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Abstract. Let M be a negatively curved compact Riemannian manifold with (possibly
empty) convex boundary. Every closed differential 2-form ξ P Ω2

pMq defines a bounded
cocycle cξ P C2

bpMq by integrating ξ over straightened 2-simplices. In particular Barge
and Ghys proved that, when M is a closed hyperbolic surface, Ω2

pMq injects this way
in H2

bpMq as an infinite dimensional subspace. We show that any class of the form rcξs,
where ξ is an exact differential 2-form, belongs to the radical of the cup product on the
graded algebra H‚

bpMq.

1. Introduction

Bounded cohomology is a rich research field with various applications, but direct com-
putation of bounded cohomology modules is a hard task. An important case is the free
non-abelian group with n ě 2 generators Fn “ F . The bounded cohomology modules
with real coefficients Hk

b pF q are infinite dimensional when k “ 2 or k “ 3, while it is still
not known whether Hk

b pF q ‰ 0 when k ě 4. All the classes in H2
bpF q can notoriously be

represented as coboundaries of quasi-morphisms. There are various recent results investi-
gating whether it is possible to construct a non-trivial bounded cocycle of degree k ě 4 as
the cup product of non-trivial quasi-morphisms; see [BM18], [Heu20], [FF20] and [AB21].
All these results seem to suggest that Y : H2

bpF q ˆ Hk
b pF q Ñ Hk`2

b pF q could be trivial. In
particular, in [AB21] the authors prove the following:

Theorem 1. Let φ be a ∆-decomposable quasi-morphism and α P Hk
b pF q, then

rδ1φs Y α “ 0 P Hk`2
b pF q.

The main result of this paper has a similar flavour, but in a different context. Let
M be a negatively curved compact Riemannian manifold with (possibly empty) convex
boundary. Every differential k-form ψ P ΩkpMq defines a singular k-cochain cψ P CkpMq

by integrating ψ over straightened simplices. As we will see in Section 2.2, cψ is bounded
when k ě 2. Moreover, for every φ P Ω1pMq we have δ1cφ “ cdφ, hence cφ is a quasi-
cocycle cφ, i.e. a cochain with bounded differential. Degree one quasi-cocycles play in
singular cohomology the very same role of quasi-morphisms in group cohomology. If we
denote by EΩ2pMq Ă Ω2pMq the space of exact forms we will show the following:

Main Theorem. Let ξ P EΩ2pMq and α P Hk
b pMq, then

rcξs Y α “ 0 P Hk`2
b pMq.

This is particularly interesting when M “ Σ, a closed hyperbolic surface. In this case
all the quasi-cocycles defined by non-trivial exact forms are non-trivial and thus EΩ2pΣq

is an infinite dimensional subspace of H2
bpΣq. This is true thanks to Theorem 3.2 of [BG]:

Theorem 2. The map Ω2pΣq Ñ H2
bpΣq that sends ψ to rcψs is injective.
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2. Preliminaries

2.1. Bounded cohomology and differential forms. Let X be a topological space, we
denote by pC‚pXq, δ‚q its singular cochain complex with real coefficients and by H‚pXq

its singular cohomology with real coefficients. Let SkpXq “ ts : ∆k Ñ Xu be the set of
k-singular simplices of X and define an ℓ8 norm on CkpXq by setting, for every ω P CkpXq,

}ω}8 “ sup
␣

|ωpsq|
ˇ

ˇ s P SkpXq
(

.

The subspaces of bounded k-cochains

Ck
b pXq “

!

ω P CkpXq
ˇ

ˇ }ω}8 ă 8

)

form a subcomplex C‚
bpXq Ă C‚pXq, whose homology will be denoted by H‚

bpXq. The ℓ8

norm descends to a seminorm on H‚pXq and H‚
bpXq by defining the seminorm of a class as

the infimum of the norms of its representatives. The inclusion C‚
bpXq ãÑ C‚pXq induces a

map
c‚ : H‚

bpXq Ñ H‚pXq

called the comparison map. The kernel of ck is denoted by EHk
b pXq and called the exact

bounded cohomology of X.

Now let X be a Riemannian manifold, we denote by ΩkpXq the space of smooth k-forms
on X and by d : ΩkpXq Ñ Ωk`1pXq the usual differential. The subspaces of closed and
exact k-forms will be denoted by CΩkpXq and EΩkpXq, respectively. We denote the De
Rham cohomology of X by

H‚
dRpXq “

CΩ‚pXq

EΩ‚pXq
.

For every ψ P ΩkpXq and x P X set
}ψx}8 “ sup

␣

|ψxpvq|
ˇ

ˇ v P TxX is a k-orthonormal frame
(

so that we can define an ℓ8 norm on ΩkpXq as follows:
}ψ}8 “ sup

xPX
t}ψx}8u P r0,`8s.

Of course, if X is compact, then }ψ}8 ă 8 for every ψ P Ω‚pXq. Observe that for any
k-dimensional immersed submanifold D ãÑ X we have that

ˇ

ˇ

ˇ

ˇ

ż

D
ψ

ˇ

ˇ

ˇ

ˇ

ď

ż

D
}ψ}8dVol “ VolXpDq ¨ }ψ}8.

2.2. Negatively curved manifolds and 2-forms. Throughout the whole paper, let M
be a negatively curved orientable compact Riemannian manifold with (possibly empty)
convex boundary. The universal covering ĂM is continuously uniquely geodesic and thus
for every px0, . . . , xkq P ĂMk`1, by repeatedly coning on the xi one can define the straight
k-simplex rx0, . . . , xks P SkpĂMq as constructed in Section 8.4 of [Fri]. The fundamental
group π1pMq “ Γ acts on the universal covering ĂM via deck transformations and this
defines in turn an action of Γ on C‚

b pĂMq. We denote by C‚
bp
ĂMqΓ the subcomplex of Γ-

invariant cochains. The covering map p : ĂM Ñ M induces an isometric isomorphism of
normed complexes C‚

bpMq
–
ÝÑ C‚

bp
ĂMqΓ. Similarly, Γ acts on ΩkpĂMq, we denote by ΩkpĂMqΓ

the space of Γ-invariant k-forms of ĂM . By pulling-back via the covering projection we get
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the identification ΩkpMq
–
ÝÑ ΩkpĂMqΓ.

For any ψ P ΩkpĂMqΓ, we define a cochain cψ P CkpĂMqΓ by setting for every s P SkpĂMq,

cψpsq “

ż

rspe0q,...,spekqs

ψ.

where e0, . . . , ek are the vertices of the standard simplex ∆k.
Applying Stoke’s Theorem we see that for every s P Sk`1pĂMq,

pδkcψqpsq “ cψpBk`1sq “

ż

Bk`1rspe0q,...,spek`1qs

ψ “

ż

rspe0q,...,spek`1qs

dψ “ cdψpsq

and thus mapping ψ to cψ defines a morphism of cochain complexes I‚ : Ω‚pĂMqΓ Ñ

C‚pĂMqΓ. Furthermore, the fact that the straightening operator s ÞÑ rspe0q, . . . , spekqs

is Γ-equivariantly homotopic to the identity of CkpĂMq (see e.g. [Fri] Proposition 8.11)
implies that the map induced by I‚ on cohomology corresponds to the De Rham isomor-
phism H‚

dRpMq
–
ÝÑ H‚pMq defined e.g. in Chapter 18 of [Lee18].

Since the action of Γ is cocompact we have }ψ}8 ă 8, for every ψ P ΩkpĂMqΓ. Further-
more, as shown in the second section of [IY82], when k ě 2 the volume of rx0, . . . , xks is
bounded by a constant Vk that depends only on k and an upper bound of the curvature
of M . This means that for every s P SkpĂMq,

|cψpsq| “

ˇ

ˇ

ˇ

ˇ

ˇ

ż

rspe0q,...,spekqs

ψ

ˇ

ˇ

ˇ

ˇ

ˇ

ă Vk ¨ }ψ}8

and thus cψ P Ck
b pĂMqΓ is a bounded cochain.

We have a well defined map for k ě 2:
Ikb : CΩkpMq Ñ Hk

b pMq

ψ ÞÑ rcψs.

Interestingly, since I‚ induces the De Rham isomorphism we have the following commu-
tative diagram:

CΩkpMq Hk
dRpMq

Hk
b pMq HkpMq

Ik
b –

ck

showing that the comparison map ck is surjective for k ě 2 (this is true in the much more
general context of aspherical manifolds with Gromov hyperbolic fundamental group, see
[Min01]).

Furthermore, when k ą 2, for any dφ P EΩkpMq,
Ikb pdφq “ rcdϕs “ rδk´1cφs “ 0 P Hk

b pMq,

meaning that the restriction Ikb : EΩkpMq Ñ Hk
b pMq is the zero map. This implies that Ikb

descends on the quotient CΩkpMq{EΩkpMq “ Hk
dRpMq to a map Îkb : Hk

dRpMq Ñ Hk
b pMq.

We now have the following commutative diagram:

Hk
dRpMq

Hk
b pMq HkpMq.

–
Îk

b

ck
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Therefore, up to the identification Hk
dRpMq – HkpMq, for k ą 2 the map Îkb provides a

right inverse of the comparison map. On the one hand, this raises the interesting question
of understanding the possible geometric properties of the elements in the image of Îkb ; on
the other hand, for k ą 2 differential forms produce only a finite dimensional subsbace of
Hk
b pMq.
On the contrary, in degree 2, for every ξ “ dφ P EΩ2pMq, the primitive cφ P C1pMq

of cξ is not necessarily bounded since the length of geodesic segments in M is arbitrarily
big and thus rcξs P EH2

bpMq may be non-trivial. In particular, when M “ Σ, a closed
hyperbolic surface, thanks to Theorem 2 rcξs is never trivial if ξ ‰ 0, and the space of
exact forms EΩ2pΣq defines a infinite dimensional subspace of EH2

bpΣq:

EΩ2pΣq Ω2pΣq H2
dRpΣq

EH2
bpΣq H2

bpΣq H2pΣq.

I2
b I2

b –

2.3. Smooth cohomology. In this section we show that every class α P Hk
b pMq admits

a representative that smoothly depends on the vertices of simplices. Moreover, in Lemma
3 we show an additional property of this representative that we will use in the next section.

Let X be a topological space, we endow the set of singular k-simplices SkpXq with the
compact-open topology to define the subcomplex of the continuous cochains of X

Ck
c pXq “ tω P CkpXq

ˇ

ˇ ω|SkpXq is continuousu.

Moreover, we set Ck
c,bpXq “ Ck

c pXq X Ck
b pXq and denote the homology of these complexes

by H‚
cpXq and H‚

c,bpXq, respectively.

Theorem 1.4 of [Fri11] states that if X is path connected, paracompact and with con-
tractible universal covering rX, then the inclusion of bounded continuous cochains in clas-
sical cochains

i‚b : C‚
c,bpXq Ñ C‚

bpXq

induces isometric isomorphisms on cohomology
i‚b : H‚

c,bpXq Ñ H‚
bpXq.

Furthermore, there is an explicit formula for the inverse of these isomorphisms
θ‚
b “ pi‚bq

´1 : H‚
bpXq Ñ H‚

c,bpXq.

In what follows we will give the explicit formula of θ‚
b in the case X “ M . It is shown

in Lemma 6.1 of [Fri11] that the isometric isomorphism C‚
bpMq – C‚

bp
ĂMqΓ induced by

p : ĂM Ñ M can be restricted to
p‚
c,b : C‚

c,bpMq Ñ C‚
c,bp

ĂMqΓ.

With the identifications C‚
bpMq – C‚

bp
ĂMqΓ and C‚

c,bpMq – C‚
c,bp

ĂMqΓ in mind, we will write
out the explicit formula for the map

rθkb : Ck
b pĂMqΓ Ñ Ck

b,cp
ĂMqΓ

which induces the map θkb on cohomology. Since M is compact, we can slightly modify the
construction in Lemma 5.1 of [Fri11], by using a smooth partition of unity subordinate
to a finite open cover of M and get a smooth map h

ĂM
: ĂM Ñ r0, 1s with the following

properties:
(i) There is an N P N, such that for every x P ĂM there is a neighbourhood Wx of x

such that the set tγ P Γ | γpWxq X suppph
ĂM

qu has at most N elements.
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(ii) For every x P ĂM , we have
ř

γPΓ hĂM
pγxq “ 1.

(iii) supph
ĂM

is compact.

Let ω P Ck
b pĂMqΓ and pick a basepoint z P ĂM . We define the function fω : ĂMk`1 Ñ R as

follows:
fωpx0, . . . , xkq “

ÿ

pγ0,...,γkqPpΓqk`1

h
ĂM

pγ´1
0 x0q ¨ . . . ¨ h

ĂM
pγ´1
k xkq ¨ ωprγ0z, . . . , γkzsq.

Notice that the sum above is finite because of property (i). Finally we can define
rθkb pωqpsq “ fωpspe0q, . . . , spekqq.

Observe that rθkb pωq is a Γ-invariant cocycle because fω is a Γ-invariant function, where Γ
acts on ĂMk`1 diagonally.

In order to prove the Main Theorem we will need the following:

Lemma 3. Let ω P Ck
b pĂMqΓ and let px1, . . . , xkq P pĂMqk. Then the function

fωp´, x1, . . . , xkq : ĂM Ñ R

is smooth and the norm of its differential dfωp´, x1, . . . , xkq P Ω1pĂMq is bounded by a
constant that does not depend on px1, . . . , xkq.

Proof. It is clear by construction that fωp´, x1, . . . , xkq is smooth. Moreover, expanding
its differential

dfωp´, x1, . . . , xkq “
ÿ

pγ0,...,γkqPpΓqk`1

dh
ĂM

pγ´1
0 ´q ¨ . . . ¨ h

ĂM
pγ´1
k xkq ¨ ωprγ0z, . . . , γkzsq

we see that, by property (i) of h
ĂM

, there are at most Nk`1 non-zero summands and thus

}dfωp´, x1, . . . , xkq} ď Nk`1 ¨ }dh
ĂM

}8 ¨ }ω}8.

We can conclude since }ω}8 ă 8 by assumption and }dh
ĂM

}8 ă 8 because h
ĂM

has
compact support. □

3. Proof of the Main Theorem

Let φ P Ω1pĂMqΓ and rωs P Hk
b pMq, we look for a bounded primitive of cdφ Y ω P

Ck`2
b pĂMqΓ. Observe that cφ Y ω P Ck`1

b pĂMqΓ is a (not necessarily bounded) primitive, in
fact

δk`1pcφ Y ωq “ δ1pcφq Y ω “ cdφ Y ω.

Of course, it is sufficient to find an η P CkpĂMqΓ such that cφ Y ω ` δkη P Ck`1
b pĂMqΓ is

bounded.
We first replace ω with rθkb pωq, this can be done without loss of generality because as

shown in the previous section the map rθ‚
b induces an isomorphism on bounded cohomology.

Under this assumption we have that ωpsq “ fωpspe0q, . . . , spekqq for every s P SkpĂMq. Thus
pcφ Y ωqpsq only depends on the vertices of s P Sk`1pĂMq, in fact

pcφ Y ωqpsq “ cφprspe0q, spe1qsq ¨ ωprspe1q, . . . , spek`1qsq

“

ż

rspe0q,spe1qs

φ ¨ fωpspe1q, . . . , spek`1qq.

Next, we define the function ζ : ĂMk`2 Ñ R as follows

ζpx0, . . . , xk`1q “

ż

rx0,x1s

φ ¨ fωp´, x2, . . . , xk`1q
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where we see fωp´, x2, . . . , xk`1q as a 0-form (i.e. a smooth function). We observe that ζ
is a Γ-invariant function (again using the diagonal action of Γ on ĂMk`2), in fact φ and fω
are Γ-invariant and for any γ P Γ we have that rγx0, γx1s “ γrx0, x1s.

Lemma 4. For every px0, . . . , xk`1q P ĂMk`2 we have that

pcφ Y ωqprx1, . . . , xk`1sq “ ζpx0, . . . , xk`1q ´

k`1
ÿ

i“2
p´1qiζpx0, x1, x1, x2, . . . , x̂i, . . . , xk`1q.

Proof. Since ω is a cocycle we have that for any z P ĂM ,

0 “ δkωprz, x1, . . . , xk`1sq

“ ωprx1, . . . , xk`1sq `

k`1
ÿ

i“1
p´1qiωprz, x1, . . . , x̂i, . . . , xk`1sq

“ fωpx1, . . . , xk`1q `

k`1
ÿ

i“1
p´1qifωpz, x1, . . . , x̂i, . . . , xk`1q

and thus

fωpx1, . . . , xk`1q “ ´

k`1
ÿ

i“1
p´1qifωp´, x1, . . . , x̂i, . . . , xk`1q.

We use this relation to conclude that

pcφ Y ωqprx1, . . . , xk`1sq “cφprx0, x1sq ¨ ωprx1, . . . , xk`1sq

“

ż

rx0,x1s

φ ¨ fωpx1, . . . , xk`1q

“

ż

rx0,x1s

φ ¨

˜

´

k`1
ÿ

i“1
p´1qifωp´, x1, . . . , x̂i, . . . , xk`1q

¸

“ ´

k`1
ÿ

i“1
p´1qi

ż

rx0,x1s

φ ¨ fωp´, x1, . . . , x̂i, . . . , xk`1q

“ζpx0, . . . , xk`1q ´

k`1
ÿ

i“2
p´1qiζpx0, x1, x1, x2, . . . , x̂i, . . . , xk`1q.

□

We define η P CkpĂMqΓ so that for every s P SkpĂMq,

ηpsq “ ζpspe0q, spe1q, spe1q, spe2q, . . . , spekqq.

This cochain is Γ-invariant because the function ζ is. As anticipated we will conclude by
showing that cφ Y ω ` δkη is a bounded cochain. Since both cφ Y ω and δkη only depend
on the vertices of simplices it will be enough to show that the function px0, . . . , xk`1q P
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ĂMk`2 ÞÑ pcφ Y ω ` δkηqprx0, . . . , xk`1sq P R is bounded:

pcφ Y ω ` δkηqprx0, . . . , xk`1sq “ ζpx0, . . . , xk`1q

´

k`1
ÿ

i“2
p´1qiζpx0, x1, x1, x2, . . . , x̂i, . . . , xk`1q

`

k`1
ÿ

i“0
p´1qiηprx0, . . . , x̂i, . . . , xk`1sq

“ ζpx0, x1, x2, . . . , xk`1q

` ζpx1, x2, x2, . . . , xk`1q

´ ζpx0, x2, x2, . . . , xk`1q.

Next we use Stoke’s Theorem:

ζpx0, x1, x2, . . . , xk`1q

`ζpx1, x2, x2, . . . , xk`1q

´ζpx0, x2, x2, . . . , xk`1q

“

ż

rx0,x1s

φ ¨ fωp´, x2, . . . , xk`1q

`

ż

rx1,x2s

φ ¨ fωp´, x2, . . . , xk`1q

´

ż

rx0,x2s

φ ¨ fωp´, x2, . . . , xk`1q

“

ż

rx0,x1sYrx1,x2sYrx2,x0s

φ ¨ fωp´, x2, . . . , xk`1q

“

ż

Brx0,x1,x2s

φ ¨ fωp´, x2, . . . , xk`1q

“

ż

rx0,x1,x2s

dpφ ¨ fωp´, x2, . . . , xk`1qq.

The integration domain is a 2-simplex with bounded area, this means that we only need
to check that the norm of dpφ ¨ fωp´, x2, . . . , xk`1qq P Ω2pĂMqΓ is bounded by a constant
that does not depend on px2, . . . , xk`1q. We expand

dpφ ¨ fωp´, x2, . . . , xk`1qq “ dφ ¨ fωp´, x2, . . . , xk`1q ` φ^ dfωp´, x2, . . . , xk`1q.

Both φ and dφ are Γ-invariant and since Γ is cocompact }φ}8 ă 8 and }dφ}8 ă 8.
The function fωp´, x2, . . . , xk`1q is bounded by }ω}8. Finally, as we saw in Lemma 3,
}dfωp´, x2, . . . , xk`1q}8 is also bounded by a constant that does not depend on px2, . . . , xk`1q.
This concludes the proof of our main Theorem.
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