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We study the nature of the phase diagram of three-dimensional lattice models in the presence of non-
Abelian gauge symmetries. In particular, we consider a paradigmatic model for the Higgs mechanism,
lattice scalar chromodynamics with Nf flavors, characterized by a non-Abelian SUðNcÞ gauge symmetry.
For Nf ≥ 2 (multiflavor case), it presents two phases separated by a transition line where a gauge-invariant
order parameter condenses, being associated with the breaking of the residual global symmetry after
gauging. The nature of the phase transition line is discussed within two field-theoretical approaches, the
continuum scalar chromodynamics, and the Landau-Ginzburg-Wilson (LGW) Φ4 approach based on a
gauge-invariant order parameter. Their predictions are compared with simulation results for Nf ¼ 2, 3 and
Nc ¼ 2–4. The LGW approach turns out to provide the correct picture of the critical behavior at the
transitions between the two phases.
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Local gauge symmetries are key features of theories
describing fundamental interactions [1] and emerging
phenomena in condensed matter physics [2]. The large-
scale properties of three-dimensional (3D) gauge models
and the nature of their thermal or quantum transitions are of
interest in several physical contexts. For instance, they are
relevant for superconductivity [3], topological order, and
quantum transitions [4–8], and also in high-energy physics,
as they describe the finite-temperature electroweak and
strong-interaction transition that occurred in the early
Universe [9] and which is presently being investigated in
heavy-ion collisions [10].
We discuss a 3D model of interacting scalar fields with a

non-Abelian gauge symmetry, which we may call scalar
chromodynamics or the non-Abelian Higgs model. It
provides a paradigmatic example for the non-Abelian
Higgs mechanism, which is at the basis of the standard
model of the fundamental interactions [11]. In condensed
matter physics, it may be relevant for systems with
emerging non-Abelian gauge symmetries (see, e.g.,
Ref. [6]). It represents the natural extension of Abelian
Higgs models, which have been extensively studied in
various contexts (see, e.g., Refs. [3–5,12–15]). We will
focus on the multiflavor case Nf ≥ 2. For Nf ¼ 1, scalar
non-Abelian models have been carefully investigated, as

they are relevant for the finite-temperature behavior of the
electroweak theory [16–20]. Much less is known about the
phase diagram and the nature of the transitions (symmetry-
breaking pattern, universality class, etc.) in the multiflavor
case and about the effective field theory that describes the
critical behavior.
In this Letter, we consider 3D lattice models of complex

matrix scalar fields, with Nc × Nf components, minimally
coupled to an SUðNcÞ gauge field [21]. We investigate their
phase diagram, for various values of Nf ≥ 2 and Nc, and
the nature of their phase transitions. Our numerical results
allow us to understand which effective field theory provides
the correct description of the phase transition. This Letter
therefore provides information on the field-theoretical
approach to be used to analyze thermal and quantum
transitions in the presence of emergent non-Abelian gauge
symmetries. Moreover, it may provide information on the
finite-temperature phase diagram of non-Abelian gauge
models involving scalar fields, which are meant to describe
the new physics beyond the standard model of fundamental
interactions.
Classical and quantum phase transitions have tradition-

ally been studied using statistical field theories [22]. Their
properties depend on the global symmetry of the model, the
symmetry-breaking pattern, and some other global proper-
ties, such as the space dimensionality. In the presence of
gauge symmetries, one may also think that the gauge-
symmetry group is a distinctive element that should be
specified to characterize the transition. As we shall discuss,
however, this is not necessarily true, as gauge modes are not
necessarily critical at the transition. For the same reason, at
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variance with systems that only have global symmetries,
there is not a unique natural effective theory for the tran-
sition. One can, of course, consider the continuum gauge
theory that corresponds to the lattice model. However, one
may also consider a Landau-Ginzburg-Wilson (LGW) Φ4

theory based on a gauge-invariant order-parameter field
with the global symmetry of the model [15,23]. Note that,
while in the first approach the gauge symmetry is still
present in the effective model, in the second one, gauge
invariance does not play a particular role besides fixing the
order parameter. The LGW approach is expected to be the
correct one when the gauge interactions are short ranged at
the transition. In the opposite case, instead, the continuum
gauge model should allow for the correct picture. We recall
that the LGWapproach was used to predict the nature of the
finite-temperature phase transition of hadronic matter in
the massless limit of quarks, implicitly assuming that the
SU(3) gauge modes are not critical [23,24]. We compare
the renormalization-group (RG) predictions of the above-
mentioned field-theory approaches with numerical lattice
results. This Letter allows us to deepen our understanding
of their effectiveness and limitations, in particular for the
widely used LGW approach.
To investigate the above issues, we consider lattice scalar

gauge theories obtained by partially gauging a maximally
symmetric model of matrix variables Zaf

x . We start from the
lattice action [25]

Ss ¼ −J
X

x;μ

ReTrZ†
xZxþμ̂; TrZ†

xZx ¼ 1; ð1Þ

where Zaf
x are Nc × Nf complex matrices and the sum is

over all links of a cubic lattice (μ̂ are unit vectors along the
three lattice directions). The model has a global OðNÞ
symmetry with N ¼ 2NcNf. In particular, it is invariant
under the global SUðNcÞ transformations Zx → VZx,
V ∈ SUðNcÞ. To make this symmetry a local one, we
use the Wilson approach [21]. We associate an SUðNcÞ
matrix Ux;μ̂ with each link, and consider the action

Sg ¼ −βNf

X

x;μ

ReTr½Z†
xUx;μ̂Zxþμ̂�

−
βg
Nc

X

x;μ>ν

ReTr½Ux;μ̂Uxþμ̂;ν̂U
†
xþν̂;μ̂U

†
x;ν̂�; ð2Þ

where the second sum is over all lattice plaquettes. Beside
the SUðNcÞ gauge invariance, the model also has a global
UðNfÞ symmetry, Zx→ZxU withU ∈ UðNfÞ. ForNc ¼ 2,
the global symmetry group is larger than UðNfÞ. Indeed the
action turns out to be invariant under the unitary symplectic
group SpðNfÞ ⊃ UðNfÞ (see also Refs. [26,27]). If one
defines the 2 × 2Nf matrix Γal as Γaf ¼ Zaf, ΓaðNfþfÞ ¼P

b ϵ
abZ̄bf (ϵab ¼ −ϵba, ϵ12 ¼ 1), one can show that the

action is invariant under Γal →
P

m WlmΓam, where

W ∈ SpðNfÞ, and l; m ¼ 1;…; 2Nf. For βg ¼ ∞, the
gauge fields are equal to the identity (modulo gauge
transformations); thus we recover the ungauged model in
Eq. (1), i.e., the standardN vector model withN ¼ 2NcNf.
For Nf ¼ 1, no transition [28] is expected for finite βg

[29–31] (we have verified it numerically up to βg ¼ 6), and
long-range correlations should only develop for βg → ∞
close to the Oð2NcÞ critical point. For Nf ≥ 2, we find a
transition line that separates two different phases—see
Fig. 1—which are characterized by the behavior of the
gauge-invariant order parameter

Qfg
x ¼

X

a

Z̄af
x Zag

x −
1

Nf
δfg; ð3Þ

which is a Hermitian and traceless Nf × Nf matrix. The
nature of the transition depends onNf andNc, while it does
not depend on the gauge coupling βg.
Before presenting the numerical results, we discuss the

predictions of the statistical field theories that may describe
the behavior along the transition line. We begin by
considering the continuum scalar chromodynamics defined
by the Lagrangian

L ¼ 1

4g2
TrF2

μν þ Tr½ðDμZÞ†ðDμZÞ� þ VðTrZ†ZÞ; ð4Þ

where VðXÞ ¼ rX þ 1
6
uX2, Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ;Aν�,

and Dμ;ab ¼ ∂μδab þ tcabA
c
μ. The RG flow in the space of

the renormalized couplings u and f ≡ g2 can be studied
perturbatively within the ε≡ 4 −D expansion [32]. At one
loop, the β functions read [33–37]

βfðu; fÞ≡ μ
∂f
∂μ ¼ −εf − ð22Nc − NfÞf2; ð5Þ

βuðu; fÞ≡ μ
∂u
∂μ ¼ −εuþ ðNfNc þ 4Þu2 − 18ðN2

c − 1Þ
Nc

uf

þ 27ðNc − 1ÞðN2
c þ 2Nc − 2Þ

N2
c

f2: ð6Þ

FIG. 1. Sketch of the phase diagram of 3D lattice scalar
chromodynamics with Nf ≥ 2. The transition line is continuous
for Nf ¼ 2 and of first order for Nf ≥ 3. We conjecture that its
nature is the same for any finite βg. The endpoint for βg → ∞ is
the OðNÞ critical point (N ¼ 2NcNf).
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A stable fixed point (FP) is only found for Nf > N�
fðNcÞ

with N�
fð2Þ ¼ 359þOðεÞ and N�

fð3Þ ¼ 972.95þOðεÞ.
Therefore, for any Nf < N�

fðNcÞ, and, in particular, for
small values of Nf, the transition is predicted to be first
order. We also note that for large βg the lattice model (2) is
expected to show significant crossover effects due to the
nearby OðNÞ transition point (N ¼ 2NcNf). In the theory
(4) such a crossover is controlled by the RG flow in the
vicinity of the OðNÞ fixed point [f� ¼ 0 and u�N ¼ ε=
ðNfNc þ 4Þ], which is always unstable with respect to the
gauge perturbation [38].
An alternative field-theoretical approach is provided by

the LGW framework [15,32,39–42], in which one assumes
that the critical modes are associated with a gauge-invariant
composite operator. In the present case, the natural order
parameter is the operator Qfg

x defined in Eq. (3). This is a
nontrivial assumption, as it postulates that gauge fields do
not play a relevant role in the effective theory of the critical
modes. The LGW fundamental field is correspondingly a
traceless Hermitian matrix ΨfgðxÞ, which can be formally
considered as the average of Qfg

x over a large but finite
domain. The LGW theory is obtained by considering the
most general fourth-order polynomial consistent with the
global symmetry

Trð∂μΨÞ2 þ rTrΨ2 þ wtrΨ3 þ uðTrΨ2Þ2 þ vTrΨ4: ð7Þ

Continuous transitions may only occur if its RG flow has a
stable FP. For Nf ¼ 2, the cubic term vanishes and the two
quartic terms are equivalent, leading to the O(3)-symmetric
LGW theory. This implies that the phase transition can
be continuous, in the O(3) universality class because of
the mapping SOð3Þ ¼ SUð2Þ=Z2. An explicit O(3) order
parameter is obtained by considering the real vector
variable φk

x ¼
P

fg σ
k
fgQ

fg
x , where σk are the Pauli matrices.

For Nf ≥ 3, the cubic Ψ3 term is generically expected to be
present. For 3D systems, this is usually taken as an indi-
cation that phase transitions are generically first order [43].
The above arguments apply to generic Nc > 2. Since for

Nc ¼ 2 the global symmetry is SpðNfÞ, the order parameter
is now a 2Nf × 2Nf matrix given by

T lm
x ¼

X

a

Γ̄al
x Γam

x −
δlm

2Nf

X

an

Γ̄an
x Γan

x ; ð8Þ

which can be expressed in terms of Qfg
x defined in

Eq. (3) (T fg
x ¼ Qfg

x for f; g ¼ 1;…; Nf) and of Dfg
x ¼

P
ab ϵ

abZaf
x Zbg

x . For Nf ¼ 2, the Sp(2) group is isomorphic
to the O(5) group. The Sp(2) LGW theory is that of an
O(5)-symmetric vector model. Indeed, the order parameter
can be rewritten in terms of the three-component vector
φk
x ¼

P
fg σ

k
fgQ

fg
x and the real and imaginary parts of the

complex variable ϕx ¼ 1
2

P
fg ϵ

fgDfg
x . They form a five-

component order parameter. Thus we predict an O(5)
critical behavior. For larger Nf, the SpðNfÞ LGW theory
contains cubic interactions [44], and therefore first-order
transitions are predicted.
Summarizing, the LGW approach based on a gauge-

invariant order parameter predicts that continuous transi-
tions only occur for Nf ¼ 2. They belong to the O(3)
universality class for any Nc ≥ 3 and to the O(5) univer-
sality class for Nc ¼ 2. Instead, first-order transitions are
generically expected for Nf ≥ 3 and any Nc. Note that for
Nf ¼ 2 the LGW predictions differ from those of the
continuum gauge theory (4), as the latter predicts a first-
order transition (no FP for Nf ¼ 2). The two theories
apparently also disagree for large values of Nf. The
continuum gauge theory admits the possibility of continu-
ous transitions, since a stable FP exists, while the LGW
theory indicates first-order transitions for any Nf > 2.
In our numerical study [45], we consider the model (2)

on a cubic lattice of size L and periodic boundary con-
ditions. We compute the correlation Gðx − yÞ ¼ hTrQxQyi
of the composite operator Qx defined in Eq. (3), its
susceptibility χ ¼ P

xGðxÞ, and correlation length ξ,

ξ2 ≡ 1

4sin2ðπ=LÞ
G̃ð0Þ − G̃ðpmÞ

G̃ðpmÞ
; ð9Þ

where G̃ðpÞ ¼ P
x e

ip·xGðxÞ and pm ¼ ð2π=L; 0; 0Þ. We
also consider the Binder parameter

U ¼ hμ22i
hμ2i2

; μ2 ¼
1

L6

X

x;y

TrQxQy: ð10Þ

At continuous transitions, RG-invariant quantities, such as
Rξ ≡ ξ=L and U, behave as [22,42]

Rðβ; LÞ ¼ fRðXÞ þOðL−ωÞ; X ¼ ðβ − βcÞL1=ν; ð11Þ

where ν is the correlation-length exponent, fRðXÞ is a
universal function (apart from a normalization of the
argument), and ω is the exponent associated with the
leading scaling corrections. Moreover, since Rξ is a
monotonic function, Eq. (11) implies Uðβ; LÞ ≈ FUðRξÞ,
where FU depends on the universality class only, without
free normalizations (once fixed the boundary conditions
and the shape of the lattice).
The results for Nf ¼ 2, Nc ¼ 3, and βg ¼ 0 up to L ¼

64 (see Fig. 2) confirm that the transition at βc ¼ 3.7518ð2Þ
is continuous and belongs to the 3D O(3) universality
class, characterized by the universal exponents [42,46–48]
ν ¼ 0.7117ð5Þ, η ¼ 0.0378ð3Þ, and ω ¼ 0.782ð13Þ. We
obtained analogous results for βg ¼ 3 [βc ¼ 3.203ð1Þ]
and for Nc ¼ 4 at βg ¼ 0 [βc ¼ 4.896ð1Þ] (see Fig. 3)
supporting the O(3) nature of the transition in both cases.
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These results confirm the LGW predictions. They lead us to
conjecture that the phase diagram for Nf ¼ 2 andNc ≥ 3 is
characterized by a continuous transition line, related to the
condensation of the order parameter Qx, which belongs to
the O(3) universality class for any finite βg. For βg → ∞,
the critical behavior turns into that of the OðNÞ vector
model with N ¼ 4Nc.
We have also performed a finite size scaling analysis for

Nf ¼ Nc ¼ 2 at βg ¼ 0 (up to L ¼ 96) and βg ¼ 2 (up to

L ¼ 64). In both cases, we observe continuous transitions,
at βc ¼ 2.68885ð5Þ and βc ¼ 1.767ð1Þ, respectively [note
that βc ¼ 0.96339ð1Þ in the O(8) vector model [49]
obtained for βg → ∞]. Data are consistent with the O(5)
universality class, whose critical exponents are [50–53]
ν ¼ 0.779ð3Þ, η ¼ 0.034ð1Þ, and ω ¼ 0.79ð2Þ. Numerical
results [44] for βg ¼ 0 are shown in Fig. 4. They confirm
the predictions of the LGW theory based on the enlarged
global symmetry group Spð2Þ ≈ Oð5Þ. We note that the
enlarged O(5) symmetry may be seen as emerging from the
combination of an O(3) “magneticlike" and of a U(1)
“superfluidlike” order parameter [5,6,44]. Our results
characterize the critical behavior in the presence of emer-
gent O(5) symmetries [5,6,54–60].
Finally, we mention that we also studied models for

Nf ¼ 3 and Nc ¼ 2 and 3, at βg ¼ 0. The numerical results
provide evidence of a first-order transition in both cases
[44]. This is again consistent with the predictions of the
effective LGW theory (7).
In conclusion, we have investigated the phase diagram of

the lattice multiflavor scalar chromodynamics (2), for
positive couplings β and βg. This is a paradigmatic 3D
model with a non-Abelian gauge symmetry. For Nf ≥ 2,
the phase diagram is characterized by two phases: a low-
temperature phase in which the order parameter Qfg

x

condenses and a high-temperature disordered phase where
it vanishes. Gauge and vector observables do not show
long-range correlations for any finite β and βg. The two
phases are separated by a transition line driven by the
condensation of Qfg

x , as sketched in Fig. 1, that ends at
the unstable OðNÞ transition point with N ¼ 2NcNf for
βg → ∞. The gauge coupling βg does not play any
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particular role: the nature of the transition is conjectured to
be the same for any βg, as numerically checked for some
values of βg. Along the transition line, only correlations of
the gauge-invariant operator Qab

x display long-range order.
Gauge modes are not critical and only represent a back-
ground that gives rise to crossover effects.
The numerical results are compared with the predictions

of the continuum scalar gauge theory (2) and of the gauge-
invariant LGW theory (7). They agree with those of the
LGW theory, showing that the LGW framework provides
the correct description of the large-scale behavior of these
systems along the transition line separating the low- and
high-temperature phases, predicting first-order transitions
for Nf ¼ 3 and continuous transitions for Nf ¼ 2, which
belong to the O(3) universality class for Nc ≥ 3 and the
O(5) universality class for Nc ¼ 2. On the other hand, the
results for Nf ¼ 2 are in contradiction with the predictions
of the continuum gauge model (2): as no stable FP exists for
Nf ¼ 2, one would expect a first-order transition. There are
at least two possible explanations for this apparent failure.
A first possibility is that it does not encode the relevant
modes at the transition. A second possibility is that the
ε-expansion perturbative treatment around 4D, based on
Eqs. (5) and (6), does not provide the correct description of
the 3D behavior [44]. The 3D FP may not be related to a 4D
FP, and therefore it escapes any perturbative analysis in
powers of ε≡ 4 −D. The analysis of the behavior in the
large-Nf limit, where again the two approaches give
different results, may help to shed light on these issues.
Similar issues for the multicomponent lattice scalar electro-
dynamics are addressed in Refs. [15,61].
We have considered a paradigmatic lattice model

obtained by gauging a maximally symmetric scalar system.
It would be interesting to consider scalar theories with
different global and local symmetries and different sym-
metry-breaking patterns. Their classification deserves fur-
ther investigation.
The LGW approach based on a gauge-invariant order

parameter can be extended to systems with fermionic fields
as well. It has been applied to the finite-temperature
transition of quantum chromodynamics (QCD) with fer-
mionic matter [23,24]. The lattice-QCD numerical results
have only partially confirmed the LGW predictions, due to
the complexity of the simulations with fermions [62]. Our
results support the effectiveness of the LGWapproach, since
the derivation of the LGW theory is essentially independent
of the bosonic or fermionic nature of the matter fields. Our
results may be particularly useful to predict the symmetry-
breaking patterns and critical behaviors at thermal and
quantum phase transitions in condensed-matter systems with
emerging non-Abelian gauge fields [2,5,6].

Numerical simulations have been performed on the
CSN4 cluster of the Scientific Computing Center at
INFN-PISA.
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