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Abstract
The use of fractional differential equations is a key tool inmodeling non-local phenom-
ena. Often, an efficient scheme for solving a linear system involving the discretization
of a fractional operator is computing inverse fractional powers of the standard dis-
cretized Laplace operator. In this work, an exponential sum approximation for such
fractional powers is derived. It is accurate over all positive real numbers larger than
one, and allows to efficiently approximate the action of such operators on tensors
stored in a variety of low-rank formats (CP, TT, Tucker). The results are relevant from
a practical and theoretical perspective, as they predict the low-rank approximability
of the solutions of these linear systems in low-rank tensor formats.

Keywords Exponential sums · Fractional powers · Matrix functions · Kronecker
sums
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1 Introduction

We are concerned with computing the solution of a linear system Aαx = c for 0 <

α < 1, where A is a Kronecker sum:
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A :=
d⊕

i=1

Ai = A1 ⊗ I ⊗ . . . ⊗ I︸ ︷︷ ︸
d terms

+I ⊗ A2 ⊗ . . . ⊗ I + . . . + I ⊗ . . . ⊗ I ⊗ Ad , (1)

for i = 1, . . . , d. This problem arises naturally when solving fractional PDEs on
tensorized domains [20, 25, 37] such as approximating the steady-state behavior of
the initial value problem

∂u

∂t
= −(−�)αu + f , �u := ∂2

∂x21
+ · · · + ∂2

∂x2d
, u(t, x1, . . . , xd ) : [0, 1]d → R.

A common approach to approximate the differential operator −(−�)α is to discretize
the Laplace operator�, and then raise the discrete operator to the αth power (adjusting
the sign to make it positive definite). This yields a discretization of the fractional
Laplacian [20], and whenever the domain has a tensor structure (as in the case above
where� = [0, 1]d ) the discrete operator is a power of a Kronecker sum as in (1). Such
structure is directly available if the problem is discretized through finite differences,
and can be recovered with finite elements up to inverting mass matrices.

When solving for the steady state, the linear system with a matrix given as a Kro-
necker sum is the operation with higher computational cost. A similar bottleneck is
encountered for the treatment of the time-dependent problem by implicit methods,
which are unavoidable due to the stiffness of the Laplace operator.

The case α = 1, which corresponds to the classical Laplace operator, has been
analyzed in detail in the literature (see [24] and the references therein). When d = 2
the problem can be recast as solving a linearmatrix Eq. [30] (called Lyapunov equation
if A1 = A2, and Sylvester equation otherwise). These equations are often studied by
reshaping the vectors x and c into matrices X and C , which yields

X AT
1 + A2X = C, c = vec(C), x = vec(X).

Here, the vec operator stacks all the columns of a matrix on top of the other. In
several instances of this problem, the right-hand side matrix C is low-rank, or at least
numerically low-rank (i.e., with decaying singular values). This is the case when the
right-hand side is the discretization of a (piece-wise) smooth function [35]. Under this
assumption, the low-rank property is numerically inherited by the solution X , which
can be efficiently approximated using low-rank solvers for matrix equations such as
rational Krylov methods [30, 33] or ADI [6].

When d > 2, similar results can be obtained, but the derivation is more challeng-
ing. In this context one can naturally reshape the vectors x and c as d-dimensional
tensors, for which several (non-equivalent) definitions of rank are available [15]. Low-
rank approximability results for tensors are given in [24], relying on exponential sum
approximations.

Krylov projection methods can be extended to the case 0 < α < 1 when d = 2,
using the formulation of the problem as the evaluation of a bivariate matrix function
[22, 23, 26, 27]. Although in principle this approach may be used for higher d as well,
it leads to multivariate matrix functions and Tucker tensor approximation, which has
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an exponential storage and complexity cost in d, and hence does not solve the so-called
“curse of dimensionality” [29].

Extending results for tensor Sylvester equations to the case α < 1 is inherently
difficult since the separability of the operator is lost, and all strategies based on
displacement ranks [5, 8, 32] are not easily applicable.

In this work, we consider the use of exponential sums to derive low-rank approx-
imability results and low-rank solvers for the case of a generic d and 0 < α < 1. Our
results can be interpreted as an extension of the exponential sum approximation for
1/z, see for instance [16] and the reference therein.

The work is structured as follows. In Sect. 2 we derive an exponential sum approx-
imation for z−α over [1,+∞], and provide guaranteed and explicit error bounds. We
prove that this can be used to approximate the solution of the linear systemsAαx = c
in a cheap way. In Sect. 3 we show that this representation of the solution can be used
to derive approximation results for the solution in tensors in the same low-rank struc-
ture used for the right-hand side (Tucker, Tensor-Train, …). We conclude with some
numerical experiments in Sect. 4, and draw some final remarks in Sect. 5.

2 Exponential sums

We consider the approximation problem of determining α j , β j such that

ξ−α ≈
k∑

j=1

α j e
−β j ξ . ξ ∈ [1,∞). (2)

Finding an expression in the above form (which we call exponential sum) allows to
approximate the function z−α of a matrix A expressed as a Kronecker sum at a low
computational cost. Indeed, if twomatrices A and B commute, we have eAB = eBA =
eAeB [19, Theorem 10.2]. Since all summands in a Kronecker sum commute we can
write

e−βA =
d⊗

i=1

e−βAi , A =
d⊕

i=1

Ai .

As we will see in Sect. 3, this is key in deriving low-rank approximability bounds. We
rewrite ξ−α in integral form as follows:

ξ−α = 1

�(α)

∫ ∞

0

e−tξ

t1−α
dt, ξ ∈ R+. (3)

Employing any quadrature rule for approximating (3) yields an approximant of ξ−α

by taking a weighted average of evaluations of the integrand, which is exactly in the
form of Eq. (2). Let w j and t j , for j = 1, . . . , k, be the weights and nodes of such
quadrature rule, respectively. Then,

ξ−α ≈
k∑

j=1

w j
e−t j ξ

t1−α
j

=
k∑

j=1

α j e
−β j ξ ,

⎧
⎨

⎩
α j = w j

tα−1
j

�(α)

β j = t j
.
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Our aim is to derive a quadrature that is uniformly accurate over [1,+∞). We
will achieve this goal by a technique called sinc quadrature, also known as infinite
trapezoidal rule, coupled with appropriate change of variables.

We briefly recap the classical results on sinc quadrature in Sect. 2.1; then, we build
the approximation over [1,∞) in Sect. 2.2, and we show how this can be used to
approximate the solution of the linear system Aαx = c and to provide theoretical
predictions of approximability in low-rank tensor formats for x , under the assumption
that c is itself of low tensor rank (up to appropriately reshaping it).

2.1 Sinc quadrature

We refer the reader to [34] for a more detailed description of the results on sinc
quadrature, and in particular [16, Appendix D] for a similar derivation applied to
g(z) := z−1.

Let d > 0 and g(z) be analytic over the infinite stripDd := {z | − d < �(z) < d},
and such that the integral on the boundary of Dd is finite, i.e.,

‖g‖Dd :=
∫

∂Dd

|g(z)| · |dz| < ∞. (4)

A sinc quadrature formula is obtained by approximating the integral of g(z) over the
real axis by an infinite trapezoidal rule with step h:

∫ ∞

−∞
g(t) dt ≈ h

∑

j∈Z
g( jh).

For h → 0, this quadrature converges exponentially. The constant in front of the
convergence bound depends on the integral in (4). More precisely, we have

Theorem 1 ([10, Theorem D.26]) Let g(z) be holomorphic over Dd . Then,

∣∣∣∣
∫ ∞

−∞
g(t) dt − h

∑

j∈Z
g( jh)

∣∣∣∣ ≤ ‖g‖Dd · e−2πd/h .

The above result is not of immediate practical use, since the discretization of the
integral requires to evaluate an infinite series. However, if g(t) decays quickly enough
for |t | → ∞,we can truncate the sumandestimate the error bybounding themagnitude
of the dropped terms.

To obtain an efficient evaluation scheme, we need to balance the error performed
when truncating the series with the one coming from the quadrature rule. Hence, the
choice of the number of terms to consider automatically implies an optimal step size
h in most cases. This will be discussed in further detail in the next sections.

2.2 Approximating z−˛ over [1,∞)

The integral form of ξ−α that we considered in Eq. (3) is defined by an integral over
[0,∞). This is not suitable for employing sinc quadrature techniques, and therefore
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we need to remap it as an integral over R. To this aim, we introduce the change of

variable t = log(1 + eτ )
1
α ; by direct computation, we obtain:

ξ−α = 1

�(α)

∫ ∞

0

e−tξ

t1−α
dt = 1

α�(α)

∫ ∞

−∞
e− log(1+eτ )

1
α ξ

1 + e−τ
dτ. (5)

For the sake of notational simplicity, we now define the following shorthand for the
integrand:

g(τ ) := e− log(1+eτ )
1
α ξ

1 + e−τ

We note that g(τ ) implicitly depends on ξ , but we do not report this dependency
explicitly to keep the notation more readable. Recall thatDd := {z | |�(z)| ≤ d} ⊆ C

denotes the infinite horizontal strip of width 2d, centered around the real line.
To use the results on sinc approximation, we first need to ensure that the integrand

is analytic on the infinite strip Dd , for suitable choices of d.

Lemma 1 The function g(τ ) is analytic on Dd for any d < π .

Proof To ensure the analyticity of the integrand g(τ ) we choose to exclude points
where e−τ = −1, which force the denominator to vanish, to exclude points 1 + eτ ∈
R−, which force the logarithm to be evaluated at its branch cut, and to exclude all points
inR− from the argument of the fractional power, to avoid the analogous problem for the
logarithm implicitly defining it. If these three conditions are met, then the function is
obtained through compositions of functions that are analytic on the domain of interest.

We shall deal with these cases separately. The first condition is linked with a class
of poles encountered for τ = i(2k + 1)π , for any k ∈ Z, and we can exclude them
by requiring d < π . Similarly, this condition automatically implies that 1+ eτ /∈ R−,
which excludes evaluations of log(1 + eτ ) on its branch cut.

The third situation is encountered when log(1 + eτ ) ∈ (−∞, 0], which in turn
implies eτ ∈ [−1, 0). If we write τ = α + iβ, this only happens when

α ≤ 0, β = (2k + 1)π, k ∈ Z.

As in the previous case, we can avoid this situation by imposing a constraint on d, and
requiring |β| ≤ d < π . ��

We now derive a bound for the integral of the modulus of g(τ ) in (5) over ∂Dd .
This imposes further constraints on the choice of d, which are stronger than the ones
imposed by Lemma 1. We make the following claims, which will be detailed in this
section. Let z = γ ± id be a point in ∂Dd and 0 ≤ d < απ

4 . Then,

|g(γ ± id)| ≤
⎧
⎨

⎩

e−|γ | γ ≤ 0

e
−ξ |γ | 1α cos

(
d

αmax{γ, 12 }

)

γ ≥ 0
.
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We prove these results in Lemma 2 and 3, that will be later leveraged to prove
the convergence of the exponential sum approximation. We shall see that in order to
combine the hypotheses of these results, we will need to ensure that d is chosen as
d ≤ απ/8.

Lemma 2 Let τ = γ ± id, and let γ ≤ 0, 0 < α < 1, ξ > 0 and 0 ≤ d ≤ π
2 be real

numbers such that

sin d ≤ 1

4
tan
(απ

2

)
. (6)

Then,

|g(τ )| ≤
∣∣∣∣

1

1 + e−τ

∣∣∣∣ ≤ e−|γ |.

Proof To prove the result we show that

∣∣∣∣e
−ξ log(1+eγ±id )

1
α

∣∣∣∣ ≤ 1. (7)

If the above condition is satisfied, using d ≤ π
2 we have

|g(τ )| ≤ 1

|1 + e−γ±id | = 1√
1 + e−2γ + 2e−γ cos d

≤ e−|γ |.

We now prove the claim in Eq. (7). Using polar coordinates we can write

log(1 + eγ±id ) =
√
1

4
log(1 + e2γ + 2eγ cos d)2 + arctan

(
eγ sin d

1 + eγ cos d

)2

· eiθ(γ ),

where

θ(γ ) := arctan

⎛

⎝
±2 arctan

(
eγ sin d

1+eγ cos d

)

log(1 + e2γ + 2eγ cos d)

⎞

⎠ .

We can write the 1
α
th power of the logarithm as

log(1 + eγ±id )
1
α =

(
1

4
log(1 + e2γ + 2eγ cos d)2 + arctan

(
eγ sin d

1 + eγ cos d

)2
) 1

2α

· ei θ(γ )
α .

Since ξ > 0, it is sufficient to prove that the real part of the above expression is

positive. This is equivalent to imposing that cos
(

θ(γ )
α

)
≥ 0. In particular, we show
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that

∣∣∣∣
θ(γ )

α

∣∣∣∣ = 1

α
arctan

⎛

⎝
2 arctan

(
eγ sin d

1+eγ cos d

)

log(1 + e2γ + 2eγ cos d)

⎞

⎠ ≤ π

2
. (8)

The second inequality is equivalent to imposing

2 arctan
(

eγ sin d
1+eγ cos d

)

log(1 + e2γ + 2eγ cos d)
≤ tan

(πα

2

)
.

Recalling that arctan(x) ≤ x for all x ≥ 0, we have

arctan

(
eγ sin d

1 + eγ cos d

)
≤ eγ sin d

1 + eγ cos d
≤ eγ sin d

and using the inequality log(1 + x) ≥ x − 1
2 x

2 for x ≥ 0, we have

log(1 + e2γ + 2eγ cos d) ≥ log(1 + eγ ) ≥ eγ − 1

2
e2γ .

Hence,

2 arctan
(

eγ sin d
1+eγ cos d

)

log(1 + e2γ + 2eγ cos d)
≤ 2 sin d

1 − 1
2e

γ
≤ 4 sin d.

We conclude by using the hypothesis (6), which implies that the right-hand side is
bounded by tan

(
πα
2

)
, as needed. ��

The next result controls the magnitude of the integrand when the real part of the
integration variable τ = γ ± id is positive, which enables to bound the norm of the
integral in the right half plane.

Lemma 3 Let τ = γ ± id, and let γ > 0, ξ > 0, 0 < α < 1, and 0 ≤ d < απ
4 be

real numbers; then, the function g(τ ) is bounded above in modulus by

|g(τ )| ≤
∣∣∣e−ξ log(1+eγ±id )

1
α
∣∣∣ ≤ e

−ξ |γ | 1α cos

(
d

αmax{γ, 12 }

)

.

Proof We may write

|g(τ )| =
∣∣∣e−ξ log(1+eγ±id )

1
α

∣∣∣
|1 + e−τ | ≤

∣∣∣e−ξ log(1+eγ±id )
1
α

∣∣∣
|1 + e−γ cos d| ≤

∣∣∣e−ξ log(1+eγ±id )
1
α
∣∣∣,
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thanks to cos d ≥ 0. We now prove the second inequality; thanks to ξ ∈ R,

∣∣∣e−ξ log(1+eγ±id )
1
α
∣∣∣ = exp(−ξ�(log(1 + eγ±id)

1
α )).

Hence, in order to devise an upper bound for the left-hand side, we need a lower bound
for the real part of the logarithm in the right-hand side. By writing the argument of
the logarithm in polar coordinates we obtain the following expression:

log(1 + eγ±id) = 1

2
log(1 + e2γ + 2eγ cos d) ± i arctan

(
eγ sin d

1 + eγ cos d

)
.

We now rewrite the above in polar coordinates, which yields

log(1 + eγ±id) =
√
1

4
log(1 + e2γ + 2eγ cos d)2 + arctan

(
eγ sin d

1 + eγ cos d

)2

· eiθ(γ ),

where

θ(γ ) := arctan

⎛

⎝
±2 arctan

(
eγ sin d

1+eγ cos d

)

log(1 + e2γ + 2eγ cos d)

⎞

⎠ .

This gives an explicit formula for the real part of the above logarithm raised to the
power 1

α
:

�(log(1 + eγ±id)
1
α ) =

[
1

4
log(1 + e2γ + 2eγ cos d)2 + arctan

(
eγ sin d

1 + eγ cos d

)2
] 1

2α

cos

(
θ(γ )

α

)
.

The above yields an exact expression for the quantity that we need to bound. We now
make some simplifications, employing the following inequalities:

log(1 + e2γ + 2eγ cos d) ≥ max{2γ, 1} 0 ≤ arctan

(
eγ sin d

1 + eγ cos d

)
≤ d. (9)

The two inequalities can be combined to show that

0 ≤ θ(γ ) ≤ d

max{γ, 1
2 }

�⇒ cos

(
θ(γ )

α

)
≥ cos

(
d

αmax{γ, 1
2 }

)
,
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Fig. 1 Bounds for the modulus of g(τ ), obtained for α ∈ { 14 , 3
4 } by Lemma 3. The value of d in these

examples is chosen as d = π
16

where we used that 0 ≤ θ(γ ) ≤ απ
2 in view of d ≤ πα

4 . We now make use again of
(9) to bound the first factor, obtaining

�(log(1 + eγ±id)
1
α ) ≥ γ

1
α cos

(
d

αmax{γ, 1
2 }

)
,

which implies the sought bound. ��
Even though we have made some simplifications in the expressions, the asymptotic

behavior for γ → ±∞ is tight. In addition, for the values of γ close to zero, the bound
is still quite descriptive of the actual behavior, as we show in Fig. 1 for a few values
of α.

We now have all the tools to give an explicit upper bound for the integral of the
modulus of g(τ ) over the boundary of Dd .

Lemma 4 For any d satisfying 0 < d ≤ πα
8 with 0 < α < 1, it holds:

‖g‖Dd =
∫

∂Dd

|g(τ )| · |dτ | ≤ 2

(
1 + log(2) + �(α + 1)

(ξ cos(π
8 ))α

)
.

Proof First, we note that for any d in the region of interest we have

sin d ≤ d ≤ πα

8
≤ 1

4
tan
(πα

2

)
,

and therefore the hypotheses of Lemma 2 and 3 are satisfied. In addition, thanks to
the property |g(τ )| = |g(τ )|, we may rewrite the integral as

∫

∂Dd

|g(τ )| · |dτ | = 2
∫ ∞

0
|g(γ + id)|dγ + 2

∫ 0

−∞
|g(γ + id)|dγ.

123



30 Page 10 of 26 BIT Numerical Mathematics (2023) 63 :30

The integrands can be dealt with separately. In (−∞, 0]we can use Lemma 2 to obtain
the following bound:

2
∫ 0

−∞
|g(γ + id)|dγ ≤ 2

∫ 0

−∞
1

1 + e−τ
dγ = 2 log(2).

Similarly, we can bound the integral from 0 to ∞ using Lemma 3 as follows:

2
∫ ∞

0
|g(γ + id)|dγ ≤ 2

∫ 1

0
dγ + 2

∫ ∞

1
e−ξ |γ | 1α cos( d

α
)dγ

≤ 2 + 2�(α + 1)

(ξ cos( d
α
))α

=≤ 2 + 2�(α + 1)

(ξ cos(π
8 ))α

,

where in the last inequality we have used d ≤ πα
8 . The result follows by combining

these two bounds. ��
Remark 1 The bound for the integrand in [0,∞) is not asymptotically sharp, since for
γ → ∞ we have cos( d

αγ
) → 1, and instead we have replaced it with cos(π/8) ≈

0.9238795 . . . in the proof of Lemma 4; however, this does not make a dramatic
difference in practice, and makes the result much more readable.

Thanks to the estimate of Lemma 4, we may now approximate ξ−α with an infinite
series as follows:

ξ−α = h
∑

j∈Z
g( jh) + εh, |εh | ≤ 2

(
1 + log(2) + �(α + 1)

(ξ cos(π
8 ))α

)
e−2πd/h .

However, this does not yet give us a practical algorithm, since we need to truncate the
series to a finite sum. We use the following notation:

E(g, h) = h
∑

j∈Z
g( jh) and EN−,N+(g, h) = h

N+∑

j=−N−
g( jh).

We need an estimate for the error introduced by truncating the sum to N+ positive
terms and N− negative ones. We state the following lemma, which is tailored to the
decay properties of the function g(τ ) considered in this section.

Lemma 5 Let c−, c+ and β be positive constants such that

g(x) ≤ c−e−|x | for x ≤ 0, (10)

and

g(x) ≤ c+e−β|x | 1α for x ≥ 0. (11)
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Then, the remainder E(g, h) − EN−,N+(g, h) satisfies:

∣∣E(g, h) − EN−,N+(g, h)
∣∣ ≤ c−

e−N−h

h
+ c+

αe−β(N+h)
1
α

βh
1
α

. (12)

Proof Since

E(g, h) − EN−,N+(g, h) =
∑

k>N−
g(−kh) +

∑

k>N+
g(kh),

using (10) and (11) we have

E(g, h) − EN−,N+(g, h) ≤ c−
∑

k>N−
e−kh + c+

∑

k>N+
e−β(kh)

1
α

≤ c−
∫ ∞

N−
e−khdk + c+

∫ ∞

N+
e−β(kh)

1
α dk

= c−
e−N−h

h
+ c+

∫ ∞

k>N+
e−β(kh)

1
α dk.

To give an upper bound to the last integral let x = k
1
α . We then have

∫ ∞

k>N+
e−β(kh)

1
α dk = α

∫ ∞

x>N
1
α+

e−βxh
1
α

x1−α
≤ α

∫ ∞

x>N
1
α+
e−βxh

1
α = α

e−β(N+h)
1
α

βh
1
α

.

��

We now address the problem of determining the number of terms required to have a
prescribed accuracy ε. Theorem 1 suggests that h should be chosen to have e−2πd/h ≈
ε. If N+ and N− are chosen as requested by the next theorem, this guarantees the
required accuracy.

Theorem 2 Let ε > 0 and 0 < α < 1. Then, for any 0 < d ≤ πα
8 , and

h = 2πd

log(ε−1)
, N− = 2πd

h2
, N+ =

(
2πdh− α+1

α

β

)α

,

where β = cos(2d/α) ≥ cos(π/4), it holds

|ξ−α − EN−,N+(g, h)| ≤
(

‖g‖Dd + 1

h
+ 1

βh
1
α

)
ε.
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If ε is chosen smaller than e−π2/4 ≈ 0.085, then the error can be bounded by

|ξ−α − EN−,N+(g, h)| ≤ 2

⎡

⎣1 + log(2) + �(α + 1)

cos(π/8)α
+ cos(π/4)−1

(
4 log(ε−1)

π2α

) 1
α

⎤

⎦ ε.

In particular, for large N and small ε, the asymptotics ε ∼ O(e−√
2πdN ) and N ∼

O(log2( 1
ε
)/2πd) hold up to logarithmic factors.

Proof Leveraging Theorem 1, we can bound the quadrature error by

|ξ−α − E(g, h)| ≤ ‖g‖Dd e
−2πd/h .

We now show that the proposed choices of N− and N+ provide an error bound with
the same exponential convergence, but different constants in front. Using Lemma 5
we obtain:

|E(g, h) − EN−,N+(g, h)| ≤ c−
e−N−h

h
+ c+

αe−β(N+h)
1
α

βh
1
α

.

≤
(
c−
h

+ αc+
βh

1
α

+
)
e−2πd/h,

where β = cos(2d/α) applying Lemma 3 with the inequality max{ 12 , γ } ≥ 1
2 . We

have that c− = 1 thanks to Lemma 2 and c+ = 1, thanks to Lemma 3. The final bound
is obtained using the explicit expression for ‖g‖Dd together with

ε ≤ e−π2/4 �⇒ h = 2πd

log(ε−1)
≤ π2α

4 log(ε−1)
≤ π2

4 log(ε−1)
≤ 1,

which implies 1

βh
1
α

≥ 1
h , and therefore allows to give the upper bound

1

h
+ 1

βh
1
α

≤ 2

βh
1
α

≤ 2

cos(π/4)

(
4
log(ε−1)

π2α

) 1
α

.

The claim on the asymptotic growth for ε, h → 0 follows by noting that the dominant
term in N is N− ∼ O(h−2). ��

We now verify the convergence predicted by these results by considering different
ξ ∈ [1,∞), logarithmically spaced on [1, 106]. For these values, we compute the
exponential sum approximating ξ−α for α ∈ {0.25, 0.75}. The results, including the
asymptotic bound from Theorem 2, are reported in Fig. 2. It is visible how Theorem 2
accurately describes the asymptotic rate of convergence of the approximation.

We note that to reach machine precision, a non trivial amount of exponentials has to
be computed. In addition, when α is small d has to be chosen small as well, obtaining
a slower convergence speed, as predicted by Theorem 2.
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Fig. 2 Absolute errors of the exponential sum approximation for ξα . The error is the maximum for 100
logarithmically spaced samples over [1, 106]. The value of α is chosen as 0.25 and 0.75. The convergence
speed for 0.25 ≤ α ≤ 0.75 interpolates these two examples

3 Low-rank approximability

We now make use of the results developed in Sect. 2 to prove that the solutions of
Kronecker-structured linear systems inherit the low-rank tensor structure of the right-
hand side. Recall that we are interested in linear systems of the form:

Aαx = c, A =
d⊕

i=1

Ai , Ai ∈ C
ni×ni . (13)

where as in (1) the “⊕” symbol denotes the Kronecker sum.
The vectors x and c may be naturally reshaped into n1 × . . . × nd tensors; we

denote these reshaped versions with the capital letters X ,C , respectively; we will use
this notation throughout the section; for instance, for the vector x (and tensor X ), we
have the correspondence:

X ∈ C
n1×...×nd ←→ x = vec(X) ∈ C

n1···nd .

The linear system (13) can be rephrased as computing x = f (A)c, where f (z) = z−α ,
and has therefore a very natural connection with the exponential sum approximation
that we have discussed in the previous section.

When dealing with high-dimensional problems (i.e., the integer d is large) it is
natural to assume that some low-rank structure is present in the tensor C . If this
assumption is not satisfied, it is unlikely that storing C is possible at all.

For analogous reasons, we need to guarantee that X is endowed with a similar
structure: otherwise, there is little hope of computing it, if there is not sufficient storage
for memorizing it. The exponential sum approximation can be used to guarantee that
X inherits the low-rank structure from the right-hand side C and this is precisely the
goal of this section.

In contrast to what happens with matrices, there are many competing definitions of
a low-rank tensor. In this work, we consider tensors with low CP-rank, TT-rank, and
multilinear rank [15].
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We briefly recall the definition and properties of these families in Sect. 3.1, and then
show the results obtainable through the exponential sum approximation in Sect. 3.

3.1 Low-rank tensor formats

A natural way to define the rank of a d-dimensional tensor X ∈ C
n1×...×nd is as the

minimum length of a “low-rank decomposition”, here written for simplicity on the
vectorization x = vec(X):

x = u1,1 ⊗ · · · ⊗ u1,d + · · · + uk,1 ⊗ · · · ⊗ uk,d .

This is usually called just tensor rank or CP rank, and the above decomposition is
called a Canonical Polyadic Decomposition (CPD or CP decomposition). Despite its
simplicity, computing such decomposition is numerically challenging for large d [21],
in contrast to what happens when d = 2, when we can leverage the singular value
decomposition (SVD).

For this reason, several alternative definitions of low-rank tensors (and the associ-
ated decompositions) have been introduced in recent years.Wemention themultilinear
singular value decomposition [12], often shortened as HOSVD (High Order SVD),
and the tensor train format [28]. Both these formats have an SVD-like procedure that
allows to obtain the best (or at least quasi-optimal) low-rank approximation to a ten-
sor X . To discuss the properties of these formats, we shall introduce the definition of
unfolding.

Definition 1 The i th mode unfolding X (i) of a tensor X is the matrix obtained by
stacking the vectors X (i)

j containing the entries of X with the i th index equal to j for
j = 1, . . . , ni , i.e.,

X (i) =
⎡

⎢⎣
vec(X (i)

1 )T

...

vec(X (i)
ni )T

⎤

⎥⎦ ∈ C
ni×(n/ni ),

where n = ∏d
i=1 ni .

The unfoldings can be used to define the multilinear rank of a tensor X .

Definition 2 ([12]) The multilinear rank of a tensor X is the tuple r = (r1, . . . , rd),
where ri = rank(X (i)), and X (i) is the i th mode unfolding of X .

We often say that a tensor has multilinear rank smaller than r = (r1, . . . , rd), to
mean that the rank is component-wise smaller. We can use matrices to act on tensors,
as described by the following.

Definition 3 Given a matrix A ∈ C
m j×n j and a tensor X ∈ C

n1×...×nd , the j th
mode product of X times A, denoted by X × j A, is the d-dimensional tensor
Y ∈ C

n1×···×n j−1×m j×n j+1×···×nd , defined by:
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Yi1,...,id =
n j∑

k=1

Ai j k Xi1,...,i j−1,k,i j+1,...,id .

If d = 2 and therefore X is a matrix, we have X ×1 A = AX and X ×2 A = X AT .
Hence, this operation can be seen as the high-order generalization of left and right
matrix multiplication. We remark a few useful properties that relate unfoldings and
j th mode products.

Lemma 6 Let Y = X ×i A. Then,

(i) Y (i) = AX (i);
(ii) y = (I ⊗ . . . ⊗ I︸ ︷︷ ︸

i−1 terms

⊗A ⊗ I ⊗ . . . ⊗ I︸ ︷︷ ︸
d−i−1 terms

)x;

(iii) the multilinear rank of Y is bounded by r = (r1, . . . , rd), the multilinear rank of
X;

(iv) for any other tensor Z with multilinear rank (s1, . . . , sd), the multilinear rank of
X + Z is bounded by (r1 + s1, . . . , rd + sd).

where as usual x = vec(X), y = vec(Y ), and the Kronecker product in (i i) has the
only matrix different from the identity in position i .

Adirect consequence of the second representation of the i thmodeproduct is that, for
any choice ofmatrices A, B and i �= j ,wehave (X× j B)×i A = (X×i A)× j B.Hence,
we avoid unnecessary brackets when combining several j-mode products writing
X × j1 A j1 . . . × j� A j� .

The (quasi)-optimal multilinear rank r = (r1, . . . , rd) approximant to a generic
tensor X can be effectively computed by repeatedly truncating the i thmodeunfoldings;
this procedure is usually known as multilinear SVD [12].

If a tensor X has a low multilinear rank, it can be efficiently expressed through a
Tucker decomposition; with our current notation this can be written as follows:

X = B ×1 U1 ×2 U2 . . . ×d Ud ,

where B ∈ C
r1×...×rd , and Uj are n j × r j matrices with orthogonal columns. When

the multilinear ranks are smaller than the dimensions n1, . . . , nd , this representation
allows to compress the data.

We remark that for very large d, this representation can still be too expensive:
even if the ri are small, the storage requirement depends on their product; making the
simplifying assumption that r := r1 = . . . = rd the storage requirements for this
decomposition are O(rd + (n1 + · · · + nd)r) memory — which is exponential with
respect to d. So, even if when r � ni this format allows to save a large amount of
memory, working with general high-dimensional problems may remain unfeasible.

To overcome this drawback, several other tensor formats have been introduced:
Tensor Trains [28] (also called Matrix Product States, or MPS [31]), Hierarchical
Tucker Decompositions [14], and more general Tensor Networks [11].

We nowbriefly recap the properties of Tensor-Trains that are relevant for our results.
The TT format requires another definition of rank (the TT-ranks), which requires
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the introduction of appropriate matricizations. We expect low-rank approximability
properties analogous to the one that we prove for the TT format to hold for other
formats as well (such as Hierarchical Tucker, or Tensor Networks [14]).

Given a d-dimensional tensor X , we define the matrices X {i} obtained by grouping
the first i indices together as row indices, and the remaining ones as columns indices.
The vector r = (r1, . . . , rd−1), where ri is the rank of X {i}, is called the Tensor-Train
rank of X (or TT-rank).

A tensor with TT-rank smaller than (r1, . . . , rd−1) can be decomposed as follows
[28]:

Xi1,...,id :=
∑

s1≤r1,...,sd−1≤rd−1

C (1)
i1s1

C (2)
s1i2s2

. . .C (d−1)
sd−2id−1sd−1

C (d)
sd−1id

, (14)

where C ( j) are called carriages and can be either matrices ( j = 1, d) or three-
dimensional tensors (1 < j < d). It is readily apparent that this representation breaks
the so-called curse of dimensionality: a tensor with low (TT-)ranks can be stored with
a number of parameters only polynomial in d.

From Eq. (14) we note that the operation X × j A can be efficiently evaluated in
the TT-format, as that only requires to modify C ( j) by computing C ( j) ×2 A (with the
only exception j = 1, where the required operation is C (1) ×1 A). Hence, we may
state a Tensor Train analogue of the last item in Lemma 6.

Lemma 7 Let Y = X ×i A. Then,

1. the Tensor Train rank of Y is bounded by r = (r1, . . . , rd−1), the Tensor Train
rank of X,

2. for any other tensor Z with Tensor-Train rank (s1, . . . , sd−1), the Tensor Train
rank of Y + Z is bounded by (r1 + s1, . . . , rd−1 + sd−1).

Proof The first claim follows by the current discussion, since the dimensions of the
updated carriage C ( j) ×2 A involving the ranks are not modified. We refer the reader
to [28, Section 4.1] for a proof of the second one. ��

3.2 Low-rank approximation in the symmetric positive definite case

Weconsider the casewhere thematrices Ai definingA are symmetric positive definite.
On one hand, this greatly simplifies the derivation of the results thanks to the normality
and the fact that the spectrum of A is real. On the other hand, the non-negativity of
the eigenvalues is a common assumption when taking the negative fractional power
of an operator, and therefore it is not particularly restrictive in practice.

We will make repeated use of the following fact.

Lemma 8 Let Ai , i = 1, . . . , d, be matrices of size ni × ni , and X any d-dimensional
tensor of size n1 × . . . × nd . Then,
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exp

(
d⊕

i=1

Ai

)
vec(X) = vec(X ×1 exp(A1) ×2 . . . ×d exp(Ad)).

Proof The proof follows noting that the summands defining
⊕d

i=1 Ai commute, and
using the property that if AB = BA then eAB = eBA = eAeB [19, Theorem 10.2]. ��
Theorem 3 LetA = ⊕d

i=1 Ai be invertible, with Ai symmetric positive definite matri-
ces. Let x = vec(X), c = vec(C), and x = A−αc. Then, for any N− ∈ N satisfying

N− ≥ cos(π/4)1−α2α
2πd there exists an approximant XN− to X such that

‖X − XN−‖F ≤

2λ−α
min

⎡

⎣1 + log(2) + �(α + 1)

cos(π/8)α
+ cos(π/4)−1

(
2
√

αN−
πα

) 1
α

⎤

⎦ e− π
2
√

αN−‖C‖F .

and:

– if C has CP rank bounded by r, then XN− has CP rank bounded by (2N− + 1)r .
– if C has multilinear rank bounded by (r1, . . . , rd), then the multilinear rank of

XN− is bounded by ((2N− + 1)r1, . . . , (2N− + 1)rd).
– if C has TT-ranks bounded by (r1, . . . , rd−1) then the approximation XN− has
TT-ranks bounded by ((2N− + 1)r1, . . . , (2N− + 1)rd−1).

Proof Let fN (ξ) be the exponential sum approximation to ξ−α with N = N−+N++1
terms of the form

ξ−α ≈ fN (ξ) = EN−,N+(g, h) =
N+∑

j=−N−
α j e

−β j ξ , ξ ≥ 1.

obtained from Theorem 2. Then, we define the approximation XN− as follows:

XN− = λ−α
min

N+∑

i=−N−
αi, jC ×1 e

−βi, jλ
−1
minA1 . . . ×d e

−βi, jλ
−1
minAd ,

where λmin is the smallest eigenvalue of A. Let N = N− + N+ + 1, the amount of
terms in the sum. Using the definition of CP rank, and Lemma 6, Lemma 7, we make
the following observations:

– If C has CP rank bounded by r , then XN has CP rank bounded by Nr .
– If the multilinear rank of C is component-wise bounded by r = (r1, . . . , rd), then
the multilinear rank of XN can be controlled with (Nr1, . . . , Nrd) — thanks to
Lemma 6.

– If the TT-rank of C is bounded by r = (r1, . . . , rd−1) then the TT-rank of XN is
bounded by (Nr1, . . . , Nrd−1) — thanks to Lemma 7.

We now show that the approximation XN− satisfies the sought bound. First, we show
that N− ≥ N+; we have, thanks to the definition of N− and N+ in Theorem 2:
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N−
N+

= 2πd

h2

[(
2πd

β

)α

h−(α+1)
]−1

= (2πd)1−αhα−1βα.

We now have N− ≥ N+ ⇐⇒ N−/N+ ≥ 1, which holds if

hα−1 ≥ (2πd)α−1β−α ⇐⇒ h ≤ (2πd)β
α

1−α .

Since β ≥ cos(π/4), we can instead impose that h ≤ (2πd)(cos(π/4))
α

1−α , which is
implied by our assumption

N− ≥ (cos(π/4))1−α2α

2πd
.

Therefore, we have that N ≤ 2N− + 1. Using the representation vec(X) = x =
λ−α
min fN (λ−1

minA)c, we obtain

‖X − XN−‖F = ‖A−αc − λ−α
min fN (λ−1

minA)c‖2
≤ λ−α

min‖(λ−1
minA)−α − fN (λ−1

minA)‖2 · ‖c‖2,

where we have used that λ−1
minA is normal and has spectrum contained in [1,+∞).

We now apply Theorem 2 to obtain

‖X − XN−‖F

≤ 2λ−α
min

⎡

⎣1 + log(2) + �(α + 1)

(cos(π/8))α
+ (cos(π/4))−1

(
4
√
2πdN−
π2α

) 1
α

⎤

⎦

e−√
2πdN−‖C‖F .

We can choose d = πα
8 , and obtain the sought result. ��

3.3 Connection with rational approximations

In the matrix case (d = 2) bounds on the rank of the solution can be obtained by
linking the problem with rational approximation on the complex plane. In the special
case α = 1, this links to the well-known properties of low-rank Sylvester solvers such
asADI, that allows to build (explicit) approximants to the solution X of AX+XB = C
in the form

X − XN = r(A)Xr(−B)−1, r(z) = p(z)

q(z)
, rank(XN ) ≤ N · rank(C),

where p(z) and q(z) are polynomials of degree at most N + 1. Considering rational
functions which are small on an interval containing the spectrum of A and large on
an interval containing the one of B, we can build low-rank approximants to X . The
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problem of finding such rational functions is called a Zolotarev problem, and the
solution (for two real intervals) is known explicitly in terms of elliptic functions [38].

Whenα < 1 the situation is less straightforward because an equationwith separable
coefficients cannot be written. However, similar results can be derived by using a
Cauchy–Stieltjes formulation for z−α:

z−α = sin(απ)

π

∫ ∞

0

t−α

t + z
dz.

This representation yields a formula for the solution x = vec(X) toAαx = c in terms
of integrals of a parameter dependent family of (shifted) Sylvester equations, and this
can be used to determine a low-dimensional subspace where a good approximation for
the solution can be found. This has been exploited in [7, 26] for constructing rational
Krylov methods for the case d = 2 and α < 1, which predict an exponential decay in
the singular values (as opposed to the square root exponential bound from Theorem 2).

Since multilinear and tensor-train ranks are defined by matricization, we think that
a similar idea may be exploited to derive bounds for these special cases for d > 2,
although to the best of our knowledge this has not been worked out explicitly at the
time of writing.

A good indication in this direction is given by the numerical experiments, which
show a better approximability with respect to these formats than the one predicted by
Theorem 3. There is instead little hope to apply such techniques to the CP case.

It is worth mentioning that the connection with rational approximant of z−α have
been exploited in many works [1–3, 9, 17, 18] for designing efficient solvers for
fractional differential equations. Since it relies on the solution of shifted linear systems,
it gives effective methods for all cases where the matrix is sparse. Our approach using
matrix exponentials is instead more practical when aiming at exploiting the Kronecker
structure in the operator.

4 Numerical experiments

In this last section we report a few numerical experiments that further validate our
bounds, showing in which cases they are most descriptive. In addition, we show that
the exponential sum expansions yield an effective solver for problems with a low-rank
right-hand side.

All numerical experiments have been run on an AMD Ryzen 7 3700x CPU with
32GBofRAM, runningMATLAB2022awith the bundled IntelMKLBLAS.The code
for the experiments can be found at https://github.com/numpi/fractional-expsums.

4.1 3D fractional poisson equation

as a first example, we consider the solution of the fractional Poisson equation on the
3-dimensional cube [0, 1]3:
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Fig. 3 Relative error on the approximation of the solution for the discretization of the problem in (15) using
1283 points, with α = 0.4. The error is computed using the Frobenius norm, and the approximation is
computed using exponential sums with N terms, as in Theorem 2

{
(−�)αu = f in �

u ≡ 0 on ∂�
, � = [0, 1]3. (15)

We discretize the domain with a uniformly spaced grid with 128 points in each
direction, and the operator � by finite differences, which yields the linear system

A =
3⊕

i=1

Ai , Ai = 1

h2

⎡

⎢⎢⎢⎢⎣

2 −1

−1 2
. . .

. . .
. . . −1
−1 2

⎤

⎥⎥⎥⎥⎦
.

where h = 1
n−1 is the distance between the grid points. We approximate the solution

of (15) by computing u = A−αf where f is the vector containing the evaluations of
f (x, y, z) = 1/(1 + x + y + z) at the internal points of the discretization grid. For
this example, we choose α = 0.4.

In Fig. 3we report the quality of the approximation obtained for u by using the
exponential sumwith N terms described in Theorem 2. The exact solution is computed
by diagonalizing the matrices Ai , which is feasible and accurate because they are
symmetric and of moderate sizes.

We now consider the same examplewith right-hand side f (x, y, z) = sin x cos yez .
Since this function is separable, the corresponding vector f is the vectorization of a
rank 1 tensor. This allows to directly build a low-rank approximation of the solution
by the expansion:

A−αx ≈
N∑

j=1

α j e
−β jAf,
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Table 1 Time and accuracy of the low-rank approximation toA−αf for α = 1
2 obtained by the exponential

sums of length N = 100, 200, 350, and runtime of the dense evaluation based on diagonalization, for d = 3

n tdense t100 res100 t200 res200 t350 res350

128 0.15 0.15 1.26 · 10−4 0.3 1.85 · 10−6 0.6 1.62 · 10−8

256 1 0.57 1.27 · 10−4 0.95 1.86 · 10−6 1.8 1.63 · 10−8

512 8.1 2.03 1.28 · 10−4 3.61 1.87 · 10−6 6.29 1.64 · 10−8

1024 - 10.1 – 20.6 – 35.15 –

2048 - 52.35 – 104.3 – 182.1 –

4096 - 290.8 – 568.6 – 926.7 –

f = vec(F), e−β jAf = vec(F ×1 e
−β1A1 . . . ×d e

−βd Ad ) (16)

Under these hypotheses, the cost of evaluating the inverse fractional power is domi-
nated by computing the matrix exponentials, and requiresO(dn3 + Ndn2) flops for a
d-dimensional tensor with all modes of length n. In contrast, evaluating the fractional
power by diagonalization requires O(dn4) flops. In Table 1we compare the cost of
these two algorithms, using a different length of the exponential sum approximation
to z−α for α = 1

2 .
We note that in this case, it is not practical to compute the dense solution for

large dimensions, since the memory required is O(nd); the low-rank approximation
obtained through (16) only requires O(nd) storage. For this reason, we only report
the results for the dense case and the accuracy up to dimension n = 512 in Table 1.

We remark that since the convergence bound is uniform over [1,+∞) the accuracy
does not degrade as n → ∞, even if the largest eigenvalues of the discretized Lapla-
cian converge to infinity; this is necessarily the case, since the underlying continuous
operator is unbounded.

If n grows and the Ai are structured, it can be convenient to exploit strategies to
directly compute e−β j Ai v instead of building the entire matrix exponential e−β j Ai ,
such as methods based on Krylov subspaces (see [19] and the references therein) or
on truncated Taylor expansions [4].

4.2 Low-rank approximability in tensor formats

To test the results concerning low-rank approximability, we solve an equation in the
form Aαx = c, then we check the distance of the solution with the closest rank j
tensor, and we compare it with the upper bound from Theorem 3. We choose as Ai

the discretization of the 1D Laplacian as in Sect. 4.1, and the right-hand side c as
c = c1 ⊗ . . . ⊗ cd , with ci containing entries distributed as independent Gaussian
random variables with mean 0 and variance 1.

We have computed the reference solution explicitly by diagonalization of the Ai .
Then, we have approximated for each r = 1, . . . , 40 the best CP approximant of rank
at most r using the cp_als algorithm in the Tensor Toolbox [21] and cpd from
TensorLab [36], and for each N we have chosen the best approximation. The decay
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Fig. 4 Distance of the solution X from the best approximant of CP rank at most N , approximated by the
best approximation obtained from cp_als in the Tensor Toolbox and cpd from TensorLab. The distance
is compared with the upper bound for the asymptotic decay rate predicted by Theorem 3

Fig. 5 Distance of the solution X from the best approximant ofmultilinear andTT ranks atmost r , denoted by

X (ML)
r and X (T T )

r and approximated byhosvd in the Tensor Toolbox and by the TT-Toolbox, respectively.
The distance is compared with the upper bound for the asymptotic decay rate predicted by Theorem 3

rate is compared with O(e−√
2πdr ) predicted by Theorem 3 in Fig. 4 . The problem

is chosen of size n1 = n2 = n3 = 128, the power α = 1
2 , and the tolerance for the

cp_als algorithm is set to 10−12, and a maximum of 100 iterations. The parameters
forcpdhave not been tuned, as theywere already providing good results out of the box.

The estimate turns out to be somewhat pessimistic (the convergence of low-rank
approximant in CPD format is faster than what we predict), but is closer than what we
will obtain in the HOSVD and TT cases.

We have then run the same tests for multilinear and Tensor-Train ranks, which are
much smaller. In this context, our prediction of approximability turns out to be very
pessimistic, as visible in Fig. 5.
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We believe that the definition of ranks for the multilinear and TT cases, involving
matricizations, may be analyzed with more powerful tools from matrix theory, and
hence obtain stronger decay bounds.

The bounds are not completely descriptive of the decay rate, but can be used to
justify the application of low-rank methods to the problems under consideration, since
they provide easily computable a-priori bounds.

4.3 High-dimensional fractional PDEs with tensor-trains

We consider the computation of the solution for the solution of the PDE (−�)α = f
over [0, 1]d , with large d, and we choose the function f (x1, . . . , xd) as follows:

f (x1, . . . , xd) := 1

1 + x1 + · · · + xd
, xi ∈ [0, 1].

This function has lowmultilinear and tensor train ranks [32], but methods based on the
Tucker decomposition are not suitable, because of the exponential storage cost in d.
On the other hand, the CPD of a function not directly given in a separable form is not
easy to compute in general. Hence, we focus on solving the equation in a Tensor-Train
format.

As we did in Sect. 4.1, we discretize the domain with a uniformly spaced grid with
128 points in each direction and we compute u = A−αf,whereA is the discretization
of −� and f is the vector containing all the evaluations of f at the internal points of
the discretization grid.

To obtain a Tensor-Train representation of f , the tensor with the evaluations of
f (x1, . . . , xd) at the grid points, we relied on an AMEn-based version of the TT-cross
approximation, as described in [13], and implemented in the TT-Toolbox. This only
requires to evaluate f (x1, . . . , xd) at a few specific points in the grid, making the
method very effective in practice.

We then use our exponential sum approximation with N terms, which requires to
compute the Nd matrix exponentials e−β j Ai for j = 1, . . . , N and i = 1, . . . , d, and
then to multiply them by a low TT rank matrix with a mode- j product. The latter can
be evaluated efficiently in the Tensor-Train arithmetic, and the storage for the result
of the partial sum is kept under control by recompressing the tensors with economy
TT-SVDs, as implemented in the round command of the TT-Toolbox [28].

In Table 2we report time and accuracy for the approximation of u by the expo-
nential sum with N = 200 terms for α = 1

2 . Moreover, we report the TT-rank of the
approximated solution.

5 Conclusions and outlook

We have developed an exponential sum approximation for z−α , with 0 < α < 1;
this finds application in solving linear systems involving fractional powers of Kro-
necker sums, that naturally appear when treating high-dimensional fractional diffusion
problems on tensorized domains using the spectral fractional Laplacian.
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Table 2 Time, accuracy and
rank of the final solution, of the
low-rank approximation to
A−αf for α = 1

2 on [0, 1]d
obtained by the exponential
sums of length N = 200, and
different choices of d

d Time(s) Error Rank

2 0.42 1.65 · 10−6 15

3 0.88 1.76 · 10−6 16

4 1.87 1.87 · 10−6 24

6 4.22 – 26

10 9.82 – 28

15 16.2 – 27

20 24.5 – 27

The accuracy is computed by comparing the approximated solu-
tion with the one obtained by solving the Sylvester equation by
diagonalization, which is only feasible for small d ≤ 4

The design of this explicit approximation (along with guaranteed error bounds)
allows to effectively solve such linear systems for generic right-hand sides, but is
particularly interesting when the right-hand side is stored in a low-rank tensor format.
For these cases (examples have been reported for CP, Tensor-Trains, and Tucker ten-
sors) the exponential sum yields an explicit approximate solution in the same low-rank
tensor format, exploiting the preservation of the rank under mode- j products.

An important consequence of the construction is to predict the approximability of
the solution in the same format of the right-hand sides. We have tested the quality
of such predictions, and we have verified that it is not completely descriptive of the
approximation speed in the CP format and for TT and multilinear ranks. The rela-
tively loose upper bound derived may depend on the fact that we are developing an
approximant that is accurate over an unbounded interval [1,∞) whereas the spec-
trum of discretized differential operators is limited. On the other hand, our theory
gives dimension-independent approximability bounds — which is clearly visible in
our experiments, where the approximation error arising from the low-rank truncation
is always controlled a-priori when the number of terms in the exponential sum is
fixed, and is not influenced by the number of discretization points. Our results can be
extended to provide a priori justification for the approximability for infinite dimen-
sional operators with unbounded spectra, and in general motivate the use of adaptive
rank truncations.

We believe that other tools may be used to extend our bounds to the TT and the
Tucker case by restricting the focus to bounded spectra; this will be investigated in
future work. Giving up the generality of unbounded operators is likely to allow for a
more realistic description of the problem.

Since the latter formats (TT and Tucker) allow for easy recompressions, the pro-
posed exponential sum approach can be a competitive solver even if the ranks in
the solution are slightly overestimated. This has been demonstrated in a few practical
cases. In particular, in theTT case this framework allows to treat very high-dimensional
problems, beating the curse-of-dimensionality.
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