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Peroxisome proliferator-activated receptor- (PPAR-) 𝛾 expression has been shown in thyroid tissue from patients with thyroiditis or
Graves’ disease and furthermore in the orbital tissue of patients with Graves’ ophthalmopathy (GO), such as in extraocular muscle
cells. An increasing body of evidence shows the importance of the (C-X-Cmotif) receptor 3 (CXCR3) and cognate chemokines (C-
X-Cmotif) ligand (CXCL)9, CXCL10, andCXCL11, in the T helper 1 immune response and in inflammatory diseases such as thyroid
autoimmune disorders. PPAR-𝛾 agonists show a strong inhibitory effect on the expression and release of CXCR3 chemokines, in
vitro, in various kinds of cells, such as thyrocytes, and in orbital fibroblasts, preadipocytes, and myoblasts from patients with GO.
Recently, it has been demonstrated that rosiglitazone is involved in a higher risk of heart failure, stroke, and all-causemortality in old
patients. On the contrary, pioglitazone has not shown these effects until now; this favors pioglitazone for a possible use in patients
with thyroid autoimmunity. However, further studies are ongoing to explore the use of new PPAR-𝛾 agonists in the treatment of
thyroid autoimmune disorders.

1. Introduction

Autoimmune thyroid diseases (AITD) are the most common
autoimmune disorders and include Hashimoto’s thyroiditis
(HT) and Graves’ disease (GD), whose clinical features are
hypothyroidism and thyrotoxicosis, respectively [1, 2]. The
prevalence of AITD is estimated to be about 5% [3, 4]. Several
studies have reported an increased incidence of AITD and a
progressive decrease in both age at presentation and female
to male (F/M) ratio starting in the mid-1990s [5].

A study has evaluated 8397 fine needle aspiration cytolo-
gies (FNAC) collected between years 1988 and 2007. The HT
increase in frequency started in 1996 (+350%over 1995). Until
1995 there was only one man, but there were 22 men in
2005–2007. These FNAC further support the conclusion that
only environmental modifications can explain the marked
incidence changes that have occurred in such a relatively
short period of time [5].

It has been shown that (1) women have a greater risk than
men (5/1, female/male); (2) hypothyroidism fromHT ismore
common with aging; (3) substantial geographic variability
in the prevalence of AITD is present; (4) the frequency
of antithyroid antibodies is increasing with age; (5) iodine-
sufficient areas have higher prevalence of AITD than iodine-
deficient ones [6, 7]. AITD are generally of low severity but
can affect significantly the quality-of-life (QOL), and they are
a cause of considerable medical costs [8].

Cognitive function represents one of the most important
parameter of the QOL. The literature available has been
reviewed [9]. Conflicting results have been reported on the
association between subclinical hypothyroidism and cogni-
tive and health related QOL impairment. Interestingly, it has
been frequently reported a reduction in health related QOL
in patients with thyroid autoimmune diseases regardless of
hypothyroidism or hyperthyroidism [9]. Health-related QOL
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questionnaires and the disease-specific QOL questionnaire
both indicate substantial impairment of QOL in patients
with Graves’ ophthalmopathy (GO) [10]. GO is a debilitating
condition causing facial disfigurement and impaired visual
function that have a negative impact on patients’ employ-
ment, hobbies, and psychosocial function [11].

Epidemiological data suggest that mechanisms that trig-
ger the autoimmune attack to the thyroid are caused by
an interaction among environmental triggers and genetic
susceptibility leading to the breakdown of immune toler-
ance and the development of the autoimmune disease [7].
The predominance of AITD in female gender suggests that
estrogens are important in the appearance of AITD, such as
the immunological changes associated with pregnancy and
postpartum. It has been suggested that the presence of cells
from one subject in another genetically distinct individual
(microchimerism) is one of the endogenous factors linked to
AITD [12].

Several environmental risk factors have been identified
as follows: radiation, iodine, drugs, smoking, stress, and
viruses. These environmental risk factors may activate, in
susceptible individuals, the development of AITD [7]. AITD
are more prevalent in areas with iodine sufficiency, and
in iodine deficient areas supplemented with iodine [13].
Cigarette smoking decreases the risk of overt hypothyroidism
but it has been associated with GD and with GO [14, 15].

Thyroid tissue expresses specific selenoproteins; selenium
status has an impact on the development of thyroid autoim-
munity, and the importance of selenium supplementation in
the protection from autoimmune thyroid disorders has been
recently emphasized [16].

The contribution of viruses to the occurrence of AITD
has been evaluated bymany studies with controversial results
[17]. An association of HCV infection with AITD has been
recently shown both in adults and in children [18, 19].
Moreover, several studies have confirmed a high frequency
of autoimmune thyroiditis in patients with mixed cryo-
globulinemia and hepatitis C (MC + HCV); in fact, serum
antithyroperoxidase (AbTPO), anti-thyroglobulin antibodies
(AbTg), and subclinical hypothyroidism were significantly
more frequent in MC + HCV patients than in controls.
Thyroid disorders observed in HCV infection are char-
acterized by a high frequency of autoimmune thyroiditis
and hypothyroidism, in female gender, when high levels of
AbTPO are present [7]. More recently, the presence of HCV
in the thyroid tissue of HCV patients has been demonstrated,
and it has been shown that HCV infects human thyroid cells
(ML1), suggesting that HCV infection of thyrocytes plays a
role in the association between HCV and AITD [20, 21].

Among drugs, an association of AITD with interferon-
(IFN-) 𝛼 therapy in HCV patients has been shown; 40%
of HCV patients present thyroid disorders while on IFN-𝛼
therapy that canmanifest as destructive thyroiditis or autoim-
mune thyroiditis. IFN-𝛼 induces thyroiditis via both direct
toxic effects on the thyroid cells or immune stimulation.HCV
and IFN-𝛼 act in synergism to trigger AITD [22].

Genetic susceptibility to AITD has been shown by (1) the
familial clustering of the disease (25% of AITD in siblings of
AITD patients); (2) sibling risk ratio of about 17 for AITD;

(3) an increased prevalence of thyroid autoantibodies in
siblings of AITD patients. Twin studies showed a concor-
dance rate for AITD of 0.5 for monozygotic twins, and the
heritability of GD has been calculated to be about 80%, while
that of thyroid autoantibodies was about 70% [12]. Many
genes have been identified as significantly associated with the
AITD and the presence of thyroid antibodies; among these
genes whose function is known about 70% are involved in T
cells function, suggesting the importance of T lymphocytes
in the pathogenesis of AITD [23].

An association between AITD and other autoimmune
disorders has been shown. Among organ specific autoim-
mune disorders, polyglandular autoimmune syndromes are
characterized by failure of several endocrine glands (and also
nonendocrine organs) induced by an immune destruction of
endocrine organs (type 1 diabetes, GD, HT, Addison’s disease,
vitiligo, alopecia, and hypogonadism were observed in 61%,
33%, 33%, 19%, 20%, 6%, and 5% of these patients, resp.). A
common genetic susceptibility is the base of the association of
AITD and type 1 diabetes in these patients.These data suggest
that patients withAITD should be followed on a regular basis,
to evaluate if clinical diseases are present and by serological
measurement of organ-specific antibodies [24, 25].

Thyroid autoantibodies and function abnormalities are
also present in patients with systemic rheumatologic diseases,
such as Sjögren’s syndrome (SS), scleroderma, rheumatoid
arthritis, systemic lupus erythematosus (SLE), and sarcoido-
sis [7].

Many studies have shown the presence of a common
genetic susceptibility in patients with AITD and systemic
autoimmunity; for example, the histocompatibility antigens
(HLA) of the haplotypes HLA-B8 and DR3 are associated
with both AITD and primary SS in Caucasian patients [26].
Genetic studies in 35 families with cases of SLE concomitant
with AITD have identified in 5q14.3-q15 (major locus of
susceptibility for SLE, also found in AITD) the common
link. Also the frequency of HLA-B8 and DR3 is significantly
greater in patients with AITD and SLE than in the controls
[27, 28].

Also environmental factors could be important in the
association of AITD and systemic autoimmune disorders [7].

More recently, several studies have suggested an associ-
ation of AITD and papillary thyroid cancer (PTC) [29]. In
a recent study that analyzed the frequency of PTC, thyroid-
stimulating hormone (TSH) levels, and thyroid autoantibod-
ies in 13738 patients, the frequency of PTC was significantly
associated with increased levels of TSH [30]. On the contrary,
other studies have found that both high TSH and thyroid
autoimmunity could represent independent risk factors for
malignancy [31].The increased prevalence of PTC in patients
with AITD is clinically important since about 20% of these
patients may develop an aggressive disease [32].

The above-mentioned data indicate that patients with
AITD should be accurately followed for the appearance of
thyroid dysfunctions and thyroid nodules or other systemic
or organ autoimmune disturbances during the course of the
disease [7].
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2. Peroxisome Proliferator-Activated
Receptor- (PPAR-) 𝛾

PPAR-𝛾 is a type II nuclear receptor encoded by the PPARg
gene in humans [33, 34]. Three subtypes of PPARs are
known: PPAR-𝛼, PPAR-𝛿, and PPAR-𝛾 [35]. PPARs form
heterodimers with retinoid X receptors (RXRs), thus regulat-
ing transcription of various genes. Eicosanoids and free fatty
acids are the endogenous ligands of PPARs. PPAR-𝛾 acts by
(1) controlling glucose metabolism and fatty acid storage, (2)
activating genes that promote lipid uptake and adipogenesis
by fat cells, and (3) regulating adipocyte differentiation [36].
Of the two known PPAR-𝛾 isoforms, PPAR-𝛾1 and PPAR-𝛾2,
the first is expressed in almost all tissues except muscle, while
the second is expressed particularly in the adipose tissue and
in the gut [35]. PPAR-𝛾 has been implicated in numerous
diseases including obesity, diabetes, atherosclerosis, so that
PPAR-𝛾 agonists have been used in the treatment of hyper-
lipidemia and hyperglycemia [37], and cancer. Concerning
malignancies, in approximately one-third of follicular thyroid
carcinomas the chromosomal translocation t(2;3)(q13;p25)
occurs, resulting in the production of the PAX8-PPAR-𝛾
fusion protein [38].

There is evidence for an anti-inflammatory role of PPARg
in inflammatory diseases [39]. In multiple sclerosis (MS),
a PPARg polymorphism has been shown to be linked to
the disease; in fact, the Ala/Ala genotype of the Pro12Ala
PPARg polymorphism is associated with a delayed onset of
disease [40]. In men with coronary artery disease, carriers
of the Pro12Ala allele of PPARg have less atherosclerosis,
vascular morbidity, and mortality [41]. PPARg also acts as a
transrepressor of macrophage inflammatory genes [42].

Animal studies of PPARg activating ligands have shown
that they have a great anti-inflammatory activity. In a rat
model of rheumatoid arthritis, the PPAR-𝛾 activating ligands
pioglitazone and rosiglitazone (RGZ) were shown to reduce
inflammatory bone loss [43]. In a mouse model of SLE,
RGZ ameliorated autoantibody production and renal disease
[44]. Troglitazone, a PPAR-𝛾 agonist, reduced renal scarring
and inflammation in a mouse model of renal fibrosis [45].
RGZ decreased expression of the proinflammatory cytokines
[interleukin- (IL-) 1b and tumor necrosis factor- (TNF-) 𝛼]
[46], in a rat model of postoperative brain inflammation.
The PPAR-𝛾 agonists 15-deoxy-D12,14 prostaglandin J2 (15d-
PGJ2) and troglitazone both suppress pancreatic inflam-
mation in a rat model of pancreatitis, reducing levels of
the inflammatory cytokines IL-6 and transforming-growth-
factor-1B [47].

PPAR-𝛾 protein has been identified in antigen presenting
cells and macrophages. In these cells synthetic PPAR-𝛾 ago-
nists (pioglitazone, troglitazone, and RGZ) have been shown
to inhibit the secretion of proinflammatory cytokines [48].
The same compounds were demonstrated to decrease the
secretion of IL-12, a Th1 inflammatory cytokine, in dendritic
cells (that are potent and highly differentiated, professional
antigen presenting cells) [49].

Altogether, the above-mentioned studies provide a strong
evidence for the anti-inflammatory activity of PPAR-𝛾

through its ability to suppress proinflammatory cytokines
production in macrophages and dendritic cells [50].

The proven anti-inflammatory action of PPAR-𝛾 ligands
in animalmodels of autoimmune diseases has led to the use of
PPAR-𝛾 agonists in human diseases [51]. In ulcerative colitis,
RGZ gave beneficial results in a clinical trial [52]. Other trials
on pioglitazone in inflammatory diseases such as rheumatoid
arthritis, atherosclerosis, and asthma have been proposed.

Thiazolidinediones [or glitazones, e.g., RGZ, pioglita-
zone, ciglitazone, etc.] are PPAR-𝛾 agonists capable of (1)
decreasing insulin resistance; (2) inducing adipocyte differ-
entiation; (3) lowering serum levels of certain cytokines; and
(4) inducing antiproliferative mechanisms. Their use in type
2 diabetes has been limited by important cardiovascular side
effects, such as edema and heart failure [53–58].

PPAR-𝛾 partial agonists activate PPAR-𝛾weaker than thi-
azolidinediones; they are supposed to have fewer side effects
than thiazolidinediones, though conserving their efficacy as
hypoglycemic agents. Many of them are natural compounds
originating from dietary sources [59, 60].

More recently, PPAR-𝛾 has been recognized as playing
an important role in the immune response through its
ability to inhibit the expression of inflammatory cytokines
and to direct the differentiation of immune cells towards
anti-inflammatory phenotypes [61–63]. For instance, PPAR-
𝛾 agonists significantly inhibited the IFN-𝛾-induced expres-
sion of the chemokines (C-X-C motif) ligand (CXCL)9,
CXCL10, and CXCL11 and inhibited the release of chemo-
tactic activity for the (C-X-C motif) receptor 3 (CXCR3)
chemokine receptor-transfected lymphocytes from IFN-𝛾-
stimulated endothelial cells (ECs). These data lead to the
hypothesis that PPAR-𝛾 agonists attenuate the recruitment of
activated T cells at sites of Th-mediated inflammation [64].

PPAR-𝛾modulates inflammation through a direct action
on the IFN-𝛾 inducible chemokines, for example, in the gas-
trointestinal system [65]. Pioglitazone significantly reduced
CXCL10 levels in two models of colitis (dextran sodium sul-
fate and 2,4,6-dinitrobenzene sulfonic acid-mediated colitis)
and dose-dependently reduced CXCL10 levels from activated
HT-29 colon epithelial cells and THP-1-derived macrophages
[65].

Previous papers have reviewed the evidence of the anti-
inflammatory action of PPAR-𝛾 agonists in other cells or
systems [66–68]. Here, we review the role of PPAR-𝛾 in
thyroid autoimmunity.

3. PPAR-𝛾 and Thyroid Autoimmunity

Immunohistochemical expression of PPAR-𝛾 was evaluated
in histologic sections of thyroid tissue lesions [69], with 6 of
33 samples showing moderate to strong positive staining in
focal areas of chronic lymphocytic thyroiditis. The presence
of PPAR-𝛾 has been also demonstrated in thyroid [70] and
orbital tissues of patientswith activeGO [71]. Indeed, PPAR-𝛾
is elevated in the orbital fat of GO patients compared to con-
trols [72, 73]. In another study, the effects of dexamethasone
and RGZ on the expression of IFN-𝛾 (Th1) and IL-4 (Th2)
by activated peripheral CD4(+) and CD8(+) lymphocytes
was examined in patients with HT and in healthy control
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subjects [74]. The inhibition of CD4(+) and CD8(+) IFN-𝛾
expression induced by both dexamethasone and RGZ was
greater in control subjects than in the HT patients (𝑃 < 0.05).
A more recent study showed that the increased oxidative
stress associated with the iodine-induced goiter involution
is accompanied by inflammation, and such inflammation
can be blocked by 15dPGJ2 through PPAR-𝛾-independent
protective effects [75].

In AITD,Th1 immunity and IFN-𝛾 play a major role also
via the IFN-𝛾 inducible chemokines [CXCL11/ITAC, IFN-
𝛾-inducible 10-kd protein (IP-10/CXCL10), and monokine
induced by IFN-𝛾 (MIG/CXCL9)] [76].These cytokines bind
to the CXCR3 chemokine receptor [76]. CXCL10 regulates
inflammation by generating directionalmigration ofmultiple
immune cell types (activated T cells, monocytes, and natural
killer cells) [76] and by inducing other cytokines, such as IL-
8 and CXCL5 [76]. CXCL10 production is induced by IFN-
𝛾 in different cells (T lymphocytes, monocytes, fibroblasts,
thyrocytes, preadipocytes, and others). In turn, recruited
Th1 lymphocytes enhance IFN-𝛾 and TNF-𝛼 release, which
stimulate the production of CXCL10, hence creating an
amplification feedback loop [76] (Figure 1).

CXCL10 secretion increases with aging [77], and the
presence of elevated CXCL10 levels in peripheral liquids is a
marker of a Th1-orientated immune response. Furthermore,
serum levels and/or tissue expression of CXCL10 is increased
in organ-specific autoimmune diseases, such as type 1 dia-
betes mellitus [78, 79], rheumatoid arthritis [80], SLE [81],
systemic sclerosis [82, 83], psoriasis or psoriatic arthritis [84],
sarcoidosis [85], HCV-related cryoglobulinemia [79, 86, 87],
and otherHCV immune-mediated disorders [88–91] and also
in cancers [92].

IFN-𝛾 dependent chemokines (CXCL9, CXCL10, and
CXCL11) are involved also in thyroid disorders, such as HT
[93]. CXCL10 serum levels are elevated during the active
phase of GD but normalize upon treatment, once euthy-
roidism has been restored. Similarly, high levels of CXCL9
and CXCL10 are associated with the active inflammation in
GO but they diminish after treatment with corticosteroids
[94, 95].

Primary cell cultures of thyrocytes, retrobulbar fibrob-
lasts, and preadipocytes from GO patients did not release
CXCL9, CXCL10, and CXCL11 at baseline [96, 97], but
their secretion was dose-dependently induced by IFN-𝛾
alone or combined with TNF-𝛼. In turn, the IFN-𝛾 +
TNF-𝛼-stimulated secretion of those chemokines was dose-
dependently inhibited by RGZ (0.1–10M).These data suggest
that PPAR-𝛾 agonists exert an inhibitory effect in the modu-
lation of CXCR3 chemokines [96, 97] (Figure 1).

Moreover, the cotreatment with IFN-𝛾 + TNF-𝛼
enhanced both the DNA binding activity of the nuclear
factor kappa-light-chain-enhancer of activated B cells
(NF-kB) in GD thyrocytes and the secretion of CXCL10
[98]. Pioglitazone inhibited dose-dependently the IFN-𝛾
+ TNF-𝛼-induced CXCL10 secretion in thyrocytes, orbital
fibroblasts, and preadipocytes from GO patients, while RGZ
and pioglitazone reduced the IFN-𝛾 + TNF-𝛼 activation of
NF-kB in GD thyrocytes [98].

Th1 lymphocytes

IFN-𝛾 + TNF-𝛼

IFN-𝛾 + TNF-𝛼

CXCL9
CXCL10
CXCL11

PPAR-𝛾 agonists
(−)

(+)

Thyrocytes

Lymphocytes
recruitment

Figure 1: Several cell types (e.g., thyrocytes), under the influence of
cytokines (such as IFN-𝛾 and TNF-𝛼), can modulate the autoim-
mune response through the production of CXCL9, CXCL10, and
CXCL11. These chemokines can induce migration into different
tissues of Th1 lymphocytes, which in turn secrete more IFN-𝛾 and
TNF-𝛼, further stimulating the chemokine production by the target
cells, thus perpetuating the autoimmune cascade. PPAR-𝛾 agonists
play an inhibitory role in this process.

In vitro studies have demonstrated the synergistic effect
of either IFN-𝛼 or IFN-𝛽 with TNF-𝛼 on CXCL9, CXCL10,
or CXCL11 secretion [99]. PPAR-𝛾 agonists were able to
modulate the secretion of the IFN-𝛼 and IFN-𝛽 stimulated
CXCR3 chemokines [99]. In fact, RGZ dose-dependently
inhibited the IFNs-stimulated CXCL9, CXCL10, and CXCL11
secretion in thyrocytes (Figure 1).

More recently, our group showed the effects of the
IFN-𝛾+TNF-𝛼-stimulation and of increasing concentrations
of the PPAR-𝛾 agonists (pioglitazone or RGZ) on the Th1-
chemokine CXCL10 and the Th2-chemokine (C-C motif)
ligand (CCL)2 secretion in primary cultures of extraocular
muscle (EOM) cells fromGOpatients [100]. In primary EOM
cultures CXCL10 was undetectable in the supernatant; IFN-
𝛾, but not TNF-𝛼, dose-dependently induced it. In contrast,
TNF-𝛼, but not IFN-𝛾, dose-dependently induced CCL2. As
expected, IFN𝛾 + TNF𝛼 synergistically induced the CXCL10
and CCL2 secretion. However, PPAR-𝛾 agonists inhibited
the CXCL10 secretion, but stimulated CCL2 secretion. These
results suggest that EOM cells play a major role in the
inflammation associated with GO, by releasing both Th1
(CXCL10) and Th2 (CCL2) chemokines upon stimulation
(Figure 1) [100].

Treatment with pioglitazone was reported to expand the
orbital fat in diabetic patients with [101] or without thyroid
eye disease [102]. GO patients who carry the Pro(12)Ala
PPARg polymorphism develop a less-severe and less-active
disease [103, 104]. Hence, this polymorphism was proposed
to protect from GO development and from a severe course of
GO [103, 104].
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4. Conclusion

PPAR-𝛾 is strongly expressed in thyroid tissue of patientswith
AITD, HT, and GD but also in the orbital tissue (particularly
the EOM cells) of patients with GO. In addition, there
are enough experimental studies to support the importance
of the CXCR3 receptor and cognate chemokines (CXCL9,
CXCL10, and CXCL11) in the Th1 immune response and in
inflammatory diseases such as AITD. In vitro studies have
shown that PPAR-𝛾 agonists strongly inhibit the expression
and release of CXCR3 chemokines in a number of cells,
such as thyrocytes, orbital fibroblasts, preadipocytes, and
myoblasts.

While RGZ has been withdrawn from the European
market by the European Medicines Agency in September
2010, because of the increased risk of heart failure, stroke, and
all-cause mortality in old patients [105], so far pioglitazone
has not shown these side effects. Pioglitazone, which is
commonly used in the treatment of type 2 diabetes [106, 107],
has been recently proposed for the treatment of immune-
related disorders. In vivo studies addressing the use of PPAR-𝛾
agonists in AITD patients are ongoing.
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