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ABSTRACT
In uses of pre-trained machine learning models, it is a known issue
that the target population in which the model is being deployed
may not have been reflected in the source population with which
the model was trained. This can result in a biased model when
deployed, leading to a reduction in model performance. One risk
is that, as the population changes, certain demographic groups
will be under-served or otherwise disadvantaged by the model,
even as they become more represented in the target population.
The field of domain adaptation proposes techniques for a situation
where label data for the target population does not exist, but some
information about the target distribution does exist. In this paper
we contribute to the domain adaptation literature by introducing
domain-adaptive decision trees (DADT). We focus on decision trees
given their growing popularity due to their interpretability and
performance relative to other more complex models. With DADT
we aim to improve the accuracy of models trained in a source
domain (or training data) that differs from the target domain (or test
data).We propose an in-processing step that adjusts the information
gain split criterion with outside information corresponding to the
distribution of the target population. We demonstrate DADT on
real data and find that it improves accuracy over a standard decision
tree when testing in a shifted target population. We also study the
change in fairness under demographic parity and equal opportunity.
Results show an improvement in fairness with the use of DADT.

CCS CONCEPTS
• Computing methodologies → Classification and regression
trees; Learning under covariate shift.
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1 INTRODUCTION
In uses of pre-trained machine learning models, it is a known issue
that the target population in which the model is being deployed
may not have been reflected in the data with which the model
was trained. There are many reasons why a training set would not
match the target population, including sampling bias [29], concept
∗Both authors contributed equally to this research.

drift [9], and domain shift [9]. This situation can lead to a reduction
in model performance in the target domain. One risk is that, as the
demographic distribution of the population changes, certain groups
will be under-served by model performance, even as they become
more represented in the target population: a type of representation
bias [29]. Lack of representation, or invisibility, of this kind can be
unfair, and adequate visibility can be a prerequisite for fairness [5,
Chapter 4]. A classic example is that of female and darker-skinned
people being underrepresented in computer-vision datasets, hence
scarcely visible to the learning algorithm, with consequences like
high error rates in facial recognition and consequent denials of
benefits (such as authentication) or imposition of harms (such as
arrests) [3]. One, often advisable, approach for dealing with this is to
train a newmodel with updated or improved training data. However,
in the case of supervised learning, this may not be possible, as label
information for these additional members of the target population
may not yet exist. Additionally, while collection of representative
data is very important, it does come at a cost, including a time cost,
so that some shift in the target is likely to occur before updated
data is collected or a shift is even identified. The field of domain
adaptation proposes techniques for addressing these situations [23].

In this paper we contribute to the domain adaptation literature
by introducing domain-adaptive decision trees (DADT). With DADT
we aim to improve accuracy of decision tree models trained in a
source domain (or training data) that differs from the target domain
(or test data), as it may occur when we do not have labeled instances
for the target domain.We do this by proposing an in-processing step
that adjusts the information gain (IG) split criterion with outside
information in the form of unlabeled data, corresponding to the
distribution of the target population we aim for. The approach
works by adapting probability estimation to the target domain and,
thus, making parts of the feature space more visible to the learning
algorithm. We investigate the conditions in which this strategy can
lead to increases in performance, fairness, or both.

As an illustrative example, consider the case of a sports retail
store looking to target new clients (𝐷𝑇 ) using what it knows about
its current clients (𝐷𝑆 ) based on geographical regions. The store
only has information on the purchasing habits (𝑌 ) of 𝐷𝑆 . Imagine
that the store wants to use a classifier to inform its inventory on
women’s football shoes. If the two client populations differ by re-
gion, which is likely, the classifier trained on 𝐷𝑆 and intended to
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predict purchasing patterns (𝑌 ) on 𝐷𝑇 could lead to biased predic-
tions when used. For instance, if there is less demand for women’s
football shoes in the source region relative to the target region, the
classifier could underestimate the stocks of women’s football shoes
needed, under-serving the potential new clients. This could lead to
lower service or higher prices for some social groups, and the lost
opportunity by the store to gain or even retain customers in the
target region. To break such feedback loops, the store could improve
the classifier by amplifying some of the knowledge about football
shoes purchases in the source region. It could, for instance, use
knowledge about the demographics in the target region to better
approximate the demand for football shoes by women.

We focus on decision trees for domain shift because decision
trees are accessible, interpretable, and well-performing classifica-
tion models that are commonly used. In particular, we study deci-
sion trees rather than more complex classifiers when using tabular
data for three reasons. First, these models are widely available
across programming languages and are standard in industry and
academic communities [24]. Second, these models are inherently
transparent [25], which may facilitate the inclusion of stakeholders
in understanding and assessing model behaviour. Third, ensembles
of these models still outperform the deep learning models on tab-
ular data [10]. For these reasons, and as proposed AI regulations
include calls for explainable model behaviour [8, 32], decision trees
are a relevant choice when training a classifier and it is therefore
important to address issues specific to them.

There are different types of domain shift [22] and they have
different implications for suitable interventions. We focus on the
covariate shift case of domain shift. This is the case where only the
distribution of the attributes change between the source and target,
not the relationship between the attributes and the label.

In Section 2, we introduce the problem setting as a domain adap-
tation problem, focusing on the covariate shift type of this problem.
We also present the necessary background before presenting our
proposed intervention to the information gain and introduce the
domain adaptive decision trees in Section 3.

Then in Section 4, we present the results of our experiments. In
the experiments reportedwe utilize theACSPublicCoverage dataset—
an excerpt of USCensus data [6], with the prediction task of whether
or not a low income individual is covered by public health coverage.
The dataset provides the same feature sets for each of the US states.
This design allows us to set up an experimental scenario thatmirrors
our retail example of having no labeled data for the target domain,
but some knowledge of the distribution of the attributes in the
target domain.

With these experiments we aim not only to improve overall
accuracy, but also to produce sufficient accuracy for different demo-
graphic groups. This is important because the distribution of these
groups may be different in the target population and even shift
over time in that population. For example, Ding et al. [6] found that
naïvely implementing a model trained on data from one US state
and using it in each of the other states resulted in unpredictable
performance in both overall accuracy and in demographic parity
(a statistically defined metric of model fairness performance based
on treatment of members of a selected demographic group com-
pared to members of another demographic group). We therefore

also test the impact of our intervention on the results of a post-
processing fairness intervention [12], which we measure using two
common fairness metrics: demographic parity and equal opportunity
[2, Chapter 3].

We examine those results in relation to the covariate shift as-
sumption between source and target populations. We see that our
intervention leads to an increase in accuracy when the covariate
shift assumption holds. The related work in Section 5 situates our
approach in the literature on domain adaptation in decision trees
and adjusting the information gain of decision trees. Section 6 closes
and gives an outlook on future work.

Research Ethics:We use data from an existing benchmark de-
signed for public use and work with aggregated or anonymized data
only, thus complying with applicable legal and ethical rules, and
we disclose all details of our method in line with the transparency
mandates of the ACM Code of Ethics.

2 PROBLEM SETTING
Let X denote the set of discrete/continuous predictive attributes,
𝑌 the class attribute, and 𝑓 the decision tree classifier such that
𝑌 = 𝑓 (X) with 𝑌 denoting the predicted class attribute. We assume
a scenario where the population used for training 𝑓 (the source do-
main 𝐷𝑆 ) is not representative of the population intended for 𝑓 (the
target domain 𝐷𝑇 ). Formally, we write it as 𝑃𝑆 (X, 𝑌 ) ≠ 𝑃𝑇 (X, 𝑌 ),
where 𝑃𝑆 (X, 𝑌 ) and 𝑃𝑇 (X, 𝑌 ), respectively, denote the source and
target domain joint probability distributions. We tackle this sce-
nario as a domain adaptation (DA) problem [23] as it allows us to
formalize the difference between distributions in terms of distri-
bution shifts. There are three types of distribution shifts in DA:
covariate, prior probability, and dataset shift. Here, we focus on
covariate shift [17, 22, 33] in which the conditional distribution of
the class, 𝑃 (𝑌 |X), remains constant but the marginal distribution
of the attributes, 𝑃 (X), changes across the two domains:

𝑃𝑆 (𝑌 |X) = 𝑃𝑇 (𝑌 |X) but 𝑃𝑆 (X) ≠ 𝑃𝑇 (X) (1)

We focus on covariate shift because we assume, realistically, to
have some access only to the predictive attributes X of the target
domain.1 Under this unsupervised setting, we picture a scenario
where a practitioner needs to train 𝑓 on 𝐷𝑆 to be deployed on 𝐷𝑇 .
Aware of the potential covariate shift, the practitioner wants to
avoid training a biased model relative to the target domain that
could result in poor performance on 𝑌 .

What can be done here to address the DA problem depends on
what is known about 𝑃𝑇 (X). In the ideal case in which we know
the whole covariate distribution 𝑃𝑇 (X), being under (1) allows for
computing the full joint distribution due to the multiplication rule
of probabilities:

𝑃𝑇 (𝑌,X) = 𝑃𝑇 (𝑌 |X) · 𝑃𝑇 (X) = 𝑃𝑆 (𝑌 |X) · 𝑃𝑇 (X) (2)

where we can exchange 𝑃𝑇 (𝑌 |X) for 𝑃𝑆 (𝑌 |X), which is convenient
as we know both 𝑌 and X in 𝐷𝑆 . In reality, however, the right-hand-
side of (2) can be known to some extent due to three issues:

1The other two settings require information on 𝑌 being available in 𝐷𝑇 , with prior
probability shift referring to cases where the marginal distribution of the class attribute
changes, 𝑃𝑆 (X |𝑌 ) = 𝑃𝑇 (X |𝑌 ) but 𝑃𝑆 (𝑌 ) ≠ 𝑃𝑇 (𝑌 ) , and dataset shift referring to
cases where neither covariate nor prior probability shifts apply but the joint distribu-
tions still differ, 𝑃𝑆 (X, 𝑌 ) ≠ 𝑃𝑇 (X, 𝑌 ) .
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(P1) 𝑃𝑇 (X) is not fully available, meaning the marginal distribu-
tions of some of the attributes 𝑋 ∈ X are known;

(P2) 𝑃𝑇 (𝑌 |X) ≈ 𝑃𝑆 (𝑌 |X) but not equal, meaning the covariate
shift holds in a relaxed form; and

(P3) 𝑃𝑇 (X) and 𝑃𝑆 (𝑌 |X) are estimated given sample data from
the respective populations, and, as such, the estimation can
have some variability.

Issue P3 is pervasive in statistical inference and machine learning.
We do not explicitly2 consider it in our problem statement. There-
fore, the main research question that we intend to address in this
paper is:

RQ1. With reference to the decision tree classifier, which type and
amount of target domain knowledge (issue P1) help reduce the loss in
accuracy at the variation of relaxations of covariate shift (issue P2)?

As domain shift can have a detrimental impact on performance of
the model for some demographic groups over others, a subsequent
question to address in this paper is:

RQ2. How does the loss in accuracy by the decision tree classifier,
based on the issues P1 and P2, affect a fairness metric used for protected
groups of interest in the target domain?

The knowledge relevant for (2) and RQ1 and RQ2 is bounded
by two border cases. No target domain knowledge: it consists
of training 𝑓 on the source data and using it on the target data
without any change or correction. Formally, we estimate 𝑃𝑇 (X) as
𝑃𝑆 (X) and 𝑃𝑇 (𝑌 |X) as 𝑃𝑆 (𝑌 |X). Full target domain knowledge:
it consists of training 𝑓 on the source data and using it on the tar-
get data, but exploiting full knowledge of 𝑃𝑇 (X) in the learning
algorithm to replace 𝑃𝑆 (X). Partial target domain knowledge:
consequently, the in-between case consists of training a decision
tree on the source data and using it on the target data, but ex-
ploiting partial knowledge of 𝑃𝑇 (X) in the learning algorithm and
complementing it with knowledge of 𝑃𝑆 (X).

The form of partial knowledge depends on the information avail-
able on X, or subsets of it. Here, we consider a scenario where
for X′ ⊆ X, an estimate of 𝑃 (X′) is known only for |X′ | ≤ 2 (or
|X′ | ≤ 3), namely we assume to know bi-variate (resp., tri-variate)
distributions only, but not the full joint distribution. This scenario
occurs, for example, when using cross-tabulation data from official
statistics. We specify how to exploit the knowledge of 𝑃𝑇 (X) for a
decision tree classifier in Section 3, introducing what we refer to as
a domain-adaptive decision tree (DADT). We introduce the required
technical background in the remainder of this section.

2.1 Decision Tree Learning
Top-down induction algorithms grow a decision tree classifier [13]
from the root to the leaves. At each node, either the growth stops
producing a leaf, or a split condition determines child nodes that are
recursively grown. Common stopping criteria include node purity
(all instances have the same class value), data size (the number
of instances is lower than a threshold), and tree depth (below a
maximum depth allowed). Split conditions are evaluated based on

2We tackle it implicitly through the Law of Large Numbers by restricting to estimation
of probabilities in contexts with a minimum number of instances. This is managed
in decision tree learning by a parameter that stops splitting a node if the number of
instances at a node is below a minimum threshold.

a split criterion, which selects one of them or possibly none (in this
case the node becomes a leaf).

We assume binary splits of the form:3 𝑋 = 𝑡 for the left child and
𝑋 ≠ 𝑡 for the right child, when𝑋 is a discrete attribute; or𝑋 ≤ 𝑡 for
the left child and 𝑋 > 𝑡 for the right child, when 𝑋 is a continuous
attribute. We call 𝑋 the splitting attribute, and 𝑡 ∈ 𝑋 the threshold
value. Together they form the split condition. Instances of the train-
ing set are passed from a node to its children by partitioning them
based on the split condition. The conjunction of split conditions
from the root to the current node being grown is called the current
path 𝜑 . It determines the instances of the training dataset being
considered at the current node. The predicted probability of class 𝑦
at a leaf node is an estimation of 𝑃 (𝑌 = 𝑦 |𝜑) obtained by the relative
frequency of 𝑦 among the instances of the training set reaching the
leaf or, equivalently, satisfying 𝜑 .

2.2 The Information Gain Split Criterion
We focus on the information gain split criterion. It is, along with
Gini, one of the standard split criteria used. It is also based on
information theory via entropy [4], which links the distribution
of a random variable to its information content. The entropy (𝐻 )
measures the information containedwithin a random variable based
on the uncertainty of its events. The standard is Shannon’s entropy
[16] where we define 𝐻 for the class random variable 𝑌 at 𝜑 as:

𝐻 (𝑌 |𝜑) =
∑︁
𝑦∈𝑌

−𝑃 (𝑌 = 𝑦 |𝜑) log2 (𝑃 (𝑌 = 𝑦 |𝜑)) (3)

where − log2 (𝑃 (𝑌 = 𝑦 |𝜑)) = 𝐼 (𝑦 |𝜑) represents the information
(𝐼 ) of 𝑌 = 𝑦 at current path 𝜑 . Therefore, entropy is the expected
information of the class distribution at the current path. Intuitively,
the information of class value 𝑦 is inversely proportional to its
probability 𝑃 (𝑌 = 𝑦 |𝜑). The more certain 𝑦 is, reflected by a higher
𝑃 (𝑌 = 𝑦 |𝜑), the lower its information as 𝐼 (𝑦 |𝜑) (along with its
contribution to 𝐻 (𝑌 |𝜑)). The general idea is that there is little new
information to be learned from an event that is certain to occur.

The information gain (𝐼𝐺) for a split condition is the difference
between the entropy at a node and the weighted entropy at the child
nodes determined by the split condition𝑋 and 𝑡 under consideration.
𝐼𝐺 uses (3) to measure how much information is contained under
the current path. For a discrete splitting attribute 𝑋 and threshold
𝑡 , we have:

𝐼𝐺 (𝑋, 𝑡 |𝜑) = 𝐻 (𝑌 |𝜑) − 𝑃 (𝑋 = 𝑡 |𝜑)𝐻 (𝑌 |𝜑,𝑋 = 𝑡)
− 𝑃 (𝑋 ≠ 𝑡 |𝜑)𝐻 (𝑌 |𝜑,𝑋 ≠ 𝑡) (4)

and for a continuous splitting attribute 𝑋 and threshold 𝑡 :

𝐼𝐺 (𝑋, 𝑡 |𝜑) = 𝐻 (𝑌 |𝜑) − 𝑃 (𝑋 ≤ 𝑡 |𝜑)𝐻 (𝑌 |𝜑,𝑋 ≤ 𝑡)
− 𝑃 (𝑋 > 𝑡 |𝜑)𝐻 (𝑌 |𝜑,𝑋 > 𝑡) (5)

where the last two terms in each (4) and (5) represent the total
entropy obtained from adding the split condition on 𝑋 and 𝑡 to 𝜑 .4

3There are other forms of binary splits, as well as multi-way and multi-attribute split
conditions [21].
4Formally, together these last two terms represent the conditional entropy𝐻 (𝑌,𝑋 |𝜑 )
written for the binary split case we are considering such that:

𝐻 (𝑌,𝑋 |𝜑 ) =
∑︁
𝑥 ∈𝑋

−𝑃 (𝑋 = 𝑥 |𝜑 )
∑︁
𝑦∈𝑌

𝑃 (𝑌 = 𝑦 |𝜑,𝑋 = 𝑥 ) log2 (𝑃 (𝑌 = 𝑦 |𝜑,𝑋 = 𝑥 ) )
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The selected split attribute and threshold are those with maximum
𝐼𝐺 , namely arg max𝑋,𝑡 𝐼𝐺 (𝑋, 𝑡 |𝜑).

2.3 On Estimating Probabilities
Probabilities and, thus, 𝐻 (3) and 𝐼𝐺 (4)–(5) are defined for ran-
dom variables. As the decision tree grows, the probabilities are
estimated on the subset of the training set 𝐷 reaching the current
node satisfying 𝜑 by frequency counting:

𝑃 (𝑋 = 𝑡 | 𝜑) = |{𝑤 ∈ 𝐷 | 𝜑 (𝑤) ∧𝑤 [𝑋 ] = 𝑡}|
|{𝑤 ∈ 𝐷 | 𝜑 (𝑤)}| ,

𝑃 (𝑌 = 𝑦 | 𝜑) = |{𝑤 ∈ 𝐷 | 𝜑 (𝑤) ∧𝑤 [𝑌 ] = 𝑦}|
|{𝑤 ∈ 𝐷 | 𝜑 (𝑤)}| (6)

The denominator represents the number of instances𝑤 in 𝐷 that
satisfy the condition 𝜑 (written 𝜑 (𝑤)) and the numerator the num-
ber of those instances that further satisfy𝑋 = 𝑡 (respectively,𝑌 = 𝑦).
We use the estimated probabilities (6) to estimate 𝐻 and 𝐼𝐺 .

The hat in (6) differentiates the estimated probability, 𝑃 , from
the population probability, 𝑃 . Frequency counting is supported by
the Law of Large Numbers. Assuming that the training set 𝐷 is
an i.i.d. sample from the 𝑃 probability distribution, we expect for
𝑃 (𝑋 = 𝑡 |𝜑) ≈ 𝑃 (𝑋 = 𝑡 | 𝜑) and 𝑃 (𝑌 = 𝑦 |𝜑) ≈ 𝑃 (𝑌 = 𝑦 | 𝜑) as long
as we have enough training observations in 𝐷 , which is often the
case when training 𝑓 . A key issue is whether 𝐷 is representative of
the population of interest. This is important as 𝑃 will approximate
the 𝑃 behind 𝐷 .

When training any classifier, the key assumption is that the 𝑃
probability distribution is the same for the data used for growing
the decision tree (the training dataset) and for the data on which the
decision tree makes predictions (the test dataset). Under covariate
shift (1) this assumption does not hold. Instead, the training dataset
belongs to the source domain 𝐷𝑆 with probability distribution 𝑃𝑆
and the test dataset belongs to the target domain 𝐷𝑇 with probabil-
ity distribution 𝑃𝑇 , such that 𝑃𝑇 ≠ 𝑃𝑆 . To stress this point, we use
the name source data for training data sampled from 𝐷𝑆 and target
data for training data sampled from𝐷𝑇 . The estimated probabilities
(6), and the subsequent estimations for 𝐻 (3) and 𝐼𝐺 (4)–(5) based
on source data alone can be biased, in statistical terms, relative
to the intended target domain (recall issue P1). This can result,
among other issues, in poor model performance from the classifier.
This is why we propose extending (6) by embedding target-domain
knowledge into these estimated probabilities.

Measuring the distance between the probability distributions 𝑃𝑆
and 𝑃𝑇 is relevant for detecting distribution shifts. We resort to the
Wasserstein distance𝑊 between two probability distributions to
quantify the amount of covariate shift and the robustness of target
domain knowledge. See Appendix A.1 for details. Under covariate
shift (1), it is assumed that 𝑃𝑆 (𝑌 |X) = 𝑃𝑇 (𝑌 |X), which allows one
to focus on the issue of 𝑃𝑆 (X) ≠ 𝑃𝑇 (X). This equality is often not
verified in practice. We plan to use𝑊 , along with an approximation
of 𝑃𝑇 (𝑌 |X) (since 𝑌 is unavailable in 𝐷𝑇 ), to measure the distance
between these two conditional probabilities to ensure that our
proposed embedding with target domain knowledge is impactful
(issue P2). Measuring this distance will allow us to evaluate how
relaxations of 𝑃𝑆 (𝑌 |X) = 𝑃𝑇 (𝑌 |X) affect the impact of our proposed
target domain embedding.

3 DOMAIN-ADAPTIVE DECISION TREES
We present our approach for addressing covariate shift by embed-
ding target domain knowledge when learning the decision tree
classifier. We propose an in-processing step under the information
gain split criterion, motivating what we refer to as domain-adaptive
decision trees (DADT) learning. As discussed in Section 2, when
growing the decision tree, the estimated probabilities (6) used for
calculating 𝐻 (3) and thus 𝐼𝐺 (4)–(5) at the current path 𝜑 are de-
rived over a training dataset, which is normally a dataset over the
source domain 𝐷𝑆 . For the split condition 𝑋 = 𝑡 , it follows that
𝑃 (𝑋 = 𝑡 |𝜑) ≈ 𝑃𝑆 (𝑋 = 𝑡 |𝜑), which is an issue under covariate shift.
We instead want that 𝑃 (𝑋 = 𝑡 |𝜑) ≈ 𝑃𝑇 (𝑋 = 𝑡 |𝜑). We propose to
embed in the learning process knowledge from the target domain
𝐷𝑇 , reducing the potential bias in the estimation of the probabilities
and, in turn, reducing the bias of the trained decision classifier.

3.1 Embedding Target Domain Knowledge
There are two probability forms that are to be considered when
growing a decision tree for the current path 𝜑 : 𝑃 (𝑋 = 𝑡 |𝜑) in (4)
(and, respectively, 𝑃 (𝑋 ≤ 𝑡 |𝜑) in (5)) and 𝑃 (𝑌 = 𝑦 |𝜑) in (3)–(4).
In fact, the formulas of entropy and information gain only rely
on those two probability forms, and on the trivial relation 𝑃 (𝑋 ≠

𝑡 |𝜑) = 1 − 𝑃 (𝑋 = 𝑡 |𝜑) for discrete attributes (and, respectively,
𝑃 (𝑋 > 𝑡 |𝜑) = 1 − 𝑃 (𝑋 ≤ 𝑡 |𝜑) for continuous attributes). It follows
that we can easily estimate 𝑃𝑆 (𝑋 = 𝑡 |𝜑) and 𝑃𝑆 (𝑌 = 𝑦 |𝜑) using the
available source domain knowledge.

3.1.1 Estimating 𝑃 (𝑋 = 𝑡 |𝜑). We assume that some target domain
knowledge is available, from which we can estimate 𝑃𝑇 (𝑋 |𝜑), in
the following cases:5

𝑃𝑇 (𝑋 = 𝑥 |𝜑) ≈ 𝑃𝑇 (𝑋 = 𝑥 |𝜑) for 𝑋 discrete,

𝑃𝑇 (𝑋 ≤ 𝑥 |𝜑) ≈ 𝑃𝑇 (𝑋 ≤ 𝑥 |𝜑) for 𝑋 continuous (7)

In case 𝑃𝑇 (𝑋 = 𝑥 |𝜑) is not directly available in the target domain
knowledge 𝐷𝑇 , we adopt an affine combination for discrete and
continuous attributes using the source domain knowledge 𝐷𝑆 :

𝑃 (𝑋 = 𝑥 |𝜑) = 𝛼 · 𝑃𝑆 (𝑋 = 𝑥 |𝜑) + (1 − 𝛼) · 𝑃𝑇 (𝑋 = 𝑥 |𝜑 ′) (8)
𝑃 (𝑋 ≤ 𝑥 |𝜑) = 𝛼 · 𝑃𝑆 (𝑋 ≤ 𝑥 |𝜑) + (1 − 𝛼) · 𝑃𝑇 (𝑋 ≤ 𝑥 |𝜑 ′) (9)

where 𝜑 ′ is a maximal subset of split conditions in 𝜑 for which
𝑃𝑇 (𝑋 = 𝑥 |𝜑 ′) is in the target domain knowledge, and 𝛼 ∈ [0, 1] is
a tuning parameter to be set. In particular, setting 𝛼 = 1 boils down
to estimating probabilities based on the source data only. With such
assumptions, 𝑃 (𝑋 = 𝑡 |𝜑) in (4) (respectively 𝑃 (𝑋 ≤ 𝑡 |𝜑) in (5)) can
be estimated as 𝑃 (𝑋 = 𝑡 |𝜑) (resp. 𝑃 (𝑋 ≤ 𝑡 |𝜑)) to derive 𝐼𝐺 .

3.1.2 Estimating 𝑃 (𝑌 = 𝑦 |𝜑). Let us consider the estimation of
𝑃 (𝑌 = 𝑦 |𝜑) in (3) over the target domain. Since 𝑌 is unavailable
in 𝐷𝑇 , it is legitimate to ask whether 𝑃 (𝑌 = 𝑦 |𝜑) is the same
probability in the target as in the source domain when growing
the decision tree classifier. If yes, then we would simply estimate
5Actually, since we consider 𝑥 in the (finite) domain of𝑋 the two forms are equivalent,
due to basic identities 𝑃𝑇 (𝑋 ≤ 𝑥 |𝜑 ) = ∑

𝑋 ≤𝑥 𝑃𝑇 (𝑋 = 𝑥 |𝜑 ) and 𝑃𝑇 (𝑋 = 𝑥 |𝜑 ) =
𝑃𝑇 (𝑋 ≤ 𝑥 |𝜑 ) − 𝑃𝑇 (𝑋 ≤ 𝑥 ′ |𝜑 ) , where 𝑥 ′ is the element preceding 𝑥 in the domain
of 𝑋 . Moreover, by definition of conditional probability, we have 𝑃 (𝑋 = 𝑡 |𝜑 ) =

𝑃 (𝑋 = 𝑡, 𝜑 )/𝑃 (𝜑 ) and then target domain knowledge boils down to estimates of
probabilities of conjunction of equality conditions. Such form of knowledge is, for
example, provided by cross-tables in official statistics data.
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𝑃𝑇 (𝑌 = 𝑦 |𝜑) ≈ 𝑃𝑆 (𝑌 = 𝑦 |𝜑). Unfortunately, the answer is no.
Recall that the covariate shift assumption (1) states that 𝑃𝑆 (𝑌 |X) =
𝑃𝑇 (𝑌 |X), namely that the probability of 𝑌 conditional on fixing all
of the variables in X is the same in the source and target domains:

∀x ∈ X,∀𝑦 ∈ 𝑌, 𝑃𝑆 (𝑌 = 𝑦 |X = x) = 𝑃𝑇 (𝑌 = 𝑦 |X = x) (10)

However, this equality may not hold when growing the tree because
the current path 𝜑 does not necessarily fix all of the X’s, i.e., (10)
does not necessarily imply ∀𝜑 𝑃𝑇 (𝑌 = 𝑦 |𝜑) = 𝑃𝑆 (𝑌 = 𝑦 |𝜑). This
situation, in fact, is an instance of Simpson’s paradox [27]. We
show this point with Example A.1 in Appendix A.2. We rewrite
𝑃𝑇 (𝑌 = 𝑦 |𝜑) using the law of total probability as follows:

𝑃𝑇 (𝑌 = 𝑦 |𝜑) =
∑︁
x∈X

𝑃𝑇 (𝑌 = 𝑦 |X = x, 𝜑) · 𝑃𝑇 (X = x|𝜑)

=
∑︁
x∈X

𝑃𝑆 (𝑌 = 𝑦 |X = x, 𝜑) · 𝑃𝑇 (X = x|𝜑) (11)

where the final equation exploits the covariate shift assumption
(10) when it holds for a current path 𝜑 . Now, instead of taking
𝑃𝑆 (𝑌 |𝜑) = 𝑃𝑇 (𝑌 |𝜑) for granted, which we should not do under
DADT learning, we rewrite 𝑃𝑇 (𝑌 = 𝑦 |𝜑) in terms of probabili-
ties over source domain, 𝑃𝑆 (𝑌 = 𝑦 |X = x, 𝜑), and target domain,
𝑃𝑇 (X = x|𝜑), knowledge.

Varying x ∈ X over all possible combination as stipulated in (11),
however, is not feasible in practice as it would require extensive
target domain knowledge to estimate 𝑃𝑇 (X = x|𝜑) ∀x ∈ X. This
would still be a practical issue in the ideal case in which we have a
full sample of the target domain, as it would require the sample to be
large enough for observing each value x ∈ X in𝐷𝑇 . We approximate
(11) by varying values with respect to a single attribute 𝑋𝑤 ∈ X and
relying on (8) for an estimate of 𝑃𝑇 (𝑋𝑤 = 𝑥 |𝜑). Let us then define
the estimate of 𝑃 (𝑌 = 𝑦 |𝜑) as:

𝑃 (𝑌 = 𝑦 |𝜑) =
∑︁

𝑥∈𝑋𝑤

𝑃𝑆 (𝑌 = 𝑦 |𝑋𝑤 = 𝑥, 𝜑) · 𝑃 (𝑋𝑤 = 𝑥 |𝜑) (12)

where we now use target domain knowledge only about𝑋𝑤 instead
of spanning the entire attribute space X.

To account for the above instance of Simpson’s paradox, the
attribute 𝑋𝑤 should be chosen such that 𝑃𝑆 (𝑌 = 𝑦 |𝑋𝑤 = 𝑥, 𝜑) ≈
𝑃𝑇 (𝑌 = 𝑦 |𝑋𝑤 = 𝑥, 𝜑). Such an attribute 𝑋𝑤 , however, may be
specific to the current path 𝜑 . Hence, we only consider the empty 𝜑 ,
and choose 𝑋𝑤 such that the average distance between 𝑃𝑆 (𝑌 |𝑋𝑤 =

𝑥) and an estimate 𝑃𝑇 (𝑌 |𝑋𝑤 = 𝑥) of 𝑃𝑇 (𝑌 |𝑋𝑤 = 𝑥) is minimal:

𝑋𝑤 = argmin
𝑋

W(𝑋 ) where

W(𝑋 ) =
∑︁
𝑥∈𝑋

𝑊 (𝑃𝑆 (𝑌 |𝑋 = 𝑥), 𝑃𝑇 (𝑌 |𝑋 = 𝑥)) · 𝑃𝑇 (𝑋 = 𝑥) (13)

W(𝑋 ) is the average Wasserstein distance between 𝑃𝑆 (𝑌 |𝑋 ) and
𝑃𝑇 (𝑌 |𝑋 ). In terms of target domain knowledge, computing (13)
requires knowledge of 𝑃𝑇 (𝑌 |𝑋 ), an estimate of the conditional
distribution of the class in the target domain.

In (13), we depart slightly from our assumption that no knowl-
edge is available of 𝑌 in 𝐷𝑇 . If calculation of (13) is not feasi-
ble, we assume some expert input on an attribute 𝑋 such that
𝑃𝑆 (𝑌 = 𝑦 |𝑋 = 𝑥) ≈ 𝑃𝑇 (𝑌 = 𝑦 |𝑋 = 𝑥), as a way to minimize the

first term of the summation (13). In such a case, we do not actually
compute W(𝑋 ).

To summarize, we use 𝑋𝑤 as from (13) (or as provided by a
domain expert) to derive (12) as an empirical approximation to (11).
This is how we estimate 𝑃 (𝑌 |𝜑) over the target domain.

3.2 How Much Target Domain Knowledge?
We can now formalize the range of cases based on the availability of
𝑃𝑇 (X) described in Section 2. Under no target domain knowledge,
we have no information available on 𝐷𝑇 , which means that 𝑃 (𝑋 =

𝑥 |𝜑) = 𝑃𝑆 (𝑋 = 𝑥 |𝜑). This amounts to setting 𝛼 = 1 in (8) and (9),
and, whatever 𝑋𝑤 is, (12) boils down to 𝑃 (𝑌 = 𝑦 |𝜑) = 𝑃𝑆 (𝑌 = 𝑦 |𝜑).
In short, both probability estimations boil down to growing the
DADT classifier using the source data 𝐷𝑆 without any modification
or, simply, growing a standard decision tree classifier. Similarly,
under full target domain knowledge we have target domain
knowledge for all attributes in 𝐷𝑇 along with enough instances to
estimate both probabilities. This amounts to setting 𝛼 = 0 in (8)–(9),
and to know which attribute 𝑋𝑤 minimizes (13).

The full target domain knowledge is the strongest possible as-
sumption within our DADT approach, but not in general. For vali-
dation purposes (Section 4), we move away from our unsupervised
setting and assume 𝑌 ∈ 𝐷𝑇 to set up an additional baseline un-
der the full knowledge of 𝐷𝑇 : target-to-target baseline. In this
scenario, the decision tree is grown and tested exclusively on the
target data. Such a scenario does not require covariate shift, since
probabilities 𝑃 (𝑋 = 𝑡 |𝜑) and 𝑃 (𝑌 = 𝑦 |𝜑) are estimated directly over
the target domain. This is the ideal case as we train the classifier on
the intended population.

Finally, under partial target domain knowledge we consider
cases where we have access to estimates of 𝑃 (X′) only for some
subsets X′ ⊆ X. This allows us to estimate 𝑃 (𝑋 = 𝑥 |𝜑) only if
𝑋 and the variables in 𝜑 are in one of those subsets X′. When
the target domain information is insufficient, DADT resorts to the
source domain information in (8)–(9) by an affine combination of
both. The weight 𝛼 in such an affine combination should be set
proportional to the contribution of the source domain information.
We refer to Section 4.2 for our experimental setting of 𝛼 .

4 EXPERIMENTS: STATE PUBLIC COVERAGE
We consider the ACSPublicCoverage dataset—an excerpt from the
2017 US Census data [6]—that provides the same feature sets for
different geographical regions based on the US states, which may
have different distributions. This allows us to examine the impact of
our method given a wide range of distribution shifts. We utilize the
prediction task, constructed by the dataset creators, of whether or
not a low-income individual is covered by public health coverage.

Inspired by this experimental setting, we imagine a task where
a public administrator wants to identify individuals who do not
receive the public benefits they are entitled to. Information about
who does and does not receive these benefits, however, is only
available for a population different from the target population: for
example, the population from another state. This administrator is
likely to have some information about the target population distri-
bution; information that they realistically may have on population
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breakdown by demographics such as age, race and gender. To ad-
dress RQ1 we now test whether, with DADT, we can utilize that
information to train an improved model in the new state, compared
to blindly applying a model trained in the other state. Additionally,
we address RQ2 by testing the impact of using DADT instead of
standard decision trees on two fairness metrics: demographic parity
and equal opportunity.

4.1 Experimental Setup
The design of the ACSPublicCoverage dataset allows us to set up a
scenario that mirrors our example of the retail store in Section 1:
we have unlabeled data for the target domain, but some knowledge
of the (unconditional) distribution of the target domain. Here, how-
ever, we extend the scenario by having access to the labeled data for
each state. We note that the implementation of the DADT does not
require this information, but we utilize our access to the target do-
main labeled data in Section 4.2 to test our assumption that DADTs
are suitable for addressing covariate shift. Given the dataset design,
we are able to utilize the distribution of the predictive attributes in
the target domain as our source of outside knowledge, to adjust the
information gain calculation. Unless otherwise stated, we consider
the attributes: SCHL (educational attainment), MAR (marital status),
AGEP (age), SEX (male or female), CIT (citizenship status), RAC1P
(race), with AGEP being continuous and all others discrete. Data
was accessed through the Python package Folktables.6

We consider pairs of source and target datasets consisting of
data from different US states, with a model trained in each of the
fifty states being tested on every state, for a total of 2500 train / test
pairs. The decision trees are all trained on 75% of source data 𝐷𝑆 ,
and tested on 25% of the target data 𝐷𝑇 . Stopping criteria include
the following: a node must have at least 5% of the training data,
and not all instances have the same class value (purity level set to
100%), the maximum tree depth is 8.7

To address RQ2, in particular, we undertake a post-processing
approach to fairness based on the known link between a model’s
performance and its fairness [7, 14, 30]. The public administra-
tor wants to evaluate the performance of the trained classifier on
certain demographic groups in the target population. The adminis-
trator thus resorts to applying a post-processing method around
the classifier that adjusts the predictions under the chosen fairness
metric. In practice, this comes down to using a wrapper function
based on [12].

We focus on this model agnostic post-processing fairness inter-
vention to measure the impact of DADT on a fairness intervention.
Post-processing methods rely on the non-DA setting, meaning that
𝑃𝑆 (X, 𝑌 ) = 𝑃𝑇 (X, 𝑌 ). Classifiers are a statement on the joint proba-
bility distribution of the training data. Under DA, post-processing
methods are essentially only modifying 𝑃𝑆 (X, 𝑌 ). Granted the user
trains an oracle-like standard decision tree, the issue remains that
the post-processing fairness intervention would only be address-
ing issues on the source and not the target population. Therefore,
DADT is expected to positively affect the fairness measure.

6https://github.com/zykls/folktables
7The code, data, and run are available at https://github.com/nobias-project/domain-
adaptive-trees.

4.2 Results on Accuracy
We now address RQ1 (Section 2). The scatter-plot Fig. 1 (left) re-
lates the Wasserstein distances for each attribute and source-target
pair. On the x-axis, there is the distance between the marginal at-
tribute distributions, i.e.,𝑊 (𝑃𝑆 (𝑋 ), 𝑃𝑇 (𝑋 )). On the y-axis, there is
the average distance between conditional 𝑃𝑆 (𝑌 |𝑋 ) and 𝑃𝑇 (𝑌 |𝑋 ),
i.e.,W(𝑋 ) from (13). The distances between the marginal attribute
distributions are rather small, with the exception of CIT and RAC1P.
The distances between class conditional distributions are instead
much larger, for all attributes. The plot shows that the ACSPub-
licCoverage dataset does not in general satisfy the covariate shift
assumption (at least when conditioning on a single attribute), but
rather the opposite: close attribute distributions and distant condi-
tional class distributions. This fact will help us in exploring how
much our approach relies on the covariate shift assumption. Below
we report accuracy at varying levels of target domain knowledge
(issue P1 Section 2), as defined in Section 3.2.

Case 1: no target domain knowledge (ntdk) vs target-to-
target baseline (tt). Let us consider the scenario of no target do-
main knowledge, i.e., training a decision tree on the source training
data and testing it on the target test data. We compare the decision
tree accuracy in this scenario (let us call 𝐴𝐶𝐶𝑛𝑡𝑑𝑘 ) to the accuracy
of training a decision tree on the target training data and testing
on the target test data (𝐴𝐶𝐶𝑡𝑡 ), a.k.a., the target-to-target baseline.
Recall that accuracy estimates on a test set (of the target domain)
the probability that the classifier prediction 𝑌 is correct w.r.t. the
ground truth 𝑌 :

𝐴𝐶𝐶 = 𝑃𝑇 (𝑌 = 𝑌 )
The heat-map plot Fig. 1 (right) shows for each source-target

pair of states the difference in accuracy (𝐴𝐶𝐶𝑛𝑡𝑑𝑘 −𝐴𝐶𝐶𝑡𝑡 ) · 100
between the no target domain knowledge scenario and the target-
to-target baseline. In most of the cases the difference is negative,
meaning that there is an accuracy loss in the no target domain
knowledge scenario.

Case 2: full target domain knowledge (ftdk) vs no target
domain knowledge (ntdk). The decision tree in this scenario is
grown on the source (training) data but probabilities are estimated
by full target domain knowledge using (7), and (12) with 𝑋𝑤 mini-
mizing (13). In the experiments, 𝑃𝑇 (𝑋 = 𝑡 |𝜑) and 𝑃𝑇 (𝑋 ≤ 𝑡 |𝜑) are
calculated from the target training data, for each 𝑋 , 𝑡 , and 𝜑 .

Let us compare the accuracy of the decision tree grown using
full target domain knowledge (let us call it 𝐴𝐶𝐶𝑓 𝑡𝑑𝑘 ) to the one
with no target domain knowledge (𝐴𝐶𝐶𝑛𝑡𝑑𝑘 ). In 48% of the source-
target pairs, the accuracy of the full target domain knowledge
scenario is better than the one of the no target domain knowledge
scenario (𝐴𝐶𝐶𝑓 𝑡𝑑𝑘 > 𝐴𝐶𝐶𝑛𝑡𝑑𝑘 ), and in 26% of the pairs they are
equal (𝐴𝐶𝐶𝑓 𝑡𝑑𝑘 = 𝐴𝐶𝐶𝑛𝑡𝑑𝑘 ). This gross comparison needs to be
investigated further. Let us define the relative gain in accuracy as:

𝑟𝐴𝐶𝐶 =
𝐴𝐶𝐶𝑓 𝑡𝑑𝑘 −min(𝐴𝐶𝐶𝑛𝑡𝑑𝑘 , 𝐴𝐶𝐶𝑡𝑡 )

|𝐴𝐶𝐶𝑡𝑡 −𝐴𝐶𝐶𝑛𝑡𝑑𝑘 |
· 100

where 𝐴𝐶𝐶𝑡𝑡 is the accuracy in the target-to-target baseline. The
relative gain quantifies how much of the loss in accuracy in the no
target domain knowledge scenario has been recovered in the full
target domain knowledge scenario. The definition quantifies the
recovered loss in accuracy also in the case that 𝐴𝐶𝐶𝑛𝑡𝑑𝑘 > 𝐴𝐶𝐶𝑡𝑡 ,

https://github.com/zykls/folktables
https://github.com/nobias-project/domain-adaptive-trees
https://github.com/nobias-project/domain-adaptive-trees
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Figure 1: The scatter-plot (left) relates the Wasserstein distances each attribute and source-target US state pair. The x-axis
shows the distance of each attribute’s marginal distributions between source 𝑃𝑆 (𝑋 ) and target domains 𝑃𝑇 (𝑋 ), while the y-axis
shows the average distance between conditional 𝑃𝑆 (𝑌 |𝑋 ) and 𝑃𝑇 (𝑌 |𝑋 ), as in (13). The heat-map (right) shows the difference in
accuracy between the cases no target domain knowledge 𝐴𝐶𝐶𝑛𝑡𝑑𝑘 and target-to-target baseline 𝐴𝐶𝐶𝑡𝑡 for each source-target US
state pair. Both figures show a lack of an overall pattern across all states in ACSPublicCoverage. The dataset does not in general
satisfy the covariate shift assumption (left).

Figure 2: The scatter-plot (left) shows the relative gain in accuracy 𝑟𝐴𝐶𝐶, with a greener dot indicating a greater gain derived
from the full target domain knowledge (ftdk) relative to the no target domain knowledge (ntdk). The x- and y-axis, respectively,
shows the covariate shift measured by the Wasserstein distance between the source-target domain pairs used for a decision tree
grown in the ntdk,𝑊 (𝑇𝑛𝑡𝑑𝑘 ), and in the ftdk,𝑊 (𝑇𝑓 𝑡𝑑𝑘 ), scenarios. It shows that a greater gain in accuracy from access to the full
target domain knowledge is achieved when the covariate shift assumption is (strictly) met. Similarly the plot (right) shows
how model performance (mean 𝑟𝐴𝐶𝐶) deteriorates as the covariate shift assumption is relaxed (shown by a larger Wasserstein
distance).

which may occur by chance. Moreover, to prevent outliers due
to very small denominators, we cap 𝑟𝐴𝐶𝐶 to the −100 and +100
boundaries. The mean value of 𝑟𝐴𝐶𝐶 over all source-target pairs
is 16.6, i.e., on average our approach recovers 16.6% of the loss in
accuracy. However, there is a large variability, which we examine
further in the next section.

Case 3: partial target domain knowledge.We reason on partial
target domain knowledge under the assumption that we only know
an estimate of the distribution of some subsets of X’s but not of the
full joint probability distribution 𝑃𝑇 (X). We experiment assuming
to know 𝑃𝑇 (X′) for X′ ⊆ X, only if |X′ | ≤ 2 (resp., |X′ | ≤ 3).
Equivalently, we assume to know 𝑃 (𝑋 = 𝑥 |𝜑 ′) only if 𝜑 ′ contains
at most one (resp., two) variables. Formulas (8)–(9) mix such a form
of target domain knowledge with the estimates on the source: for

𝑃 (𝑋 = 𝑥 |𝜑), we compute 𝜑 ′ as the subset of split conditions in 𝜑

regarding at most the first (resp., the first two) attributes in 𝜑 –
namely, the attributes used in the split condition at the root (resp.,
at the first two levels) of the decision tree, which are the most
critical ones. The weight 𝛼 in (8)–(9) is set dynamically as the pro-
portion of attributes in 𝜑 which are not in 𝜑 ′. This value is 0 when
𝜑 tests on at most one variable (resp., two variables), and greater
than 0 otherwise. We consider the proportion of attributes and not
of the number of split conditions, since continuous attributes may
be used in more than one split along a decision tree path.

Covariate Shift and Accuracy. We test whether the difference
in model performance is due to the fact that different pairs match
or do not match the covariate shift assumption. In order to quantify
the covariate shift (issue P2), we define specifically for a decision
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Figure 3: The plot on the left shows results of DADT, across all state pairs, with partial target domain knowledge; we show the
mean 𝑟𝐴𝐶𝐶 for pairs with bounded W(𝑋𝑤) for the cases of having knowledge of 𝑛𝑎 = 6 attributes (i.e., ftdk), 𝑛𝑎 = 3, and 𝑛𝑎 = 2.
The plot on the right shows the change in relative demographic parity, relative equalized odds and accuracy over bounded
W(𝑋𝑤) in the full target domain knowledge scenario.

tree 𝑇 :

𝑊 (𝑇 ) =
∑︁

𝜑 path of a leaf of 𝑇
𝑊 (𝑃 (𝑌 |𝜑), 𝑃𝑇 (𝑌 |𝜑)) · 𝑃𝑇 (𝜑) (14)

as the averageWasserstein distance between the estimated (through
(12)) and target domain class distributions at leaves of the decision
tree, weighted by the leaf probability in the target domain. Notice
that, as 𝑃𝑇 is unknown, we estimate the probabilities in the above
formula on the test set of the target domain. We write𝑊 (𝑇𝑛𝑡𝑑𝑘 )
and𝑊 (𝑇𝑓 𝑡𝑑𝑘 ), respectively, for denoting the amount of covariate
shift for the decision tree grown in the no target domain knowledge
and with full target domain knowledge scenarios. The scatter plot
Fig. 2 (left) shows the relative accuracy (in color) at the variation
of𝑊 (𝑇𝑛𝑡𝑑𝑘 ) and𝑊 (𝑇𝑓 𝑡𝑑𝑘 )8. We make the following qualitative
observations:

• when𝑊 (𝑇𝑓 𝑡𝑑𝑘 ) is small, say smaller than 0.05, i.e., when
the covariate shift assumption holds, the relative accuracy is
high, i.e., using target domain knowledge allows for recover-
ing the accuracy loss;

• when𝑊 (𝑇𝑓 𝑡𝑑𝑘 ) is large, in particular, larger than𝑊 (𝑇𝑛𝑡𝑑𝑘 ),
then the gain is modest or even negative.

Let us consider how to determine quantitatively on which pairs
there is a large relative accuracy. Fig. 2 (right) reports the mean
𝑟𝐴𝐶𝐶 for source-target pairs sorted by two different distances. Or-
dering by𝑊 (𝑇𝑓 𝑡𝑑𝑘 ) allows to identify more source-target pairs for
which our approach works best than ordering by the average class
conditional distance W(𝑋𝑤), where 𝑋𝑤 is from (13). However:

• 𝑊 (𝑇𝑓 𝑡𝑑𝑘 ) requires target domain knowledge on 𝑃𝑇 (𝑌 |𝜑) for
each leaf in 𝑇𝑓 𝑡𝑑𝑘 , which is impractical to obtain.

• W(𝑋𝑤) is easier to calculate/estimate, as it regards only the
conditional distribution 𝑃𝑇 (𝑌 |𝑋 ). The exact knowledge of
which attribute is 𝑋𝑤 is not required, as, by definition of 𝑋𝑤 ,
using any other attribute instead of 𝑋𝑤 provides an upper
bound toW(𝑋𝑤).

8𝑊 (𝑇𝑛𝑡𝑑𝑘 ) and𝑊 (𝑇𝑓 𝑡𝑑𝑘 ) appear to be correlated. While they are specific of their
respective decision trees, they both depend on the distribution shift between the source
and target domain.

In summary, Fig. 2 (right) shows that DADT is able to recover a good
proportion of loss in accuracy, and it provides a general guidance
for selecting under how much the covariate shift assumption can
be relaxed. Finally, Fig. 3 (left) contrasts the 𝑟𝐴𝐶𝐶 metric of the full
target domain knowledge scenario to the two cases of the partial
target domain knowledge scenario when we have knowledge of
only pairs or triples of variables. There is, naturally, a degradation
in the recovery of accuracy loss in latter scenarios, e.g., for a dis-
tance of up to 0.03, we have the mean 𝑟𝐴𝐶𝐶 equal to 25.3% for full
target domain knowledge, to 21.6% when using triples, and to 17.5%
when using pairs of variables9. Even with partial target domain
knowledge in the form of cross-tables, we can achieve a moderate
recovery of the loss in accuracy.

4.3 Results on Fairness
We now address experiments on RQ2 (Section 2). Other quality
metrics beyond accuracy can degrade in presence of covariate shift.
There is also a risk that certain demographic groups are more im-
pacted by drops in accuracy than others. This can occur even if
overall minimal accuracy drop is seen. In order to test the impact
of DADT on specific groups, and answer RQ2, we utilize two fair-
ness metrics commonly used in fair machine learning literature,
demographic parity and equal opportunity. We consider here the
fairness metrics in reference to the protected attribute SEX. We
study how DADT compares to the standard decision tree under the
same post-processing fairness step. We hypothesize that under a
DA scenario, said step is more impactful under a DADT classifier
as it can account for the target domain information during training.
Demographic parity (DP) quantifies the disparity between predicted
positive rate for men and women:

𝐷𝑃 = |𝑃 (𝑌 = 1|SEX=women) − 𝑃 (𝑌 = 1|SEX=men) |
The lower the 𝐷𝑃 the better is the fairness performance. We

consider this metric in the context of our women’s football shoes
example, where one measure of whether a model is addressing
9The extension of 𝑟𝐴𝐶𝐶 to partial target domain knowledge is immediate by replacing
𝐴𝐶𝐶𝑓 𝑡𝑑𝑘 in its definition with the accuracy𝐴𝐶𝐶𝑝𝑡𝑑𝑘 of the decision tree grown by
using partial target domain knowledge.
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(a) (b) (c) (d)

Figure 4: The heatmap (a) shows the difference in DP between the cases target-to-target baseline 𝐷𝑃𝑡𝑡 and no target domain
knowledge 𝐷𝑃𝑛𝑡𝑑𝑘 for each source-target US state pair. Similarly (c) for EOP. The plots (b) and (d) show the mean 𝑟𝐷𝑃 and 𝑟𝐸𝑂𝑃

respectively, for the cases of having knowledge of 𝑛𝑎 = 6 attributes (i.e., ftdk), 𝑛𝑎 = 3, and 𝑛𝑎 = 2, over bounded W(𝑋𝑤).

our identified feedback loop is whether the positive rate for the
question of “will buy football shoes” moves towards parity for
men and women. Equal opportunity (EOP) quantifies the disparity
between true positive rate for men and women:

𝐸𝑂𝑃 = |𝑃 (𝑌 = 𝑦 |SEX=women, 𝑌 = 1) −𝑃 (𝑌 = 1|SEX=men, 𝑌 = 1) |

We consider this metric in the context of the example of the public
administrator who is identifying people who do not receive benefits
to which they are entitled to. Here, our concern is that the model is
equally performant for all groups as prescribed by SEX.

Fairness-aware classifiers control for these metrics.We use here a
classifier-agnostic post-processing method, described in Section 4.1
that specializes the decision threshold for each protected group [12].
The correction is applied after the decision tree is trained. Fig. 4 (a)
confirms a degradation of the DP metric from the target-to-target
scenario to the no target domain knowledge scenario. Fig. 4 (c)
shows a less marked degradation for the EOP metric.

We mimic the reasoning done for the accuracy metric in Section
4.2, and introduce the relative gain in demographic parity (𝑟𝐷𝑃 )
and the relative gain in equal opportunity (𝑟𝐸𝑂𝑃 ):

𝑟𝐷𝑃 =
max (𝐷𝑃𝑛𝑡𝑑𝑘 , 𝐷𝑃𝑡𝑡 ) − 𝐷𝑃𝑓 𝑡𝑑𝑘

|𝐷𝑃𝑡𝑡 − 𝐷𝑃𝑛𝑡𝑑𝑘 |
· 100

𝑟𝐸𝑂𝑃 =
max (𝐸𝑂𝑃𝑛𝑡𝑑𝑘 , 𝐸𝑂𝑃𝑡𝑡 ) − 𝐸𝑂𝑃𝑓 𝑡𝑑𝑘

|𝐸𝑂𝑃𝑡𝑡 − 𝐸𝑂𝑃𝑛𝑡𝑑𝑘 |
· 100

Note that since DP and EOP improve when they become smaller,
the definitions of relative gain are symmetric if compared to the
one of 𝑟𝐴𝐶𝐶 .

Fig. 3 (right) substantiates also for 𝑟𝐷𝑃 and 𝑟𝐸𝑂𝑃 the conclusions
for 𝑟𝐴𝐶𝐶 mentioned in Section 4.3. The distanceW(𝑋𝑤) turns out
to provide a guidance on when DADT works the best. For DP
and EOP, however, for large values of such a distance, we do not
observe a degradation as in the case of ACC. In other words, when
the assumption of covariate shift is strictly met, DADT works the
best, but when it is not, the recovery of the DP and EOP does not
degrade.

Finally, Fig. 4 (b) confirms the degradation of the DADT per-
formances in the case of partial target domain knowledge. E.g.,
for a distance of 0.03 we have the mean 𝑟𝐷𝑃 equal to 41.8% for
full target domain knowledge, 42.2% when using triples, and 40.8%
when using pairs of variables. This is much less marked for 𝑟𝐸𝑂𝑃 ,

for which DADT performs very well also with knowledge of pairs
of variables, as shown in Fig. 4 (d).

5 RELATEDWORK
Domain adaptation (DA) studies how to achieve a robust model
when the training (source domain) and test (target domain) data
do not follow the same distribution [23]. Here, we focused on the
covariate shift type, which occurs when the attribute space X is
distributed differently across domains [17, 22, 33]. To the best of
our knowledge, DADT is the first framework to address domain
DA as an in-processing problem specific to decision tree classifiers.

Previous work on adjusting entropy estimation has been con-
ducted largely outside of machine learning, as well as in the context
of information gain (IG) in decision trees. Here, too, DADT is the
first work to look at entropy estimation under DA. Guiasu [11]
proposes a general form for a weighted entropy equation for adjust-
ing the likelihood of the information being estimated. Other works
study the estimation properties behind using frequency counts for
estimating the entropy [1, 19, 20, 26]. In relation to decision trees,
[28] proposes a weighted IG based on the the risk of the portfolio
of financial products that the decision tree is trying to predict. Sim-
ilarly, [34, 35] re-weight IG with the fairness metric of statistical
parity. Vieira and Antunes [31] adjust the IG calculation with a
gain ratio calculation for the purpose of correcting a bias of against
attributes that represent higher levels of abstraction in an ontology.

Recent work has started to examine the relationship between DA
and fairness. Mukherjee et al. [18] show that domain adaptation
techniques can enforce individual fairness notions. Maity et al.
[15] show that enforcing risk-based fairness minimization notions
can have an ambiguous effect under covariate shift for the target
population, arguing that practitioners should check on a per-context
basis whether fairness is improved or harmed. This is line with
the findings of [6] who test both standard and fairness adjusted
gradient boosting machines across numerous shifted domains and
find that both accuracy and fairness metric measures are highly
variable across target domains. These works call for further work
to understand the impact of domain drifts and shifts.

6 CONCLUSION
In answer to RQ1 and RQ2 (Section 2), we see that domain-adaptive
decision trees (DADT) result in both increased accuracy and better
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performance on fairness metrics over our baseline standard decision
tree trained in 𝐷𝑆 and tested in 𝐷𝑇 . Looking more closely at our
experimental results, we see that improvements are best when
the covariate shift assumption holds in at least a relaxed form
(P2). We also see this increase when we only have partial domain
knowledge (P1), though a greater amount of domain knowledge,
as we define it, results in greater improvements in those metrics.
Interestingly, our post-processing fairness intervention does not
have worse performance over a standard decision tree even when
the covariate shift assumption does not hold.

Back to the example inspired by the experimental setting in Sec-
tion 4, we have demonstrated that DADTs are an effective method
for using existing information about a target state.We can also think
back to our retail example in Section 1, wherein we identified a po-
tential feedback loop leading to a lack of stock in women’s football
shoes. We propose that DADTs are a method for intervening on this
feedback loop; if the store identified a pool of potential customers
(such as the population living near the store), which had a higher
rate of women than their existing customer base, DADT provides
an accessible, interpretable, and performative classification model
which can incorporate this additional information. In future work,
different definitions of outside information should be explored as
the outside information may not have the same structure as the
source and target datasets.

While we see that the benefits are clear, we want to be explicit
about the limitations of our method. Firstly, we show that this is
most effective when the covariate shift assumption holds. We con-
sider a strength of our work that we specify and test this assumption
and encourage future work on domain adaptation methods to sim-
ilarly specify the conditions under which a method is suitable to
be used. Secondly, we emphatically acknowledge that DADTs are
not intended as a replacement for collecting updated and improved
datasets. However, this is a low cost improvement that can be made
over blindly applying to a new or changing context. Additionally,
there are cases in which labelled data simply does not exist yet. Fi-
nally, DADTs are not a complete solution for achieving or ensuring
fair algorithmic decision making; rather they are an easy to use
method for improving accuracy, and fairness metric performance in
the commonly occurring case of distribution shift between source
and target data.
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A SUPPLEMENTARY MATERIAL
A.1 Distance between Probability Distributions
We resort to theWasserstein distance𝑊 between two probability
distributions to quantify the amount of covariate shift and the
robustness of target domain knowledge. In the former case, we
quantify the distance between 𝑃𝑆 (𝑌 |X) and 𝑃𝑇 (𝑌 |X). In the latter
case, the distance between 𝑃𝑆 (𝑋 |𝜑) and 𝑃𝑇 (𝑋 |𝜑). We define𝑊
between 𝑃𝑆 and 𝑃𝑇 as:

𝑊 (𝑃𝑆 , 𝑃𝑇 ) =
∫ +∞

−∞
|P𝑆 − P𝑇 |

where P𝑆 and P𝑇 are the cumulative distribution functions (CDFs)
of 𝑃𝑆 and 𝑃𝑇 .10 We can estimate P𝑆 and P𝑇 from the data using (6).
The smaller𝑊 is, the closer are the two distributions, indicating
similar informational content.

A.2 Additional Theoretical Discussion
Recall the equality (10), which is central to covariate shift. Under a
decision tree learning setting, it does not necessarily imply 𝑃𝑇 (𝑌 =

𝑦 |𝜑) = 𝑃𝑆 (𝑌 = 𝑦 |𝜑) for a current path 𝜑 . Consider the example
below.

Example A.1. Let X = 𝑋1, 𝑋2 and 𝑌 be binary variables, and 𝜑
be 𝑋1 = 0. Since 𝑃 (𝑋1, 𝑋2, 𝑌 ) = 𝑃 (𝑌 |𝑋1, 𝑋2) · 𝑃 (𝑋1, 𝑋2), the full
distribution can be specified by stating 𝑃 (𝑌 |𝑋1, 𝑋2) and 𝑃 (𝑋1, 𝑋2).
Let us consider any distribution such that:

𝑃𝑆 (𝑋1, 𝑋2) = 𝑃𝑆 (𝑋1) · 𝑃𝑆 (𝑋2) 𝑃𝑇 (𝑋1 = 𝑋2) = 1 𝑌 = 𝐼𝑋1=𝑋2

i.e.,𝑋1 and𝑋2 are independent in the source domain, while they are
almost surely equal in the target domain. Notice that 𝑌 = 𝐼𝑋1=𝑋2
readily implies that 𝑃𝑆 (𝑌 |𝑋1, 𝑋2) = 𝑃𝑇 (𝑌 |𝑋1, 𝑋2), i.e., the covariate
shift condition (10) holds. Using the multiplication rule of probabil-
ities, we calculate:

𝑃𝑆 (𝑌 |𝜑) = 𝑃𝑆 (𝑌 |𝑋1 = 0) =
𝑃𝑆 (𝑌 |𝑋1 = 0, 𝑋2 = 0) · 𝑃𝑆 (𝑋2 = 0|𝑋1 = 0) +

𝑃𝑆 (𝑌 |𝑋1 = 0,𝑋2 = 1) · 𝑃𝑆 (𝑋2 = 1|𝑋1 = 0) =
𝑃𝑆 (𝑌 |𝑋1 = 0, 𝑋2 = 0) · 𝑃𝑆 (𝑋2 = 0) +

𝑃𝑆 (𝑌 |𝑋1 = 0,𝑋2 = 1) · 𝑃𝑆 (𝑋2 = 1)
where we exploited the independence of 𝑋1 and 𝑋2 in the source
domain, and

𝑃𝑇 (𝑌 |𝜑) = 𝑃𝑇 (𝑌 |𝑋1 = 0) =
𝑃𝑇 (𝑌 |𝑋1 = 0, 𝑋2 = 0) · 𝑃𝑇 (𝑋2 = 0|𝑋1 = 0) +

𝑃𝑇 (𝑌 |𝑋1 = 0,𝑋2 = 1) · 𝑃𝑇 (𝑋2 = 1|𝑋1 = 0) =
𝑃𝑇 (𝑌 |𝑋1 = 0, 𝑋2 = 0)

were we exploited the equality of 𝑋1 and 𝑋2 in the target domain.
𝑃𝑆 (𝑌 |𝜑) and 𝑃𝑇 (𝑌 |𝜑) are readily different when setting 𝑋1, 𝑋2 ∼
𝐵𝑒𝑟 (0.5) because 𝑃𝑆 (𝑌 = 1|𝜑) = 1 · 0.5 + 0 · 0.5 ≠ 1 = 𝑃𝑇 (𝑌 = 1|𝜑).
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10See https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_
distance.html for implementation details.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html
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