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Abstract—Augmented reality head mounted display devices
(HMDs) provide user’s natural view of the real world with
enhanced experience through optical superposition of virtual
data. Manual-task guidance applications exploiting these sys-
tems are particularly suited in computer-aided-surgery. However,
the typical working distance of commercial devices is higher
than user reachable space, limiting the purpose of manual-
task guidance. Specifically, known issues such as the ”vergence-
accomodation-conflict” and the ”focus-rivalry” may lead to visual
fatigue and mental workload worsening task performance. Here,
we exploit EEG recordings during a ”connecting-the-dots” task
performed with and without AR to evaluate the mental workload
associated with AR-related visual fatigue. First, we quantify
the reduction of users’ performance based on starting and end
points gap errors. Then, we investigate the effects on AR usage
on cortical activity through the analysis of EEG power and
Frontal Alpha Asymmetry (FAA) index. Although preliminary,
our results suggest that mental workload associated with AR
usage may derive from enhanced difficulty associated with the
task. Furthermore, a shift in FAA from controlateral to ipsilateral
regions seems to confirm this hypothesis.

Index Terms—Augmented-Reality (AR), quantitative-EEG, vi-
sual fatigue, mental workload, power analysis, frontal alpha
asymmetry
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I. INTRODUCTION

In the recent years, augmented reality (AR) head-mounted
display devices (HMDs) have gained popularity over a large
number of fields, ranging from consumer-level products for
gaming applications to BCI systems and computer-aided
surgery [1], [2], [3], [4]. One great advantage of these systems
is to augment operator’s natural view of the real world,
allowing for manual tasks guidance and real-time estimation
of hand location during task execution. In this context, sev-
eral limitations may arise, ranging from technological (i.e.
device obtrusiveness, low luminance, small field-of-view) to
perceptual (i.e. the conflict between 2D virtual content on the
surface of projection and 3D real world). Perceptual conflict is
certainly one of the most critical factors of HMDs, leading to
two common phenomena: the vergence-accomodation conflict
(VAC), that arises when maintaining a single binocular vision
[5], and the focus rivalry (FR), that occurs when focusing real
and virtual content at the same time [6].

VAC and FR effects are particularly evident when the
real content is located in the user’s peripersonal space (i.e.
the space containing reachable objects), limiting their use
in precision manual tasks such as AR guided-surgery [1].
Specifically, VAC and FR give rise to visual fatigue [7], [8],
which turns out in an increased visual discomfort and mental
workload on user performance during the execution of AR
guided tasks. In particular, user performance was observed to
be better during naked eye tests with respect to AR-guided
tasks [9].



Visual fatigue is usually assessed by exploiting question-
naires gathering users’ evaluations before and after the ex-
periment [10], [11]. Nevertheless, questionnaires are naturally
biased by inter-subject variability in the answers, due to the
subject’s mood at the time of the experiment as well as
to their past experience or to their level of understanding
of the questions [12]. On the other hand, alternative ap-
proaches may exploit electrophysiological features for assess-
ing the visual fatigue, such as those provided by quantitative-
electroencephalography (qEEG) [13], [14]. Previous studies
involving power spectrum indexes [12] as well as Event-
Related Potentials (ERPs) latency and amplitude successfully
identified visual fatigue and discomfort in VR environments
during passive tasks involving visual stimuli [15]. A step fur-
ther may be that of evaluating the mental workload associated
with visual fatigue during manual task execution with respect
to simple passive visual tasks.

Therefore, in this preliminary study we estimate brain
activity correlates of mental workload during a manual task
with and without AR. Power spectrum and Frontal Alpha
Asymmetry (FAA) [16] were analyzed in order to highlight
statistically significant differences in brain activity related to
the AR-environment. In particular, we estimate these two
electrophysiological measures to discriminate among the same
manual task executed with or without the Microsoft HoloLens
device. Results are integrated with performance error out-
comes of the manual task in both conditions.

II. MATERIAL AND METHODS

A. Subjects

Twelve healthy volunteers (age 25±2.85, 5 males, all right-
handed) underwent an augmented reality guided ”connecting-
the-dots” precision task using Microsoft HoloLens. Subjects
were selected based on their visual acuity, assessed through
the Digital Acuity LogMAR Charts from Chart2020. Specifi-
cally, only those subjects with normal or corrected-to-normal
visual acuity participated in the study. All subjects gave their
informed consent to take part to the study, self-reporting no
history of clinical cardiovascular and/or mental diseases.

B. Experimental protocol

During the experiment, each subject sat in front of a desk,
with their chin placed over a ”chin-rest” in order to fix the
target/user distance at 0.5m (Fig. 1). The protocol consisted
of two modalities:

• AR guided (AR);
• Naked eye (NK).

and for each modality, the ”connecting-the-dots” task was
performed 3 times. Specifically, the experiment consisted of
120s of rest followed by 3 repetitions of each task, with
an inter-task interval of 30s as illustrated in Fig. 2. Finally,
modality was randomized across subjects.

For each task, subjects connected a sequence of 15 num-
bered dots with a straight line (Fig. 3). Dots were randomly
displayed on an A4 paper put on a vertical physical support.
During the AR modality, numbered dots were displayed in

front of a blank paper: this forces the subject’s eyes to focus
both on the virtual (dots) and the real objects (paper, pen). For
the NK modality, HoloLens were removed and the numbered
dots were printed on the paper.

At the end of the experiment subjects filled in the Likert
questionnaire on how was the experience with AR during the
experiment (e.g., level of discomfort, sharpness of the dots,
level of fatigue).

C. Augmented Reality device

The selected HMD is the 1st Generation Microsoft
HoloLens, an Optical See-Through HMD (OST-HMD) with
self-contained computing power, based on an undisclosed Intel
32-bit processor, with a custom-built Microsoft Holographic
Processing Unit (HPU 1.0) which supports Universal Windows
Platform (UWP) apps. HoloLens features 2 GB of RAM
and 64 GB of flash memory, and network connectivity via
Wi-Fi 802.11ac and Bluetooth 4.1 LE wireless technology.
The sensory system of the device includes: one depth cam-
era, four grayscale tracking cameras, and one world-facing
photo/video camera (2 MP), one ambient light sensor, one
inertial measurement unit (IMU) to track head movements,
and four microphones.

D. Manual task performance analysis

Each ”connecting-the-dots” sequence was analyzed to mea-
sure subject’s performance in connecting dots. Given that
eye-to-display calibration errors may lead to a distortion of
the perceived virtual content, and therefore they can play a
major role in the misperception of line lengths. The perfor-
mance was evaluated in term of gaps (Gij) between the end
(Endi) and the starting points (Startj) of each pair (i,j) of
consecutive lines. This measure indeed cannot be related to
calibration inaccuracies. The line endpoints were automatically
detected with the Harris Corner Detector, as described in [9],
processing the image drawn by the subject with MATLAB

Fig. 1. Experimental setup. The subjects sat in front of a desk and placed
their chin over a ”chin-rest” in order to fix the target/user distance at 0.5m.



Version R2017b. For each trial the following parameters were
calculated: maximum gap (GMAX), mean gap (GMEAN), and
total gap (GTOT), i.e. the sum of all the gaps (Gij) measured
in the trial.

E. EEG data acquisition and preprocessing

EEG signals were recorded using 128-channel Geodesic
EEG System 300 from Electrical Geodesics, Inc. (EGI).
Channels were referenced to Cz and acquired with a sample
frequency of 500Hz.

EEG signals were preprocessed with EEGLAB [17]. First,
the data was band-pass filtered in the range [1-40]Hz. Then,
50Hz line noise and the 100Hz and 150Hz harmonics were re-
moved by applying three notch filters with a stop-band of 4Hz.
Bad channels were estimated by evaluating the correlation
coefficient between channels. Specifically, we removed those
channels whose correlation with their neighbours was less than
the 80% as they are likely to be associated with artifacts [18].
Then, EEG data were visually inspected and bad data periods
(e.g. those affected by movement artifacts, EMG artifacts, and
others non-stereotyped phenomena) were removed by hand,
together with bad channels not identified in the previous step.
The deleted channels were recovered by interpolation prior to
referencing them to signal average. Finally, EEG signals were
decomposed into sets of maximally independent components
by Independent Component Analysis (ICA) [19]. The obtained
components corresponded to statistically independent time-
courses associated with static ICA maps. Components are
representative of both brain activity and different types of
artifacts. Here, we exploited ICA decomposition for removing
ICs representing eye blinks artifacts, saccadic movements and
ECG artifacts.

F. EEG power spectral density estimation

For each electrode, the power spectral density of prepro-
cessed EEG signals was estimated using the Welch method.
Moving windows were 5s-long and their overlap was the 75%.
Electrodes were further grouped into eight regions of interest
according to their location over the scalp (i.e. Frontal Left
(FL), Frontal Right (FR), Temporal Left (TL), Temporal Right
(TR), Parietal Left (PL), Parietal Right(PR), Occipital Left
(OL) and Occipital Right (OR)). For each ROI and for each
modality, the average power was estimated. Average power
estimates were then analyzed for 3 frequency bands of interest:
θ[4−8]Hz, α[8−13]Hz and β[13−30]Hz. Furthermore, we
evaluated left and right hemispheres’ power for each modality.

Fig. 2. Experimental timeline. Each modality consisted of 120sec of rest,
followed by 3 repetitions of the task. The inter-task interval was of 30sec.

Then, we evaluated the Frontal Alpha Asymmetry (FAA) for
each modality, as this can be related to approach-withdrawal
behaviour related to the use of AR. FAA was evaluated as the
difference between the log mean power of the frontal right
and left ROIs (1):

FAA = 10Log10(P FR)− 10Log10(P FL) (1)

G. EEG statistical analysis

Statistically significant differences in between AR and NK
modalities were assessed with a non-parametric Wilcoxon
sign-rank test. This procedure was applied to performance
outcomes and power estimates. For the latter, differences were
evaluated within the θ, α and β bands and for each one of the
8 ROIs on the scalp. Multiple comparison was controlled with
False-Discovery-Rate (FDR) Benjamini-Yekutieli correction
for multiple testing under dependency [20]. We further esti-
mated differences in power, for each frequency band, between
the left and right hemisphere by grouping ROIs based on their
position on the scalp (i.e. FL, TL, PL and OL vs. FR, TR,
PR and OR) with a Friedman’s test with replicates. Finally,
FAA significant differences were evaluated by comparing their
medians with the Wilcoxon sign-rank test.

III. RESULTS

A. Performance Results

All the subjects did not experience any perceivable jit-
ter/drift of the virtual content, and successfully completed
the six tasks. Mean and standard deviation values of GMAX,
GMEAN and GTOT are reported in Table I, showing that,
on average, subjects performed better during the Naked-eye
sessions. The Wilcoxon signed-rank test showed significant
differences in subject performances depending on the test
modalities (p < 0.05).

B. EEG power analysis

The Wilcoxon signed-rank test did not show any significant
change in power between AR and NK modalities for none
of the analyzed ROIs and for none of the frequency bands
considered. On the other hand, considering the power in

Fig. 3. Example of the task performed. On the left, the virtual content
visualized by the subject; on the right, lines drawn by the subject processed
to evaluate the performance: the endpoints (Starti, Endi) of each line are
represented with black stars.



the left and right hemispheres from grouped ROIs analysis,
significant differences were observed between modalities (p <
0.05, FDR− corrected). Specifically, we found higher alpha
power during AR with respect to NK in both hemispheres
(Fig.4).

Finally, significant differences were observed in the FAA
index between AR and NK modalities. In particular, while
limited lateralization occurred during AR, unbalanced power
was observed during the NK condition. Specifically, the power
in FL was higher with respect to the power in the FR (Fig.5).

Fig. 4. Box-plot of α-power differences between AR and NK modality. Left:
comparison between the distribution of the α-power in the left hemisphere
between AR and NK conditions. Right: comparison of the α-power in the
right hemisphere between AR and NK conditions. The median value of α-
power is greater in the AR modality than in NK in both hemispheres. Outliers
are marked with a ’+’ sign (* = p < 0.001).

IV. DISCUSSION AND CONCLUSION

In this preliminary study, we investigated the brain electrical
activity provided by EEG measurements during an AR-guided
manual task and evaluated relevant differences with respect to
the same task executed without AR. Specifically, we aimed at
highlighting potential differences in EEG features associated
with mental workload deriving from visual fatigue.

Twelve healthy volunteers used the Microsoft HoloLens
device at a lower distance with respect to the minimum focal
distance, enhancing VAC and FR effects. Our results are in line
with previous studies that quantified the worse performance
of manual tasks using AR [9]. This may derive from an
increased mental workload associated with AR use. Here, we
showed that such workload can be quantified through the use
of electrophysiological measures.

We observed that EEG power does not change between AR
and NK modalities for eight brain ROIs and for the three

TABLE I
PERFORMANCE EVALUATION RESULT.

2*Feature Naked-eye AR 2*p-values
Mean STD Mean STD

GMAX [mm] 0.2 0.1 0.3 0.1 0.013
GMEAN [mm] 0.1 0.5 0.1 0.1 0.011
GTOT [mm] 0.8 0.5 1.8 0.8 0.004

Fig. 5. Distributions of the FAA index computed in the AR condition (left)
and in the NK condition (right). The power in the NK condition is shifted
toward the left hemisphere, while in the AR condition the power is almost
symmetrical. Outliers are marked with a ’+’ sign (* = p < 0.05).

frequency bands considered. Nevertheless, we observed sta-
tistically significant differences between modalities in the α-
power when the left and right hemispheres were considered as
a group. In this view, we can hypothesize that local differences
may not be as high as global ones. Indeed, previous studies
involving tasks of increasing difficulty showed that alpha
power increases as the difficulty of the task does, and that
such increase is independent of hemisphere considered [21].
Although in such work the experiments were not specifically
manual tasks, the impact of task-difficulty may reflect in a
higher mental workload. This seems to be confirmed also by
the performance analysis, since all subjects committed higher
errors during the AR-guided task with respect to NK condition.

Significant differences in FAA were observed when per-
forming the task in NK condition with respect to using AR.
This index is known to characterize an approach-withdrawal
behaviour [22]. Thus, it seems reasonable to assume that such
a behaviour may distinguish the two modalities. Specifically,
left-lateralization was observed to promote approach whereas
increased right activity was associated with withdrawal be-
haviour [23]. In this view, our results suggest that during
NK an approach-like behaviour is present. On the other
hand, no evident lateralization in frontal EEG power was
observed for the AR. However, another consideration must
be done. Indeed, increased neural ipsilateral recruitment has
been observed as tasks become more complex [24], [25]. In
this view, considering the left-lateralization observed during
NK condition, and that all subjects that participated in the
study were right-handed, we can suppose that the shift in FAA



towards the right hemisphere may be due to an increase in task
complexity, that could also reflect a higher mental workflow.

Although preliminary, our results suggest that mental work-
load associated with visual fatigue during AR-guided manual
task can be measured with EEG derived electrophysiological
features. It is our opinion that more outstanding results will
be possible in the future by enlarging the number of subjects
participating to the study as well as including other relevant
physiological signals, as for instance those related to auto-
nomic nervous function. Indeed, a not-negligible limitation
is related to the limited number of subjects involved in the
study. Another fundamental distinction may consider user’s
familiarity with AR systems that can potentially bias results,
as experienced users may reasonably feel less discomfort in
AR-environments. Nevertheless, this study offers interesting
perspectives for further characterizing the neural correlates
associated with AR environments.
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