
Uniform formulation for orbit computation:
the intermediate elements

Giulio Baù∗ Javier Roa†

Abstract

We present a new method for computing orbits in the perturbed two-
body problem: the position and velocity vectors of the propagated object
in Cartesian coordinates are replaced by eight orbital elements, i.e. con-
stants of the unperturbed motion. The proposed elements are uniformly
valid for any value of the total energy. Their definition stems from the
idea of applying Sundman’s time transformation in the framework of the
projective decomposition of motion, which is the starting point of the
Burdet–Ferrándiz linearisation, combined with Stumpff’s functions. In
analogy with Deprit’s ideal elements, the formulation relies on a special
reference frame that evolves slowly under the action of external perturba-
tions. We call it the intermediate frame, hence the name of the elements.
Two of them are related to the radial motion, and the next four, given by
Euler parameters, fix the orientation of the intermediate frame. The total
energy and a time element complete the state vector. All the necessary
formulae for extending the method to orbit determination and uncertainty
propagation are provided. For example, the partial derivatives of the po-
sition and velocity with respect to the intermediate elements are obtained
explicitly together with the inverse partial derivatives. Numerical tests
are included to assess the performance of the proposed special perturba-
tion method when propagating the orbit of comets C/2003 T4 (LINEAR)
and C/1985 K1 (Machholz).

1 Introduction
Stumpff (1947, 1962) devised a method to represent the solution of the two-
body problem at any time t from the position (r0) and velocity (ṙ0) at some
reference epoch t0 (see also Stumpff, 1959, vol. 1, chap. V). His formulation is
very attractive because it is the same for all types of orbits including those that
are rectilinear. For this reason, the coordinates of r0, ṙ0 are commonly referred
to as universal variables (or elements). Stumpff introduced a new independent
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variable, here denoted by χ, through the time transformation (he assumed µ =
1)

dt

dχ
=

r
√
µ
, µ = k2(m+M), (1)

where k2 is the gravitational constant and M , m are the masses of the two
bodies. Equation (1) together with the Keplerian energy integral produce a
third-order linear differential equation with constant coefficients for the orbital
distance r and the Lagrangian functions. Then, a unique solution for any type
of conic section can be written in terms of the constants of the motion r0, ṙ0
and Stumpff’s functions cn (see Eq. 12). Inserting the solution r(χ) in the
right-hand side of Eq. (1) and integrating with the initial condition χ(t0) = 0,
he obtained the generalised form of Kepler’s equation, from which the value of
χ corresponding to t can be determined by an iterative algorithm.

Samuel Herrick was among the first to get interested in Stumpff’s work.
Since the mid 1940s, he devoted his efforts to improving orbit computation for
near parabolic and near rectilinear motion (Herrick, 1945, 1953). His universal
formulae of the two-body problem (Herrick 1960, sect. 6P; Herrick 1965) are
simpler and more convenient than those proposed by Stumpff. The same for-
mulation was presented by Wong (1962) and a similar version by Battin (1964,
sect. 2.8). Herrick’s method relying on universal variables, which is nowadays
regarded as the classic solution, uses a universal anomaly defined by the dif-
ferential relation (1). Herrick (1965) showed alternative forms of the universal
variables, by introducing two arbitrary parameters. One of them allows for a
more general definition of the universal anomaly, given by ψ = χ/

√
β. Among

the six different choices for β that are considered, two deserves special attention:
if we set β = (t − t0)2/r20 then Stumpff’s form is obtained; the choice β = µ,
proposed by Goodyear (1965, 1966), makes the term √µ disappear from the
formulation, so repulsive forces can be taken into account.

The derivations of Pitkin (1965)1, Sconzo (1967), and Everhart and Pitkin
(1983) put in result the regularising role of the universal anomaly. By applying
the time transformation (1) and taking advantage of the conservation of the
energy, a third-order linear differential equation with constant coefficients can
be obtained for the position vector r (see Battin, 1999, sect. 4.5). In particular,
following more closely Stumpff’s original approach, Sconzo (1967) showed that
Stumpff’s functions can be introduced in a straightforward way if the solution
is represented via Taylor series.

The universal elements r0, ṙ0 can also describe rectilinear orbits, but the
formulae that relate them to r, ṙ lose their meaning when the radial distance
becomes zero, that is, when the body collides with the centre of attraction. In
order to mitigate the loss of accuracy that occurs close to the singularity, Pitkin
(1965) suggested replacing r0, ṙ0 by r0/

√
r0, r0ṙ0/

√
µ, respectively.

The variation of parameters equations for the universal variables r0, ṙ0 were
first given by Wong (1962) and later by Herrick (1965, 1971, sect. 16J) and

1Pitkin (1965) calls universal variables the functions Un = χncn, which will be defined in
Eq. (11) and named universal functions.

2



Pitkin (1966) in a more suitable form for computer programming. The latter
presented some numerical tests with low-thrust trajectories.

This special perturbation method has two drawbacks from the perspective
of numerical integration. First, the variable χ must be obtained at each step
by solving the universal Kepler equation with an iterative method. Moreover,
the time derivatives of r0, ṙ0 contain secular terms in the variable χ. To solve
this second problem, Born et al (1974) allowed t0 to vary in a prescribed way
instead of keeping it constant throughout the propagation as in Herrick’s vari-
ation of parameters method. However, one additional differential equation is
required to compute χ, and the time derivatives of both t0 and χ are affected by
secular terms. In fact, their elimination is not possible without compromising
the universality of the formulation (see Battin, 1999, sect. 10.7).2

There are other notable sets of elements that are universal, i.e. well defined
for any motion with the only possible exception of the case r = 0. They are
related to the regularisations due to Sperling (1961), Kustaanheimo and Stiefel
(1965, hereafter KS), and to the linearisation method shown by Burdet (1969).

The natural elements were derived by Burdet (1968) from Sperling’s regular-
isation. Sperling (1961) found that it is possible to write a second-order linear
differential equation not only for the orbital radius r but also for the position
vector r if the eccentricity vector and the energy integral are both embedded in
the equation of motion resulting from the change of independent variable (1).
The solutions r(χ), r(χ), t(χ) are then expressed in terms of the natural ele-
ments and the special functions cn (Eq. 12) originally introduced by Stumpff.
The new formulation is universal, and it is valid even for r = 0. Burdet de-
rived also the formulae for computing the variation of the natural elements with
respect to the anomaly χ.

The general solution of the KS regularised equations in terms of Stumpff’s
functions was presented by Deprit (1968). The elements that appear in the so-
lution are uniformly valid for all values of the Keplerian energy and are regular
at collision. The same elements had already been introduced by Broucke (1966),
who also obtained explicit expressions of their derivatives by the method of vari-
ation of parameters. Scheifele (1970), Stiefel and Scheifele (1971, pp. 250–254)
applied the theory of Hamilton–Jacobi to the KS Hamiltonian system to obtain
two sets of ten canonical elements that are regular and uniform with respect to
the total energy. An element linked to the physical time was naturally intro-
duced following this approach. Bond (1974) developed a special perturbation
method that is based on a set of elements very similar to the one called Type
II in Scheifele (1970). An alternative formulation in which mixed-secular terms
are eliminated from the derivative of the time element was also presented.

The idea behind the transformation applied by Burdet (1969) dates back
to the eighteenth century (see Deprit et al, 1994). The inverse of the orbital

2The secular terms are completely removed if, in addition to properly prescribing the
variation of t0, we include in the state vector the difference between the true anomalies of
the current position at time t and of the departure point at time t0. The drawback of this
approach is that the formulation becomes singular when the angular momentum vanishes, and
therefore, it is not universal.
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distance (ρ) and the radial unit vector (er = ρ r) are chosen as new coordinates
to represent the position. Then, the system of differential equations for ρ, er is
linear if the independent variable is changed according to the relation

κdt = r2dφ, κ > 0, (2)

where κ is a constant (at least of the Kepler problem). Burdet chose κ = 1,
so that the frequency of oscillation of both ρ and er along Keplerian motion is
given by the angular momentum of the particle divided by its mass (h).3 The
solution of the new system is written in a unified way for h > 0 and h = 0 by
means of functions that are analogous to those used by Stumpff and of the focal
elements. Their differential equations are derived together with that of a time
element.

Chelnokov (1992) formally established the connection between KS variables
and the Euler parameters, already pointed out by Broucke and Lass (1975).
These quantities represent a reference frame that has one axis aligned with
the position vector and rotates with angular velocity always parallel to the
angular momentum vector. By changing time according to Eq. (2), the four
Euler parameters satisfy the equations of an harmonic oscillator with frequency
1/2 for κ = h. This fact opened the way for generating new orbital elements, as
shown by Chelnokov (1993) and more recently by Roa and Kasdin (2017). We
observe that the elements proposed by these authors are universal if κ = 1, but
they are not regular.

Although against the spirit of universal variables, we consider formulations
based on orbital elements that allow a uniform transition through elliptic, pa-
rabolic, and hyperbolic motion as long as the angular momentum is not zero.
Milanković’s vectorial elements describe the geometry of any orbit, and their
definition is not related to a particular reference frame (Milanković, 1939; Allan
and Ward, 1963). Orbit propagation with these quantities is possible thanks to
appending to the state vector an angle that locates the position of the particle
with respect to a preferably non-singular direction on the osculating plane. The
true longitude is suitable for this purpose (Roy and Moran, 1973; Rosengren
and Scheeres, 2014), but it loses its meaning when h = 0. Parameters related
to an orbital reference frame4 at epoch are doomed to fail in describing recti-
linear orbits. This is evident from the expression of the transverse unit vector,
et,0 = [r0ṙ0− (r0 · ṙ0)er,0]/h, where er,0 = r0/r0. As noted by Herrick (1965), a
proper scaling of et,0 can avoid the problem, and for example, er,0, het,0 recover
their universal nature. The modified equinoctial elements (Walker et al, 1985)
also fail at h = 0 because they are related to an orbital reference frame (Broucke
and Cefola, 1972).

By setting κ equal to h in Burdet’s linearisation,5 the angle φ becomes the
3This result for ρ with κ = h is called Binet’s formula, after Jacques Binet (1786–1856),

and it was already known to Isaac Newton (1642–1726).
4With the adjective orbital, we mean that the reference frame is defined by the osculating

plane of motion, and more specifically that one axis has the same direction of the angular
momentum vector.

5This method is known in the literature as Burdet–Ferrándiz regularisation. Ferrándiz
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true anomaly in the unperturbed case, and the oscillation frequencies of ρ, er
are equal to 1. This fact brings a considerable advantage: the new elements do
not exhibit secular terms in their derivatives unlike the original focal elements.
Even more interesting is that three of them fix the shape of the osculating el-
lipse and the remaining six define the orientation of an orbital reference frame,
which is called ideal after Hansen (1857, see p. 66 for the definition of the
ideal coordinates). In the light of this geometric interpretation, a reduction of
the dimension of the system from nine to seven is achieved by taking the Euler
parameters that describe the rotation of the ideal frame. The choice κ = h intro-
duces a singularity when the value of h is zero which was not present in Burdet’s
variables. Deprit (1975) and Vitins (1978) developed seven elements of this kind
by following two different approaches. A review of several references about this
subject can be found in the introduction of Baù et al (2015), where the concept
of Hansen ideal frames and the connection between the ideal elements and Bur-
det’s linearisation are discussed in detail. The method named Dromo (Peláez
et al, 2007) revived the interest in ideal elements for orbit propagation, espe-
cially because the authors showed that it can be much more accurate and faster
than Cowell’s method (Battin, 1999, p. 447). Dromo is based on seven quan-
tities almost equivalent to Deprit’s and Vitins’ and on a fictitious time which
is represented by the anomaly φ (Eq. 2, wherein κ = h). For an extensive pre-
sentation of Dromo, we refer to Urrutxua et al (2016) and Roa (2017, chap. 4),
who also mention the important updates that have been recently proposed to
improve its numerical performance.

A propagator similar to Dromo but working only for negative values of the
total energy was devised by Baù et al (2014, 2015). The basic idea behind this
method is to search for a linearisation of the equations of motion starting from
the projective coordinates (r, er), as in the Burdet–Ferrándiz regularisation, and
choosing a time transformation of Sundman’s type instead of Eq. (2). In the
unperturbed motion, the independent variable is the eccentric anomaly and the
differential equation of the radial distance r is linear with constant coefficients
(a well-known result, see Bohlin, 1911). The solution can be written so that the
two constants of integration are the projections of the eccentricity vector along
a pair of fixed orthogonal axes which lie on the orbital plane. Based on these
two directions, the authors defined a reference frame, named intermediate, and
introduced four Euler parameters to represent its orientation in space. The six
integrals of the Kepler problem obtained in this way constitute the state vector
together with the semi-major axis, and a time element. The special perturbation
method generated from the new elements can exhibit a substantial advantage
with respect to Dromo. Numerical investigations conducted by Amato et al
(2017, 2019) show its excellent behaviour in the propagation of both asteroids
and artificial satellites of the Earth. An analogous formulation was derived
independently by Roa and Peláez (2015) and Baù et al (2016) for positive values
of the Keplerian and total energy, respectively.

(1988) achieved the same linearisation in the framework of the Hamiltonian formalism (see
Deprit et al, 1994).
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The methods proposed by Baù et al (2015, 2016), Roa and Peláez (2015)
cannot be used, in general, to propagate a body that presents transitions from
elliptic to hyperbolic motion or vice versa. We also expect that they loose ac-
curacy when the energy is close to zero. Therefore, we tried to find a unique
formulation that includes those in Baù et al (2015, 2016) and Roa and Peláez
(2015) and is able to deal with cases in which the Keplerian or the total energy
changes sign during the motion. In the present paper we achieve such goal by
switching to a regularising time variable and taking advantage of Stumpff’s func-
tions as shown in Section 2. Eight uniform elements arise from our procedure:
they are non-singular for any value of the total energy and are not defined when
the angular momentum is zero. The new quantities are called intermediate ele-
ments because there exists an intermediate frame that plays a key role in their
definition. This frame establishes the orientation of the osculating plane and of
a departure direction on it, from which the position of the particle is reckoned.
In Section 2, we also obtain the first-order differential equations that govern the
variations of the new elements with respect to the fictitious time. Numerical
tests assessing the performance of the new method for orbit propagation are
shown in Section 4.

In our derivation, particular attention is paid to the appearance of secular
terms with respect to the independent variable when the total energy is negative.
In order to better understand their origin, we introduce an arbitrary quantity β
in the time transformation (Eq. 6). Secular terms can only be eliminated from
the time derivatives of the new elements by selecting β in a proper way, at the
cost of losing the uniform character of the proposed special perturbation method.
An alternative formulation which is completely free of secular terms and that is
still uniform is derived in Appendix A after Conclusions (in Section 5).

In some applications, orbit propagation is part of a more complicated pro-
cedure known as orbit determination: given a set of observations at different
epochs relative to the same celestial body, we want to determine its position and
velocity and the associated uncertainties at some prescribed epoch. An essen-
tial ingredient in orbit determination is the state-transition matrix (STM). Its
elements are the partial derivatives of position and velocity with respect to their
initial values and obey the variational equation. Sitarski (1967) presented a solu-
tion of the two-body variational equation which is independent of the type of the
orbit. Crawford (1969) started from Sitarski’s result to write a simpler expres-
sion of the two-body STM. Herrick (1965) and Goodyear (1965, 1966) derived a
closed-form solution for the partial derivatives in terms of Stumpff’s functions
(a simpler presentation than Herrick’s is available in Battin, 1999, sect. 9.7).
Improvements to Goodyear’s STM were proposed by Shepperd (1985) and Der
(1997): the former suggested a new scheme for solving Kepler’s equation, which
is a preliminary step necessary to compute the STM; the latter found a way to
remove the secular terms contained in the universal functions U4 and U5 (see
Eq. 11).

Section 3 deals with the use of our formulation for orbit determination and
uncertainty propagation. The delicate aspect of computing the STM for the
rectangular coordinates at a certain time from the STM of the intermediate
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elements at the corresponding fictitious time is addressed. Appendix C reports
the expressions of the derivatives that appear in the variational equations of the
intermediate elements.

2 The intermediate elements
Consider the perturbed Kepler problem. The evolution of the position r of a
particle of mass m with respect to a body of mass M (here referred to as the
central body) is described by Newton’s second law

r̈ = − µ
r3

r + F, (3)

where µ = G(m + M), with G the gravitational constant, r = |r| and F is the
vector sum of the perturbing forces acting on m. We assume that

F(r, ṙ, t) = P(r, ṙ, t)−∇U (r, t), (4)

where ∇U is the gradient of the disturbing potential U and P is the sum of
the perturbing forces that are not related to the gradient of a potential energy.
We will refer to unperturbed motion when both F = 0 and U = 0.

For future use, let us introduce the local vertical, local horizontal (LVLH)
reference frame {O, er, eν , ez}, where O denotes the location of the centre of
mass of the central body, and

er =
r

r
, eν = ez × er, ez =

r× ṙ

|r× ṙ|
. (5)

In this section, we develop a set of eight orbital elements that can be used to
represent the position and velocity of the particle at a given epoch. We first
derive the elements that describe the motion on the orbital plane and next those
that describe the evolution of the orbital plane.

2.1 Motion on the orbital plane
Let us introduce the polar coordinates (r, ν) on the osculating plane of motion,
where ν is the angle measured from a reference axis Ox to the position vector
r. The definition of ν and therefore of Ox is given in the end of this section.
Then, we can introduce the intermediate reference frame {O, ex, ey, ez}, where
ex obeys the relations ex · er = cos ν, ex × er = sin ν ez (see Figure 1), and
ey = ez × ex.

The independent variable is changed from the physical time t to a fictitious
time χ by the transformation

βdt = r dχ, (6)

where β ∈ R+ is an arbitrary constant along any solution of the Kepler problem.
The introduction of the parameter β has been suggested in the past, for example,
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ν

Figure 1: Orientation of the position vector r and the generalised eccentricity
vector g with respect to the unit vectors ex, ey of the intermediate frame. All
vectors lie on the osculating orbital plane at some epoch t.

by Herrick (1965). We will make a specific choice for β in Section 2.6. The
orbital radius obeys the second-order differential equation

β2r′′ = 2E r + µ+ r(rFr − 2U )− βr′β′, (7)

where prime denotes differentiation with respect to χ, Fr is the radial component
of the perturbing force F, and E is the specific total energy. Equation (7) is
obtained from (3) and (6). The quantity E is defined as

E =
1

2

(
ṙ2 +

h2

r2

)
− µ

r
+ U , (8)

where h = |r × ṙ| is the specific angular momentum. From (7), one finds that
the following relation holds for the Kepler problem

σ′′ = −ασ, (9)

where σ = r′, and

α = −2E

β2
. (10)

Let us introduce the universal functions (Battin, 1999, sect. 4.5):

Un(χ;α) = χncn(χ;α), n ∈ N, (11)

where

cn(χ;α) =

∞∑
k=0

(−1)k
(αχ2)k

(n+ 2k)!
. (12)
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The series cn(χ;α), known as Stumpff’s functions, converge absolutely for all
values of χ, α, and uniformly in any bounded domain of χ, α. The solution of
Eq. (9) can be written as

σ = a1U0(χ;α) + a2U1(χ;α). (13)

Then, the orbital radius adopts the form

r = a0 + a1U1(χ;α) + a2U2(χ;α). (14)

The constants of integration a0, a1, a2 are determined from the initial values of
r, σ. If we assume that χ = 0 at the initial time, we obtain

a0 = r(0) = r0, a1 = σ(0) = σ0. (15)

By evaluating the equation β2r′′ = 2E r + µ at χ = 0, we also find

a2 =
µ+ 2E r0

β2
. (16)

Using (15), (16) in (13), (14), and noting that U0 + αU2 = 1, we can write

r = r0U0(χ;α) + σ0U1(χ;α) +
µ

β2
U2(χ;α), (17)

σ = σ0U0(χ;α) +
µ

β2
(1− λr0)U1(χ;α), (18)

where
λ =

−2E

µ
. (19)

The quantities r0, σ0 will not be constant if perturbations are present (F 6= 0).
Moreover, the time evolution of r0, σ0 will depend on the specific choice of β,
that is on the choice of independent variable (see Eq. 6).

Before dealing with the polar angle ν, we define

g =
√

1− λp, µp = h2 + 2r2U , c =
√
µp. (20)

Let us call g, p, c the generalised eccentricity, semilatus rectum, and angular
momentum, respectively. They reduce to their osculating counterparts when
U = 0. The quantities g, p are functions of r0, σ0, β, λ. Their expressions,
which can be found from (20) and (8), (17), (18), are

g2 = (1− λr0)2 +
β2

µ
λσ2

0 , (21)

p = r0(2− λr0)− β2

µ
σ2
0 . (22)

Note that g, p take finite values for α = 0.
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We aim at relating the polar angle ν to the independent variable χ. The
angle ν is comprised between the position of the particle and a reference axis
that lies on the osculating orbital plane and passes through the central body.
Additionally, this axis must remain fixed in space at least when the motion
is unperturbed and to be well defined for any value of h different from zero.
Possible definitions of the polar angle ν must obey the following condition:
when the motion is Keplerian, ν is the true anomaly up to an additive constant
angle, that is

ν̇ =
c

r2
. (23)

In our formulation, ν is defined as follows. Assume ν(0) = 0, then from Eqs. (23)
and (6) we have

ν =
c

β

∫ χ

0

1

r(s)
ds, (24)

with r(s) taken from Eq. (17). After solving the integral, we find

β tan
ν

2
=

cU1

(
1
2χ;α

)
r0U0

(
1
2χ;α

)
+ σ0U1

(
1
2χ;α

) . (25)

The above formula, called by Sperling (1961) the Gaussian equation, defines ν
as a function of χ.

2.2 Particularisations for positive, negative, and zero val-
ues of α

Equations (17), (25) are here particularised to the cases α > 0, α < 0, α = 0,
which correspond to negative, positive, and zero total energy, respectively. For
this purpose, we need to provide the definition of the generalised true anomaly
θ. Given the generalised eccentricity vector

g = w × (r×w)− er, (26)

where
w = ṙ er +

c

r
eν , (27)

we have that θ is the angle measured from g to r counterclockwise as seen from
ez (see Figure 1). Therefore, from (26) and noting that |g| = g, with g given
in (20), we have (c 6= 0)

g cos θ =
c2

r
− 1, g sin θ = c ṙ. (28)

2.2.1 The case α > 0

After substituting into Eq. (17) the expressions taken by U0, U1, U2 for α > 0
we have

r =
1

λ
[1− ℘1 cos(

√
αχ)− ℘2 sin(

√
αχ)], (29)
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where

℘1 = 1− λr0, ℘2 = −βσ0

√
λ

µ
. (30)

Then, following Baù et al (2015) we can define the generalised eccentric anomaly
G from

µg cosG = µ+ 2E r, µg sinG = r ṙ
√
−2E . (31)

By using the first relation in (31) and Eq. (29), we obtain

℘1 = g cos(
√
αχ−G),

℘2 = g sin(
√
αχ−G).

(32)

Since ℘1 = g cosG0, ℘2 = −g sinG0, where G0 is the value taken by G at χ = 0,
we have √

αχ = G−G0. (33)

Equation (25) can be written for α > 0 as

tan
ν

2
=

√
1− ℘2

1 − ℘2
2 sin

(
1
2

√
αχ
)

(1− ℘1) cos
(
1
2

√
αχ
)
− ℘2 sin

(
1
2

√
αχ
) , (34)

or alternatively as

tan
ν − θ

2
=

√
1 + g

1− g
tan

√
αχ−G

2
. (35)

Thus, the angular difference ν − θ is obtained from
√
αχ − G by applying the

classical relation between the true anomaly and the eccentric anomaly in the
two-body problem.
Remark. The method presented in Baù et al (2015), called EDromo, employs
β =
√
−2ε, so that α = 1 and Eq. (29) becomes

r =
1

λ
(1− ℘1 cosχ− ℘2 sinχ),

where6
℘1 = g cos(χ−G), ℘2 = g sin(χ−G). (36)

Interestingly, in EDromo the polar angle is defined as

ν = θ + χ−G. (37)

This choice seems quite natural looking at the expressions of ℘1, ℘2 given in (36),
which suggest to directly take χ−G as the angle between g and ex (see Figure 1).
Finally, it is worth noting that from (37) by using a formula proposed by Broucke
and Cefola (1973), Eqs. (31) and the first relation in (20), we get the relation

ν = χ+ 2 arctan
σ

r +
√
p/λ

.

6In Baù et al (2015) the elements ℘1, ℘2, λ−1 are denoted by λ1, λ2, λ3, respectively, and
the independent variable χ by ϕ.
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2.2.2 The case α < 0

For α < 0, Eq. (17) becomes

r = − 1

λ
[℘1 cosh(

√
−αχ) + ℘2 sinh(

√
−αχ)− 1], (38)

where

℘1 = 1− λr0, ℘2 = βσ0

√
−λ
µ
. (39)

We can define the generalised hyperbolic anomaly F by (see Baù et al, 2016)

µg coshF = µ+ 2E r, µg sinhF = r ṙ
√

2E , (40)

where g is the generalised eccentricity as in (31). Then, the following relations
hold:

℘1 = g cosh(F −
√
−αχ),

℘2 = g sinh(F −
√
−αχ).

(41)

Since ℘1 = g coshF0, ℘2 = g sinhF0, where F0 is the value of F for χ = 0, we
have √

−αχ = F − F0. (42)

Equation (25) for α < 0 can be written as

tan
ν

2
=

√
℘2
1 − ℘2

2 − 1 sinh
(
1
2

√
−αχ

)
(℘1 − 1) cosh

(
1
2

√
−αχ

)
+ ℘2 sinh

(
1
2

√
−αχ

) , (43)

or alternatively as

tan
ν − θ

2
=

√
1 + g

g − 1
tanh

√
−αχ− F

2
, (44)

which is the relation between the true anomaly and the hyperbolic anomaly in
the two-body problem.
Remark. The method presented in Baù et al (2016), here called HDromo, em-
ploys β =

√
2ε, so that α = −1 and Eq. (38) takes the form

r = − 1

λ
(℘1 coshχ+ ℘2 sinhχ− 1),

where7
℘1 = g cosh(F − χ), ℘2 = g sinh(F − χ).

7In Baù et al (2016) the elements ℘1, ℘2, −λ−1 are denoted by λ1, λ2, λ3, respectively,
and the independent variable χ by ϕ.
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HDromo implements a different definition for ν with respect to that given in
Eqs. (43), (44). Let us consider

ζ = gd 2(F − χ), tan
ζ

2
= tanh(F − χ),

where gdx is the Gudermannian function (see Battin, 1999, p.165). Then, we
obtain for ℘1, ℘2:

℘1 = ℘ cos
ζ

2
, ℘2 = ℘ sin

ζ

2
,

where ℘ =
√
℘1

2 + ℘2
2. These expressions invite to set the angle between g

and the reference axis equal to ζ/2, so that

ν = θ +
ζ

2
.

2.2.3 The case α = 0

For α = 0, the equations for the orbital radius and the polar angle reduce to

r = r0 + σ0χ+
µ

2β2
χ2, β tan

ν

2
=

c χ

2r0 + σ0χ
. (45)

One can find that χ, ν are related to the angle θ, introduced in (28). Indeed,

χ =
c β

µ

(
tan

θ

2
− tan

θ0
2

)
, (46)

ν = θ − θ0. (47)

In fact, the latter relation holds for any α.

2.3 Variation of the elements r0, σ0, λ
The quantities r0, σ0, λ are attractive candidates for the set of intermediate
elements. From their evolution, one obtains r, σ, p, ν as functions of χ once β
is defined. Then, from the orientation of the intermediate basis {ex, ey, ez}, we
can determine the position and velocity of the particle at any χ. In this section,
we deal with the computation of the derivatives of r0, σ0, λ with respect to χ,
which vanish when the motion is unperturbed. For simplicity, we will adopt the
notation

Un = Un(χ;α), Ũn = Un(2χ;α), n ∈ N. (48)

Consider the equations

dr

dχ
= σ, (49)

dσ

dχ
=

1

β2
[2E r + µ+ r(rFr − 2U )]− σβ′

β
, (50)
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which stem from differentiating the definition of r, σ given in (17), (18), and
regarding r0, σ0, λ, β as functions of χ. After some algebraic manipulations,
we find

β2r′0 = −r(rFr − 2U )U1 −
µ

4

(
r0Ũ2 + σ0Ũ3 + 2

µ

β2
U2
2

)
λ′

+ χσ0ββ
′, (51)

β2σ′0 = r(rFr − 2U )U0 +
µ

4

[
r0(2χ+ Ũ1) + σ0Ũ2

+
µ

β2
(Ũ3 − 4U3)

]
λ′ +

[ µ
β2

(1− λr0)χ− σ0
]
ββ′. (52)

Moreover, we have

λ′ = − 2

µ

(
σPr +

h

β
Pν +

r

β

∂U

∂t

)
, (53)

where Pr = P · er, Pν = P · eν .
It is worth noting that for E < 0, the expressions of r′0, σ′0 contain some

terms in which χ appears explicitly. The presence of these terms can deteriorate
the accuracy of r0, σ0 computed by numerical integration of Eqs. (51), (52),
especially for long propagations. On the other hand, the variational equations
of g, p (see 21, 22) are not affected by this disadvantage. Secular terms can be
avoided in both r′0 and σ′0 if and only if we select β = k

√
−2E (E < 0), where k

is a nonzero constant, so that the quantity α is conserved along the perturbed
motion.8

In Appendix A, we show that it is still possible to eliminate the secular
terms from the derivatives r′0, σ′0 without having to restrict the domain of E to
negative values, by adequately changing Eq. (7) and imposing that β is constant,
i.e. β′ = 0.

2.4 The time element t0 and its evolution
By integrating the time transformation (6), we obtain Kepler’s equation in its
universal form

β(t− t0) = r0U1(χ;α) + σ0U2(χ;α) +
µ

β2
U3(χ;α), (54)

where the quantity t0 is called time element.
In the classic formulations by Wong (1962), Herrick (1965), and Pitkin

(1966), time is the independent variable and the value of χ corresponding to
a given t is obtained by solving the universal Kepler equation. Moreover, the
time element t0 is a constant, also when the motion is perturbed. Born et al
(1974) suggested that it may be more convenient to let t0 vary with time instead
of keeping it fixed. In fact, by properly choosing the time derivative of t0, the

8In the method EDromo (Baù et al, 2015), it is α = 1 and secular terms are not present
in the derivatives of ℘1, ℘2 (see 36).
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secular terms that appear in the variational equations of r0, ṙ0 can be elimi-
nated.9 The drawback of this approach is that t0 is added to the state vector
thus increasing the dimension of the system.

In our formulation, χ is the independent variable as defined in (6), and
Eq. (54) is used to directly compute the physical time t, so t0 must be known.
The variational equation of t0, which is obtained by differentiation of Eq. (54),
becomes

β3t′0 = r(rFr − 2U )U2 −
µ

4

[
r0(4U3 − Ũ3)− 2σ0U

2
2

− µ

β2
(Ũ5 − 8U5)

]
λ′ + χr0ββ

′. (55)

In the case E < 0, the expression above for t′0 contains terms that are linear in
χ.10 By selecting β = k

√
−2E , where k is a nonzero constant (see Section 2.3),

we can eliminate only some of them, because, as expected, those in Ũ5 − 8U5

survive. However, with this choice of β it is still possible to get rid of the secular
terms as follows. Let us use the identity U1+αU3 = χ to write Kepler’s equation
as

k
√
λµ(t− t1) =

(
r0 −

1

λ

)
U1 + σ0U2, (56)

where
t1 = t0 +

χ

k
√
λ3µ

. (57)

Then, the variational equation of t1 is free of secular terms. This quantity,
which is a linear function of χ when the motion is unperturbed, is also referred
to as linear time element. In Baù et al (2015), both t0 and t1 are presented for
EDromo.

A time element analogous to t0 was developed also by Burdet (1968) and
Bond (1974). In their formulation, the time transformation (6) is applied with
β equal to √µ and 1, respectively. Moreover, the variables r0, σ0 are included in
the set of elements, even if they are not necessary to describe the motion. The
advantage of adding these redundant variables is not clear in Burdet (1968).
On the other hand, Bond finds out that substituting in (6) the expression of r
given in (17), t′0 is not affected by mixed secular terms.11 They arise instead
if the orbital distance is written as a function of the elements related to the
Kustaanheimo-Stiefel parameters.

2.5 Motion of the orbital plane
The proposed method relies on the existence of the orbital plane, and so it
becomes singular when the angular momentum vanishes. We track the evolution

9Unfortunately, the secular terms are not completely removed since they are contained in
the expression of ṫ0 (see Battin, 1999, pp. 510, 511).

10Note that the terms with χ3, which stem from Ũ5, U5, cancel out.
11These terms contain the product of a trigonometric function of χ and some power of χ.
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of this plane and of a reference direction on it by describing the orientation of
the intermediate frame {O, ex, ey, ez} that we have introduced in Section 2.1.

Let {O, e1, e2, e3} be a reference frame with the origin at O (i.e. the centre
of mass of the central body) and the directions of ei, i = 1, 2, 3, fixed in space.
In particular, the unit vectors e1, e2 generate the fundamental plane (e.g. the
plane of the Earth’s orbit, or the plane of the Earth’s equator). We denote
by Ω, I, ω the three classical orbital elements given by the longitude of the
ascending node, inclination, and argument of pericentre. Let us consider the
quantity Ψ = ω+ f − ν, where f is the true anomaly and ν is the angle defined
in Section 2.1. Then, the Euler angles Ω, I, Ψ define the orientation of the basis
{ex, ey, ez} with respect to {e1, e2, e3}.

Following Goldstein (1980, p. 155), we introduce the Euler parameters q1,
q2, q3, q4 related to the Euler angles Ω, I, Ψ by:

q1 = cos
Ω + Ψ

2
cos

I

2
, q2 = cos

Ω−Ψ

2
sin

I

2
,

q3 = sin
Ω−Ψ

2
sin

I

2
, q4 = sin

Ω + Ψ

2
cos

I

2
.

(58)

Note that these parameters satisfy the following relation:

q21 + q22 + q23 + q24 = 1. (59)

Taking the time derivatives of Eqs. (58), we find
q̇1
q̇2
q̇3
q̇4

 =
1

2


−q4 −q1 tan(I/2) −q4
−q3 q2 cot(I/2) q3
q2 q3 cot(I/2) −q2
q1 −q4 tan(I/2) q1


Ω̇

İ

Ψ̇

 . (60)

Replacing Ω̇, İ, ω̇ + ḟ with the expressions available in, for example, Battin
(1999, pp. 500, 501), and using Eq. (6), we arrive at

q′1
q′2
q′3
q′4

 =
1

2

( h
rβ
− ν′

)
−q4
q3
−q2
q1

− r2

2βh
Fz


q2 cos ν + q3 sin ν
−q1 cos ν + q4 sin ν
−q4 cos ν − q1 sin ν
q3 cos ν − q2 sin ν

 , (61)

where Fz = F · ez and prime denotes the derivative with respect to χ. By dif-
ferentiating Eq. (25) and simplifying the result, we find the following expression
for ν′12

12We also used the relation

cos2
ν

2
=

[
r0U0

(
1
2
χ;α

)
+ σ0U1

(
1
2
χ;α

)]2
rr0

,

which can be obtained from Eqs. (17), (22), and (25).
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βν′ =
c

r
+

r

cr0
(rFr − 2U )(αr0U2 − σ0U1)− χc

βr0
β′

− µ

2r0

[r
c

(r0U1 + σ0U2)− c

β2
U3

]
λ′. (62)

The identities involving the universal functions that we used in the computa-
tion of r′0, σ′0, t′0, ν′ are reported in Appendix D. For negative values of E , the
presence of secular terms in the derivative of ν can be avoided only by setting
β = k

√
−2E , where k is a nonzero constant. We observe that the four Euler pa-

rameters q1, q2, q3, q4 are constant when the motion is unperturbed. Therefore,
in this case the intermediate frame remains fixed in space.

2.6 The proposed formulation
All that remains to be ready to present our formulation is the definition of the
quantity β, which was first introduced in Eq. (6). Several choices are possible in
principle; however it seems natural to set β equal to a constant. We take β = 1
as in the original Sundman (1913, p. 127) transformation,

dt

dχ
= r. (63)

Then, we have α = µλ = −2E .
The first four intermediate elements are defined as

ι1 := r0, ι2 := σ0, ι3 := α, ι4 := t0. (64)

The remaining four elements are the Euler parameters that represent the orien-
tation of the intermediate frame:

ι5 := q1, ι6 := q2, ι7 := q3, ι8 := q4. (65)

The Newtonian equation of motion (3) is replaced by the system of first-order
differential equations:

ι′1 = −r(rFr − 2U )U1 −
ι′3
4

(ι1Ũ2 + ι2Ũ3 + 2µU2
2 ), (66)

ι′2 = r(rFr − 2U )U0 +
ι′3
4

[ι1(2χ+ Ũ1) + ι2Ũ2 + µ(Ũ3 − 4U3)], (67)

ι′3 = −2
(
σPr + hPν + r

∂U

∂t

)
, (68)

ι′4 = r(rFr − 2U )U2 −
ι′3
4

[ι1(4U3 − Ũ3)− 2ι2U
2
2 − µ(Ũ5 − 8U5)], (69)

ι′5 = −N
2
ι8 −

r2

2h
Fz(ι6 cos ν + ι7 sin ν), (70)

ι′6 =
N

2
ι7 +

r2

2h
Fz(ι5 cos ν − ι8 sin ν), (71)
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ι′7 = −N
2
ι6 +

r2

2h
Fz(ι8 cos ν + ι5 sin ν), (72)

ι′8 =
N

2
ι5 −

r2

2h
Fz(ι7 cos ν − ι6 sin ν), (73)

where

N =
h− c
r
− r

cι1
(rFr−2U )(ι1ι3U2− ι2U1)+

ι′3
2ι1

[r
c

(ι1U1 + ι2U2)− cU3

]
. (74)

We want to propagate the position r and velocity ṙ from some starting epoch
t∗ to a different time t by solving the system of Eqs. (66)–(73). The definition
of ιi, i = 1, ..., 8, at χ(t∗) = 0 is as follows. For the first four elements, we have

ι1 = |r|, ι2 = r · ṙ, ι3 =
2µ

|r|
− |ṙ|2 − 2U (r, t∗), ι4 = t∗. (75)

Since ν = 0 at time t = t∗, the intermediate and the LVLH frames coincide and
we can compute

ex =
r

|r|
, ey = ez × ex, ez =

r× ṙ

|r× ṙ|
. (76)

The corresponding Euler parameters are obtained by the formulae (58) where
Ψ is the argument of latitude, i.e. Ψ = ω + f . While the sum of Ω and ω + f
is defined for any conic, their difference is not. If I = 0, we can take Ω = 0. In
Eqs. (75), (76) the quantities r, ṙ are referred to the starting epoch.

We solve the initial value problem given by the differential Eqs. (66)–(73)
with the initial conditions computed above by means of a numerical algorithm.
At each integration step, the position r, velocity ṙ, and time t can be recovered
from the intermediate elements and the independent variable. We compute

r = ι1U0(χ; ι3) + ι2U1(χ; ι3) + µU2(χ; ι3), (77)

σ = ι2U0(χ; ι3) + (µ− ι1ι3)U1(χ; ι3). (78)

The components of ex, ey in the basis {e1, e2, e3}, introduced in Section 2.5,
are obtained by

ex =

ι25 + ι26 − ι27 − ι28
2ι6ι7 + 2ι5ι8
2ι6ι8 − 2ι5ι7

 , ey =

 2ι6ι7 − 2ι5ι8
ι25 − ι26 + ι27 − ι28

2ι5ι6 + 2ι7ι8

 . (79)

Then, we determine the radial and transverse unit vectors as

er = cos ν ex + sin ν ey, (80)

eν = − sin ν ex + cos ν ey, (81)

where

ν = 2 arctan
cU1

(
1
2χ; ι3

)
ι1U0

(
1
2χ; ι3

)
+ ι2U1

(
1
2χ; ι3

) . (82)
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The generalised and osculating angular momentum are given from the relations

c2 = ι1(2µ− ι1ι3)− ι22, h2 = c2 − 2r2U (r, t). (83)

Finally, the position and velocity read

r = rer, ṙ =
1

r
(σer + heν), (84)

and the physical time is obtained by

t = ι4 + ι1U1(χ; ι3) + ι2U2(χ; ι3) + µU3(χ; ι3). (85)

As expected, our method is affected by the following singularities: r = 0,
ι1 = 0, h = 0, c = 0.
Remark. Note that we first compute the potential U and then the osculating
angular momentum h, which means that in the proposed method U should
ideally not depend on the velocity ṙ. Such limitation can be overcome if h is
regarded as a new state variable. The consequent increase in the dimension of
the system (from 8 to 9) is avoided if one uses the modification of the Euler
parameters suggested by Lara (2017).

3 Orbit determination and uncertainty propa-
gation

The topic of orbit determination by means of coordinates different from the
Cartesian ones and an independent variable which is not the physical time is
still quite unexplored. Only very recently, Roa and Peláez (2017b) have shown
in the context of relative motion that better numerical performance can be
achieved with regularised formulations. Using the results in Shefer (2007) and
Roa and Peláez (2017a), we describe in this section how to map the state-
transition matrix (STM) of the intermediate elements at some fictitious time χ
to the classic STM in Cartesian coordinates at the corresponding time t.

Let us denote by ι ∈ R8 the column vector of the intermediate elements, i.e.
ι = (ι1, . . . , ι8)T , so that we can write Eqs. (66)–(73) in the compact form

dι

dχ
= f(χ, ι). (86)

For the solution ι(χ, ι0) of (86) with the initial condition ι0 = ι(0) we introduce
the state-transition matrix

A(χ, ι0) =
∂ι

∂ι0
(χ, ι0). (87)

The matrix A satisfies the Cauchy problem

∂A

∂χ
=
∂f

∂ι
(ι(χ, ι0))A, A(0, ι0) = Id, (88)

19



where Id is the 9 × 9 identity matrix. The solution of the differential equation
in (88), which is called variational equation, is computed numerically together
with the solution of Eq. (86).

Let x ∈ R6 be the (column) vector with components given by the coordinates
of the position r and velocity ṙ of a space object in a suitable reference frame.
Suppose we apply the method known as differential corrections (for more details,
see Milani and Gronchi, 2010, chap. 5) to determine x0 = x(t∗), from a set of
observations collected at times t1 < t2 < . . . < tm.13 In each iteration of this
method, we need the state-transition matrix

S(t,x0) =
∂x

∂x0
(t,x0) (89)

at ti, i = 1, . . . ,m. We can calculate S(t,x0) from A(χ, ι0) through the formula
(we set χ = 0 at t = t∗)

S = J Ã J0, (90)

where
J =

∂x

∂ι
, J0 =

∂ι0
∂x0

, Ã = A− 1

r
f
∂t

∂ι0
. (91)

Starting from a first guess of x0, the iterative method converges to a nominal
solution. Moreover, the associated covariance matrix Γx0

is known. One may
want to propagate Γx0

to Γx at time t 6= t∗. Linear propagation is in many
cases acceptable, and it can be made more efficient if we use orbital elements
(Junkins et al, 1996). First, the matrix Γx0 is transformed to Γι0 = J0 Γx0 J

T
0 .

Then, the covariance matrix at time t is obtained by

Γι = ÃΓι0 Ã
T . (92)

Finally, we apply the conversion Γx = J Γι J
T . The explicit expressions of the

Jacobian matrices J , J0 are given in the following sections, and of the matrix
∂f/∂ι in Appendix C.

3.1 Partial derivatives of position and velocity with re-
spect to intermediate elements

Let us first give the expression of the Jacobian matrix ∂r/∂ι. From the first
relation in (84) and using Eqs. (80), (81), we have

∂r

∂ι
= er

∂r

∂ι
+ r

∂er
∂ι

, (93)

where
∂er
∂ι

= eν
∂ν

∂ι
+
∂ex
∂ι

cos ν +
∂ey
∂ι

sin ν. (94)

Differentiation of the expressions for r, ν, c in (77), (82), (83) yields

∂r

∂ι
=
(
U0, U1,

1

2
[ι2U3 + 2µU4 − χ(t− ι4)], 05

)
,

13The time t∗ is usually chosen as the average of the observation times.
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rι1
∂ν

∂ι
= (ι1U1 + ι2U2)

∂c

∂ι
− c
(
U1, U2, −

ι1U3

2
, 05

)
,

∂c

∂ι
=

1

c

(
µ− ι1ι3, −ι2, −

ι21
2
, 05

)
,

where 05 ∈ R5 is a row vector having null entries. The unit vectors ex, ey are
functions only of the four Euler parameters, and

∂ex
∂(ι5, ι6, ι7, ι8)

= 2

 ι5 ι6 −ι7 −ι8
ι8 ι7 ι6 ι5
−ι7 ι8 −ι5 ι6

 ,

∂ey
∂(ι5, ι6, ι7, ι8)

= 2

−ι8 ι7 ι6 −ι5
ι5 −ι6 ι7 −ι8
ι6 ι5 ι8 ι7

 .

Then, we deal with the Jacobian matrix ∂ṙ/∂ι. From the second relation in (84)
and Eq. (81), we get

∂ṙ

∂ι
=

1

r

(
er
∂σ

∂ι
+ eν

∂h

∂ι
+ σ

∂er
∂ι

+ h
∂eν
∂ι
− ṙ

∂r

∂ι

)
, (95)

where
∂eν
∂ι

= −er
∂ν

∂ι
− ∂ex

∂ι
sin ν +

∂ey
∂ι

cos ν. (96)

Using the expressions of σ, h in (78), (83), we can compute

∂σ

∂ι
=
(
−ι3U1, U0,

1

2
(µU3 − ι1U1 − χr), 05

)
,

∂h

∂ι
=

1

h

(
µ− ι1ι3 − 2rU0U , −ι2 − 2rU1U ,− ι

2
1

2
− 2rU

∂r

∂ι3
, 05

)
− r2

h

∂U

∂ι
.

The vector ∂U /∂ι is obtained as shown in Eq. (108).
Remark. We observe that when E < 0, secular terms appear only in 6 out
of the 48 components of the matrix of the partial derivatives of position and
velocity with respect to intermediate elements, denoted by J . As observed, for
example, by Broucke and Cefola (1972), this is a remarkable advantage over the
universal variables, in which the fundamental matrix contains secular terms in
all 36 elements.

3.2 Partial derivatives of intermediate elements with re-
spect to position and velocity at the initial time

All the quantities of this section are referred to the initial time t∗ of propagation.
For the first four intermediate elements, a straightforward computation from
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relations (75) yields

∂ι1
∂r

= eTx ,
∂ι1
∂ṙ

= 03,

∂ι2
∂r

= ṙT ,
∂ι2
∂ṙ

= rT ,

∂ι3
∂r

= −2
( µ
r2

eTx +
∂U

∂r

)
,

∂ι3
∂ṙ

= −2ṙT ,

∂ι4
∂r

= 03,
∂ι4
∂ṙ

= 03,

(97)

where 03 = (0, 0, 0).
At the initial time the intermediate and the LVLH frames coincide (see

Eqs. 76). The partial derivatives of the Euler parameters take the following
simple expressions which are obtained as shown in Appendix B:

∂ι5
∂r

=
1

2r
[(ι7 + ι6υ)eTz − ι8 eTy ],

∂ι6
∂r

=
1

2r
[(ι8 − ι5υ)eTz + ι7 e

T
y ],

∂ι7
∂r

= − 1

2r
[(ι8υ + ι5)eTz + ι6 e

T
y ],

∂ι8
∂r

=
1

2r
[(ι7υ − ι6)eTz + ι5 e

T
y ],

(98)

where υ = σ/h, and

∂ι5
∂ṙ

= − r

2h
ι6 e

T
z ,

∂ι6
∂ṙ

=
r

2h
ι5 e

T
z ,

∂ι7
∂ṙ

=
r

2h
ι8 e

T
z ,

∂ι8
∂ṙ

= − r

2h
ι7 e

T
z .

(99)

4 Numerical tests
We present two numerical tests to have a taste of the performance of the interme-
diate elements compared to other methods existing in the literature. In particu-
lar, we choose Cowell’s method (Battin, 1999, p. 447), the modified equinoctial
elements (Walker et al, 1985), Dromo (Peláez et al, 2007), the natural elements
derived by Burdet (1968), and the regular KS-based elements published by Bond
(1974). Hereafter, we will refer to them as Cowell, ModEq, Dromo, Nat–Burdet,
and KS–Bond, respectively. Some relevant features of these formulations and
the intermediate elements are given in Table 1. We use the label “New” to refer
to the formulation described in Section 2.6.

Performance is assessed by analysing accuracy and speed of each special per-
turbation method. The accuracy is measured by propagating the orbit forward
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Table 1: Formulations compared in the numerical tests (labels are explained
in the text above). The quantities t, r, h are time, the orbital radius, and the
osculating angular momentum. Prime denotes the derivative with respect to the
independent variable. For each formulation, we specify the adopted independent
variable, the dimension of the state vector, the number of orbital elements (i.e.
constants of the unperturbed motion) among the state variables, and if a time
element is included.

Formulations Indep. variable Dim. Elements Time el.

Cowell t 6 0 no
ModEq t 6 5 no
Dromo t′ = r2/h 8 7 no
Nat–Burdet t′ = r 11 11 yes
KS–Bond t′ = r 10 10 yes
New t′ = r 8 8 yes

until the final time, reversing the integration back to the initial time, and com-
puting the error as the difference between the final state (position and velocity)
and the initial one. The speed of a particular integration is determined by the
number of times the integrator calls the force function. This metric is preferred
over the actual runtime because it is machine and implementation indepen-
dent. In real scenarios, evaluating the perturbation forces is computationally
more expensive than the rest of operations required to calculate the right-hand
side of the differential equations. Thus, the additional cost per function call
that one has to pay for using a formulation that is more sophisticated than
Cowell is usually negligible. The selected integrator is the standard variable
step Runge–Kutta 4(5) implemented in Matlab’s ode45 function. Performance
curves are generated by changing the relative tolerance from 10−6 to 10−13. We
note that Nat–Burdet, KS–Bond, and the new elements make use of Stumpff’s
functions. The series are evaluated via recursive formulae implementing an
argument-reduction technique to ensure convergence, as indicated by Danby
(1992, sect. 6.9) and Roa and Peláez (2017b, Appendix 1).

4.1 The hyperbolic comet C/2003 T4 (LINEAR)
We consider the orbit of the hyperbolic comet C/2003 T4 (LINEAR), defined
by its osculating elements in Table 2. Non-gravitational forces are modelled fol-
lowing Marsden et al (1973): we use the coefficients A1 = 1.0592×10−7 au d−2,
A2 = 8.1043 × 10−10 au d−2, and A3 = 3.2073 × 10−9 au d−2 for the radial,
transverse, and normal components, respectively (d stands for day). Although
the resulting acceleration is small, obviating this effect results in a non-negligible
separation of approximately 0.05 au at the final epoch. Gravitational perturba-
tions are given by the attraction of the outer planets (Jupiter through Neptune).
Their positions are retrieved from the DE431 ephemeris.
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Table 2: Osculating elements of C/2003 T4 (LINEAR) at epoch JD 2453296.5
(2004 October 18) TDB (Barycentric Dynamical Time). Orbit solution JPL 132.
They are the eccentricity (e), perihelion distance (q, in astronomical units),
time of perihelion passage (tp), inclination (I), longitude of the node (Ω), and
argument of perihelion (ω). Angles are in degrees.

e q (au) tp (TDB) I Ω ω

1.0005 0.8498 2453464.16 86.7612 93.9029 181.6795

The orbit reported in Table 2 is propagated for 10 years starting on 2000
April 3, that is 5 years before perihelion passage. Figure 2 displays the perfor-
mance curves for each of the selected formulations. Since external perturbations
are weak in this example, using the modified equinoctial elements instead of
Cartesian coordinates reduces the number of function calls by approximately
a factor of two for the same accuracy. Time is the independent variable also
for ModEq, which means that the performance gains with respect to Cowell
are only due to the use of slowly varying variables. In Dromo, the fictitious
time behaves like the true anomaly when the motion is Keplerian, and it re-
sults in this method being four and two times faster than Cowell and ModEq,
respectively. The improvement comes from a more efficient step size control,
specifically during pericentre passage. The methods Nat–Burdet, KS–Bond,
and the intermediate elements presented in this paper all rely on a (first-order)
Sundman time transformation. Thus, the independent variable evolves like the
hyperbolic anomaly, which naturally optimises the discretisation of hyperbolic
orbits. These three formulations exhibit the best performance: they are almost
one order of magnitude faster than the integration in Cartesian coordinates in
this particular example. Only when the comet is close to perihelion, the step size
is slightly reduced, although the reduction is only by a factor of two compared
to the two order of magnitude reduction observed when time is the indepen-
dent variable. The more efficient discretisation of the orbit around perihelion
produces the aforementioned improvements in performance.

The positive effect of the analytic step size adaption, observed thanks to
introducing a modified time variable, becomes apparent in Fig. 3. This figure
compares the evolution of the time step when Cowell’s method and the new ele-
ments are used to propagate the orbit. Cowell sequentially reduces the step size
as the comet approaches the perihelion. This is required to meet the integration
tolerance as the velocity increases and the problem becomes more sensitive to
small deviations. Conversely, the length of the integration step shows a small
variation when the orbit is propagated by the intermediate elements. After the
comet passes the closest approach with the Sun and moves away from it along
the outgoing asymptote, the step size increases again for Cowell, while the ve-
locity decreases. Finally, we observe that far enough from the perihelion, it
becomes comparable to that of the new formulation.

24



10
-13

10
-11

10
-9

10
-7

10
-5

10
2

10
3

10
4

Error (-)

F
u

n
c
ti
o

n
 c

a
lls

 Cowell

 ModEq

 Dromo

 KS-Bond

 Nat-Burdet

 New

Figure 2: Performance of different propagation methods when integrating the
orbit of comet C/2003 T4. The state error is normalised using the heliocentric
distance of the comet at the initial time as the unit of length and the unit of
time is chosen so that the gravitational parameter is normalised to unity.

4.2 The comet C/1985 K1 (Machholz)
Gravitational perturbations from the outer planets cause the orbit of comet
C/1985 K1 to transition between hyperbolic and elliptic repeatedly, as shown
in Fig. 4. This behaviour is ideal for testing how a uniform formulation handles
different orbital regimes. The orbit is initially hyperbolic (see the osculating
orbital elements listed in Table 3), the eccentricity decreases as the comet ap-
proaches perihelion temporarily becoming less than unity, then increasing to
produce a hyperbolic orbit at perihelion. The orbit is propagated for 20 years,
starting 10 years before perihelion.

To propagate the orbit of comet C/1985 K1, we resort to the numerical setup
described in Section 4.1 except that non-gravitational forces are not included.
Figure 5 compares the performance of the selected formulations. Although
Cowell’s method does not depend explicitly on the type of orbit, its overall per-
formance is affected by the fact that using the physical time as independent
variable results in an inefficient discretisation of the orbit. The orbital elements
evolve slowly over time, and consequently, employing the modified equinoctial
elements instead of Cartesian coordinates produces a substantial improvement
in performance. Next, Dromo replaces the physical time with the true anomaly
and the performance gain observed in Fig. 5 relative to ModEq is due to the an-
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Figure 3: Evolution of the integration step size during the propagation of the
orbit of comet C/2003 T4. The close encounter with the Sun causes a strong
reduction of the step for Cowell, while it has almost no effect on the new method.

alytic step size adaption implicit in the change of the independent variable. The
best behaviour is shown by the formulations relying on the Sundman transfor-
mation (63): KS–Bond, Nat–Burdet, and the new elements. The performance of
these three formulations is similar, with the intermediate elements being slightly
more accurate for small integration tolerances. The new formulation is capable
of transitioning between orbital regimes without singularities or accuracy losses.

Table 3: Osculating elements of C/1985 K1 (Machholz) at epoch JD 2442592.7
(1975 June 29) TDB (Barycentric Dynamical Time). Orbit solution from
2008 SAO Comet Catalog. Angles are in degrees.

e q (au) tp (TDB) I Ω ω

1.000026 0.1085 2446245.24 16.0812 198.2520 271.7063
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Figure 4: Evolution of the eccentricity of comet C/1985 K1.
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Figure 5: Performance of different propagation methods when integrating the
orbit of comet C/1985 K1.
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5 Conclusions
Uniform and regular orbital elements for propagating the motion of a celestial
body in the perturbed two-body problem have been developed so far only from
the KS and Sperling’s regularisations. In both methods, the variables from
which the elements are generated contain information on the radial distance
and the orientation of the radial unit vector. By contrast, if the separate evo-
lution of these two quantities is considered, as in the Burdet–Ferrándiz (BF)
regularisation, an intrinsic singularity arises for r = 0.

In this work, a formulation that consists of eight orbital elements is pre-
sented. We derive them following the spirit of BF decomposition, but we in-
troduce a new time variable χ through a transformation of the Sundman type,
instead of using Eq. (2) as in the BF regularisation. First, for the radial dis-
placement r, we find a second-order linear differential equation with constant
coefficients (as expected). The two intermediate elements (r0, σ0) that stem
from its solution correspond to the values of r and its derivative with respect
to χ at the epoch t0. We note that secular terms affect their derivatives for
negative values of the total energy, and we identified the reason. This drawback
is common to all the universal formulations based on orbital elements (see In-
troduction) and can be avoided only at the price of losing universality. Then,
following a more geometric approach, we define an intermediate reference frame
whose evolution keeps track of the orientation of the orbital plane and of a
reference direction on it. From such direction, the position of the particle is
obtained by a counterclockwise rotation of ν (Eq. 82) about the angular mo-
mentum vector. The angle ν is determined by χ, the total energy, r0, σ0, and
when U = 0, it corresponds to the difference between the true anomalies at
times t and t0 (measured from the pericentre of the osculating conic at time t).
The total energy (multiplied by −2), the time element t0, and four Euler param-
eters associated with the intermediate frame are the remaining six intermediate
elements. The resulting set is uniform, but not universal because it does not
work when the angular momentum is zero. An alternative formulation which is
completely free of secular terms is also presented.

In addition to a pure theoretical interest in alternative variables for new
special perturbation methods, we are concerned with their practical utility. Nu-
merical tests performed by the authors and others corroborate our belief that
they can be much more accurate and faster than the classic computation of
orbits with Cartesian coordinates. We are aware that the implementation be-
comes more difficult, because the independent variable is not the physical time
and the conversion between position and velocity and the new quantities in-
volves complicated expressions. Therefore, in order to encourage the reader
to code the proposed method, we have reported all the necessary formulae for
propagating initial conditions and computing orbits from observations by means
of the differential corrections method.

Finally, we tested the performance of the intermediate elements by evaluating
their accuracy and computational speed with respect to several other methods.
For this purpose, we propagated the orbits of the hyperbolic comet (with eccen-
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tricity almost equal to 1) C/2003 T4 (LINEAR) and of the comet C/1985 K1
(Machholz) whose eccentricity fluctuates around 1. The new elements and other
two universal formulations, which rely on Sundman’s time transformation and
include a time element, substantially outperform Cowell’s method. In the case
of C/1985 K1, the intermediate elements reach the highest accuracy with a rel-
atively small computational cost. Finally, we also checked that secular terms do
not affect the performance shown by the proposed formulation for propagation
times in the order of centuries/thousands of years.
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A Avoiding secular terms, alternative formula-
tion

When the total energy is negative (E < 0), secular terms that appear in the
derivatives of the intermediate elements (Eqs. 66–73) may deteriorate the accu-
racy of the predicted state in long-term propagations. The proposed formulation
can be modified in order to overcome this drawback. The idea is inspired by
the regularised methods presented in Stiefel et al (1967, chap. 1).

By setting β = 1, we can rewrite Eq. (7) as

r′′ = 2Ē r + µ+ r(rFr + 2EK − 2Ē ),

where EK = E − U is the Keplerian energy and Ē is the value taken by E at
the initial time of the propagation. The quantity Ē is a constant which is fixed
by the initial position and velocity of the particle. Let us introduce

ᾱ = −2Ē , α = −2E , δα = ᾱ− α.

The solution of r′′ = 2Ē r + µ is given by

r = r0u0(χ; ᾱ) + σ0u1(χ; ᾱ) + µu2(χ; ᾱ), (100)

where we have introduced the universal functions (see Eq. 11):

un(χ; ᾱ) = χn
∞∑
k=0

(−1)k
(ᾱχ2)k

(n+ 2k)!
, n ∈ N.
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The derivatives of un with respect to χ do not contain secular terms. Following
the same steps as in Sections 2.3 and 2.4, we obtain

r′0 = −ru1(rFr − 2U + δα),

σ′0 = ru0(rFr − 2U + δα),

t′0 = ru2(rFr − 2U + δα).

Then, by substituting in Eq. (24) the expression of r in (100) we arrive at the
Gaussian equation

tan
ν

2
=

c u1
(
1
2χ; ᾱ

)
r0u0

(
1
2χ; ᾱ

)
+ σ0u1

(
1
2χ; ᾱ

) .
Differentiation with respect to χ yields

ν′ =
2

d

[ c
r

(d− r0) +
r

c
(rFr − 2U )(ᾱr0u2 − σ0u1)− α′r

2c
(r0u1 + σ0u2)

]
,

where
d = 2r0 + rδα u2.

The expressions of r′0, σ′0, t′0, ν′ reported above do not contain secular terms
for Ē < 0. Thus, we can select r0, σ0, α, t0 and four Euler parameters exactly
as we did in Section 2.6, for the elements of a formulation of the perturbed
two-body problem, which will be free of secular terms. The case d = 0 does not
introduce additional singularities to those affecting the intermediate elements
(see Section 2.6).14 Finally, we note that the same relation as in (83) for c2 does
not hold anymore, and we have to use instead

c2 = r0(2µ− r0ᾱ)− σ2
0 + δα r2.

B Partial derivatives of ι5, ι6, ι7, ι8 with respect
to position and velocity at the initial time

We show a possible way of deriving formulae (98) and (99). We recall that er,
eν , ez are the unit vectors of the LVLH reference frame (see Eqs. 5). From the
following relation for the angular momentum vector

r× ṙ = hez,

we obtain
h
∂ez
∂r

= V − ez
∂h

∂r
, h

∂ez
∂ṙ

= R− ez
∂h

∂ṙ
, (101)

where V , R are the skew-symmetric matrices defined by

V (1, 2) = v3, V (1, 3) = −v2, V (2, 3) = v1,

14In fact, it can be shown that rd = 2c2u21
(
1
2
χ; ᾱ

)
/ sin2 ν

2
.
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R(1, 2) = −r3, R(1, 3) = r2, R(2, 3) = −r1,

with ri = r · ei, vi = ṙ · ei, i = 1, 2, 3, and

∂h

∂r
= eTz V,

∂h

∂ṙ
= eTz R.

By inserting in Eqs. (101) the expression of ez as a function of I, Ω, that is

ez = e1 sin Ω sin I − e2 cos Ω sin I + e3 cos I,

we find

∂Ω

∂r
= − 1

p sin I
(cosL+ e cosω)eTz ,

∂Ω

∂ṙ
=
r sinL

h sin I
eTz , (102)

∂I

∂r
=

1

p
(sinL+ e sinω)eTz ,

∂I

∂ṙ
=
r

h
cosL eTz , (103)

where L = ω + f is the argument of latitude.
Then, from the relation

cosL = (er · e1) cos Ω + (er · e2) sin Ω,

we can write

∂L

∂r
= −∂Ω

∂r
cos I +

1

r
eTν ,

∂L

∂ṙ
= −∂Ω

∂ṙ
cos I, (104)

where we have used
∂er
∂r

= (Id − ere
T
r ),

and Id is the 3× 3 identity matrix.
The Euler parameters ι5, ι6, ι7, ι8 at the initial time t∗ are written in terms of

L, Ω, I by means of Eqs. (58), in which we set Ψ = L. Then, these expressions
are differentiated with respect to r, ṙ, and taking into account (102), (103),
and (104), we obtain formulae (98) and (99).

C Partial derivatives of ι′1, . . . , ι′8 with respect to
intermediate elements

Let us recall that ι = (ι1, . . . , ι8)T . We define

Kn = (rFr − 2U )
∂(run)

∂ι
+ runFr

∂r

∂ι
− 1

2
(σPr + hPν)

∂bn
∂ι

+
bn
4

∂ι′3
∂ι

+ run

(
r
∂Fr
∂ι
− 2

∂U

∂ι

)
, n = 1, 2, 4, 5,

where
u1 = −U1, u2 = U0, u4 = U2, u5 =

ι2U1 − ι1ι3U2

cι1
,
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and

b1 = −ι1Ũ2 − ι2Ũ3 − 2µU2
2 ,

b2 = ι1(2χ+ Ũ1) + ι2Ũ2 + µ(Ũ3 − 4U3),

b4 = ι1(Ũ3 − 4U3) + 2ι2U
2
2 + µ(Ũ5 − 8U5),

b5 =
1

2ι1

[r
c

(ι1U1 + ι2U2)− cU3

]
.

The desired derivatives take the form
∂ι′n
∂ι

= Kn, n = 1, 2, 4, (105)

∂ι′3
∂ι

= −2
(
Pr
∂σ

∂ι
+ Pν

∂h

∂ι
+ σ

∂Pr
∂ι

+ h
∂Pν
∂ι

)
, (106)

2
∂ι′k+4

∂ι
=
αk
r

(∂h
∂ι
− ∂c

∂ι
+
c− h
r

∂r

∂ι
+ rK5

)
+
r

h

(
2Fz

∂r

∂ι
− Fz

r

h

∂h

∂ι

+ r
∂Fz
∂ι

)
(βkcν + γksν) +

r2

h
Fz

[
(γkcν − βksν)

∂ν

∂ι
+
∂βk
∂ι

cν +
∂γk
∂ι

sν

]
+N

∂αk
∂ι

, k = 1, 2, 3, 4, (107)

where cν , sν denote cos ν, sin ν, respectively, and αk, βk, γk denote the k-th
component of the vectors α, β, γ defined below:

α = (−ι8, ι7, −ι6, ι5), β = (−ι6, ι5, ι8, −ι7), γ = (−ι7, −ι8, ι5, ι6).

The partial derivatives of r, σ, c, h, ν are reported in Section 3.1. Moreover, we
need the following relations:

∂b1
∂ι

= −
(
Ũ2, Ũ3, ι1Ũ4 +

3

2
ι2Ũ5 + 4µU2U4 − χ(ι1Ũ3 + ι2Ũ4 + 2µU2U3), 05

)
,

∂b2
∂ι

=
(

2χ+ Ũ1, Ũ2,
1

2
ι1Ũ3 + ι2Ũ4 +

3

2
µ(Ũ5 − 4U5) + χ(b1 − 2µU4), 05

)
,

∂b4
∂ι

=
(
Ũ3 − 4U3, 2U2

2 ,
3

2
ι1(Ũ5 − 4U5) + 4ι2U2U4 +

5

2
µ(Ũ7 − 8U7)

− χ[ι1(Ũ4 − 2U4) + 2ι2U2U3 + µ(Ũ6 − 4U6)], 05

)
,

2ι1c
∂b5
∂ι

= (ι1U1 + ι2U2)
(∂r
∂ι
− r

c

∂c

∂ι

)
− cU3

∂c

∂ι
+

1

2

( 2

ι1
(c2U3 − rι2U2), 2rU2,

r(ι1U3 + 2ι2U4)− 3c2U5 + χ[c2U4 − r(ι1U2 + ι2U3)], 05

)
,

∂u5
∂ι

=
1

cι1

(
− ι2
ι1
U1, U1,

1

2
[ι2U3 − χ(ι1U1 + ι2U2)], 05

)
+ u5c

∂c

∂ι
,

where 05 ∈ R5 is a row vector of null entries. Assuming that U depends only
on r, t (see the remark in Section 2.6), we have

∂U

∂ι
=
∂U

∂r

∂r

∂ι
+
∂U

∂t

∂t

∂ι
. (108)
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Let us denote by y either F or P, and with y` the component of y(r, ṙ, t) along
one of the directions associated to er, eν , ez. Then, we can write

∂y`
∂ι

= eT`
∂y

∂ι
+ yT

∂e`
∂ι

, (109)

where
∂y

∂ι
=
∂y

∂r

∂r

∂ι
+
∂y

∂ṙ

∂ṙ

∂ι
+
∂y

∂t

∂t

∂ι
. (110)

The matrices ∂r/∂ι, ∂ṙ/∂ι are provided in Section 3.1, together with ∂er/∂ι,
∂eν/∂ι, while ∂ez/∂ι can be easily obtained from the expression

ez = (2ι6ι8 + 2ι5ι7, 2ι7ι8 − 2ι5ι6, ι
2
5 − ι26 − ι27 + ι28)T . (111)

Also note that

∂F

∂r
=
∂P

∂r
− ∂(∇U )

∂r
,

∂F

∂t
=
∂P

∂t
− ∂(∇U )

∂t
. (112)

Finally, we have

∂t

∂ι
=
(
U1, U2,

1

2
[ι1U3 + 2ι2U4 + 3µU5 − χ(ι1U2 + ι2U3 + µU4)], 1, 0, 0, 0, 0

)
.

(113)

D Identities for the universal functions
We collect the identities for the universal functions introduced in Eq. (11) that
we used to derive some equations of this paper (see Battin, 1999, sects. 4.5,
4.6). For simplicity, we omit the argument α in the universal functions. These
formulae are:

Un(χ) + αUn+2(χ) =
χn

n!
, n ∈ N,

U0(χ)2 + αU1(χ)2 = 1,

U1(χ)2 − U0(χ)U2(χ) = U2(χ),

U0(χ)U3(χ)− U1(χ)U2(χ) = U3(χ)− χU2(χ),

U1(χ)U3(χ)− U2(χ)2 = 2U4(χ)− χU3(χ),

the double argument identities:

U0(2χ) = U0(χ)2 − αU1(χ)2,

U1(2χ) = 2U0(χ)U1(χ),

U2(2χ) = 2U1(χ)2,

U3(2χ) = 2U3(χ) + 2U1(χ)U2(χ),

U5(2χ) = 2U1(χ)U4(χ) + χ2U3(χ) + 2U5(χ),
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and the differential relations:

∂U0

∂χ
= −αU1,

∂Um
∂χ

= Um−1, m ∈ N+,

∂Un
∂α

=
1

2
(nUn+2 − χUn+1), n ∈ N.
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