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Abstract  This paper derives the dynamic equations 
of a reduced-order race-car model using Lie-group 
methods. While these methods are familiar to com-
putational dynamicists and roboticists, their adoption 
in the vehicle dynamics community is limited. We 
address this gap by demonstrating how this frame-
work integrates smoothly with the Articulated-Body 
Algorithm (ABA) and provides a fresh and system-
atic formulation of vehicle dynamics. For the first 
time, we model the car body as the end effector of a 
serial robot with a floating base connected to the track 
via virtual revolute and prismatic joints. Our formula-
tion also accounts for the effects of 3D track geom-
etry, providing a natural embedding of the car into the 
3D track. We rigorously reconcile the ABA steps with 
key aspects of vehicle dynamics, including road-tire 
interactions, aerodynamic forces, and load transfers. 

The resulting model, simple yet accurate, is a power-
ful tool to efficiently solve Minimum-Lap-Time Plan-
ning problems. To demonstrate the effectiveness of 
our approach, we show numerical results obtained on 
the Nürburgring circuit. Our optimization problem is 
formulated via a direct collocation method and solved 
using the CasADi optimization suite. To validate 
the results, we test our reduced-order model against 
a full-fledged multi-body model recently developed 
by the same authors. The comparison confirms the 
validity of our reduced-order model, proving both the 
accuracy of the solution and the computational effi-
ciency achieved.

Keywords  Lie groups · Vehicle dynamics · 
Trajectory optimization · Numerical optimal control

1  Introduction

1.1 � Literature review

Minimum-Lap-Time Planning (MLTP) problems are 
among the hottest topics in the automotive research 
field. Nowadays, they are widely employed in the 
industry to investigate car performances and provide 
guidelines both in the design and the tuning stages.

Two fundamental elements of MLTPs are the car 
and the track model. The choice of the track model 
is closely related to the MLTP formulation, which 
can be defined on a time or spatial domain. As well 
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described in [1], the latter approach is the most com-
monly used, although it requires a well defined and 
differentiable track. For this, a spline representa-
tion is often used and the state of the art is well rep-
resented by [2] and [3]. In [2] a 3D ribbon-shaped 
racetrack model is obtained using a generalized 
Frenet–Serret apparatus. In particular, the authors 
propose an optimal estimation procedure that pro-
vides a smooth parameterization of the road from 
noisy data, allowing to model curvature, camber and 
elevation changes, as well as a variable track width. 
Lovato et al. in [3] further extended the ribbon-type 
road model to include lateral curvature. This accounts 
for lateral camber variations across the track; hence, 
lateral position-dependent camber is introduced as a 
generalization required for some racetracks.

The choice of the car model depends on the level 
of details required to describe the vehicle dynamics. 
The most simple model is the single-track one [4]. 
Rucco et al. [5] formulate an optimal control problem 
adopting the single-track model on a 2D track, and 
include important aspects of vehicle dynamics such as 
load transfers and nonlinear tire models. Increasing in 
complexity, a double-track model is implemented in 
[6], where longitudinal and lateral load transfers are 
considered along with aerodynamic loads and Pace-
jka’s Magic Formula [7]. The double-track model has 
been further refined to cover four-wheel drive vehi-
cles with active aerodynamic controls [8] and lim-
ited-slip differential [9]. Instead, Limebeer et al. [10] 
develop a double track vehicle model embedded in a 
3D track. Hence, they take into account the effects of 
track geometry when computing load transfers and 
vehicle absolute velocity.

As the last stage of complexity, a multi-body 
approach can be used to increase the level of details. 
In particular, in [11] a 2D multi-body dynamic model 
is developed where the rear wheels are fixed to the 
chassis—making it a single rigid body—while the 
front wheels are independent bodies pinned to the 
main chassis via revolute joints. Dal Bianco et al. [12] 
extended further and developed a 3D multi-body car 
model with 14 degrees of freedom.

Even if successful, all the mentioned contribu-
tions do not provide a systematic framework for the 
assembly of the vehicle dynamic equations, espe-
cially when considering their motion on 3D tracks. 
Their approaches seem episodic lacking a systematic 
procedure. Moreover, they do not exploit the recent 

developments in recursive dynamics algorithms, quite 
popular, on the contrary, in the fields of robotics and 
general computational dynamics, see e.g. [13] and 
[14]. In a recent contribution by the authors [15], a 
detailed multi-body model is constructed employing 
Featherstone’s Articulated-Body Algorithm (ABA) 
[14]. The ABA offers a systematic approach and has 
an algorithmic complexity of O(n), which scales lin-
early with the number of degrees of freedom. This 
leads to a significant reduction in the volume of the 
algebra during the assembly of the dynamic equa-
tions. In contrast, the classical Lagrange equation-
based approach, with its complexity of O(n3) , is not 
considered in this analysis due to its inferior perfor-
mance. For more details see [14, chap. 10, p. 203].

In this work, we present a unified framework to 
systematically build a reduced-order vehicle model 
that strikes a balance between accuracy and effi-
ciency. More specifically, we develop a Lie-group 
based race-car model where the vehicle is regarded as 
a serial robot. The effects of 3D track geometry are 
directly included via a generalized kinematic joint, 
enabling a natural embedding of the car model into 
the 3D track. The dynamics equations are obtained 
by merging an efficient recursive formulation based 
on the Articulated-Body Algorithm and a simplified 
yet rigorous treatment of the vehicle dynamics [4]. 
Finally, fundamental phenomena in vehicle dynamics 
such as the load transfers and the nonlinear depend-
ence of tire forces on vertical are incorporated within 
the ABA formulation by suitably defined algebraic 
equations. A noteworthy result is that our framework 
opens up the possibility to directly employ efficient 
and open-source rigid body dynamics libraries (see, 
e.g. [16] documented in [17]) also within the vehicle 
dynamics context.

1.2 � Structure of the work

The main contributions of this paper are organized as 
follows. In Sect.  2, we delve into the parameteriza-
tion of the track and vehicle, emphasizing crucial ele-
ments such as the mathematical representation of the 
track, the reference frames, and the kinematic chain 
that characterizes the vehicle structure. This section 
provides a comprehensive understanding of the foun-
dational aspects of our reduced-order model.

Section  3 focuses on deriving the vehicle’s 
dynamic model using the ABA formulation. We 
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describe how tire forces and load transfers are recon-
ciled with the wrench formalism proper of the ABA 
framework. Key to this reconciliation are the sus-
pension constitutive equations, which are addressed 
within the framework proposed in [4].

Finally, in Sect.  4, we present numerical results 
obtained from solving a minimum-lap-time problems 
on the Nürburgring Nordschleife circuit. First we val-
idate of our proposed reduced-order against a reliable 
multi-body model introduced by the same authors 
in [15]. On a particularly demanding segment of 
the track, we demonstrate how our simplified model 
accurately manages to capture the essential dynam-
ics of the system, while presenting a significantly 
improved computational efficiency. This computa-
tional advantage makes our model particularly suita-
ble for long-term planning scenarios. As a demonstra-
tion, we report a solution for a full lap of the circuit.

2 � Kinematic model

With reference to Fig.  1, the kinematic model of a 
vehicle traveling on a 3D track is devised as a serial 
kinematic chain whose root node consists of a fixed 
Cartesian reference frame {B0} and whose end-
effector represents the vehicle sprung mass, to which 
frame {B6} is attached. The serial chain starts with a 
complex joint that accounts for advancing tangentially 
to the road centerline, and proceeds with a series of 
virtual prismatic and revolute joints.

To efficiently parameterize the posture of the i-th 
body respect to the fixed reference frame {B0} , we 
employ the body-fixed (local) version of the Product 
of Exponentials (POE) formula [18]

where g0,i ∈ SE(3) denotes the posture of {Bi} with 
respect to {B0} , gk−1,k(0) represents the initial config-
uration of {Bk} w.r.t. {Bk−1} , X̂k are the (homogeneous 
representations of the) twists of the joints defining the 
kinematic chain, and q = [q1,… , qi]

T are the expo-
nential coordinates of the 2nd kind [19] for a local 
representation of SE(3) for the i-th body.

The symbol Xk is a shorthand for Xk
k
 , i.e. Xk = Xk

k
 

when expressed in the attached local frame {Bk} , the 
right superscript denoting the reading frame {Bk} . It 
is worth recalling that Xk ∈ ℝ

6 is the vector repre-
sentation of X̂k ∈ ℝ

4×4 , according to the standard Lie 
groups notation [19] and [20]. In the general case,

where the adjoint operator Ad gi,j
 maps the same twist 

X
k
 from reading frame {Bj} to {Bi}.
The rigid-body velocity V̂ i

0,i
 of {Bi} w.r.t. {B0} in 

the moving frame {Bi} is given (as a 4x4 matrix) by 
the following formula

where, given the 3x3 rotation matrix R0,i from {B0} 
to {Bi} , 𝜔̂i

0,i
∶= RT

0,i
Ṙ0,i is the skew-symmetric matrix 

of the angular velocity components (in {Bi} ) of {Bi} 
w.r.t. {B0} , and vi

0,i
= RT

0,i
ḋi
0,i

 are the components (in 
{Bi} ) of the velocity of the origin Oi with respect to 
O0 . Equation (3) can be rewritten (as a 6x1 vector) in 
a convenient form by factoring out the joint velocities 
q̇ as follows

with q = [q1 ⋯ qi]
T and the distal Jacobian Ji

0,i
 can be 

computed as

(1)g0,i(q) =

i∏

k=1

gk−1,k(0)e
X̂kqk ,

(2)Xi
k
= Ad gi,j

X
j

k

(3)V̂ i
0,i

∶= g−1
0,i
ġ0,i =

[
𝜔̂i
0,i

vi
0,i

01x3 0

]

(4)Vi
0,i

= Ji
0,i
(q)q̇,

Fig. 1   Kinematic chain of the 3D vehicle model with the ref-
erence frames and degrees of freedom described by coordi-
nates q 



	 Meccanica

1 3
Vol:. (1234567890)

where we define Ck,i = eX̂kqkgk,i and k = 1,… , i.
Similarly to twist formulation, Wk

k
∈ ℝ

6 denotes 
the components in {Bk} of the wrench exerted on the 
k-th body. A generic wrench can be expressed, rela-
tive to a different frame, as follows

where f j
k
 are the components of the force acting on 

body k, expressed in {Bj} , and mj

k
 the components 

with respect to Oj and in {Bj} of the resulting moment 
applied to body k. The operator Ad ∗

g
= Ad −T

g
 maps 

the same wrench in different reading frames.

2.1 � Track parameterization

To build an analytical model of the track, that is con-
tinuously differentiable and capable of efficiently rep-
resent complex shapes while remaining numerically 
stable, we employ 3D NURBS curves [21]. The track 
centerline (spine) curve C(�) is defined by a position 
vector p(�) such that

In our representation, � is not necessarily the cur-
vilinear abscissa s (i.e. the arc length of the spine), 
but a generic curvilinear parameter. The relationship 
between s and � can be described by

(5)Ji
0,i
(q) = [d1⋯ di], dk = AdC−1

k,i
Xk,

(6)Wi
k
= Ad ∗

gi,j

[
f
j

k

m
j

k

]
= Ad ∗

gi,j
W

j

k
,

(7)C(�) = {[p(�)]G ∈ ℝ
3 ∶ � ∈ [0, 1]}.

where p,� = dp∕d�.
In order to precisely define a track frame 

{S} = (OS;[t, n, m]) that follows the 3D ribbon along 
its spine (see Fig.  2), an intermediate frame 
{H} = (OH;[t, v, w]) needs to be introduced. Here 
t = dp∕ds is the unit vector tangent to C; v is the unit 
vector obtained normalizing kG × tΠkG

 , with kG the 
unit vector representing the vertical direction of the 
ground-fixed reference frame and tΠkG

 the projection 
of t on the plane ΠkG

 , perpendicular to kG ; finally w is 
defined as as t × v . Then, {S} is obtained by rotating 
{H} about t through an angle � , which represents the 
track banking.

It is worth remarking that the complex track joint 
cannot be analyzed using the exponential approach 
proper of the POE (see (1)); hence, the transformation 
matrix gG,S , along with the rigid-body velocity VS

G,S
 of 

{S} w.r.t. {G} expressed in {S} , need to be derived fol-
lowing the general definition in [19]. Once the track 
is parameterized and the NURBS analytical model 
is available, the quantities [t, n, m] can be computed 
and gG,S can be evaluated as

where RG,S is the rotation matrix from {G} to {S} , and 
tG, nG, mG are the components of t, n, m in the fixed-
ground reference frame {G}.

Instead the velocity VS
G,S

 can be computed as

Here, TS
G,S

 is the geometric twist obtained by differ-
entiation of C and RG,S with respect to s, tS is the unit 
tangent vector to the centerline, and ΩS

G,S
 is the angu-

lar velocity defined by

(8)
ds

d�
= ‖p,�‖,

(9)

gG,S(�) =

[
RG,S(�) C(�)

01×3 1

]
; RG,S = [tG, nG, mG]

(10)VS
G,S

=

�
vS
G,S

𝜔S
G,S

�
=

�
tSṡ

ΩS
G,S

ṡ

�
= TS

G,S
ṡ = TS

G,S
𝛼̇‖p,𝛼‖.

(11)Ω̂S
G,S

= RT
G,S

dRG,S

ds
.

Fig. 2   3D ribbon track with intermediate reference frame {H} 
and track reference frame {S}
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2.2 � Vehicle parameterization

The vehicle kinematic chain is shown in Fig. 1, where 
the kinematic joints are depicted along with the ref-
erence frames {B0} to {B6} , their corresponding joint 
variables qi , and the twist velocities Xi.

Starting from ground, the first joint is associated 
with the track and transforms the ground frame {B0} 
into the track frame {B1} . Its motion is parameter-
ized by the q1 coordinate. Then the variables q2 and 
q3 , respectively associated with a (virtual) prismatic 
and revolute joint, encode the vehicle degrees of free-
dom w.r.t. to {B1} . Specifically, the car can translate 
along the normal direction j1 , thus defining the frame 
{B2} , and rotate along the vertical direction k2 , defin-
ing {B3} . The latter frame is located at road level and 
it is thought of as fixed to the car axles plane, where 
the interaction forces between road and vehicle are 
exchanged.

The remaining joints variables q4 , q5 and q6 param-
eterize the relative motion of the car body frame {B6} 
with respect to the car axles plane, due to the suspen-
sion system. In particular, q4 is the vertical displace-
ment, and q5 and q6 are, according to common vehicle 
dynamics terminology [4], the pitch and roll angles of 
the chassis.

It is worth observing that the last two revolute 
joints have intersecting axes. Furthermore, our refer-
ence frames definition implies that O4 ≡ O5 ≡ O6 . In 
particular, point O6 does not coincide with car body 
center of mass G6 (which is located above along k6 
direction), but coincides with the vehicle invari-
ant point (VIP) [4]. This point, regardless of the roll 
angle, remains centered with respect to the four con-
tact patches, hence in the middle of the vehicle, even 
when it rolls. This property makes such point the best 
option to monitor the vehicle position.

As we pointed out in the previous section, the track 
joint—unlike the joints from {B1} to {B6}—cannot 
be parameterized by the exponential approach and 
requires a dedicated formulation. Considering that {S} 
and {G} , introduced in Fig. 2, become {B0} and {B1} 
according to the notation of Fig. 1, and that the joint 
variable � becomes q1 , we can rewrite (9) and (10) as 
follows 

(12a)g0,1 =

[
R0,1(q1) C(q1)

01×3 1

]

3 � Dynamic model

Once the vehicle has been parameterized by means of 
the Lie group machinery, the equations of motion can 
be derived systematically. To this end we can employ 
the Articulated-Body Algorithm [14].

Following the ABA approach, the dynamics of a 
generic body k connected to a parent joint is written 
using the Newton–Euler equations

where Wk
kJ
 is the wrench exerted on body k through 

the previous connection joint, Mk
k
 is the inertia matrix 

k, V̇k

k1 is the rigid-body acceleration, and bk
k
 is the 

bias force, defined as

In (14), the first term on the right-hand side accounts 
for the generalized gyroscopic forces and torques, 
which are bilinear in Vk

k , while Wk
kE

 is the wrench 
exerted by the forces directly applied to the body k. 
The mathematical operator ad V in (14) transforms the 
input vector V = [vT �T ]T ∈ ℝ

6 in a 6 × 6 matrix as 
follows

and serves to compute the Lie derivative between two 
vector fields. Referring to [19], it is worth recalling 
that ad ∗

V
= − ad T

V
.

The ABA algorithm revolves about the concept of 
articulated body, defined as a collection of NB rigid 
bodies interconnected by movable joints (either active 
or passive). Remarkably, if k is the first body (the 
handle) of the articulated body, its dynamics can still 
be written similar to (13) in the following form

(12b)V1
0,1

= T1
0,1
‖p,q1‖q̇1 = J1

0,1
q̇1.

(13)Wk
kJ
= Mk

k
V̇k

k
+ bk

k
,

(14)bk
k
= ad ∗

Vk
k

Mk
k
Vk

k −Wk
kE
.

(15)ad V =

[
𝜔̂ v̂

03×3 𝜔̂,

]

(16)Wk
kJ
= M̂k

k
V̇k

k
+ b̂k

k
,

1  The subscript 0 is omitted when referring to the motion w.r.t. 
the ground.
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where M̂k
k
 and b̂k

k
 are now generalized inertial and bias 

terms accounting for the inertia and bias forces of the 
children bodies in the kinematic chain that are struc-
turally transmitted backwards to the handle k.

The explicit expressions of the articulated-body 
inertia and bias terms M̂k

k
 and b̂k

k
 , along with other 

fundamental aspects of the ABA algorithm, will be 
given in the next subsection.

3.1 � Forward dynamics via a tailored ABA 
formulation

The Articulated-Body Algorithm consists of three 
subsequent steps.

3.1.1 � Forward propagation of posture and velocity

In Step 1, starting from the handle body, the rigid-
body postures and velocities are being propagated 
from ground to the car body.

The number of rigid bodies in our articulated body 
is NB = 6 . These are identified by frames {B1} to {B6} 
and their inertial properties are introduced in the next 
ABA step. As detailed in Sect.  2, it is worth noting 
that the first joint (track transformation) is treated 
separately, via the homogeneous matrix g0,1 and the 
Jacobian J1

1
.

3.1.2 � Evaluation of the generalized bias force 
and articulated‑body inertia

In this step, starting from the last body of the kin-
ematic chain, we evaluate M̂k

k
 and b̂k

k
 (introduced 

in (16)) for a generic body k.

The quantities M̄l
l
 and b̄l

l
 are calculated as 

 where the shorthand notation Alk = Ad gk+1,k
 is used 

and �l is the active joint force (or torque, depending 
on the nature of the joint). In the vehicle model we 
propose joints are not actuated: the non-zero �l ’s are 
passively generated by springs and dampers.

Step 2 can be easily implemented once the terms 
Mk

k
 , �l and Wk

kE
 have been defined for each body.

In our serial kinematic chain, only the inertias of 
sprung M6

6
 and unsprung masses M3

3
 , as usual in vehi-

cle dynamics [4], are different from zero.
Regarding the active joint force (or torque) �l , 

we clearly distinguish the first three joints from the 
last ones. For the former group of joints, which are 
fictitious, we have �1 = �2 = �3 = 0 . For the lat-
ter, although not actuated, we have in general non-
zero forces �4, �5, �6 developed by the presence of 
springs and dampers. Their constitutive equations are 
described by 

(17a)M̄l
l
= M̂l

l
−

M̂l
l
XlX

T
l
M̂l

l

XT
l
M̂l

l
Xl

(17b)

b̄l
l
=

[
A∗
kl
b̂l
l
− A∗

kl
M̄l

l
ad Xlq̇l

Vl
k
+

A∗
kl
M̂l

l
Xl(𝜏l − XT

l
b̂l
l
)

XT
l
M̂l

l
Xl

]
,

(18a)𝜏6 = −k𝜙q6 − c𝜙q̇6

(18b)𝜏5 = −k𝜃q5 − c𝜃 q̇5
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 where k� , k� and k are first-order approximations 
of roll, pitch and vertical stiffness about a nominal 
working condition of the vehicle. Similarly, the coef-
ficients c� , c� and c, respectively approximate the roll, 
pitch, and vertical damping. Employing symbol p to 
represent either k or c, the explicit expression of these 
coefficients can be computed as follows 

 where, according to the notation in [4], the subscript 
of pij refers to the axle and side of the vehicle ( i = 1, 2 
for front/rear and j = 1, 2 for left/right). As usual, t1 
and t2 denote he front and rear tracks of the car.

Finally, to evaluate bk
k
 as in (14), we must have the 

external wrenches Wk
kE

 . The only external contribu-
tions in our model come from the aerodynamic 
forces, applied to the car body (fixed to {B6} ), and the 
interaction between the axle body (fixed to {B3} ) and 
the road. The contribution of gravity is treated sepa-
rately, as explained in Step 3. As far as the aerody-
namic wrench W6

6E
 is concerned, it is convenient to 

evaluate it in {B3} and then express it back in {B6} 
through (6) to also model its effects on the roll, pitch 
and bounce motion. Therefore, its expression is com-
puted as W6

6E
= Ad ∗

g6,3
W3

6E
 , where

Here, � is the air density, S is the vehicle frontal area, 
v3
3x

 is the component of v3
3
 along i3 , and a1, a2 are the 

longitudinal distances of G6 from the front and rear 
axles, respectively. Cx > 0 is the drag coefficient, 
Cz > 0 the downforce coefficient, and Cz2, Cz1 are 
such that Cz = Cz1 + Cz2.

The other non-zero external wrench W3
3E

 is 
applied directly on the axle body (fixed to {B3} ) and 
accounts for a portion of the interactions between 
road and vehicle. In our model, as in a real vehicle, 
the totality of the external forces that act on the car 

(18c)𝜏4 = −k q4 − c q̇4,

(19a)p� =
p11 + p12

4
t2
1
+

p21 + p22

4
t2
2

(19b)p� = (p11 + p12)a
2
1
+ (p21 + p22)a

2
2

(19c)p = p11 + p12 + p21 + p22,

(20)

W3
6E

= [fxa , 0, fza , 0, mya
, 0]T

= −
1

2
�S(v3

3x
)2[Cx, 0, Cz, 0, Cz2a2 − Cz1a1, 0]

T .

(except for the aerodynamic ones) are developed 
through the contact between tires and road. How-
ever, since we are considering the body {B3} as the 
handle of an articulated body going up to {B6} , it is 
more convenient to encode the in-plane components 
of the force in the external wrench W3

3E
 and the out-

of-plane ones in the internal wrench W3
3J

 , as shown 
in Fig. 3. The total wrench W3

3
 , collecting all forces 

and torques generated at the four contact patches 
between road and tires, is thus partitioned as

More in detail, we define 

 Considering that the first three joints are passive, W3
3J

 
represents a structural wrench: its non-zero compo-
nents f 3

3z
 , m3

3x
 and m3

3y
 are the forces and torques that 

can be thought, in line with the ABA perspective, as 
those structurally absorbed by the first three virtual 
joints of the kinematic chain. These components 
restrain {B3} to stay on the track. Instead, the compo-
nents f 3

3x
 , f 3

3y
 and m3

3z
 , lying on the plane locally tan-

gent to the road surface, are treated as external forces 
accounting for the tire adherence and traction and are 

(21)W3
3
= W3

3J
+W3

3E
.

(22a)W3
3J
= [0, 0, f 3

3z
,m3

3x
,m3

3y
, 0]T

(22b)W3
3E

= [f 3
3x
, f 3
3y
, 0, 0, 0,m3

3z
]T .

Fig. 3   Step 2 of the Articulated-Body Algorithm: Evaluation 
of the articulated-body inertia M̂3

3
 and representation of in-

plane (blue) and out-of-plane (red) wrenches
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embedded in W3
3E

 . These will be linked, in the next 
subsection, to the control inputs of our model.

3.1.3 � Forward propagation of acceleration

In this step, again starting from the first body, we 
compute and forward propagate the joint accelera-
tions q̈k to obtain the rigid-body accelerations V̇k

k . 
This procedure is presented in the pseudo-code below.

As in Step 1, the first joint is treated separately, 
due to its non-standard nature; thus we let 
J1
1,q1

= dJ1
1
∕dq1 . Furthermore, in order to model the 

presence of gravity, we introduce a fictitious accelera-
tion on {B0} (which is automatically propagated 
through the kinematic chain) by setting 

 where ag = 9.81 m/s2 is the gravity acceleration.
After Step 3, having computed V̇3

3
 , we can calcu-

late the structural wrench W3
3J

 through (16) as follows

Considering that W3
3J

 has only three non-zero compo-
nents, (24) provides three scalar equations linking f 3

3z
 , 

m3
3x

 and m3
3y

 to the inertial, bias and acceleration terms 
obtained through the ABA algorithm. More in detail, 

(23a)V̇0
0
= [0, 0, ag, 0, 0, 0]

T

(23b)V0
0
= [0, 0, 0, 0, 0, 0]T ,

(24)W3
3J
= M̂3

3
V̇3
3
+ b̂3

3
.

since the �k ’s only depend on q and q̇ , and b̂3
3
 only 

depends on W3
3E

 , we can express W3
3
 as

3.2 � Reconciliation of ABA wrenches with tire forces 
and load transfers

The paramount aspect that characterizes vehicle 
dynamics is the interaction between road and tires. As 
explained in the previous subsection, in our model 
this interaction is encoded in the wrenches W3

3J
 and 

W3
3E

 . In order to model the dynamics of an actual 
vehicle with tires, it is therefore necessary to link 
them to the actual forces developed at the four contact 
patches.

The generic wrench exerted on the ij-th wheel 
(where ij refers, as usual, to the considered axle and 
side of the vehicle) is assumed to have only three 
non-zero components fijx , fijy , fijz , which are expressed 
in the corresponding frame2 {Bij} . Assuming a front-
wheel steering vehicle and a parallel steering law, we 
set �21 = �22 = 0 and �11 = �12 = �.

We start by analyzing the vertical force fijz . 
Inspired by [4] we write

where fzi0 is the static load, fzia is the aerodynamic 
force, and Δfz , Δfzi are the longitudinal and lateral 
load transfers, respectively. Equation  (26) (one for 
each wheel) represent implicit equations in the fijz 
terms. To make this more explicit, the four terms 
of  (26) are analyzed, and their dependencies on fijz 
and on the non-zero components of W3

3J
 highlighted.

The first term fzi0 is computed, by definition, from 
its dynamic counterpart f 3

3z
 filtering out the aerody-

namic force as follows

where l = a1 + a2 is the wheelbase of the vehicle. 
After reintroducing the downforce via

(25)W3
3J
= W3

3J
(q, q̇, q̈,W3

3E
).

(26)fijz = fzi0 + fzia + Δfz + (−1)jΔfzi ,

(27)fzi0 = fzi0 (f
3
3z
) = (f 3

3z
− fza)

(l − ai)

2l
,

2  Each {Bij} has its origin in the center of the contact patch of 
the ij-th wheel and it is rotated about the z-axis of {B

3
} by an 

angle �ij (the wheel steering angle).
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the longitudinal load transfer can be obtained as

where we are subtracting the aerodynamic moment 
since it already results from how we defined the fzia 
on each wheel. Finally, according to [4, p. 152], and 
assuming the tires to be perfectly rigid in the vertical 
direction, we can compute the lateral load transfers as 
follows

Here, Yi = Yi(fi1z , fi2z) is the lateral force acting on i-
th axle, expressed in {B3} , k� = k�1

+ k�2
 is the roll 

stiffness of the i-th axle and hqi is the distance of the 
no-roll center of the i-th suspension from the road [4, 
p.119].

The explicit expressions of Y1 and Y2 are given by 

 In (31) we highlight the dependencies of the lateral 
force fijy on the vertical load on each wheel, according 
to the tire model detailed below.

To describe the tire behavior in the lateral direc-
tion we use the Pacejka’s Magic Formula [7], which 
reads

It is worth noting here the explicit dependence of 
four factors Dy(fijz) , Cy(fijz) , By(fijz ) and Ey(fijz ) on the 
vertical load fijz on the tire. The �ij ’s are the tire slip 
angles, which we may assume to be equal for wheels 
of the same axle, as frequently done in [4]. Their 
expressions are given by 

(28)fzia =
1

4
�CziS(v

3
3x
)2,

(29)Δfz = Δfz(m
3
3y
) = −(m3

3y
− mya

)∕(2l),

(30)

Δfzi = Δfzi(f11z , f12z , f21z , f22z)

=
k�i

k�ti
[−m3

3x
− (Y1hq1 + Y2hq2)] +

Yihqi

ti
.

(31a)
Y1 = Y1(f11z , f12z)

= (f11y + f12y) cos(�) + (f11x + f12x ) sin(�)

(31b)Y2 = Y2(f21z , f22z) = f21y + f22y .

(32)

fijy = fijy (fijz )

= Dy sin(Cy arctan(By�ij − Ey(By�ij

− arctan(By�ij)))).

Finally, considering a rear-wheel drive vehicle 
equipped with an open differential (which makes 
f21x = f22x ), we compute the longitudinal forces as 

 where kb is the braking ratio, and fxb, fxa respectively 
represent the total braking and traction force on the 
vehicle.

At this point it is important to underline how to 
combine the above equations in order to character-
ize the implicit Eq. given by (26).

Substituting (32) in  (31) and inserting the result 
in (30), we obtain the explicit expression that links 
each Δfzi to all four vertical loads fijz.

Then, Eqs. (30), (29), (28) and (27) can be substi-
tuted in (26). Here, note that (30), (29), (28) and (27), 
beside v3

3x
 , also contain the components m3

3x
 , m3

3y
 and 

f 3
3z

 of W3
3J

 ; nevertheless, according to  (25) and the 
relations resulting from the ABA steps, these can be 
eliminated in favor of a direct dependence on q, q̇ and 
W3

3E
.

On the other hand, since (30) contains Yi , which 
depends through (31), (33) and (34) on q, q̇ , fxa , fxb 
and � , Eq. (26) can be written in the form of the fol-
lowing four implicit equations

It is worth noting that the system of vertical forces 
thus obtained is equivalent to W3

3J
.

A final consistency condition is required to 
ensure that the external wrench W3

3E
 , defined 

in  (22b) and appearing in  (35), is the resultant of 
the in-plane tire forces. Thus we write 

(33a)�11 = �12 = � −
v3
3y
+ �3

3z
a1

v3
3x

(33b)�21 = �22 = −
v3
3y
− �3

3z
a2

v3
3x

(34a)f11x = f12x =
1

2
fxbkb

(34b)f21x = f22x =
1

2
fxb(1 − kb) +

1

2
fxa

(35)fijz =
�fijz (q, q̇, q̈,W

3
3E
, f11z , f12z , f21z , f22z , fxa, fxb, 𝛿).
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where, for brevity, we let 
X1(f11z , f12z) = (f11x + f12x ) cos(�) − (f11y + f12y) sin(�) 
and X2 = f21x + f22x . By expanding the whole depend-
encies in (36), we can also write

and substituting (37) in (35) we finally obtain follow-
ing the four expressions

(one for each wheel).
The dependency of fijz on q̈ , leads to an implicit 

dynamic equation (see line 7 of Step  3), due to the 
dependency of W3

3E
 on fijz . To cut open the resulting 

algebraic loop and restore the explicit form for the 
dynamic equations, in our implementation we intro-
duce 7 algebraic variables as placeholders. These 
include the three non-zero component of W3

3E
 , and the 

four components fijz . Accordingly, we implement (36) 
as three and  (35) as four algebraic equations. Along 
with the six ODEs coming from line 7 of Step 3, they 
form a Differential Algebraic Equations (DAE) sys-
tem which can be approached, within the MLTP for-
mulation, by introducing algebraic equations as path 
equality constraints of the optimization problem (see 
Sect. 4).

4 � Application to trajectory optimization

To showcase the validity of the proposed approach 
we set up a minimum-lap-time scenario implement-
ing our dynamic model. The aim of the problem is 
to find the optimal trajectories for the inputs—and 

(36a)
f 3
3x
= f 3

3x
(f11z , f12z)

= X1(f11z , f12z) + X2

(36b)
f 3
3y
= f 3

3y

(
f11z , f12z , f21z , f22z

)

= Y1(f11z , f12z) + Y2(f21z , f22z)

(36c)
m3

3z
= m3

3z

(
f11z , f12z , f21z , f22z

)

= Y1(f11z , f12z)a1 − Y2

(
f21z , f22z

)
a2,

(37)W3
3E

= W3
3E

(
q, q̇, f11z , f12z , f21z , f22z , fxa, fxb, 𝛿

)
,

(38)fijz =
�fijz

(
q, q̇, q̈, f11z , f12z , f21z , f22z , fxa, fxb, 𝛿

)

the resulting motion of the vehicle—that minimize 
the lap-time achieved on a given track.

In general, MLTP problems can be formulated 
on a time or spatial domain  (see [22] and [23], 
respectively). The first approach parameterizes the 
position of the vehicle with respect to the ground-
fixed reference frame, with time as the independ-
ent variable of the equations of motion. Instead, 
in the second approach, the vehicle position is 
described in terms of road coordinates, and the cur-
vilinear parameter of the track centerline (here q1 ) 
is employed as the independent variable. Since in 
our model the vehicle position and orientation are 
parameterized through the track coordinates ( q1 , q2 
and q3 ), the natural choice for us is to use the sec-
ond approach. For this sake, the model equations 
obtained through the ABA algorithm have to be 
translated into the spatial domain.

Our dynamic model is characterized by the states 
x = [q1, q2, q3, q4, q5, q6, q̇1, q̇2, q̇3, q̇4, q̇5, q̇6] , the 
control inputs u = [fxa, fxb, �] and the algebraic vari-
ables z = [f11z , f12z , f21z , f22z , f

3
3x
, f 3

3y
, m3

3z
] . To obtain 

the spatial formulation for the model, we compute 
x,q1 = dx∕dq1 , where q1 is the track curvilinear 
parameter defined in Sect. 2. Then, we can evaluate 
x,q1 as follows

where F(⋅) is the dynamic vector field, computing the 
q̈i components through the Articulated-Body Algo-
rithm, and the system evolution is expressed as a 
function of q1 instead of t.

4.1 � Formulation via direct collocation

Among the many techniques that can be employed 
to solve Optimal Control Problems (OCPs) [24], for 
this work we choose the direct collocation method. 
The peculiarity of this method is the discretization 
of the original OCP as a large (but sparse) Nonlin-
ear Program (NLP). The generic form of the NLP 
resulting from this approach is

(39)x,q1 (q1) = ẋ∕q̇1 = F(x(q1), u(q1), z(q1))∕q̇1,
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Here, we can distinguish the controls u(q1) , the states 
x(q1) and the algebraic variables z(q1) . These vari-
ables are discretized on a fixed space grid q1i = Δqi , 
( i = 0,… ,N ), with Δq = q1N∕N , where q1N is the final 
value of the spline parameter and N is the number 
of mesh intervals. In agreement with the dimension 
of controls, states and algebraic vectors, we there-
fore have in our problem a number of u(q1i ) = ui ∈ ℝ3 , 
x(q1i) = xi ∈ ℝ

12 and z(q1i) = zi ∈ ℝ
7 decision vari-

ables. With vi we indicate the collocation states [25] 
located within the generic i-th interval.

The equality constraints gi(⋅) include the dynamic 
Eq. (39), and the path algebraic Eqs.  (35) and (36).

The inequality constraints hi(⋅) comprise all path 
constraints limiting states, controls, and algebraic 
parameters. Power limits, adherence constraints and 
bounds on the lateral displacement q2 (necessary to 
remain within the track bounds), are also included in 
this term.

The terminal constraint r(⋅) is optional and can be 
included, for continuity purposes, to enforce a closed 
lap optimization.

Finally, the cost function is approximated in each 
interval by a quadrature formula. A typical stage cost 
li can be of the form

where the first term penalizes lap-time, and the last 
two penalizes abrupt variations of the steer angle and 
the input force. Instead, the last term is introduced, 
with its weight Kf  , as a relaxation for the complemen-
tary constraint fxafxb = 0 . To prevent simultaneous 
traction and braking action, we introduce the com-
plementary condition fxafxb = 0 as an additional path 
constraint.

The optimal control problem is coded in a script-
ing environment using the MATLAB interface to the 
open-source CasADi framework [26], which provides 
building blocks to efficiently formulate and solve 
large-scale optimization problems.

(40)

minimize
x,v,u,z

N−1∑

i=0

li(xi, vi, ui, zi) + E(xN)

subject to g(xi, xi+1, vi, ui, zi) = 0,

h(xi, ui, zi) ≤ 0,

(i = 0, 1,… ,N − 1)

r(xN , uN−1, zN−1) ≤ 0.

(41)li = (Δq∕q̇1i)
2 + K𝛿(𝛿i+1 − 𝛿i) + Kf (fxai fxbi),

4.2 � Numerical results

Numerical results of the MLTP are obtained and dis-
cussed for a Formula SAE vehicle (whose data are 
reported in Table 1) on the Nürburgring Nordschleife 
circuit. We consider two cases: first, we run a simu-
lation on a short segment of the track ( ≈ 2  km) to 
assess the validity of the proposed model against a 
more complex and reliable multi-body model; then, 
we compute the optimal trajectory on a full lap of the 
circuit ( ≈ 21 km) to demonstrate the efficiency of the 
proposed approach.

4.2.1 � Model validation

To substantiate our results, we provide a compari-
son between the optimal solutions obtained using the 
proposed reduced-order model and a full multi-body 
model [15] that describes the dynamics of the vehi-
cle’s bodies with greater accuracy. Both simulations 
are run under the same conditions and using the same 
Formula SAE vehicle as a reference. As test bench we 
choose a sector of the Nürburgring circuit that is suf-
ficiently rich of corners and slopes to excite the rel-
evant dynamics of the system.

An overview of the solutions is provided in Fig. 4. 
In Fig.  5, 6 and 7 we show and discuss the optimal 
trajectories of the controls, the velocities and the atti-
tudes of the two models, depicting with thick and 
thin line the multi-body and the proposed reduced-
order model solution, repsectively. The similarity 
between the two solutions is evident, and there is 
large agreement on almost every segment of the track. 
The optimal lap-times are also comparable, with the 
reduced-order model scoring a topt = 53.9 s versus the 
topt = 54.3 s achieved by the multi-body one.

The only noticeable difference in the behavior of 
the two models concerns the trajectory of their atti-
tude. As it can be observed in Fig. 7, the pitch of the 
reduced-order model is more steady and less prone to 
variations. This behavior can be ascribed to the sim-
plified model of suspensions we are employing in 
this model; in particular, the proposed approach fails 
to capture the different stiffness opposed by the front 
and rear axle to the roll motion, and the consequent 
variation of pitch angle that arises during cornering.

This slight inaccuracy, however, is greatly com-
pensated in terms of computational complexity and 
efficiency. With the same number of discretization 



	 Meccanica

1 3
Vol:. (1234567890)

intervals N = 400 , the NLP resulting from the 
full multi-body approach features a total number 
of Nopt = 36000 decision variables and is solved 
in tcalc = 116.3 s after 64 iterations; the proposed 
approach, on the other hand, leads to a NLP with 
Nopt = 18000 variables which we have been able to 

solve in tcalc = 29.3 s and 62 iterations.3 Remarkably, 
the computation time required to find a solution is 
reduced by about a factor of four.

Fig. 4   The two lines show 
the optimal trajectories for 
the proposed model and the 
one serving as validation. In 
this figure and the following 
ones, the most significant 
points of the track are 
addressed with numbers, to 
help visualize the behavior 
of the vehicle

Fig. 5   This figure show the trajectory of the controls (thick 
line for multi-body model and thin one for reduced-order 
model). The solver strives to keep the input force as close as 
possible to the maximum value allowed by the power limit. To 

provide a validation curve for the steering input � , we averaged 
the effective steering angles of the front wheels of the multi-
body model

Fig. 6   Optimal profiles 
of the forward velocity, 
drift velocity, and yaw rate 
(thick lines for multi-body 
model and thin ones for 
reduced-order model). The 
agreement of the proposed 
solution with the validation 
curves is complete, proving 
the validity of our model

3  All simulations are carried out on a commodity laptop with 
Intel (R) Core (TM) i9-12900 H CPU and 64 GB RAM.
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4.2.2 � Full lap

We conclude our work with presenting an optimal 
solution computed on a full lap of the Nordschleife 
circuit. The full length of the track is 21.7 km and has 
been sampled in N = 2000 equispaced points. The 
resulting NLP features Nopt = 90000 variables; with 
our reduced-order approach, we managed to find a 
solution in tcalc = 100.0 s and 70 iterations, achiev-
ing an optimal lap-time of topt = 531.7 s. This is quite 
a remarkable result, especially if considering the 
huge extension of the track and the variety of effects 
included in our model.

The optimal trajectories of the controls and the 
speed profiles are reported in Figs. 8 and 9.

Fig. 7   Optimal profiles of the pitch and roll angles (thick lines 
for multi-body model and thin ones for reduced-order model). 
In correspondence to corners, the proposed solution slightly 
deviates from the validation curves. This undesired behavior is 
to be ascribed to the simplified suspension model employed in 
our system, which fails accurately describe the different com-
pliance offered by the four independent suspensions. Neverthe-

less, the overall evolution of the angles is correct and consist-
ent with the gross motion of the vehicle during corners. For 
example, in correspondence of the three marked corners the 
pitch angle ( q

5
 ) increases when the vehicle is braking, while 

the roll angle ( q
6
 ) grows in the outward direction of the turn 

under the effect of the centrifugal acceleration

Table 1   The table lists the values of the main parameters of 
the Formula SAE car model employed in this study. For the 
notation we refer to [4]

Par. Value Par. Value

Inertia m 281 kg Ixx 41 kg/m2

Iyy 100 kg/m2 Izz 110 kg/m2

Geometry a1 0.765 m a2 0.815 m
t1 1.21 m t2 1.11 m
q1 0.10 m q2 0.05 m
h 0.25 m

Aerodynamics S 1.4 m 2 Cx 0.840
Cz1 0.536 Cz2 0.804

Suspensions K1i 17.0 kN/m C1i 1.56 kN/(m/s)
K2i 13.2 kN/m C2i 1.20 kN/(m/s)

Powertrain Pmax 47 kW

Fig. 8   Optimal trajectory 
of the controls on a full lap 
of the Nürburgring circuit. 
The blue line shows the 
total longitudinal force pro-
file while the red line shows 
wheel steering angle
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5 � Conclusions

In this paper a reduced-order race car model is pre-
sented. The mathematical model is formulated using 
Lie group formalism and is devised as a serial kine-
matic chain, linked to a 3D track via a series of joints 
suitably defined for this purpose.

It is clearly shown how our framework gracefully 
merges with the Articulated-Body Algorithm and 
enables a fresh and systematic formulation of vehicle 
dynamics. A noteworthy contribution is the rigor-
ous reconciliation of the ABA steps with the salient 
features of vehicle dynamics, such as the road-tire 
interaction, the nonlinear tire characteristics, the aero-
dynamic forces, and the longitudinal and lateral load 
transfers. The discussion highlights the need to intro-
duce algebraic variables to encode the dynamics as a 
system of DAE.

To foster the validity of the proposed approach, 
we set up a Minimum-Lap-Time Planning problem 
based on our reduced-order model, where the alge-
braic equations are nicely embedded as path equality 
constraints. The problem is formulated via a direct 
collocation method and solved using the open-source 
CasADi suite.

To prove the accuracy of our modeling efforts, 
we provide a comparison with a more detailed vehi-
cle model. Then we show the achieved advantage in 
terms of computational complexity by reporting a 
minimum-lap-time solution in a real-world scenario 
of a Formula SAE car on the Nürburgring Nord-
schleife circuit.

As a last remark, it is noteworthy to highlight that 
our framework facilitates the direct utilization of effi-
cient and open-source rigid-body dynamics libraries, 
like [16], also in the domain of vehicle dynamics. 
Ultimately, we hope that this undertaking will inspire 

the development of computationally more efficient 
yet realistic models for use in the design and optimi-
zation of next-generation vehicles.
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