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Abstract—Every year, 2.5 million car crashes involve distracted
drivers globally. It takes a few seconds for a car crash to
happen after the driver has been distracted. Distracted driving
thus poses a critical threat to road safety, needing innovative
approaches for its detection and mitigation. This paper introduces
a novel system to monitor in-car conversations and identify
potential distractions from escalating arguments. The system
analyzes Mel spectrograms generated from real-time audio sig-
nals containing in-car discussions by combining continuous voice
recording and deep learning techniques. First, a denoiser employs
a convolutional autoencoder to reduce car engine noise within the
spectrograms. Then, a classifier uses convolutional and recurrent
neural networks to determine whether the audio corresponds
to a calm conversation or a quarrel based on the denoised
spectrogram. The experimental results showed that the system
achieved a 91.8% classification accuracy. This system addresses a
previously unexplored dimension of cognitive distraction, offering
valuable insights into strategies for reducing the risk of road
accidents. Ongoing research is focused on accounting for other
environmental noises, such as radio speakers, music, wind from
open windows, and engine sounds from surrounding vehicles,
which may influence classification accuracy. The system is also
being extended to consider more than two occupants in the car.

Index Terms—Artificial intelligence, deep learning, distracted
driving, emotion recognition, intelligent transportation systems,
road safety, speech.

I. INTRODUCTION

Distracted driving is one of the gravest threats on to-
day’s roadways, imperiling countless lives and contributing
significantly to vehicular accidents. This issue transcends the
traditional notion of distraction, encompassing a spectrum of
behaviors that divert a driver’s attention from the primary
task of safe vehicle operation. While people’s awareness of
distracted driving has grown, its manifestations continue to
evolve, necessitating solutions to mitigate this threat.

Three categories of distracted driving exist: visual, man-
ual, and cognitive distractions. Visual distractions divert the
driver’s gaze away from the road, manual distractions involve
the removal of hands from the steering wheel, and cognitive
distractions divert the driver’s mental focus from driving.

Distracted driving has a leading role in road safety. Statistics
say that approximately 3,000 lives are lost yearly in the United
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States because of auto accidents due to distracted driving.
For example, in 2021, there were 3,522 people killed and an
additional 362,415 people injured in traffic crashes involving
distracted drivers in the United States alone [1]. This accounts
for a staggering 8% to 9% of all fatal motor vehicle collisions.
It is worth noting that while cell phone usage is a prominent
factor, other distractions are equally dangerous, such as eating,
talking to passengers, adjusting the radio or climate controls,
or adjusting other vehicle controls [1].

Existing solutions to address distracted driving include
machine learning-based methods that use smartphone sensors
such as accelerometers and gyroscopes [2] or in-vehicle phone
localization schemes to determine the locations of smart-
phones inside a moving car [3]. Various solutions based on
deep learning led to high levels of accuracy but often de-
mand substantial computational resources and may not always
meet real-time detection requirements [4], [5]. For example,
lightweight convolutional neural networks might trade off
accuracy in certain scenarios [6]. Temporal-spatial double-line
deep learning networks with causal AND-OR graphs showed
promising results in continuous recognition [7]. Still, they
can be complex to implement and require fine-tuning for
specific applications. Also, a fine-tuned vision transformer led
to high accuracy but could demand substantial computational
resources [8]. Reinforcement learning methods were proposed
to address pedestrian-related distractions [9].

Wearable-based systems were also used to prevent distracted
driving. For example, those using Bluetooth technology have
shown to be energy-efficient but may still require user coopera-
tion for training [10]. Arousal estimation through physiological
signals was performed based on the electrodermal activity
(EDA) [11], [12], perinasal perspiration signal [13], and elec-
troencephalography (EEG) signals [14], [15]. Although inter-
esting, these approaches may necessitate additional hardware
for implementation or cumbersome wearable devices.

Computer vision characterized various alternative solutions
[16]. Interesting examples include tracking-based human ac-
tion recognition schemes [17], knowledge-distillation-based
frameworks [18], and vision-based systems to detect Eyes
Off the Road (EOR) [19]. Although accurate, these methods
require camera placement, setup, and continuous video record-
ing of drivers. Also, the increase in accuracy is generally
correlated with an increase in the number of parameters.
This is a problem for real-world applications because of the



limitations of in-car computing equipment.
In general, existing technologies have made significant

strides in addressing distracted driving. Still, they need ad-
ditional hardware, high computational demand, and focus on
specific distraction scenarios. Also, most existing methods
focus on visual or manual distraction, whereas a few have
explored cognitive distraction [20].

Among the causes of cognitive distraction, heated discus-
sions inside the vehicle are crucial. These discussions may or
may not involve the driver. For example, the driver may engage
in a heated argument with a passenger, other passengers may
argue among themselves, or the driver may have a heated
conversation on the phone, although using hands-free devices
and keeping the hands on the steering wheel. All of these
situations distract the driver and increase the risk of accidents.
This type of cognitive distraction is common and needs to be
explored in the literature.

This paper describes a preliminary version of a novel system
addressing distracted driving that detects in-car arguments
using audio sensors and deep learning. The system can detect
heightened tension by monitoring vocal stress levels and
arguments among vehicle occupants. The system continuously
analyzes the in-vehicle audio, computing the Mel spectrogram
of 5-second-long audio segments. Then, a convolutional au-
toencoder removes the car engine noise, and a further module
based on a convolutional neural network (CNN) and a gate
recurrent unit (GRU) classifies the audio segment as calm
conversation or heated conversation. In the era of Big Data,
where the volume and complexity of information continue to
grow exponentially, our research addresses a pressing real-
world problem by using machine learning techniques to ana-
lyze vast amounts of in-car audio data.

The paper is organized as follows: Section II gives a
background on audio analysis and deep learning; Section III
presents the dataset; Section IV describes the system; Sec-
tion V presents the experiments and their results; Section VI
draws the conclusions.

II. BACKGROUND

A. Audio files

An audio file, denoted as x[n], represents sound as a
discrete-time signal, where n is the discrete-time index. It
quantifies the sound’s amplitude at each time step and is
sampled at Fs, determining the samples per second.

A waveform illustrates sound by depicting how air pressure
(y-axis) changes over time (x-axis) as a continuous curve. The
continuous-time audio signal, x(t), can be expressed as:

x(t) =

∞∑
n=−∞

x[n] · sinc (π(Fst− n)) . (1)

where sinc(x) = sin(x)/x.

B. Spectrogram in Decibels

A spectrogram visually displays sound energy distribution
across frequencies over time. It is derived from an audio

(a) (b) (c)
Fig. 1. An audio signal and its waveform (a), spectrogram (b), and Mel
spectrogram (c).

signal’s Short-Time Fourier Transform (STFT), which dissects
the signal into overlapping segments, computes their Fourier
transforms, and combines the results. Formally:

X(m,ω) =

N−1∑
n=0

x[n] · w[n−mR] · e−jωn (2)

where X(m,ω) is the STFT, x[n] is the audio signal, w[n]
is the window function, N is window size, R is overlap, and
e−jωn is a complex exponential term.

Creating a spectrogram requires two steps on the magnitude
values X(m,ω). First, we take the natural logarithm for
dynamic range compression. Second, we scale these values
in decibels (dB) using a factor of 10. This results in the
spectrogram in dB, denoted as SdB(m,ω):

SdB(m,ω) = 10 log10
(
|X(m,ω)|2

)
. (3)

where m represents time windows, and ω denotes frequency
bins.

C. Mel Spectrogram

Mel’s spectrogram, denoted as M(fmel, t), is a representa-
tion of an audio signal’s spectral content in the Mel-frequency
scale in a way that aligns better with human auditory percep-
tion. Computing the Mel spectrogram requires a standard spec-
trogram, SdB(f, t). Then, linear frequencies (f ) are converted
to the Mel-frequency scale fmel = 2595 · log10(1 +

f
700 ). This

conversion maps frequencies in a way that is closer to human
auditory perception. A set of triangular filters are then applied
to ensure logarithmic spacing in the linear frequency scale.
Each filter Hk(fmel) is defined by a center frequency. Center
frequencies are evenly spaced in the Mel scale. For each time
window (t) in the spectrogram, these Mel filters are applied to
the magnitude spectrogram SdB(f, t) by summing the products
of the filter responses and the magnitude spectrogram values:

Mk(t) =
∑
fmel

SdB(fmel, t) ·Hk(fmel) (4)

The outcome, M(fmel, t), represents the audio signal’s energy
distribution across Mel-frequency bands over time.

D. Deep Neural Networks

Deep Neural Networks (DNNs) are machine learning mod-
els inspired by the human brain. They consist of interconnected
artificial neurons organized into layers. Each neuron processes
information and passes it to the next layer, thereby performing
complex data transformations. DNNs are the key in many
modern AI applications, ranging from image recognition to
natural language understanding.



1) Convolutional Neural Networks (CNNs): A CNN is
a deep learning model typically used for tasks involving
grid-like input data like images. A CNN uses a series of
convolutional layers that learn and extract meaningful patterns
or features from the input data. These layers use small filters to
perform convolutions across the data, thus generating feature
maps that capture relevant information. These features become
increasingly complex and abstract as the data flows through
the network. Pooling layers are often used to downsample
the data, reducing spatial dimensions while retaining essential
details. Fully-connected layers at the end of the network enable
the CNN to make predictions or classifications based on the
learned features.

2) Gated Recurrent Unit (GRU): A GRU is a recurrent
neural network (RNN) architecture that processes sequential
data. GRUs consist of a reset gate and an update gate, and
use a gating system to regulate the information flow through
the network. In particular, the reset gate determines what
information from the previous time step should be forgotten
or reset, whereas the update gate decides the new information
to store. This mechanism allows GRUs to capture long-range
dependencies in sequences. GRUs are typically used in natural
language processing tasks and speech recognition.

III. DATASET

This section describes the data used to train and test the
system, which included two types of sound: voice audio (calm
and heated conversations) and car engine noise.

A. Voice audio

Voice audio files were generated considering TV talk shows
and films, which were examined to find scenes of quarrels and
calm discussions. Voice audio files comprised scenes without
any soundtrack. Also, when selecting voice audio files of
conversations, we paid attention to including both loud and
soft-spoken discussions in equal quantities. The resulting set
comprised 32 and 29 voice audio files for the quarrel and calm
discussion, respectively.

B. Car engine noise

The audio files containing car engine noise were collected
from YouTube. In particular, various videos of car tests were
watched, looking for typical engine noises audible inside a car.
Car test videos were selected as they are recorded inside the
car and faithfully reproduce the car engine noise that typically
overlaps with speech when in a car. The set of car engine
noises comprised 10 audio files lasting from 8 to 10 minutes,
each recorded in a different car.

C. Data Partitioning

Voice and noise files were randomly selected to obtain 3
sets as follows:
• set A: 20 files containing calm discussions, 22 files

containing quarrels, 6 files containing engine noise;
• set B: 5 files containing calm discussions, 5 files contain-

ing quarrels, 2 files containing engine noise;

Fig. 2. Waveforms of voice audio comprising calm discussions (first row) and
corresponding Mel spectrograms (second row).

Fig. 3. Waveforms of voice audio comprising quarrels (first row) and corre-
sponding Mel spectrograms (second row)

Fig. 4. Waveforms of audio comprising car engine noise (first row) and
corresponding Mel spectrograms (second row)

• set C: 4 files containing calm discussions, 5 files contain-
ing quarrels, 2 files containing engine noise.

Each audio file only belonged to one set (A, B, or C). The
files in set A were used for the training, whereas those in sets
B and C were used for validation and testing, respectively.

D. Mixing audio files

As voice and noise audio files were characterized by differ-
ent sampling rates (44.1 kHz and 32 kHz, respectively), those
at 44.1 kHz were under-sampled at 32 kHz.

Then, both voice and noise audio files were divided into
segments whose length L was determined by considering the
parameters used for the spectrogram computation (window
size N and overlap R) as follows:

L = R(number of windows− 1) +N. (5)



Fig. 5. System overview. The Feature extractor computes the Mel spectrogram of the audio segment. The Denoiser reduces the car engine noise in the
spectrogram, and the Classifier takes as input the denoised spectrogram and recognizes if the spectrogram contains a calm discussion or a quarrel.

The number of windows thus contributed to determining the
length of the audio segments.

All possible combinations of voice and noise segments
were then generated: each combination represented an audio
segment (AS). When mixing an audio segment and a noise
segment, the noise volume was either reduced or increased to
avoid covering the voice or being too low, respectively. This
was done by carefully listening to each AS, thereby finding the
best compromise between the voice and noise volumes. This
procedure generated three roughly balanced sets, A, B, and C,
containing 258813, 5262, and 7626 ASes, respectively. Fig. 6
shows how to generate ASes from voice and noise audio files.

IV. SYSTEM

This section outlines the system and describes its modules.

A. Overview

The system is made up of three modules (see Fig. 5):
1) Feature extractor: computes the Mel spectrogram of an

AS as described in Section IV-B);
2) Denoiser: reduces the noise level in the Mel spectogram

(see Section IV-C);
3) Classifier: determines if the denoised spectrogram stems

from an AS containing a calm discussion or a quarrel
(see Section IV-D).

B. Feature extractor

As explained in Section II-B, computing the Mel spectro-
gram requires the spectrogram in Decibels, whose parameters
are the window size N , along with the overlap R, i.e., the
time interval (number of samples) between the beginnings of
two consecutive windows. We used a window size N=2048
samples (at 32 kHz) to compromise between the information
content within the windows and the computational time to
calculate the corresponding Fourier transforms. This choice
yielded a window lasting 2048/32 kHz = 64 ms. As speech
can be considered pseudo-stationary for up to 20 ms (i.e., 640
samples) [21], we used windows spaced 512 samples apart
(75% of overlap). The time interval between the beginnings
of two consecutive windows was thus 16 ms: 512 samples/32
kHz. The frequencies were then converted into Decibels. An
example spectrogram is shown in Fig. 7b, where the horizontal

Fig. 6. Procedure to generate ASes from voice and noise audio files. First,
the audio files are segmented (first row). Then, all possible combinations of
voice and noise audio segments are calculated, and the corresponding audio
segments are mixed (second and third rows).

and vertical components represent the time and frequency,
respectively.

To convert the spectrogram frequencies to the Mel scale,
the Hz scale was first divided into 128 bins. Then, using
overlapping triangular filters, each bin was transformed into
a corresponding Mel scale bin. Fig. 7c shows an example Mel
spectrogram whose vertical component represents the 128 Mel
scale bin.

C. Denoiser

The denoiser removed the car engine noise from the Mel
spectrogram using an autoencoder based on convolutional lay-
ers to capture spatial dependencies between pixels. The roles
of the autoencoder’s encoder and decoder are described in the
following sections. Fig. 9 shows the denoiser architecture.

1) Encoder: The encoder takes in input a grayscale Mel
spectrogram obtained from an AS (i.e., voice + noise) and
generates a compressed representation of it. In particular, the
encoder contains a series of convolutional layers, each creating
a set of feature maps by applying various filters to the input
image. The amount of compression can be modified by varying
the size of the filters and the number of feature maps. After



(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 7. Waveforms of voice audio segments of a calm discussion (a),
spectrogram (b), Mel spectrogram (c), and MFCC (d). Waveforms of voice
audio segments of a quarrel (e), spectrogram (f), Mel spectrogram (g), and
MFCC (h).

various experiments, we decided to halve the size of the
feature maps from one layer to the next: the stride of each
convolutional layer was thus set to two.

2) Decoder: The decoder takes in input the encoder repre-
sentation of the Mel spectrogram and generates a denoised
spectrogram by using a series of transposed convolutional
layers (deconvolutional layers). Each deconvolutional layer
applies a set of filters to the input feature maps, creating a set
of output feature maps. The size of the filters and the number
of output feature maps can be adjusted to control the level of
reconstruction. To double the size of the feature maps from
one layer to the next, the stride of each deconvolutional layer
was set to two.

3) Denoising procedure: As can be surmised by comparing
Fig. 7b to Fig. 8b, and Fig. 7c to Fig. 8c, the car engine noise
significantly affects the voice sound and is hard to recognize.
The autoencoder needs information about the noise to identify
and remove it, thereby reconstructing a denoised spectrogram.
To this aim, the autoencoder was trained using the noisy
spectrogram of an AS as input, and the noise-free spectrogram
generated by the voice segment of that AS as target.

D. Classifier

The classifier comprised a CNN followed by a GRU and a
Multi-Layer Perceptron (MLP).

1) CNN: The CNN takes the noise-free spectrogram gen-
erated by the denoiser, and captures its spatial and temporal
relationships by generating a feature map tensor F ∈ Rw×h×c,
where w and h are the width and the height of each map, and
c is the number of feature maps.

Each feature map Fi ∈ Rw×h, was reshaped by ver-
tically concatenating its columns one after the other. The
reshaping of a feature map Fi thus generated a column
vector fi ∈ Rw·h×1. The same procedure was followed for
all feature maps F1, . . . ,Fc, thus obtaining column vec-
tors f1, . . . , fc. Concatenating the k-th elements fk1 , . . . , f

k
c

of all column vectors f1, . . . , fc, led to defining the k-
th time step (fk1 , . . . , f

k
c ) of a multivariate time series <

(f11 , . . . , f
1
c ), . . . , (f

w·h
1 , . . . , fw·hc ) > made up of w · h

timesteps, each made up of c elements (see Fig. 10).
2) GRU: The GRU consisted of two stacked recurrent

layers. The first layer reduced the number of elements of
the time series, whereas the second layer returned a vector

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 8. Waveforms of audio segments (voice + noise) of a calm discussion (a),
spectrogram (b), Mel spectrogram (c), and MFCC (d). Waveforms of voice
audio segments of a quarrel (e), spectrogram (f), Mel spectrogram (g), and
MFCC (h).

Fig. 9. Denoiser overview. The denoiser takes the Mel spectrogram compris-
ing voice and noise and returns the denoised spectrogram.

computed after processing the last time step of the time series.
The output’s shape of the first layer was thus w ·h×k1, where
k1 was the number of hidden units of the layer. The second
layer produced an output vector made up of k2 elements,
where k2 was the number of hidden units of the second layer.

3) MLP: The MLP had two hidden layers and an output
layer. The input of the MLP was the output vector generated
by the GRU. The output layer consisted of one neuron with a
sigmoid activation function to perform a binary classification:
calm discussion or quarrel.

E. Experiments

A grid search was performed to find the best architecture
for the denoiser and classifier.

1) Denoiser: The denoiser was optimized by altering the
compression rate of the autoencoder (AE). In particular, the
number of convolutional layers varied from 2 to 5, with filter
sizes of 3×3, 5×5, and 7×7, and the number of filters equal
to 16, 32, 64 and 128. The AEs were trained by repeating
10-fold cross-validation three times for each combination of
hyperparameter values, each time shuffling the data.

Given a spectrogram X ∈ [0, 1]n×m, the quality of its
reconstruction Y ∈ [0, 1]n×m was assessed using the mean
absolute error (MAE) and the structural similarity index mea-
sure (SSIM) [22] in the following loss function:

L = MAE(X,Y)+SSIM(X,Y) (6)



Fig. 10. Classifier overview. The CNN takes the spectrogram generated by the denoiser and computes a feature map tensor F ∈ Rw×h×c. All feature maps
F1, . . . ,Fc are reshaped, thus obtaining column vectors f1, . . . , fc. The GRU layers process the time series, generating an output vector that is then fed as
input to the MLP. The MLP performs the binary classification.

Fig. 11. The Mel spectrogram computed from an AS comprising a calm
discussion (a), the Mel spectrogram denoised by the AE (b), and the noise-
free Mel spectrogram computed only using the voice segment of the AS (c).

where

MAE(X,Y) =
1

nm

n∑
i=1

m∑
j=1

| yij − xij |, (7)

and

SSIM(X,Y) =
(2µXµY + C1) + (2σXY + C2)

(µX2 + µ2
Y + C1)(σ2

X + σ2
Y + C2)

, (8)

where µX is the pixel sample mean of X, µY the pixel sample
mean of Y, σ2

X the variance of X, σ2
Y the variance of Y, σXY

the covariance of X and Y, C1 and C2 are two variables to
balance the division with a weak denominator. The values of
C1 and C2 were set to 0.01 as this is a widely used value in
the image processing community [22].

The lowest average loss on the test folds was considered as
a criterion for selecting the best architecture. The Rectified
Linear Unit (ReLU) was used as the activation function
for both convolutional and deconvolutional layers as it runs
much faster than other activation functions [23]. The AE
obtained the best performance with an encoder comprising
three convolutional layers with 16, 32, and 64 filters of size
3×3. The decoder consisted of 3 convolutional layers with 64,
32, and 16 filters of size 3×3.

2) Classifier: The grid search was performed by varying
the hyperparameter values of the CNN, the number of neurons
in both layers of the GRU, and the number of hidden layers
and neurons in each hidden layer of the MLP. A number
of convolutional layers in {2,. . . ,6} was tested trying filter
sizes of 3×3, 5×5, and 7×7. A number of neurons in the
GRU layers were tested ranging from 32 to 256, with step 32.

Fig. 12. The Mel spectrogram computed from an AS comprising a quarrel
(a), the Mel spectrogram denoised by the AE (b), and the Mel spectrogram
computed from the voice segment contained in the AS (c).

TABLE I
MEAN LEVELS OF LOSS AND CORRESPONDING STANDARD DEVIATIONS OF

THE DENOISER ON THE TEST FOLDS

AE’s loss
Features

Spectrogram Mel Spectrogram MFCC
MSE 0.63 ± 0.104 0.57 ± 0.110 0.73 ± 0.094
MAE 0.57 ± 0.111 0.48 ± 0.106 0.62 ± 0.115

MSE + SSIM 0.66 ± 0.134 0.59 ± 0.082 0.69 ± 0.151
MAE + SSIM 0.41 ± 0.121 0.33 ± 0.017 0.52 ± 0.115

Up to two hidden layers in the MLP were tried, varying the
number of neurons in each layer from 32 to 512, with step
32. The logistic sigmoid and the hyperbolic tangent functions
were tested as activation and recurrent activation functions for
the GRU and MLP layers. For the MLP, the ReLU activation
function was also tested.

For each combination of the hyperparameters, the 10-fold
cross-validation was repeated 3 times, each time shuffling data
to train the models with different configurations of the folds.

The binary cross-entropy was used as a loss function to
train the binary classifier. In particular, the lowest mean cross-
entropy on the test folds was considered as a criterion to select
the best architecture, which consisted of 3 convolutional layers
with 16, 32, and 64 filters of size 3×3 for the CNN, 2 recurrent
layers with 64 hidden neurons for the GRU, and 2 layers with
64 neurons for the MLP.

V. EXPERIMENTS AND DISCUSSION

This section presents the experiments and discusses their
results by comparing the performances of the system modules



TABLE II
MEAN LEVELS OF ACCURACY AND CORRESPONDING STANDARD DEVIATIONS ON THE TEST FOLDS OF THE TESTED CLASSIFIERS

Classifiers
Features

with denoise without denoise
Spectrogram Mel Spectrogram MFCC Spectrogram Mel Spectrogram MFCC

CNN + RNN 0.885 ± 0.184 0.925 ± 0.152 0.874 ± 0.191 0.842 ± 0.176 0.865 ± 0.129 0.831 ± 0.138
MobileNetV2 0.855 ± 0.111 0.871 ± 0.106 0.842 ± 0.115 0.820 ± 0.203 0.854 ± 0.183 0.814 ± 0.192
NasNetMobile 0.860 ± 0.134 0.882 ± 0.098 0.847 ± 0.178 0.834 ± 0.113 0.862 ± 0.192 0.821 ± 0.174
EfficientNetV2 0.870 ± 0.121 0.895 ± 0.167 0.904 ± 0.115 0.843 ± 0.103 0.872 ± 0.184 0.831 ± 0.145

to those of alternative denoisers (AEs) and classifiers. The
hyperparameters of each model were optimized as described
in Section IV-C and Section IV-D.

A. Alternative denoisers
The alternative AEs were trained using spectrograms,

Mel spectrograms, and Mel-frequency cepstral coefficients
(MFCCs) [24]. The MFCCs were derived from the Mel
spectrogram by first converting the 128 Mel frequencies in
Decibels and then computing the discrete cosine transform
of the 128 frequencies. The resulting spectrum amplitudes
represent the MFCCs. For example, Fig. 7d shows the MFCCs
computed using the Mel spectrogram of Fig. 7c.

The performance was evaluated based on different loss
functions: mean squaredMSE, MAE, MSE+SSIM, and
MAE+SSIM. As Fig. 11 and 12 show, the Mel spectrogram
can be reconstructed faithfully. Instead, when reducing noise
from spectrograms in Decibels, there was a loss of information
related to speech. Also, reducing noise from MFCCs led to
MFCCs with poor information regarding speech. Table I shows
the loss value of each AE trained using the various features.

B. Alternative classifiers
Alternative classifiers were obtained by exchanging the

convolutional base with those of some widely used pre-
trained networks. The weights of these networks were set by
training the network using the Imagenet dataset. The memory
required and inference time were considered as criteria to
minimize in order to choose the pre-trained models. The
models selected were MobileNetV2 [25], NASNetMobile [26],
and EfficientNetB0 [27], which require 14, 23, and 29 MB of
memory, respectively. These models also have quick inference
times. In particular, without using a GPU, EfficientNetB0
has the longest inference time (46 ms); NASNetMobile and
MobileNetV2 take 27 ms and 26 ms, respectively.

Transfer learning helped reuse the knowledge learned from
the pre-trained models to distinguish audio segments con-
taining calm discussions from those containing quarrels. In
particular, while freezing the convolutional base of each pre-
trained model, the MLP (i.e., the final part of the classifier)
was replaced with an MLP made up of two hidden layers.
The number of neurons in each hidden layer varied from 32
to 128, with step 32. The hyperparameters of each model were
optimized by three executions of the 10-fold cross-validation,
each time shuffling data.

Fig. 13. Confusion matrix obtained testing the classifier on set C.

After training the MLP, the last convolutional layers were
unfrozen to extract more characteristic features to recognize
quarrels. In particular, up to three convolutional layers were
gradually unfrozen (one at a time) for each pre-trained model,
and the model was retrained.

Transfer learning was performed by keeping a small learn-
ing rate equal to 1 · e−6 to avoid significant variations to the
network weights that would erase the learned knowledge. The
best hyperparameter configuration for each pre-trained model
was as follows:
• MobileNetV2: 96 neurons in the first MLP’s hidden layer,

64 neurons in the second MLP’s hidden layer, and the last
two convolutional layers unfrozen;

• NASNetMobile: 64 neurons in the first MLP’s hidden
layer, 64 neurons in the second MLP’s hidden layer, and
the last convolutional layer unfrozen;

• EfficientNetB0: 128 neurons in the first MLP’s hidden
layer, 96 neurons in the second MLP’s hidden layer, and
the last three convolutional layers unfrozen.

The experiments were repeated, this time training the mod-
els using different inputs: the spectrogram, Mel spectrogram,
and MFCCs. Table II shows each classifier’s mean accuracy
and standard deviation.

C. Discussion

The model that achieved the highest accuracy on the val-
idation set (set B) was finally tested on the test set (set C).
As explained in Section III-C, sets B and C did not share any
audio file. Testing the system on set C was crucial to verify its
generalization capability, i.e., to ensure that it had not become



accustomed to the voices in the files that generated the audio
segments used for training.

During the final test, the system classifier achieved an
accuracy of 91.8%. The F1 score was also calculated to
evaluate the model’s predictive ability inside each class. The
F1 score is defined as F1 = 2(p · r)/(p + r), where p and
r are the precision and recall, respectively. In particular, the
precision is the ratio of true positives to all positive samples,
including those incorrectly classified as positive; the recall is
the ratio of true positives to the samples that should have been
classified as positive. The F1 scores were 90% and 88% for
the calm discussion and quarrels classes, respectively. Fig. 13
shows the confusion matrix, whose main diagonal contains the
count of samples correctly classified for each class.

As the matrix shows, the system achieved a high accuracy.
In particular, the classifier misclassified 315 samples of calm
discussion (∼8.3%) and 310 samples of quarrels (∼8%).
The misclassification rate was thus approximately the same
for both classes. This suggests that future system versions
could be integrated into modern Advanced Driver Assistance
Systems (ADAS) to alert the driver or automatically reduce the
vehicle’s speed in the case of heated discussions inside the car.
This could help considerably reduce the risk of accidents due
to cognitive distractions and save lives.

VI. CONCLUSIONS

This paper has presented a preliminary version of a system
that detects in-car heated conversations that may distract
a driver based on sound analysis and deep learning. The
system achieved promising levels of accuracy up to 91.81%
in distinguishing in-car calm conversations from quarrels.

Although this system version only considers engine noise
as a disturbance source for vocal audio, we are generating a
much larger dataset that considers multiple noise sources that
are typical when inside a car, including the presence of more
than two passengers.

The proposed system could be integrated into modern
advanced driver assistance systems (ADAS) to quickly detect
cognitive distractions caused by the driver’s involvement in
heated discussions, significantly reducing the risk of accidents.
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