and first-order cable elements. The nodal positions are
assumed as the main unknowns of the problem. The large displacements and finite deformations
are described by the Green-Lagrange strain tensor. The cable elements are assumed to react
only in tension. Global damping is considered in line with Rayleigh’s hypothesis. The governing
equations are solved numerically by means of the Runge-Kutta method with a variable time
step. As an illustrative example, we present the simulation of the in-plane deployment of a
planar, square-mesh net. The proposed approach turns out to be computationally effective,
even if the accuracy of the numerical integration scheme needs to be improved, particularly in
the final stages of deployment.

1. Introduction
Missions in the circumterrestrial space produce debris that represents a threat to current
and future space activities. Even the impact of small- and medium-sized debris may cause
malfunctions and reduce the functional lifetime of operational satellites. The impact of large
debris would determine a complete destruction of impacting bodies with a production of new
fragments [1]. In the worst-case scenario, a series of catastrophic collisions would originate a
cascade effect, ending up with the creation of a belt of debris around the Earth [2, 3].

Once the main national space agencies became aware of the problem, they have developed
and adopted mitigation guidelines to reduce the debris production rate from new missions [4, 5].
However, the overall number of space debris is steadily increasing because of increasing space
activities [6, 7], and the same is happening to costs related to space debris – from damages,
constraints in satellite design, surveillance activities, and insurance fees [8]. As a consequence,
remediation activities must be set up to guarantee access to space for future generations. In
particular, the disposal of massive objects abandoned around the Earth would result effective
to secure the most valuable orbital regions [6, 9, 10].

Many methods and strategies for the removal of space debris have been proposed, most
of which remain theoretical [11, 12]. For active debris removal (ADR), the development of
an effective capturing mechanism is still one of the most problematic aspects of the mission
architecture. Two main alternatives have been considered: robotic arms and tethered nets.
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In the last twenty years, both the Space Shuttle and the International Space Station have
been equipped with robotic arms. Indeed, robotic arms have been effectively used to capture
cooperative and attitude-stabilised spacecrafts, both under human control and by automated
procedures [13]. Anyhow, their efficacy for the capture of non-cooperative debris still has to
be proven. In fact, the complexity of approaching manoeuvres can be guessed if we consider a
tumbling target with large appendages, from which a distance between 1 and 3 meters has to
be reached. For comparison, cable nets can be thrown from distances of 20 meters. Also, they
are light, easily packable, scalable, and versatile. Nonetheless, guidance, navigation, and control
(GNC) aspects are especially critical for nets in the capture and post-capture phases [11, 12].

In a typical ADR mission, the chaser will first operate a rendez-vous with the target and
then throw a tethered net to capture debris. The deployment of the net can be achieved by
ejecting a number of bullet masses placed on the border of the net. When cables connected to
the bullets start tensioning, they pull along neighbouring portions of the net, while the initial
kinetic energy stored in the bullet masses is partly converted into elastic potential energy stored
in cables.

The development of accurate and effective simulation tools is crucial to enable the real
application of cable nets in ADR missions. Several theoretical models have been proposed to
describe deployment and capture processes. Benvenuto et al. [14] and Botta et al. [15] modelled
the net as a system of concentrated masses – including both the bullet masses and nodal masses
representative of the cables – connected to each other by spring-dampers. In their models,
springs react only in tension with a linear stress-strain relationship between the infinitesimal
strain and Cauchy stress tensors. Shan et al. [16] compared the simple lumped mass-spring
model with a more refined model based on the absolute nodal coordinate formulation (ANCF)
proposed by Shabana [17]. Here, cables are modelled through a third-order cable element [18],
whereas finite strains are described by the Green-Lagrange strain tensor. Compressive stresses
are allowed in cables which, however, may buckle because of their little bending stiffness. The
lumped mass-spring and ANCF models gave similar results in terms of the overall behaviour of
the net, but the ANCF model was much more computationally expensive.

We propose a finite element (FE) model of a cable net with lumped nodal masses and first-
order cable elements. In line with the ANCF, we assume nodal positions as the main unknowns
of the problem instead of nodal displacements which are commonly adopted in finite element
analysis [19]. As a result, the elastic secant stiffness matrix of the system turns out to be
symmetric [20]. The large displacements and finite deformations are described by the Green-
Lagrange strain tensor. The cable elements are assumed to react only in tension with a linear
relationship between the axial strain and the corresponding component of the work-conjugate
second Piola-Kirchhoff stress tensor [21]. Global damping is introduced into the model according
to Rayleigh’s hypothesis [22]. The governing equations are solved numerically by means of the
Runge-Kutta method with a variable time step within the MATLAB software environment [23].

As a very first illustrative example, we present the simulation of the in-plane deployment of
a planar, square-mesh net already investigated by Botta et al. [15]. The numerical example
intentionally disregards some issues – such as gravitational and centrifugal forces – which will
be included in future simulations. Besides, the theoretical model shall be improved to account
for the contact phenomena arising after the impact of the net with the target.

The proposed approach turns out to be computationally effective, even if the accuracy of the
numerical integration scheme needs to be improved, particularly in the final stages of deployment.
In the future, our model can be used to compare several net configurations as well as to design
throwing conditions appropriate for the desired performances.
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2. Finite element formulation
2.1. Kinematics
The deployable cable net is modelled in the framework of the finite element method [19].
Accordingly, a continuous mechanical system is modelled as a discrete system consisting of m
elements of finite size, connected to each other at n points called nodes. All the mass, damping,
and elastic properties as well as the applied loads and restraints, which may be distributed in
the original mechanical system, are modelled as lumped nodal entities in the discretised FE
model. In the case of the cable net, the nodes are naturally located at the intersections between
the cables, and the elements correspond to the portions of the cables included between them.

The geometry of the system is described in the Euclidean space, E , of dimension d = 3
(Fig. 1). Here, a Cartesian reference system, Ox1x2x3, is fixed so that physical vectors can be
represented in terms of their scalar components as column vectors of R3. Let P1, P2, . . . , Pn ∈ E
denote the points corresponding to the node positions in a given (current) configuration.
Accordingly, xi = Pi − O ∈ R3 denotes the position vector of the ith node (i = 1, 2, . . . , n).

Figure 1. FE model of the cable
net.

Among the many possible configurations of the system, we choose a particular one as the
reference configuration. Here, let P̄1, P̄2, . . . , P̄n be the points corresponding to the node positions
and x̄i = P̄i − O ∈ R3 the nodal position vector of the ith node. The displacement vector of
the ith node is defined as ui = Pi − P̄i = xi − x̄i ∈ R3. It is worth noting that the reference
configuration need not be the one occupied by the system initially or at any subsequent instant
of time. However, the reference configuration is by definition undeformed. Thus, if we exclude
the presence of any self-stress, it will be also unstressed.

The position vectors of all of the n nodes of the system in the reference and current
configurations are collected into vectors x̄ = [x̄1; x̄2; . . . ; x̄n] ∈ R3n and x = [x1;x2; . . . ;xn] ∈
R3n, respectively. In the standard finite element formulation, the displacement vector, u =
[u1;u2; . . . ;un] = x − x̄ ∈ R3n, is assumed as the main unknown [19]. In the present work, we
alternatively use the nodal position vector in the current configuration, x [17, 20].

2.2. Cable element formulation
The cable elements are formulated from the first-order truss bar element described by Valvo [20]
by the introduction of a suitable constitutive law. Let us consider the cable element, labelled e
(e = 1, 2, . . . ,m), connecting two nodes numbered as i and j. Let Ω̄e and Ωe denote the regions
of E occupied by the element in the reference and current configurations, respectively. Besides,
let Āe, L̄e and Ae, Le denote the element cross-section area and length in Ω̄e and Ωe, respectively
(Fig. 2).

Within each element, the displacement of a point, P̄ ∈ Ω̄e, with a position vector x̄P =
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Figure 2. Cable element in the reference and current
configurations.

P̄ −O ∈ R3, is approximated as
uP

∼= Ne (x̄P )ue, (1)

where Ne (x̄P ) ∈ R3×6 and ue = [ui;uj ] ∈ R6 respectively are the shape function matrix and
nodal displacement vector of the element. In turn, the element nodal displacement vector can
be expressed as

ue = Aeu, (2)

where Ae ∈ R6×3n is the assembly matrix of the element. This matrix is defined as a null
matrix, except for rows 1 to 3, columns 3i− 2 to 3i and rows 4 to 6, columns 3j− 2 to 3j where
the identity matrices I ∈ R3×3 are placed. The assembly matrix is here introduced to explain
the analytical formulation. However, for numerical implementation, it is more computationally
effective to code the assembly process via the direct extraction of the sub-vectors and sub-
matrices corresponding to the involved nodes.

For what follows, it is also useful to introduce the nodal position vectors of the element,
x̄e = [x̄i; x̄j ] = Aex̄ ∈ R6 and xe = [xi;xj ] = Aex ∈ R6, in the reference and current
configurations, respectively.

By assuming linear shape functions for the element, the secant elastic stiffness matrix can be
expressed as follows [20]:

Se (xe) = S11
Āe

L̄e
∆, (3)

where S11 is the component of the second Piola-Kirchhoff stress tensor in the element axial
direction [21] and

∆ =

[
I −I

−I I

]
(4)

is a constant matrix. Besides, the tangent elastic stiffness matrix is

Te (xe) = Se (xe) +
∂S11

∂E11

Āe

L̄3
e

∆ xe x
⊺
e ∆, (5)

where ⊺ denotes the transpose operation and

E11 =
1

2

L2
e − L̄2

e

L̄2
e

(6)

is the component of the Green-Lagrange strain tensor in the element axial direction. The element
length is defined as the distance between the nodes and can be calculated from the following
formula:

L2
e = x⊺

e ∆ xe. (7)

The constitutive law for the cable element is defined in order to conventionally take into
account the inability of the cables to sustain relevant compressive stresses. To this aim, the
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element is considered slack when the distance between its nodes is less than the element reference
length. In such a case, the axial stress is assumed null. Otherwise, we assume a linearly elastic
relationship between the Green-Lagrange strain and second Piola-Kirchhoff stress:

S11 =

{
EE11, if E11 ≥ 0;

0, otherwise;
(8)

where E is the Young’s modulus of the material.
A simple lumped mass matrix is considered for each element [22]:

Me =
1

2
ρ̄eĀeL̄e

[
I 0
0 I

]
, (9)

where ρ̄e is the (uniform) mass density in the reference configuration.

2.3. Governing equations
The nonlinear dynamic problem for the deployable cable net is governed by the following
differential equation set:

Mẍ+Dẋ+ S (x)x = p (t) , (10)

where M, D, and S ∈ R3n×3n respectively are the mass, damping, and secant stiffness matrices
of the system, x = x (t) is the nodal position vector in the current configuration at time t,
and p (t) is the nodal load vector at time t. Here and in the following, the upper dot denotes
differentiation with respect to time.

The mass and stiffness matrices of the system are obtained by assembling the corresponding
matrices of the elements:

M =

m∑
e=1

A⊺
e Me Ae (11)

and

S (x) =

m∑
e=1

A⊺
e Se (xe) Ae. (12)

The damping matrix is calculated according to Rayleigh’s hypothesis [22]:

D = α M+ β T (x̄) , (13)

where α and β are suitable combination coefficients and

T (x̄) =
m∑
e=1

A⊺
e Te (x̄e) Ae (14)

is the tangent stiffness matrix of the system evaluated in the reference configuration.

3. Numerical example
3.1. Numerical solution method
The governing equations are integrated numerically by using the Runge-Kutta method with a
variable time step, as implemented in the ode45 solver available in MATLAB [23]. To this aim,
the second-order equation set (10) is transformed into the following first-order equation set:

ẋ (t) = v (t) (15)

v̇ (t) = M−1{p (t)− S [x (t)] x (t)−D v (t)} (16)
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with the initial conditions at t = 0:

x (0) = x0 and v (0) = v0. (17)

The numerical example intentionally disregards some issues – such as gravitational and
centrifugal forces – which will be included in future simulations. Thus, p (t) = 0.

3.2. Energy balance
For the simplified problem considered, the total mechanical energy of the system, ET , is the
sum of two contributions: the kinetic energy,

K =
1

2
v⊺ M v, (18)

and the elastic potential energy [20],

Uel =
1

2

m∑
e=1

S11E11 ĀeL̄e. (19)

In the absence of damping, the total energy is expected to be constant over time. Otherwise, it
will be a monotonically decreasing function of time. Checking the occurrence of these conditions
can be exploited to test the accuracy of the obtained numerical solution.

3.3. Deployment of a planar cable net
As a very first illustrative example, we present the simulation of the in-plane deployment of a
planar, square-mesh net whose reference configuration is depicted in Fig. 3. The geometry and
material properties are taken from the study by Botta et al. [15] and resumed in Table 1. The
net is formed by 5 × 5 square meshes of equal size. The cables have constant, circular cross
sections. Four bullet masses are placed at nodes 1−4 and are connected by strings to the corner
nodes of the net. The model accounts for a total of 40 nodes and 64 elements.

As for the initial conditions, we consider a packed configuration of the net corresponding to
10% of the reference configuration: x0 = 0.06 x̄. Initial velocities equal in magnitude to vb = 2.5
m/s are given to the bullet masses in the radial directions. The Rayleigh damping coefficients
are assumed as α = 10−3 s−1 and β = 10−8 s.

Table 1. Geometry and material properties of the cable net.

Property Symbol Value Unit

Net size L 5 m
Mesh size l 1 m

Corner string length ls
√
2 m

Net cable diameter d 0.002 m
Corner string diameter ds 0.004 m
Bullet mass mb 0.5 kg
Cable density ρ 1390 kg/m3

Young’s modulus E 70 GPa
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Figure 3. Planar cable net in the
reference configuration.

3.4. Results
Figure 4 illustrates the simulated in-plane deployment of the cable net by showing its current
configurations at six increasing instants of time: from the initial, packed configuration (at t = 0
s) to the quite fully deployed configuration (at t = 2 s). The deployment is achieved by ejecting
the four bullet masses, linked to the corners of the net. When the strings connected to the
bullets start tensioning, they pull along the neighbouring portions of the net.

Figure 5 shows the magnitudes of the four bullet velocities as functions of time. The overall
decreasing trends testify the progressive transfer of energy from the bullets to the net. In
particular, the sudden drops correspond to the conversion of the kinetic energy of the bullets
into the elastic potential energy of the strings. We observe that for t > 1.75 s, the four curves
start separating from each other. This result is not expected from the theoretical mechanical
model and can be ascribed to a loss of accuracy of the numerical solution. Looking back at Fig.
4, we may correspondingly notice a loss of symmetry in the configurations reached by the cable
net at about two thirds of its reference area.

Figure 6 presents the trends in time of the kinetic and elastic potential energies normalised
with respect to the total mechanical energy, ET0, evaluated at t = 0. A large number of narrow
peaks are visible in the curve of the elastic potential energy. Correspondingly, narrow valleys
are present in the curve of the kinetic energy. This correspondence testifies the conversion of
the mechanical energy occurring during the net deployment. Besides, the decreasing trend of
the superior envelope curve highlights the energy dissipation due to structural damping.

4. Conclusions
The development of accurate and effective simulation tools is crucial for the design of deployable
cable nets for ADR missions.

We have proposed a FE model of a cable net with lumped nodal masses and first-order cable
elements. In line with the ANCF, nodal positions have been adopted as the main unknowns
of the problem. As a result, the elastic secant stiffness matrix of the system has turned out to
be symmetric. The large displacements and finite deformations have been considered through
the Green-Lagrange strain tensor. The cable elements have been assumed to react only in
tension with a linear relationship between the axial strain and the corresponding component of
the work-conjugate second Piola-Kirchhoff stress tensor. Global damping has been introduced
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Figure 4. In-plane deployment of the cable net. Grey and blue lines represent the reference
and current configurations, respectively.
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Figure 5. Velocities of the four bullet
masses vs. time.

Figure 6. Kinetic and elastic potential
energies vs. time.

into the model according to Rayleigh’s hypothesis. The governing equations have been solved
numerically by means of the Runge-Kutta method with a variable time step.

As an example, we have simulated the in-plane deployment of a planar, square-mesh net.
The obtained results are reasonable, and the proposed approach is computationally efficient.
Nonetheless, the numeral integration shows a loss of accuracy when the net reaches a deployment
of about two thirds of its reference area. From this point of view, we will consider the adoption
of a more efficient time integration algorithm.

Even though the presented results concern an example of in-plane deployment only, our model
can already be used to compare several net configurations. In the literature, four parameters
have been identified to evaluate the performance of a cable net in the deployment phase [15, 16].
They are the largest area the net comes out to reach during deployment, the time necessary
to obtain it, the distance travelled in this time by the centre of mass of the net, and the time
interval during which the actual area of the net is over 80% of its maximum achievable value.
For a given net, our model can be used to evaluate the performances due to several throwing
conditions, and to establish accordingly design factors for ADR missions.

To improve the plausibility of the simulation, we shall evaluate the order of magnitude of the
main external forces and include the most significant ones into the theoretical model. Also, any
centrifugal and Coriolis forces arising from the adoption of a non-inertial reference frame should
be taken into account. Anyway, since the complete deployment of the net is attained in few
seconds, the simulations from the simplified models may also be both efficient and reasonable
computationally.

Lastly, the theoretical model shall be enriched to account for the relevant contact phenomena
arising after the impact of the net with the target.
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