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The shear viscosity of a variety of strongly interacting quantum fluids, ranging from ultracold atomic
Fermi gases to quark-gluon plasmas, can be accurately measured. On the contrary, no experimental data
exist, to the best of our knowledge, on the shear viscosity of two-dimensional quantum electron liquids
hosted in a solid-state matrix. In this work we propose a Corbino disk device, which allows a determination
of the viscosity of a quantum electron liquid from the dc potential difference that arises between the inner
and the outer edge of the disk in response to an oscillating magnetic flux.
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Introduction.—The shear viscosity η, which describes
the diffusion of the average momentum density orthogo-
nally to its direction, is one of the cornerstones of the
hydrodynamic theory of fluids [1–3]. The first estimate of
the shear viscosity of a dilute gas as a function of its density
and temperature was given by Maxwell in his celebrated
article on the “Dynamical Theory of Gases.” He found that
the shear viscosity of a dilute gas is independent of its
density, a counterintuitive result that he felt needed imme-
diate experimental testing [4]. Recent years have witnessed
a surge of interest in the viscous flow of strongly interacting
quantum fluids, for which hydrodynamics provides a
powerful nonperturbative description. Experimentally, the
shear viscosity of quantum liquids like 3He and 4He can be
measured by, e.g., capillary, rotation, and vibration vis-
cometers [5]. The shear viscosity of cold atom gases can be
inferred from measurements of collective modes or by
looking at the expansion of the gas in a deformed trap
after the trapping potential is turned off [6–8]. The shear
viscosity of quark-gluon plasmas can be extracted from
elliptic flow measurements at relativistic heavy-ion col-
liders [9]. To the best of our knowledge, however, no
protocols exist for measuring the shear viscosity of two-
dimensional (2D) quantum electron liquids (QELs) in
solid-state matrices [10,11]. This gap is truly surprising
in view of the large body of theoretical work [12,13] that
has been carried out in connection with the shear viscosity
of these systems. In this work we try and fill the gap by
proposing a method to measure the viscosity of electrons in
a realistic experimental setup.
The concept of hydrodynamic viscosity η [1–3] becomes

relevant in a regime of parameters in which the 2DQEL is
well described by a quasiequilibrium distribution function
characterized by slowly space- and time-dependent density
nðr; tÞ and drift velocity vðr; tÞ. In a solid-state device with
linear dimension L this is ensured by the inequality
lee ≪ L; ξ. Here, lee is the mean free path between
quasiparticle collisions [14] and the length scale over which

local thermodynamic equilibrium is achieved. The quantity ξ
is the correlation length of the smooth random potential V,
inevitably present, [15] and the length scale over which
momentum conservation is broken [15]. It is well known
[15–17] that the above inequality can be satisfied in highly
pure 2DQELs, e.g., in modulation-doped GaAs=AlGaAs
semiconductor heterojunctions [10] for a suitable choice of
electron densities and above liquid-helium temperature.
Hydrodynamic electron flow has indeed been experimentally
generated and hydrodynamic effects have been measured
[18]. Deviations from the ideal hydrodynamic regime are
parametrized in terms of an effective momentum relaxation
rate 1=τ, which can be estimated (see Supplemental Material
[19]) as 1=τ ¼ ðν=ξ2ÞðΔV=VÞ2, where ν is the kinematic
viscosity (i.e., the viscosity η divided by the mass density)
and ΔV=V is the magnitude of the potential fluctuations.
The ideal hydrodynamic regime occurs for frequencies
ω > 1=τ. For a correlation length ξ comparable to the size
of the system, i.e., of the order of 10−6 m, with potential
fluctuations ΔV=V ≃ 10−2, and a kinematic viscosity of the
order of 10−3 m2=s, we estimate 1=τ≃ 0.1 MHz, which
leaves ample room to perform the measurements described
in our Letter. We now describe our method for determining
the viscosity.
Electrical measurement of the viscosity.—We consider a

2DQEL shaped in a Corbino disk (CD) geometry—see
Fig. 1. TheCD lies in the z ¼ 0 plane and has an inner radius
rin and an outer radius rout. It is separated from a back gate
by a dielectric layer of thickness d and dielectric constant
ϵ. An oscillating magnetic flux ΦðtÞ¼Φ0cosðΩtÞ oriented
along the ẑ axis threads the inner hole of the CD and
induces, by Faraday’s law, an azimuthal electric field, which
is given by [20]

Eθ̂ðr; tÞ ¼ −
1

2πcr
∂tΦðtÞθ̂; ð1Þ

where c is the speed of light and θ̂ is the unit vector
in the azimuthal direction. Fluctuations of the circularly
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symmetric electron density nðr; tÞ on the surface of the CD
generate a radial electric field of the form

Er̂ðr; tÞ≃ e
C
∂rnðr; tÞr̂; ð2Þ

where e is the absolute value of the electron charge,
C ¼ ϵ=ð4πdÞ is the geometric capacitance per unit area,
and r̂ is the unit vector in the radial direction. This “local
capacitance approximation” is valid as long as d is much
smaller than any lateral length scale [16]. The electron
velocity vðr; tÞ, with radial and azimuthal components
vrðr; tÞ and vθðr; tÞ, respectively, fluctuates in response to
the total electric field Eðr; tÞ ¼ Eθ̂ðr; tÞ þ Er̂ðr; tÞ.
We now apply the Navier-Stokes equations of hydro-

dynamics [1,2] to the calculation of the time evolution
of nðr; tÞ and vðr; tÞ. At first order in Φ0, the electron
density fluctuations nð1Þðr; tÞ and the radial velocity

fluctuations vð1Þr ðr; tÞ vanish, while the azimuthal velocity
oscillates at the frequency of the magnetic flux,

vð1Þθ ðr; tÞ ¼ Re½vð1Þθ ðrÞe−iΩt�. At second order in Φ0, the
circular motion of the electrons in the CD orbiting around
the ẑ axis generates a dc potential energy difference ΔU
between the inner and outer edges of the CD, given by

ΔU ¼ m
2

Z
rout

rin

dr
1

r
jvð1Þθ ðrÞj2; ð3Þ

where m is the effective electron mass. The quantity ΔU in
Eq. (3)—independent of time—can be readily recognized

as the work of the centripetal force acting on an electron
which drifts from the inner to the outer rim of the CD and is
subject to a constant acceleration in the radial direction

given by jvð1Þθ ðrÞj2=ð2rÞ. For an ideal fluid (η ¼ 0), it
is easily shown (see discussion below) that the flow is
given by

vð1Þθ ðrÞjη¼0 ¼
e
mc

Φ0

2πr
≡ vin

rin
r
; ð4Þ

which is irrotational (i.e., curl-free) in the region
rin < r < rout. Putting this in Eq. (3) and assuming
rout ≫ rin, we obtain

ΔUjη¼0 ¼
e2

mc2
1

ð2πrinÞ2
1

4
Φ2

0: ð5Þ

Notice that ΔUjη¼0 is independent of the frequency Ω of
the driving flux. To estimate the magnitude of the dc
response, we use the following parameters [21]:

rin ¼ 2.0 μm; rout ¼ 20.0 μm;

Φ0=ðπr2inÞ ¼ 10 mT; m ¼ 0.067me; ð6Þ

whereme is the bare electron mass in vacuum and the value
of m given above is appropriate for electrons in GaAs [10].
From Eq. (5), we find ΔUjη¼0 ¼ 63 μeV. The analytical
result (4) is plotted as a solid line in Fig. 2.
Including the shear viscosity has three main effects on

which we further elaborate below: (i) the spatial variation of
the velocity field is considerably reduced (see Fig. 2),
(ii) the flow acquires a non-curl-free dependence on the
radial position r, i.e., a nonzero vorticity [1,2] ω ¼ ∇r × v

FIG. 1 (color online). Aviscometer for 2D electron liquids. The
light gray surface represents the 2D electron system, which is
shaped into a Corbino disk geometry. The intermediate green
region represents a dielectric layer of thickness d, which separates
the 2D electron system from a back gate (dark gray region). The
internal hole of the Corbino disk is threaded by an oscillating
magnetic flux ΦðtÞ ¼ Φ0 cosðΩtÞ, which induces an azimuthal
electric field Eθ̂ oscillating at the same frequency Ω. The
magnitude of the azimuthal electric field decreases as one goes
from the inner to the outer rim. The inner rim of the disk is
grounded, while the outer rim is free to adjust its voltage. A dc
electrical potential energy difference ΔU appears between the
inner and the outer rim in response to the oscillating magnetic
flux. The quantity ΔU sensitively depends on the shear viscosity
of the 2D electron fluid and the frequency Ω of the magnetic flux.

FIG. 2. Radial profile of the azimuthal component of the
velocity—in units of vin as defined in Eq. (4)—at t ¼ 0, obtained
by solving Eq. (15) with boundary conditions (12) (main panel)
and (13) (inset). The results are obtained with rout=rin ¼ 10.0,
and for several values of the dimensionless parameter ζ defined
in Eq. (16): ζ ¼ 0.2 (dashed line), 0.5 (dotted line), and 1.0 (dash-
dotted line). The value of the viscosity in the different solutions
increases as shown by the arrow. The solid line corresponds to the
analytical result (4), which holds at ζ ¼ 0.
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appears near the inner and outer edges (see Fig. 4), and
(iii) the dc potential drop ΔU becomes strongly frequency
dependent (see Fig. 3). Indeed, ΔU decreases by a factor of
20 as the frequency decreases from 500 (where the effect
the viscosity is practically negligible) to 1 MHz. The profile
of ΔU depends only on the ratio of the viscosity to the
average mass density mn̄, i.e., the kinematic viscosity [1,2]

ν ¼ η

mn̄
: ð7Þ

By measuring the frequency dependence of ΔU, sub-
tracting the frequency-independent background (5), and
fitting the theoretical curve to the experimental result one
can determine ν. In the remainder of this Letter we supply
the main steps of the calculation of ΔU.
Hydrodynamic equations and their solution.—In the

hydrodynamic regime, the response of the 2DQEL is
governed by the Navier-Stokes equation [1,2]

ρðr; tÞf∂tvðr; tÞ þ ½vðr; tÞ ·∇r�vðr; tÞg
¼ −eEðr; tÞnðr; tÞ −∇rPðr; tÞ þ η∇2

r vðr; tÞ; ð8Þ

combined with the continuity equation

∂tnðr; tÞ þ∇r · ½nðr; tÞvðr; tÞ� ¼ 0: ð9Þ
Here, ρðr; tÞ ¼ mnðr; tÞ is the mass density and Pðr; tÞ is
the pressure. In Eq. (8) we have neglected a term due to the
bulk viscosity since it vanishes at long wavelengths [1,14].
Weak momentum nonconservation can be taken into
account in a phenomenological manner by adding

[16,22] a friction term of the form −ρðr; tÞvðr; tÞ=τ to
the right-hand side of Eq. (8). In Ref. [19] we use
hydrodynamic arguments [15] to demonstrate that τ ≳
1 μs in the region of parameter space of interest. The
quantity τ should not be confused with the much shorter
time scale τD that determines the usual Drude mobility
μ ¼ eτD=m in the diffusive regime. The inset in Fig. 3
shows results obtained for finite values of τ.
In Eq. (8) we have also included the contribution of the

electric field Eðr; tÞ. The azimuthal symmetry of the system
implies that all quantities depend on the radial coordinate r
only and that the derivatives with respect to the azimuthal
angle θ vanish. The radial component Er̂ðr; tÞ of the electric
field is given by Er̂ðr; tÞ ¼ −r̂∂rUðr; tÞ=e, where the
electric potential energy Uðr; tÞ is obtained by solving
the Poisson equation in the CD geometry with a constant
boundary condition at the gate position z ¼ −d. If the
typical wavelength of density fluctuations is larger than d, it
is easy to see that

Uðr; tÞ≃ −e2nðr; tÞ=C; ð10Þ

which immediately leads to Eq. (2). Finally, the pressure
gradient in Eq. (8) can be neglected when ∂PðnÞ=
∂n ≪ e2n̄=C, i.e., when d ≫ a⋆B=4. This inequality is
always well satisfied since a⋆B ≡ ϵℏ2=ðme2Þ is the material
Bohr radius, which is ∼10 nm for GaAs.
The Navier-Stokes and continuity equations (8)–(9) must

be complemented by suitable boundary conditions (BCs)
expressed in terms of the momentum flux density tensor
[1,2] Πi;kðr; tÞ ¼ Pðr; tÞδi;k þ ρviðr; tÞvkðr; tÞ − σ0i;kðr; tÞ,
where σ0i;kðr; tÞ is the viscous stress tensor. We require
the radial diffusion of azimuthal momentum, which is
proportional to the viscosity η, to vanish at the outer and
inner rims of the CD, i.e.,

σ0r;θðr; tÞjr¼rin
¼ σ0r;θðr; tÞjr¼rout

≡ 0: ð11Þ

The off-diagonal component of the viscous stress tensor
reads σ0r;θ ¼ ηð∂rvθ þ ∂θvr=r − vθ=rÞ [1,2]. Because of
circular symmetry, the BCs (11) reduce to

∂rvθðr; tÞjr¼ri ¼
vθðr; tÞ

r

����
r¼ri

; ð12Þ

where ri ¼ rin; rout. Moreover, for the setup in Fig. 1, two
further BCs should be imposed. First, the radial component
of the current jðr; tÞ ¼ nðr; tÞvðr; tÞ must vanish at the
outer rim, where the CD is isolated. This, together with
Eq. (11), implies that the sum of the forces acting on the
fluid element vanishes at the outer rim. The sum of the
forces, however, does not vanish at the inner rim, since here
a contact connects the device to ground. This implies
[22,23] that at this contact the electron density nðrin; tÞ

FIG. 3. The dc potential energy difference ΔU between the
outer and inner rims of the Corbino disk as a function of the
frequency f ¼ Ω=ð2πÞ of the oscillating magnetic flux ΦðtÞ
(main panel) and the dimensionless variable Ωτ (inset). Results in
this plot have been obtained with the parameters as in Eq. (6). In
the main panel Ωτ ¼ 103. In the inset f ¼ 10 MHz. Different
curves correspond to different values of ν: 1.0 cm2=s (dashed
line), 5.0 cm2=s (dotted line), and 15.0 cm2=s (dash-dotted line).
The latter value corresponds to a simple order-of-magnitude
estimate of the kinematic viscosity [16], i.e., ν ∼ ℏ=m. The solid
line represents the viscous-free analytical result in Eq. (5).
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must be equal to the average value n̄ ¼ eVG=C fixed by the
gate voltage VG.
We notice that the BCs (12) differ from the standard

“no-slip” BCs

vθðr; tÞjr¼rin ¼ vθðr; tÞjr¼rout ≡ 0; ð13Þ

which are commonly employed [1,2] to describe fluid
adhesion to the walls of a container. While the use of the
BCs in Eq. (13) is not immediately justified in our case, we
have checked that the results in Fig. 3 do not change
qualitatively if the BCs in Eq. (13) are used instead of those
in Eq. (12). The agreement between the results obtained
with two different sets of BCs gives us confidence in the
robustness of the effect illustrated in Fig. 3.
We solve Eqs. (8)–(9) by expanding the hydrodynamic

variables in powers of the amplitude Φ0 of the magnetic
flux [22]:

vðr; tÞ ¼ vð0Þðr; tÞ þ vð1Þðr; tÞ þ ½δvðrÞ þ vð2Þðr; tÞ� þ…;

nðr; tÞ ¼ nð0Þðr; tÞ þ nð1Þðr; tÞ þ ½δnðrÞ þ nð2Þðr; tÞ� þ…;

ð14Þ

where vðkÞðr; tÞ; nðkÞðr; tÞ ∼ ðΦ0Þk cos ðkΩtÞ. Since the
hydrodynamic equations of motion are nonlinear, in the
expansion (14) we include constant contributions
δvðrÞ; δnðrÞ ∼OðΦ2

0Þ arising from the self-mixing of the
signal at frequency Ω [22]. At first order, we find the
following differential equation for the radial profile of
the azimuthal component of the velocity:

−iΩvð1Þθ ðrÞ ¼ ν

�
∂2
rv

ð1Þ
θ ðrÞ þ 1

r
∂rv

ð1Þ
θ ðrÞ − 1

r2
vð1Þθ ðrÞ

�

− iΩ
e
mc

Φ0

2πr
: ð15Þ

In the general ν ≠ 0 case, Eq. (15) can be easily solved
numerically. It is convenient to introduce dimensionless

variables by rescaling r with rin and v
ð1Þ
θ ðrÞ with vin, which

has been defined in Eq. (4). Then, Eq. (15) depends only on
the dimensionless parameter

ζ ≡
�
Lη

rin

�
2

; ð16Þ

where Lη ¼
ffiffiffiffiffiffiffiffiffi
ν=Ω

p
is the vorticity penetration depth [1,2]

during a time 1=Ω. The solution of Eq. (15) is shown in
Fig. 2 for several values of ζ and both sets of BCs. We note
that with increasing viscosity the amplitude of the velocity
flow diminishes. Since according to Eq. (3) ΔU depends on
the integral of the square of the velocity profile, increasing
the viscosity suppresses the dc response ΔU, thereby
explaining the results in Fig. 3.

In the limit ζ ≪ 1 (low viscosity or high frequency) the
solution of Eq. (15) is given by the curl-free profile in
Eq. (4). In the opposite ζ ≫ 1 limit (high viscosity or low
frequency) the solution is found by setting to zero the term
in square brackets in Eq. (15). In this case, it is easy to

demonstrate that a non-curl-free linear profile vð1Þθ ðrÞ ∝ r
solves the problem, satisfying the BCs.
To obtain the dc response ΔU in Eq. (3) we expand

Eq. (9) and the radial component of Eq. (8) to second order
and we average the resulting expressions over a period
T ¼ 2π=Ω of the oscillating flux ΦðtÞ. The solution of the
time-averaged equations yields δvrðrÞ≡ 0 and

δnðrÞ ¼ mC
e2

Z
r

rin

dr0
1

r0
hvð1Þθ ðr; tÞ2it; ð17Þ

where hgðtÞit ≡ T−1 R T
0 dt0gðt0Þ denotes the time average of

a function gðtÞ over one period of the oscillating magnetic
flux. Finally, Eq. (3) can be easily obtained by setting r ¼
rout in Eq. (17) and making use of hvð1Þθ ðr; tÞ2it ¼
jvð1Þθ ðrÞj2=2 and of the local capacitance formula Eq. (10).
Vorticity.—Further insights on the physical properties of

the solution shown in Fig. 2 can be obtained by looking at
the radial profile of the vorticity ωzðr; tÞ ¼ ∂r½rvθðr; tÞ�=r,
whose first-order contribution ωð1Þ

z ðr; tÞ in powers of Φ0 is
shown in Fig. 4. In the regions near the rims of the CD the

non-curl-free dependence of the velocity flow vð1Þθ ðr; tÞ on r
leads to large values of the vorticity. Moving away from the
rims, the vorticity decreases to zero on a length scale Lη,
which confirms the interpretation of this quantity as the
vorticity penetration depth [1,2,24]. On the same length
scale the velocity flow crosses over to the curl-free profile
(4)—see inset in Fig. 4. Reference [19] reports a calculation
of the dissipation due to viscosity and proposes an

FIG. 4. Same as in Fig. 2 but for the radial profile of the

vorticity ωð1Þ
z ðr; tÞ (in units of vin=rin) at time t ¼ 0. The inset

shows the position Lmax of the maximum of vð1Þθ ðr; t ¼ 0Þ, as
displayed in Fig. 2, for several values of the vorticity penetration
depth Lη (in units of rin). The dashed line corresponds to the
expected relation Lmax ¼ Lη.

PRL 113, 235901 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

5 DECEMBER 2014

235901-4



alternative method, with respect to the one discussed after
Eq. (7), to measure η.
In summary, we have demonstrated that the shear

viscosity of a two-dimensional quantum electron liquid
can be obtained by studying the response of the system to
an oscillating magnetic flux in a Corbino disk geometry.
We truly hope that this work will stimulate further studies
of viscometers for two-dimensional quantum electron
liquids and related experimental activities on the shear
viscosity of these systems, which may pave the way for the
discovery of solid-state nearly perfect fluids [5].
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