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ABSTRACT. Let M be a negatively curved compact Riemannian manifold with (possibly
empty) convex boundary. Every closed differential 2-form & € Q%(M) defines a bounded
cocycle ce € CZ(M) by integrating ¢ over straightened 2-simplices. In particular Barge
and Ghys proved that, when M is a closed hyperbolic surface, Q*(M) injects this way
in HZ (M) as an infinite dimensional subspace. We show that any class of the form [c¢],
where £ is an exact differential 2-form, belongs to the radical of the cup product on the
graded algebra Hp (M).

1. INTRODUCTION

Bounded cohomology is a rich research field with various applications, but direct com-
putation of bounded cohomology modules is a hard task. An important case is the free
non-abelian group with n > 2 generators F,, = F. The bounded cohomology modules
with real coefficients HY (F) are infinite dimensional when k = 2 or k = 3, while it is still
not known whether HF(F) # 0 when k > 4. All the classes in H?(F) can notoriously be
represented as coboundaries of quasi-morphisms. There are various recent results investi-
gating whether it is possible to construct a non-trivial bounded cocycle of degree k > 4 as
the cup product of non-trivial quasi-morphisms; see [BM18§], [Heu20], [FF20] and [AB21].
All these results seem to suggest that u: HZ(F) x HF(F) — H§+2(F ) could be trivial. In
particular, in [AB21] the authors prove the following:

Theorem 1. Let ¢ be a A-decomposable quasi-morphism and « € ng (F), then

[0'o] U =0eHT2(F).

The main result of this paper has a similar flavour, but in a different context. Let
M be a negatively curved compact Riemannian manifold with (possibly empty) convex
boundary. Every differential k-form ¢ € Q¥(M) defines a singular k-cochain ¢, € C*(M)
by integrating 1 over straightened simplices. As we will see in Section 2.2, ¢, is bounded
when k > 2. Moreover, for every ¢ € Q'(M) we have d'c, = cqyp, hence ¢, is a quasi-
cocycle ¢y, i.e. a cochain with bounded differential. Degree one quasi-cocycles play in
singular cohomology the very same role of quasi-morphisms in group cohomology. If we
denote by EQ?(M) < Q?(M) the space of exact forms we will show the following:

Main Theorem. Let & € EQ?(M) and o € Hf (M), then

[ce] U a=0eHFP2(M).

This is particularly interesting when M = X, a closed hyperbolic surface. In this case
all the quasi-cocycles defined by non-trivial exact forms are non-trivial and thus EQ?(%)
is an infinite dimensional subspace of HZ(X). This is true thanks to Theorem 3.2 of [BG]:

Theorem 2. The map Q2(X) — HZ(X) that sends ¢ to [c,] is injective.
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2. PRELIMINARIES

2.1. Bounded cohomology and differential forms. Let X be a topological space, we
denote by (C*(X),0°) its singular cochain complex with real coefficients and by H*(X)
its singular cohomology with real coefficients. Let Sp(X) = {s: A¥ — X} be the set of
k-singular simplices of X and define an £ norm on C¥(X) by setting, for every w e C*(X),

|w]leo = sup {\w(s)] ’ s e Sk(X)}.

The subspaces of bounded k-cochains
Ch(X) = {we C* ) | |wlo < o0}

form a subcomplex C;(X) < C*(X), whose homology will be denoted by Hy(X). The ¢*
norm descends to a seminorm on H*(X) and Hy (X) by defining the seminorm of a class as
the infimum of the norms of its representatives. The inclusion Cp(X) < C*(X) induces a
map

¢*: Hp(X) - H*(X)
called the comparison map. The kernel of ¢* is denoted by EH’;(X ) and called the ezact
bounded cohomology of X.

Now let X be a Riemannian manifold, we denote by Q¥(X) the space of smooth k-forms
on X and by d: Q¥(X) — QFF1(X) the usual differential. The subspaces of closed and
exact k-forms will be denoted by CQF(X) and EQ¥(X), respectively. We denote the De

Rham cohomology of X by
CQ*(X)
Hyp(X) = ———=.
For every ¥ € Q*(X) and z € X set
|tz = sup {|1z(v)| | v € T X is a k-orthonormal frame}
so that we can define an £* norm on Q¥(X) as follows:

[l = sup{liézle} € [0, 0]

Of course, if X is compact, then ||, < oo for every ¢ € Q°(X). Observe that for any
k-dimensional immersed submanifold D < X we have that

\ J w\ < f 4] edVol = Volx (D) - [4].o.
D D

2.2. Negatively curved manifolds and 2-forms. Throughout the whole paper, let M
be a negatively curved orientable compact Riemannian manifold with (possibly empty)

convex boundary. The universal covering M is continuously uniquely geodesic and thus
for every (xq,...,zy) € M k+1 by repeatedly coning on the x; one can define the straight
k-simplex [, . ..,x] € Si(M) as constructed in Section 8.4 of [Fri]. The fundamental
group w1 (M) = T acts on the universal covering M via deck transformations and this
defines in turn an action of I' on C,;(M ). We denote by CE(M )T the subcomplex of T-
invariant cochains. The covering map p: M — M induces an isometric isomorphism of
normed complexes C§ (M) = Cj (M) Similarly, I acts on Q¥ (M), we denote by Qk(]\f\f)F
the space of ['-invariant k-forms of M. By pulling-back via the covering projection we get
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>~

the identification QF(M) = QF(M)T.

For any v € Q%(M)T, we define a cochain cyp € C*(M)T by setting for every s € S (M),

cy(s) = f .
[3(60)7“"5(616)]

where eq, ..., ey are the vertices of the standard simplex A*.

~

Applying Stoke’s Theorem we see that for every s € Si1(M),
(3"0)(s) = co@rns) = | v=| v = ca(s)
[s(e0),--s(ek+1)]

Ok+1[s(e0),--»s(ex+1)]

and thus mapping ¢ to ¢, defines a morphism of cochain complexes I°: Q‘(]Tj 3w -

C'(M)F. Furthermore, the fact that the straightening operator s — [s(eg),...,s(er)]
is T-equivariantly homotopic to the identity of C* (]\7 ) (see e.g. [Fri] Proposition 8.11)
implies that the map induced by I* on cohomology corresponds to the De Rham isomor-
phism HYp(M) = H*(M) defined e.g. in Chapter 18 of [Leelg).

Since the action of I' is cocompact we have [, < o0, for every ¥ € Qk(]\r\j)F Further-
more, as shown in the second section of [IY82], when k& > 2 the volume of [z, ..., x] is
bounded by a constant Vi that depends only on k& and an upper bound of the curvature
of M. This means that for every s € Si(M),

| v
[5(60)7"'75(6k)]

and thus ¢y, € C’g(JTJ)F is a bounded cochain.

|ey(s)| = < Vi [¥lo

We have a well defined map for k > 2:
I COF (M) — HE(M)
)= [ey].

Interestingly, since I°* induces the De Rham isomorphism we have the following commu-
tative diagram:

=

CQE(M) —— HEL(

[ |

HE(M) —— HH(M)

)

I1e

showing that the comparison map c* is surjective for k& > 2 (this is true in the much more
general context of aspherical manifolds with Gromov hyperbolic fundamental group, see
[Min01]).
Furthermore, when k > 2, for any dy € EQF(M),
Iy (dp) = [cap] = [8*""cp] = 0 € Hy(M),

meaning that the restriction I : EQF(M) — HY (M) is the zero map. This implies that I}
descends on the quotient CQ*(M)/EQF(M) = HEL(M) to a map Iff: HEL(M) — HF(M).
We now have the following commutative diagram:

Hip(M)

ik
‘Ib/ ~

HE(M) —<s HF(M).
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Therefore, up to the identification H5(M) =~ H*(M), for k > 2 the map ff provides a
right inverse of the comparison map. On the one hand, this raises the interesting question
of understanding the possible geometric properties of the elements in the image of ff ; on
the other hand, for £ > 2 differential forms produce only a finite dimensional subsbace of
HE(M).

On the contrary, in degree 2, for every ¢ = dp € EQ?(M), the primitive ¢, € C!(M)
of c¢ is not necessarily bounded since the length of geodesic segments in M is arbitrarily
big and thus [c¢] € EH}(M) may be non-trivial. In particular, when M = ¥, a closed
hyperbolic surface, thanks to Theorem 2 [c¢] is never trivial if £ # 0, and the space of
exact forms EQ?(X) defines a infinite dimensional subspace of EHZ(X):

EQ2(X) —— Q%(%) —— H25(D)

[

EHZ(Y) —— HI(X) — H2(D).

2.3. Smooth cohomology. In this section we show that every class a € H{f(M ) admits
a representative that smoothly depends on the vertices of simplices. Moreover, in Lemma
3 we show an additional property of this representative that we will use in the next section.

Let X be a topological space, we endow the set of singular k-simplices Sg(X) with the
compact-open topology to define the subcomplex of the continuous cochains of X

CH(X) = {we CF(X) | wis, (x) 1s continuous}.

Moreover, we set C]j,b(X ) = C¥(X) n CF(X) and denote the homology of these complexes
by Hg(X) and HZ ,(X), respectively.

Theorem 1.4 of [Erill] states that if X is path connected, paracompact and with con-
tractible universal covering X, then the inclusion of bounded continuous cochains in clas-

sical cochains

ip: Cop(X) — Cp(X)
induces isometric isomorphisms on cohomology

ip: HZp(X) — Hy(X).
Furthermore, there is an explicit formula for the inverse of these isomorphisms

0y = (i5) ' H(X) — H2u(X).
In what follows we will give the explicit formula of §; in the case X = M. It is shown

in Lemma 6.1 of [Frill] that the isometric isomorphism C{(M) = Cp(M)" induced by
p: M — M can be restricted to

poy: Coyp(M) — Coy(M)T.

With the identifications CJ (M) =~ C§(M)* and Cep(M) = C;’b(]\fZ)F in mind, we will write
out the explicit formula for the map

by C5(AMD)" — O (M)"
which induces the map G{f on cohomology. Since M is compact, we can slightly modify the
construction in Lemma 5.1 of [Erill], by using a smooth partition of unity subordinate
to a finite open cover of M and get a smooth map hg;: M — [0,1] with the following
properties:

(i) There is an N € N, such that for every = € M there is a neighbourhood W, of x
such that the set {y e I' | v(W,) nsupp(hg;)} has at most N elements.
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(ii) For every z € M, we have >, hyy(yz) = 1.
(iii) supp hgz; is compact.

Let w e (]]lf(]\“/f)F and pick a basepoint z € M. We define the function f,: M - R as
follows:

Ju(wo, ... op) = Z hiz(00 '@o) - - hy (v ) - w([v0z, - - k2])-
(Y0071 )E(D)RHL

Notice that the sum above is finite because of property (i). Finally we can define

05 (w)(s) = fu(s(eo), ..., s(er)).
Observe that gf(w) is a I'-invariant cocycle because f,, is a I'-invariant function, where I"

acts on M**1 diagonally.

In order to prove the Main Theorem we will need the following:
Lemma 3. Let w e Clg(]\fZ)F and let (x1,...,z) € (M)*. Then the function
fol=sx1, . xk): MR
is smooth and the norm of its differential df,,(—,x1,...,2x) € Ql(ﬂ) is bounded by a

constant that does not depend on (x1, ..., zk).
Proof. 1t is clear by construction that f,(—,z1,...,2x) is smooth. Moreover, expanding
its differential

dfw(_7x17'~7$k) = Z dh]’\\j(,yo_l_) h]’\\](’}/]g_lxk)w([fyoza7,ykz])

(0,57 )E(D) B H1

we see that, by property (i) of h 77> there are at most N k+1 non-zero summands and thus
ldfuo(= 21, s @) < N¥F - ldhgzlon - |wlloo.

We can conclude since |w[o < o0 by assumption and |dhiz[e < o0 because hg; has

compact support. ]

3. PROOF OF THE MAIN THEOREM

Let ¢ € QY(M)" and [w] € HF(M), we look for a bounded primitive of Cdp U W €

C]§+2(Z\7)F. Observe that ¢, Uw € Clg””l(]\ﬁ\j)F is a (not necessarily bounded) primitive, in
fact
(e, Uw) =8 ep) Vw = cgp U W

Of course, it is sufficient to find an 7 € Ck(]\/\f)F such that c, Uw + 0%y € C’g“(]\mf)F is
bounded. N
We first replace w with G{f (w), this can be done without loss of generality because as

shown in the previous section the map gg induces an isomorphism on bounded cohomology.
Under this assumption we have that w(s) = f,(s(eo), ..., s(eg)) for every s € Sp(M). Thus
(cp U w)(s) only depends on the vertices of s € Sy41 (M), in fact

(cp L w)(s) = co([s(eo), s(er)]) - w(ls(er), ..., s(er+1)])
-| o Fuls(er)....s(ern))
[s(e0),s(e1)]
Next, we define the function (: M*+2 5 R as follows

C(‘TOM"akarl) :L ]¢’fw(_7x27--‘7$k+1)
x0,T1
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where we see f,(—,%2,...,2k+1) as a O-form (i.e. a smooth function). We observe that ¢

is a [-invariant function (again using the diagonal action of " on M k+2) in fact ¢ and £,
are [-invariant and for any v € I" we have that [yzo,yz1] = v[zo, 21].

Lemma 4. For every (xq,...,Zx41) € M 2 we have that
k+1 '
(cop vw)([z1,. .. xh41]) = C(z0s - -+ Thg1) — Z (=1)'C(z0, 1, T1, @2, . o oy Biy e ooy Thoy1)-
i=2

Proof. Since w is a cocycle we have that for any z € M ,

0=06"w([z,21,...,Tk41])
k+1 '
ol a1z F o p])
i=1
k+1 ‘
= fw(.’El, - ,$k+1) + Z (*1)2!}0‘,_,(2,561, ey Ly ,l‘k+1)
=1
and thus
k+1 '
fw(xh s 7xk+1) = = Z(_l)lfw(_axh s 7:1?7:7 s 7xk+1)'
i=1

We use this relation to conclude that

(cp ww)([z1, .. 2pi1]) =co[z0, 21]) - w([21, - TR ])

:J SO'fW(xl,---,mk+1)
[CE(),CCl]

k+1 '
:J‘[ ]SO <_Z(_l)lfw(_vxla"'7fi7"'7mk+l>>
0,1

i=1
k+1 '
:_Z(_l)zf SD'fw(_,xlw"afi,"'?xk-&-l)
i=1 [zo,21]
k+1 )
:<($0, B wk-{-l) - Z (—1)ZC($07 L1, 21,22, - 73?7;) < ,.%'k+1)-
=2

We define n € CF(M)Y so that for every s € Sy, (M),

n(s) = ((s(eo), s(e1), s(e1), s(ea), - -, s(ex))-

This cochain is I'-invariant because the function ¢ is. As anticipated we will conclude by
showing that c, U w + 8% is a bounded cochain. Since both cp U w and §*n only depend
on the vertices of simplices it will be enough to show that the function (zg,...,xg41) €
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M*+2 s (cp Uw + 6*n)([xo, - - ., Tk+1]) € R is bounded:
(CSO Vw+ 5k77)([$07 cee 7$k+1]) = C(x07 cee 7xk+1)
k+1

- Z(—l)iC(ﬂﬁo,xl,xl,m,---7fi,---,$k+1)
=2

k+1
+ > (=1)n([z0, - -, Fiy - - Ths1])
i=0
= ((wo, 21,72, ..., Tp41)
+ ¢(21, w2, T2, . . ., Thy1)
— C($0,$2,l‘2, ey xk+1).
Next we use Stoke’s Theorem:
C(l’o,l’l,l’g, ey .CCk+1)
+¢(1, 22,22, . . ., Tpy1)
—C(:L’o, Ty L2y ny karl)

I

@ - fw(_,xQ, e 7xk+1)
9007961]

+

@ - fw<_,x2, e 7xk+1)
x1,2]

@ - fUJ<_7'r27 e 7$k+1)
300,962]

_—

@ - fw(_7x27 o 7xk+1)
zo,x1]ulz1,22]U[22,20]

@ - fw(_)x2>~ . '71"k+1)

[l
s

Olzo,z1,22]
:J‘ d(@‘fw(_,ﬂfQ,...,Jka,-l))-
[zo,21,22]

The integration domain is a 2-simplex with bounded area, this means that we only need
to check that the norm of d(¢ - fo(—,z2,...,2x41)) € Q*(M)' is bounded by a constant
that does not depend on (x2,...,xx+1). We expand

d(p - ful—,xo,...,2k41)) =do - fu(— 22, ..., Tk11) + © Adf(— @2, ..., Thy1).

Both ¢ and dp are I'-invariant and since I' is cocompact |¢]e < 0 and ||dp|s < .
The function f,(—,z2,...,7k+1) is bounded by |w|«. Finally, as we saw in Lemma 3,
ldfu(—,z2,...,2k+1)]oo is also bounded by a constant that does not depend on (z2, ..., Tg41)-
This concludes the proof of our main Theorem.
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