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Abstract

It is known that for a topological vector space it is possible to be the coproduct of
two of its subspaces in the category of vector spaces but while not being the coprod-
uct of the same subspaces in the category of topological vector spaces. There are
however wide classes of spaces where this cannot occur, notably finite-dimensional
spaces (but also some infinite-dimensional ones, for instance, Banach spaces). In
contrast, this kind of phenomen occurs easily (and frequently, as we here show)
for finite-dimensional diffeological vector spaces, where its numerous instances are
readily obtained in any dimension starting from 2. After briefly reviewing what is
known on this question in some classical categories, we provide an overview of this
phenomenon and some of its implications for finite-dimensional diffeological vector
spaces, indicating briefly its connections with some other subjects.
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1 Vector spaces in general as coproducts or not

There is a simple mathematical curiosity that arises when a vector space is endowed with
an extra structure, such as that of a topological vector space, a smooth structure of sorts,
and so on. In the most general terms, this curiosity can be described as follows: let C be
a category endowed with a faithful functor Ξ to the category Vect of vector spaces, and
let c, a, b be objects of C such that Ξ(c) is the coproduct in the category Vect of Ξ(a)
and Ξ(b); then one may wonder whether c itself is the coproduct of a and b in the initial
category C.

Topological vector spaces The most obvious instance of course is that of the category
C being the category of topological vector spaces and Ξ being the forgetful functor into
Vect; given a topological vector space V whose underlying vector space decomposes into
a direct sum of two of its subspaces, Ξ(V ) = Ξ(V1) ⊕ Ξ(V2), where V1 and V2 are vector
subspaces of V endowed with the subspace topology, one may wonder whether the product
topology on V1⊕V2 (relative to their subspace topologies inherited from V ) coincides with
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the topology of V itself (this is usually expressed as V being an algebraic direct sum of
V1 and V2 vs. it being their topological direct sum).

Now, in this case it is rather well-known that the answer is positive for any finite-
dimensional V , while it may turn out to be negative in the case of infinite dimension.
Indeed, any finite-dimensional Hausdorff topological vector space is homeomorphic to Rn

(if V is over R, to Cn if it is over C), while in the case of non-Hausdorff topological vector
spaces it suffices to recall that every such space is the product of a Hausdorff space and
an indiscrete space.

Thus, for topological vector spaces the question of an algebraic direct sum of vector
subspaces being also a topological direct sum is a matter limited to infinite dimension.
There indeed the two concepts may relatively easily turn out to be distinct as can be
illustrated by the space V defined as the subspace of C[0, 1] (the space of all continuous
functions with the uniform convergence topology) given by V = Span(M,N) with M the
space of all polynomials and N the span of some nonpolynomial continuous function, and
endowed with the subspace topology relative to its inclusion in C[0, 1]: indeed, V = M⊕N
algebraically, however its topology is larger than the direct sum topology relative to the
inherited topologies on M and N .1 On the other hand, for some specific classes of infinite-
dimensional vector spaces (such as, for instance, Banach spaces) it may turn out that for
every member of that class any its decomposition into an algebraic direct sum is also a
decomposition into a topological direct sum (see [18]).

Vector spaces with a “smooth” structure Similarly to the case of topological vector
spaces, if V is a vector space endowed with some type of a smooth structure such as that
of a finite-dimensional manifold (relative to which the vector space operations on V are
smooth), a Hilbert space, a Fréchet space, etc, and the subspaces V1, V2 of V are such that
they inherit from V an appropriate smooth structure (as is automatic in many cases), then
again one may wonder whether the corresponding product smooth structure on V1 ⊕ V2
coincides with that of V . Here again, if the dimension of V is finite, one observes that
V is in particular a connected Abelian Lie group with respect to the addition operation;
all such groups are of form Rk × (S1)l ([17]) and so any such vector space must again be
some Rn with its usual smooth structure.

Finite dimension appearing Contrary to the above-listed cases, it can be noted that
in categories different from Vect a phenomenon in some ways similar may occur even in
finite dimension. For instance, as follows from [8], [5], [9], there exist smooth manifolds,
such as the K3 surface, that admit topological decompositions (into a connected sum)
but not smooth decompositions. The analogy is not wholly complete, however, since in
general a connected sum is not the coproduct of its factors.

Diffeological vector spaces Now, what happens when C is the category of diffeo-
logical vector spaces, is that a finite-dimensional diffeological vector space (and a rather

1It must be said that I encountered this example in an online discussion at
https://math.stackexchange.com/questions/78917/example-of-a-topological-vector-space-such-that-e-
m-oplus-n-algebraically.
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simple one at that) may decompose as an algebraic direct sum of two of its subspaces
without being their (diffeological) smooth direct sum2 [16]. Thus, the just-mentioned
simple example indicates that a number of standard trivial properties involving direct
sum decompositions of vector spaces cannot be guaranteed in the diffeological context,
even for very simple finite-dimensional examples: a given direct sum decomposition may
not be smooth (and checking whether one is or is not so may not be wholly trivial, as
the example in the next section indicates), a given subspace may not — a priori — be
complemented3, and, also a priori, a given finite-dimensional diffeological vector space
may not admit any smooth decomposition into a direct sum at all. We are not yet aware
of specific examples as to the latter possibilities (we just give some indications as to how
such examples could be obtained, possibly exploiting a certain conjectural property of
so-called non-Baire functions, i.e. functions not belonging to any Baire class, [13]), al-
though it is known ([16]) that their consideration should be limited to the vector spaces
with trivial diffeological dual: indeed, every finite-dimensional diffeological vector space V
admits a (non-unique) smooth decomposition into a direct sum of a subspace diffeomor-
phic to its diffeological dual (hence whose subset diffeology is standard) and the so-called
maximal isotropic subspace, which is defined as the intersection of kernels of all smooth
linear R-valued functions.

Still another host of issues regards the classic direct sum decomposition of a vector
space V relative to a given linear map f : V → W , that as V = Ker(f)⊕Im(f). Unlike the
standard context where the meaning of such equality is immediately understood, in the
diffeological context and to our purposes much specification is needed as to what exactly
should be meant by the subspace Im(f). Indeed, by the standard definition Im(f) is a
subspace of the target space W (and the above equality indicates in fact an isomorphism),
and so its most natural diffeology is the subset diffeology relative to the diffeology on W .
However, this diffeology, while guaranteed to contain the pushforward of the diffeology of
V by f , may easily turn out to be larger (which is an internal property of W ). If this
is the case, V will certainly not be diffeomorphic to Ker(f) ⊕ Im(f) — but for reasons
fundamentally different from direct sums being or not being smooth.

Thus, the most natural way to pose the question appears to be that to ask whether V
is always diffeomorphic to Ker(f)⊕ Im(f), where Im(f) is endowed with the pushforward
of the diffeology of V by f . Still another angle on the same question relates it to the
question of smoothness of direct sums. Indeed, Ker(f) admits in general a multitude of
algebraic complements in V ; one may, on one hand, wonder whether any or even all of these
complements, considered with the corresponding subset diffeologies, are diffeomorphic to
Im(f) with its pushforward diffeology — and on the other hand whether any of these
subspaces complements Ker(f) smoothly, the two questions being a priori distinct.

In what follows we first illustrate how even establishing a smoothness of a given di-
rect sum decomposition of a diffeological vector space could be tricky, and then, after
recalling the known example of a non-smooth direct sum decomposition, we provide some

2Let V be a diffeological vector space, and let V1, V2 be two of its vector subspaces such that the
vector space underlying V coincides with V1 ⊕ V2. The diffeological vector space V is said to decompose
as a smmoth sum of V1 and V2 if the diffeology on V coincides with the product diffeology on V1 ⊕ V2.
relative to the subset diffeologies on V1 and V2 inherited from V .

3Meaning that it may not be part of any smooth direct sum decimposition of the ambient space.
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considerations regarding the existence of non-complemented subspaces, and then that of
finite-dimensional diffeological vector spaces that do not admit any smooth decomposition
into a direct sum.

Acknowledgment I would like to thank the organizers of the Special session on recent
advances in diffeology and their applications for their kind invitation.

2 When a maximal isotropic subspace is a (non-obvious)

coproduct

In this section we consider in detail the following example.

Example 2.1. Let V be R2 endowed with the vector space diffeology generated by the
following two maps:

p : R→ V, p(x) = (|x|, |x|),

q : R→ V, q(x) = (0,∆Q(x),

where ∆Q : R→ R acts by

∆Q(x) =

{
0, if x ∈ Q,
1, otherwise

4

We first observe that the space V possesses the following (rather evident) property.

Lemma 2.2. The maximal isotropic subspace of V coincides with V .

Proof. Let f : V → R be a smooth function, and let f(ei) = ai for i = 1, 2. Then
(f ◦ p)(x) = (a1 + a2)|x|, which is an ordinary smooth map if and only if a2 = −a1. Since
f ◦ q = a2∆Q, we immediately obtain a1 = a2 = 0.

The property of V that we are most interested in is the following one.

Theorem 2.3. The space V decomposes as a smooth direct sum of Span(e1) and Span(e2),
with the subset diffeology on Span(e1) being generated by the map x 7→ (|x|, 0) and that on
Span(e2) by maps x 7→ (0, |x|) and x 7→ (0,∆Q(x).

Proof. The essence of the proof consists in establishing the following equality:

|x| = 2x∆Q(H1(x))− 2x∆Q(H2(x)) + x

for all x ∈ R and two specific functions H1, H2 : R→ R that we now define. The function
H1 is given by

H1(x) =

{
e−

1
x2 x > 0

0 x 6 0.

4Obviously, ∆Q is related to the well-known Dirichlet function D by ∆Q = 1−D. In fact, our choice
to use ∆Q rather than the Dirichlet function turned out to be rather frivolous, since the same arguments
as below, with very slight adjustments, work for both.
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To define H2 we need certain auxiliary maps. Specifically, we define w : (0, 1) → ( 1√
2
, 1)

by setting w(x) =
√
2−1√
2
x + 1√

2
. Next, consider the countable sets {ai} = (0, 1) ∩ Q and

{bj} = w−1
(

( 1√
2
, ) ∩Q

)
; now, it is established in [7] that there exists a smooth (actually

analytic) monotone map f : (0, 1) → (0, 1) such that f maps the set {ai} onto the set
{bj} (that is, f is a map (0, 1)→ (0, 1) that sends rational points to rational points, and
irrational ones, to irrational).

Let now γ = w ◦ f , and define γ̄ : [0, 1) → R by γ̄(x) =

{
γ(x) x ∈ (0, 1)
1√
2

x = 0
; observe

that, since γ is analytic at 0, so is γ̄. Finally, define

H2 = γ̄ ◦H1.

Observe that, since f is analytic at 0 ([7]), H2 is smooth.
The equality |x| = 2x∆Q(H1(x)) − 2x∆Q(H2(x)) + x is now a simple consequence of

the choice of the functions H1 and H2. Indeed, since H1(x) ∈ Q if and only if H2(x) ∈ Q,
we have 2x∆Q(H1(x)) − 2x∆Q(H2(x)) = 0 for all x > 0, while, since H1(x) ≡ 0 and
H2(x) ≡ 1√

2
for x 6 0, it equals −2x for x 6 0. Hence the entire sum is x for postive x

and −x for all other x, that is, is the absolute value function.

Remark 2.4. As a mere curiosity, we observe that substituting in the expression of |x|
through δQ’s, in place of x and 2x, any other smooth functions f and g, we obtain a map
equaling f on (0,∞) and f − g on (−∞, 0], therefore, utilizing if necessary appropriate
translations, any piecewise-smooth function with one singularity can be expressed in an
analogous way through ∆Q.

In addition, we can also conclude the following.

Corollary 2.5. The subset diffeology on any non-zero subspace of V is non-standard.

Proof. Let W be a (proper) subspace of V , and let (a, b) be a generator of it. It follows
directly from the proof of the above theorem that the diffeology of V contains plots of
form x 7→ (|x|, 0) and x 7→ (0, |x|); being a vector space diffeology, it therefore contains
a plot of form x 7→ (a|x|, b|x|), which is a non-standard plot for the subset diffeology
of V .

3 Diffeological vector spaces not being coproducts

We now turn to nonsmooth direct sums.

A nonsmooth direct sum decomposition Let V be R3 endowed with the vector
space diffeology generated by the plot p : R → V given by p(x) = |x|(e2 + e3). It
was shown in [16] that the subset diffeologies on its subspaces V0 = Span(e1, e2) and
V1 = Span(e3) are both standard, hence, while V is an algebraic direct sum of V0 and V1,
it is not their smooth direct sum.

In fact, for diffeological vector spaces non-smooth direct sum decompositions are a
rather frequent phenomenon. To make this claim more precise, recall that, as was shown
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in [16], every finite-dimensional diffeological vector space V contains at least one subspace
that is maximal for the folowing two properties: its subset diffeology is standard, and it
splits off as a smooth direct summand (however, contrary to what was erroneously claimed
in [16], there is in general more than one such subspace). Any such subspace is called a
characteristic subspace of V , and it possesses the following property.

Lemma 3.1. Let V0 be a characteristic subspace of V , and let V = V0 ⊕ V1 be a smooth
direct sum decomposition of V . Then V1 coincides with the maximal isotropic subspace
of V .

Proof. Let f : V → R be a smooth function, and suppose that f |V1 6= 0. Since the
decomposition V = V0⊕ V1 is smooth, the map f ′ = 0⊕ f |V1 is a smooth linear function,
which implies that the dimension of the diffeological dual of V is strictly greater than
that of V0, which contradicts [16].

Thus, there are numerous diffeological vector spaces admitting non-smooth decompo-
sitions.

Corollary 3.2. If the dimension and the codimension of the maximal isotropic subspace
of a finite-dimensional diffeological vector space V are both positive then V admits at least
one smooth decomposition.

Proof. As a (by assumption) proper subspace of V , any chosen characteristic subspace has
a multitude of algebraic direct complements, only one of which coincides with the maximal
isotropic subspace, all the others giving rise to non-smooth direct sum decompositions
of V .

A non-complemented subspace The discussion in the subsequent sections is con-
tingent on the following assumption: suppose that there exists a non-smooth function
γ : R → R such that, if Dγ is the vector space diffeology on R generated by γ and D|·| is
the vector space diffeology on R generated by the absolute value function, then Dγ ∩ D|·|
is the standard diffeology on R.

Assuming this, we can easily conclude that there do exist finite-dimensional diffeo-
logical vector spaces containing non-complemented subspaces and, later, that there exist
ones that do not admit any smooth direct sum decomposition.

Example 3.3. Let γ be a function as in the assumption, and let V be R2 endowed with
the vector space diffeology generated by the following two plots: p : x 7→ (γ(x), γ(x)) and
q : x 7→ (0, |x|). Observe first that V coincides with its maximal isotropic subspace; indeed,
let f : V → R defined by f(e1) = a, f(e2) = b, be a smooth linear function. Then the
functions x 7→ (a+ b)γ(x), x 7→ b|x| are ordinary smooth functions, which readily implies
that a = b = 0.

Observe now that the subspace Span(e1) of V has standard subspace diffeology and
therefore it follows from the above that it is not complemented. Indeed, a generic plot of

V locally has form
(∑k

i=1 hi · (γ ◦Hi) + α1,
∑k

i=1 hi · (γ ◦Hi) +
∑l

j=1 fj|Fj|+ α2

)
, where

α1, α2, hi, Hi, fj, Fj are some smooth functions U → R for some domain U ⊆ Rn. For

this to be a plot of the subset diffeology of Span(e1) we must have
∑k

i=1 hi · (γ ◦ Hi) +
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∑l
j=1 fj|Fj|+ α2 ≡ 0, that is,

∑k
i=1 hi · (Γ ◦Hi) = −

∑l
j=1 fj|Fj| − α2. Now, the function

on the right belongs to D|·|, while the one on the left belongs to Dγ, hence by assumption
they are both smooth, which implies the desired conclusion.

Notice however that V , although (presumably) containing a non-complemented sub-
space, does admit an obvious decomposition into a smooth direct sum, that as Span(e1 +
e2)⊕ Span(e2).

Regarding the plausibility of the assumption stated on the beginning of the section and
on which our conjectural example depends, we suggest that γ could be a non-Baire (not
belonging to any Baire class) function (for instance, if one assumes the axiom of choice, it
could be the indicator function of a non-measirable set. Even without this axiom, there
do exist Lebesgue-measurable functions that are not Borel-measurable — again, indicator
functions of sets with this property —, which therefore again do not belong to any Baire
class, see for instance [1]). It should on the other hand be noted that our assumption
is not as trivial as one might perhaps at first glance exprct: for instance, it is known,
for Baire 1 functions, that the class of a Baire function is not necessarily preserved by
the operations of pre-composition with smooth functions, multiplication by such, and
summation,5 and we ourselves give in the previous section an example of of a Baire 2
function being rendered a Baire 0 function by precisely these operations. Yet, it can be
noticed that, if it were true that any subspace of a finite-dimensional diffeological vector
space is complemented, our example would imply that any function R → R whatsoever
could be made continuous via these operations.

Still independently of such considerations, an attempt to construct an explicit example
of a non-complemented subspace could be made as follows. Let V be R2 endowed with

the vector space diffeology generated by the plot x 7→
(

∆Q(x),∆Q(
√
|x|)
)

. Observe first

that the maximal isotropic subspace of V coincidds with V . Indeed, let f , f(e1) = a,
f(e2) = b, be a smooth linear function on V , then x 7→ a∆Q + b∆Q(

√
|x|) is an ordinary

smooth function R → R. Since the set of irrational numbers is dense in R, it must be
a constant function with value a + b. On the other hand, since R contains both rational
numbers with irrational root and those with rational root, this value must be equal to
both b and 0, respectivly, hence a = b = 0.

Observe next that the result just obtained implies that if V contains a subspace with
the subset diffeology that is standard, that subspace cannot split off as a smooth direct
summand, and consider the subspace Span(e1). It is trivial to observe that this subspace
having standard subset diffeology depends on the following, at the moment conjectural,
implication holding for all smooth functions hi, Hi:

k∑
i=1

hi(∆Q ◦
√
|Hi|) is smooth ⇒

k∑
i=1

hi(∆Q ◦Hi) is smooth .

Whether this implication does actually hold is at the moment work in progress.6

5It is preserved by the latter two operations [6], but not necessarily by that of the pre-composition,
there being a certain field of study of the relevant issue, see for instance [11], [19].

6The hope of it being true is based on potential use of arguments akin to those involved in the study
of recoverability of Baire fuctions (see for instance [14], [4], although there regard Baire 1 functions): the
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Non-decomposable vector spaces Let γ be a function as in the previous section,
i.e., satisfying the assumption that Dγ ∩ D|·| is the standard diffeology, whose existence
we again assume. Then this yields the following example of a diffeological vector space
that does not admit any non-trivial decompositions into a smooth direct sum.

Example 3.4. Let W be R2 endowed with the vector space diffeology generated by the
map x 7→ (|x|, γ(x)). Observe first that the maximal isotropic subspace of W coincides
with W ; indeed, if f : W → R is a smooth linear map defined by f(e1) = a, f(e2) = b then
x 7→ a|x|, x 7→ bγ(x) are ordinary smooth maps, which immediately implies a = b = 0.

We claim that every proper (nontrivial) subspace of W has standard diffeology. Indeed,
let ce1 + de2 be a generator of such a subspace. A generic plot of W locally is a function

of form
(∑k

i=1 hi|Hi|+ α1,
∑k

i=1 hi(γ ◦Hi) + α2

)
for some smooth maps α1, α2, hi, Hi :

U → R. For this to be a plot of the subset diffeology on Span(ce1 + de2) we must have
d
∑k

i=1 hi|Hi|+dα1 = c
∑k

i=1 hi(γ ◦Hi)+cα2. However, the function on the left belongs to
D|·|, while that on the right, to Dγ, therefore by the assumption both of them are smooth.
Thus, every one-dimensional subspace of W has standard diffeology, and since the maximal
isotropic subspace of W is W itself, no non-trivial subspace of W with standard subbset
diffeology splits off as a smooth direct summand. Therefore W does not admit nontrivial
decompositions into a smooth direct sum.

It is quite obvious that the choice of | · | is relatively arbitrary, and the same procedure
as in the example above and that in the preceding section would work for any pair of
non-smooth functions γ1, γ2 such that Dγ1 ∩ Dγ2 is the standard diffeology of R. Since
we are not aware of a formal proof of existence or non-existence of such functions, we
again notice that a different kind of space, which in the previous section was conjectured
to contain a non-complemented subspace, should this latter conjecture turn out to be
correct, would turn out to be non-decomposable as well. Indeed, it is easy to see that the
conjectural implication stated in the previous section would also imply that the subset
diffeology on any proper subspace of the space in question be standard, and by the same
reasoning the space would be nondecomposable.

Remark 3.5. As a side remark, the question of a given (finite-dimensional) diffeological
space admitting at least one decomposition into a smooth direct sum of its subspaces can
be also stated in the following terms. Let V be the space in question, and let Dp be the
category of its plots ( i.e. the category whose objects are plots of V and whose arrows are
commutative triangles of form

U U ′

V

f

p q
,

where p and q are plots of V , and f : U → U ′ is an ordinary smooth map; this category is
amply used in diffeology, for instance in studying the D-topology on diffeological spaces [2],

potential recoverability of
∑k

i=1 hi(∆Q◦
√
|Hi|) from its values on certain specific sets and the assumption

of it being smooth might impose certain conditions (local nullity conditions, in fact) on the coefficient

functions hi sufficient to ensure the smoothness of
∑k

i=1 hi(∆Q ◦Hi).
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defining their tangent spaces and tangent bundles [3], defining diffeology on the Milnor
classifying space of a diffeological group [15], defining sheaves for diffeological spaces [12],
and so on).

Let V0, V1 be a pair of subspaces of V , and let D0
p and D1

p be respectively the categories
of plots of the subset diffeologies on V0 and V1. Consider the subcategory D0,1

p of the
product category D0

p × D1
p whose objects are pairs (p0, p1) such that p0 and p1 have the

same domain.7 Then it is obvious that V decomposes as a smooth direct sum of V0 and
V1 if and only if the assignment (p0, p1) 7→ p0 + p1 defines an isomorphism of categories
D0,1
p → Dp. In particular, V is decomposable if its category of plots Dp can be identified

with some equalizer category D0,1
p .

On decompositions of form Ker(f) ⊕ Im(f) Finally, we observe that if nonde-
composable diffeological vector spaces do exist, for any such space a diffeomorphism
V ∼= Ker(f) ⊕ Im(f) (Im(f) being considered, recall, with the pushforward diffeology)
automatically cannot hold for any nontrivial f with nontrivial kernel (this by nature of
what it means to be a nondecomposable space). On the other hand, the subspace Ker(f)
being a summand in some non-smooth decomposition does not, of course, exclude that
there may be such a diffeomorphism, as can be illustrated by the space V of [16] (R3 with
the vector space diffeology generated by x 7→ |x|(e2 + e3)) and the map f defined on V by
e1 7→ e1, e2 7→ e2, e3 7→ 0, and taking values in R2 endowed with pushforward diffeology.
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