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Abstract

To a branched cover f : Σ̃→ Σ between closed surfaces one can asso-
ciate a combinatorial datum given by the topological types of Σ̃ and
Σ, the degree d of f , the number n of branching points of f , and the
n partitions of d given by the local degrees of f at the preimages of
the branching points. This datum must satisfy the Riemann-Hurwitz
condition plus some extra ones if either Σ or both Σ and Σ̃ are non-
orientable. A very old question posed by Hurwitz [14] in 1891 asks
whether a combinatorial datum satisfying these necessary conditions
is actually realizable (namely, associated to some existing f) or not (in
which case it is called exceptional). Or, more generally, to count the
number of realizations of the datum up to a natural equivalence rela-
tion. Many partial answers have been given to the Hurwitz problem
over the time, but a complete solution is still missing. In this short
course we will report on ancient and recent results and techniques em-
ployed to attack the question.
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1 Statement of the problem, monodromy,
dessins d’enfant, reduction to the sphere

In the first lecture we will state the problem and illustrate its solution in a
vast number of cases.

1.1 Surface branched covers and the problem

We will denote by

S T g · T P k · P

respectively the sphere, the torus, the connected sum of g copies of T (i.e.,
the orientable surface of genus g > 1), the projective plane, and the con-
nected sum of k copies of P (i.e., the non-orientable surface of crosscap
number k > 1).

A surface branched cover is a continuous function f : Σ̃ → Σ where Σ̃
and Σ are closed and connected surfaces and f is locally modeled on maps
of the form

(C, 0) 3 z 7→ zm ∈ (C, 0).

If m > 1 the point corresponding to 0 in the target C is called a branching
point, and m is called the local degree at the point corresponding to 0 in the
source C. There is a finite number n of branching points, and the points
themselves are denoted by {xi}ni=1. Setting

Σ• = Σ \ {xi}ni=1 Σ̃• = f−1 (Σ•) f • = f
∣∣
Σ̃•

one gets a genuine cover
f • : Σ̃• → Σ•

of some degree d. The local degrees of f at the points of f−1(xi) form
a partition πi = [dij ]

`i
j=1 of d (here square brackets are used to denote an

unordered set with repetitions). Setting ñ = `1 + . . . + `n we have the
following necessary conditions:

1. The Riemann-Hurwitz relation holds:

χ
(

Σ̃
)
− ñ = d (χ (Σ)− n) ;

2. If Σ is orientable then Σ̃ also is;
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3. If Σ is non-orientable but Σ̃ is then d is even and every partition πi of
d splits as π′i

⊔
π′′i where π′i and π′′i are partitions of d/2;

4. n · d ≡ ñ (mod 2).

The Riemann-Hurwitz relation translates the multiplicativity relation

χ
(

Σ̃•
)

= d · χ (Σ•)

of the Euler characteristic χ under the ordinary cover f •. The second con-
dition is obvious because a non-orientable Σ̃• cannot cover an orientable Σ•.
The third condition follows from the fact that a cover f • : Σ̃• → Σ• with
orientable Σ̃• and non-orientable Σ• factors as f • = p• ◦ g• where p : Σ→ Σ
is the orientation double cover, Σ

•
= p−1 (Σ•), p• = p

∣∣
Σ
• and g• : Σ̃• → Σ

•

is a genuine cover of degree d/2. This induces a branched cover g : Σ̃ → Σ
such that f = p ◦ g, and π′i and π′′i are the local degrees of g at the preimages
of the two points in p−1(xi). The condition that n · d and ñ have the same
parity follows from the previous ones if Σ̃ is orientable (two distinct argu-
ments apply to an orientable and a non-orientable Σ), and it will be proved
below for a non-orientable Σ̃.

Let us now call candidate branch datum an array of the form(
Σ̃,Σ, d, n;π1, . . . , πn

)
with Σ̃ and Σ closed and connected surfaces, d and n positive integers, and πj
a partition of d for j = 1, . . . , n, such that all the 4 necessary conditions listed
above are satisfied. We make the convention that the partitions π1, . . . , πn
after the semicolon are viewed up to reordering (we might write [π1, . . . , πn]
but we will refrain from doing so).

The Hurwitz problem asks which candidate branch data are realizable
(namely, associated to some existing surface branched cover) and which are
exceptional (non-realizable).

Example 1.1. We describe here some arrays
(

Σ̃,Σ, d, n;π1, . . . , πn

)
with

non-orientable Σ that satisfy the Riemann-Hurwitz condition but violate
some other necessary condition.

• (P,P, 6, 2; [2, 2, 1, 1], [3, 2, 1]) satisfies the Riemann-Hurwitz condition
because χ(Σ̃) − ñ = 1 − 7 equals d · (χ(Σ) − n) = 6 · (1 − 2) but
n · d = 2 · 6 is even and ñ = 7 is odd, so the last condition is violated;
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• (2P,P, 7, 3; [3, 2, 1, 1], [3, 1, 1, 1, 1], [2, 2, 1, 1, 1]) is an array that satisfies
the Riemann-Hurwitz condition because χ(Σ̃) − ñ = 0 − 14 equals
d · (χ(Σ)− n) = 7 · (1− 3) but n · d = 3 · 7 is odd and ñ = 14 is even,
so the last condition is violated;

• (2T, 2P, 3, 2; [2, 1], [2, 1]) satisfies the Riemann-Hurwitz condition be-
cause χ(Σ̃)− ñ = −2− 4 equals d · (χ(Σ)−n) = 3 · (0− 2) and the last
condition because n · d = 2 · 3 and ñ = 4 are even, but d = 3 is odd so
the first part of the third condition does not hold;

• (S,P, 6, 2; [4, 1, 1], [2, 1, 1, 1, 1]) satisfies the Riemann-Hurwitz condition
because χ(Σ̃) − ñ = 2 − 8 equals d · (χ(Σ) − n) = 6 · (1 − 2) and the
last condition because n · d = 2 · 6 and ñ = 8 are even; morever d is
even, so the first part of the last condition holds, but the second part
does not, because [4, 1, 1] does not split as the disjoint union of two
partitions of d/2 = 3.

By our convention, these arrays are not candidate branch data.

Remark 1.2. For orientable Σ and Σ̃, the Hurwitz realizability problem
could be rephrased in the category of Riemann surfaces and in that of alge-
braic curves. Namely one could ask whether there exist complex structures
on Σ and Σ̃ and a holomorphic f : Σ̃ → Σ realizing a given candidate
branch datum. Or whether there exist structures of algebraic curve on Σ
and Σ̃ and a rational f : Σ̃ → Σ realizing the datum. And it is a deep fact
that the answer is always the same whatever category one chooses, either
the topological one discussed above, or the complex one, or the algebraic
one.

Remark 1.3. Hurwitz’s original question was not quite whether a given can-
didate branch datum is realizable. Instead, he asked how many realizations
exist, up to a natural equivalence relation. In explaining this, we slightly
extend his viewpoint and we confine ourselves to the case where Σ̃ and Σ are
oriented (and not merely orientable). The equivalence of f0 : Σ̃ → Σ and
f1 : Σ̃ → Σ is always defined in terms of the existence of homeomorphisms
g̃ : Σ̃→ Σ̃ and g : Σ→ Σ such that f1 ◦ g̃ = g ◦ f0, and one says that f0 and
f1 are:

• strongly equivalent if g can be chosen to be the identity of Σ (which
requires fixing the branch set {xi}ni=1 in advance);

• weakly equivalent if g̃, g can be chosen to be orientation-preserving
(which requires assuming f0, f1 are also orientation-preserving);
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• very weakly equivalent if no restriction whatsoever is imposed.

Denoting by ν(S), ν(W ) and ν(V ) the number of realizations of a given can-
didate branch datum up to strong, weak and very weak equivalence, we
have of course that ν(S) > ν(W ) > ν(V ) and that the three numbers can
only vanish symultaneously. Moreover ν(S) = ν(W ) if the array of partitions
π1, . . . , πn in the candidate branch datum contains no repetitions, but all
the possibilities

ν(S) = ν(W ) = ν(V ) ν(S) > ν(W ) = ν(V )

ν(S) = ν(W ) > ν(V ) ν(S) > ν(W ) > ν(V )

occur (see [34] for the easy proof of this fact and related remarks). The
number νS was computed in an exact but very implicit fashion in [22, 23].
See also the more recent [24, 12, 19, 21, 20, 31, 32, 33], to the results of some
of which we will quickly allude below.

1.2 Easy instances of the problem

We remind that the problem we are facing is to determine whether there ex-

ists a map f : Σ̃→ Σ matching a given branch datum
(

Σ̃,Σ, d, n;π1, . . . , πn

)
.

Confining ourselves to the case of orientable Σ̃ and Σ, we describe here some
cases where the solution of the problem is easy (and always in the affirma-
tive).

For Σ = S and n 6 1 the Riemann-Hurwitz condition only allows
(S, S, 1, 0; ∅) which is realized by the identity. For Σ = S and n = 2 we

must have χ
(

Σ̃
)
− ñ = 0, whence Σ̃ = S and ñ = 2, so the branch datum is

(S, S, d, 2; [d], [d]) which is realized by the map (z, t) 7→
(
zd, t

)
upon viewing

S as the boundary of the cylinder ∆ × [0, 1] ⊂ C × R, where ∆ is the unit
disc in C.

For Σ = S and n = 3 the problem is already hard (and, as a matter of
fact, it is this very case to which most attention is currently devoted, as we
will see below).

For Σ of positive genus g and n = 0, if Σ̃ has genus g̃ the Riemann-
Hurwitz condition reads 2 (1− g̃) = d · 2(1 − g), namely g̃ − 1 = d(g − 1).
We can then realize the datum as follows. We embed Σ̃ in R3 with a line a
going through one of its holes, and Σ̃ invariant under the rotation of angle
2π/(g̃ − 1) with axis a. Similarly, we embed Σ (in a different copy of R3)
around a and invariand under the rotation of angle 2π/(g − 1) with axis a.
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Figure 1: An ordinary cover between surfaces of positive genus.

We then get f as the projection in the quotient of the action on Σ̃ of the
group of order d = g̃−1

g−1 generated by the rotation of angle 2π/d with axis a,
as in Fig. 1.

For g > 0 and n > 1 the problem is non-trivial, but we will see later in
this lecture that it always has an affirmative solution.

1.3 Dessins d’enfant

A technique that has been employed with success to face the Hurwitz ex-
istence problem is based on the notion of dessin d’enfant, popularized by
Grothendieck [5, 13] but actually known before, see [17] and the references
therein. It applies to candidate branch data of the form(

Σ̃, S, d, 3;π1, π2, π3

)
,

namely with the sphere as base surface and 3 branching points.

Definition 1.4. We call graph in the surface Σ̃ a subset Γ of Σ̃ consisting
of a finite number of points (the vertices) and of a finite number of (possibly
closed) simple arcs (the edges) such that each arc has its ends at two vertices
or its only end at a vertex, and two distinct arcs have disjoint interiors. We
call valence of a vertex v the number of edges of which it is one end plus
twice the number of edges of which it is both ends. Namely, the valence of
v is the number of germs of edges incident to v. We say that Γ is bipartite
if a black/white colouring of its vertices is given so that each edge has ends
of distinct colours. We call complementary region of Γ a component R of
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Σ̃\U , where U is the interior of a regular neighbourhood N of Γ in Σ̃. If Γ is
bipartite we place on ∂R coloured vertices by pulling back to ∂R ⊂ ∂N the
vertices of Γ under the restriction to ∂R of the natural retraction N → Γ.
Note that on each component of ∂R the black and white vertices alternate,
so the number of black vertices on ∂R is the same as the number of white
vertices, and we call it the length of R. Note that these definitions are
independent of N up to coloured homeomorphism, and that one can actually
see R as the closure of a component of Σ̃ \ Γ but keeping in mind that this
picture can fail to be an embedding on the boundary, so some vertices can
contribute in a multiple fashion to the length. We call dessin d’enfant on Σ̃
a bipartite graph on Σ̃ whose complementary regions are discs.

Proposition 1.5. A branch datum
(

Σ̃, S, d, 3;π1, π2, π3

)
is realizable if and

only if there exists in Σ̃ a dessin d’enfant Γ such that the valences of its black
vertices are the entries of the partition π1 of d, the valences of its white
vertices are the entries of π2, and the lengths of its complementary regions
are the entries of π3.

Proof. Suppose that there exists f : Σ̃ → S realizing the datum, with
branching points x1, x2, x3 ∈ S. In S take the dessin d’enfant Γ0 given
by one edge with black end at x1 and white end at x2. Note that its comple-
mentary region is a disc R0 of length 1 centered at x3. Now set Γ = f−1(Γ0)
and note that Γ is a graph by declaring its vertices to be the pull-backs of
those of Γ0. Pulling back the colours as well we see that Γ is bipartite, and
of course the valences of its vertices are as described in the statement. If R
is a complementary region of Γ then the restriction of f to R is a branched
cover of R0 with only one branching point at x3. This implies that R is
itself a disc and contains only one preimage of x3. Moreover the restriction
R → R0 of f is modelled on z 7→ zk where k is an entry of π3, and the
conclusion on the lengths of the complementary regions of Γ easily follows.

The opposite implication is proved along the same lines. If Γ exists, we
first define f on Γ by mapping each edge to Γ0 so to respect the colours.
Then we extend f to each complementary region R (in doing which it is con-
venient to view R as an abstract disc with embedded interior and boundary
immersed onto a subset of Γ).

With reference to the previous proof, if a graph Γ has black vertices of
valences π1 and white vertices of valences π2, we will say that Γ matches
π1, π2. Note that this notion applies to any abstract graph with coloured
vertices, Γ need not be embedded in a surface nor bipartite (we will need
this later on).
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Figure 2: The abstract bipartite graphs matching [4, 2, 1], [5, 2] and their embeddings in
S with lenghts of the complementary regions.

Example 1.6. Let us consider candidate branch data of the form(
Σ̃, S, 7, 3; [4, 2, 1], [5, 2], π3

)
noting that, if Σ̃ has genus g̃ and π3 has length `, the Riemann-Hurwitz
condition reads

2(1− g̃)− (3 + 2 + `) = 7 · (2− 3) ⇒ g̃ = 2− `/2

therefore we can only have Σ̃ = S and ` = 4 or Σ̃ = T and ` = 2. The
abstract graphs matching [4, 2, 1], [5, 2] are the three shown in the top part
of Fig. 2. With a little attention one can enumerate all their possible em-
beddings in S up to homeomorphism of S and compute the lenghts of the
complementary regions, as in the bottom part of Fig. 2, concluding that all
the possibilities

[4, 1, 1, 1] [3, 2, 1, 1] [2, 2, 2, 1]

are realized for π3 (each by several different dessins d’enfant). Turning to the
torus, we refrain from enumerating all the embeddings in T of the relevant
abstract graphs, and merely show for each of the possibile π3’s

[6, 1] [5, 2] [4, 3]
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Figure 3: Top: three dessins d’enfant matching [4, 2, 1], [5, 2] embedded in T . Bottom:
computation of the lenghts of the complementary regions.

one dessin d’enfant in T realizing it. In Fig. 3 this is illustrated using a
convention that we will employ throughout: to describe the embedding of
a graph Γ in a surface Σ̃ different from S we will present an immersion
of Γ in S, with double points represented as crossings in a knot diagram.
The whole of Σ̃ is then recovered by individuating the circles that bound a
regular neighbourhood of the immersion of Γ, keeping in mind that crossings
do not give double points of Γ in Σ̃.

1.4 Exceptionality from dessins d’enfant

We now prove the first result showing that the solution to the Hurwitz
problem is not always in the affirmative:

Proposition 1.7. The candidate branch datum (S, S, 4, 3; [2, 2], [2, 2], [3, 1])
is exceptional.

Proof. A dessin d’enfant matching [2, 2], [2, 2] is actually a circle, and its
only embedding in S has complementary regions of lengths [2, 2], not [3, 1].
This is illustrated in Fig. 4.

1.5 The monodromy approach

The following was already known to Hurwitz:
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Figure 4: The only dessin d’enfant in S matching [2, 2], [2, 2].

Figure 5: Generators of the fundamental group of an orientable punctured surface.

Theorem 1.8. A candidate branch datum
(

Σ̃, g · T, d, n;π1, . . . , πn

)
is real-

izable if and only if there exist α1, β1, . . . , αg, βg, θ1, . . . , θn ∈ Sd such that:

•
g∏
p=1

[αp, βp] ·
n∏
i=1

θi = id;

• The cycles of θi have lengths πi;

• The subgroup of Sd generated by α1, β1, . . . , αg, βg, θ1, . . . , θn acts tran-
sitively on {1, . . . , d}.

Proof. Suppose that f is realizable and let f • : Σ̃• → (g · T )• be the as-
sociated genuine cover between punctured surfaces. Fix a basepoint x0 in
(g · T )• and note that

π1 ((g · T )•, x0) =

〈
a1, b1, . . . , ag, bg, t1, . . . , tn :

g∏
p=1

[ap, bp] ·
n∏
i=1

ti

〉

with ap, bp, ti the homotopy classes of the loops in Fig. 5 (denoted by the
same letters for simplicity). Let us label the points in f−1(x0) as y1, . . . , yd.
Then we have an associated representation ρ : π1 ((g · T )•, x0)→ Sd where

11



Figure 6: The surface of genus g with n marked points realized as a polygon P with
edges glued in pairs.

ρ(c)(k) = h if the lift of (a loop representing) c that starts at yh ends at
yk. Setting αp = ρ(ap), βp = ρ(bp), θi = ρ(ti) we of course have the first
condition in the statement.

Now let us examine the lifts under f of the disc centered at xi and
bounded by ti. We know it consists of `i discs and that f restricted to the
j-th one is modelled on z 7→ zdij , where πi = [dij ]

`i
j=1. This implies that

on the boundary of the j-th disc there will be dij elements of f−1(x0) =
{y1, . . . , yd}, which gives a cycle of length dij in θi, and the second condition
is established.

Finally, if we take in Σ̃ a path c̃ from yk to yh we have that c = f ◦ c̃ is
a loop at x0 and ρ(c)(k) = h, whence the last condition.

Now suppose α1, β1, . . . , αg, βg, θ1, . . . , θn ∈ Sd are given and satisfy the
conditions. We cut g · T open as suggested in Fig. 6, so g · T is obtained
from the (4g + 2n)-polygon P with boundary

a+
1 b

+
1 a
−
1 b
−
1 · · · a

+
g b

+
g a
−
g b
−
g c

+
1 c
−
1 · · · c

+
n c
−
n

by identifying each a+
p to a−p , each b+p to b−p , and each c+

i to c−i . Now we
take d copies P1, . . . , Pd of P , with Pq having boundary

a+
1,qb

+
1,qa
−
1,qb
−
1,q · · · a

+
g,qb

+
g,qa

−
g,qb
−
g,qc

+
1,qc
−
1,q · · · c

+
n,qc
−
n,q

and define X as the surface obtained from the disjoint union of P1, . . . , Pd
by gluing each a+

p,q to a−p,αp(q), each b+p,q to b−p,βp(q) and each c+
i,q to c−i,θi(q). A

map h : X → g · T is defined as the quotient of the disjoint union of the
identities Pq → P , and h is a branched cover realizing a branch datum

(X, g · T, d, n;π1, . . . , πn),
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Figure 7: The non-orientable surface with crosscap number k and n marked points
realized as a polygon P with edges glued in pairs.

but χ(X) = χ
(

Σ̃
)

because (X, g · T, d, n;π1, . . . , πn) satisfies the Riemann-

Hurwitz condition and so does
(

Σ̃, g · T, d, n;π1, . . . , πn

)
. Moreover X is

connected thanks to the last condition, and it is orientable, so X = Σ̃ and
the proof is complete.

The representation ρ in the previous proposition is called the monodromy
of f •. Here comes the non-orientable version of the previous result:

Theorem 1.9. A candidate branch datum
(

Σ̃, k · P, d, n;π1, . . . , πn

)
is re-

alizable if and only if there exist α1, . . . , αk, θ1, . . . , θn ∈ Sd such that:

•
k∏
p=1

α2
p ·

n∏
i=1

θi = id;

• The cycles of θi have lengths πi;

• The subgroup H of Sd generated by α1, . . . , αk, θ1, . . . , θn acts transi-
tively on {1, . . . , d};

• Σ̃ is non-orientable if and only there exists h ∈ H such that h is the
product of an odd number of αp’s plus some θi’s and h has some fixed
point.

Proof. The proof is similar to the previous one, we only spell out the suffi-
ciency part. We cut k ·P open as suggested in Fig. 7, so k ·P is obtained from
the (2k+ 2n)-polygon P with boundary a′1a

′′
1 · · · a′ka′′kc

+
1 c
−
1 · · · c+

n c
−
n by iden-

tifying each a′p to a′′p and each c+
i to c−i . Now we take d copies P1, . . . , Pd of

P , with Pq having boundary a′1,qa
′′
1,q · · · a′k,qa′′k,qc

+
1,qc
−
1,q · · · c+

n,qc
−
n,q and define

X as the surface obtained from the disjoint union of P1, . . . , Pd by gluing
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each a′p,q to a′′p,αp(q) and each c+
i,q to c−i,θi(q). A map f : X → k · P is de-

fined as the quotient of the disjoint union of the identities Pq → P , and
f is a branched cover realizing a branch datum (X, k · P, d, n;π1, . . . , πn),

but χ(X) = χ
(

Σ̃
)

because (X, g · T, d, n;π1, . . . , πn) satisfies the Riemann-

Hurwitz condition and so does
(

Σ̃, g · T, d, n;π1, . . . , πn

)
. Moreover X is

connected by the transitivity condition, so to conclude that X = Σ̃ we must
show that X is orientable if and only if Σ̃ is. Now one easily sees that X
is non-orientable if and only if there exists an orientation-reversing loop in
k · P that lifts to a loop in X. But a loop in k · P is orientation-reversing if
and only if it is the product of an odd number of ap’s plus some ci’s, and
it has a lift that is a loop if and only if its monodromy has a fixed point,
whence the conclusion.

Theorems 1.8 and 1.9 imply that the realizability of a given candidate

branch datum
(

Σ̃,Σ, d, n;π1, . . . , πn

)
could be analyzed by computer, by

enumerating all the permutations with prescribed cycle lengths and check-
ing whether the relevant conditions are met. Note that two permutations
have the same cycle lengths if and only if they are conjugate to each other.
However, conjugacy classes of permutations in Sd rapidly become very vast
as d grows, so this approach is hardly feasible.

1.6 Proof of the last necessary condition

We stated above that for an array
(

Σ̃,Σ, d, n;π1, . . . , πn

)
associated to a

branched cover f : Σ̃ → Σ with non-orientable Σ̃ and Σ one must have
n · d ≡ ñ (mod 2), where ñ is the sum of the lengths of π1, . . . , πn, and now
we can prove this fact.

Let f have associated permutations α1, . . . , αk, θ1, . . . , θn as in Theo-
rem 1.9. Since the signature of a cycle of length m is (−1)m−1, the signature
of θi is (−1)d−`i , and the signature of θ1 · · · θn is n · d− ñ. But θ1 · · · θn is a
product of squares, so it is even, and the conclusion follows.

1.7 Exceptionality from monodromy

We can now prove using the monodromy approach an extension of what
already seen using dessins d’enfant:

Proposition 1.10. The following candidate branch datum is exceptional:

((n− 3) · T, S, 4, n; [2, 2], . . . , [2, 2], [3, 1]) .
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Proof. Note that the Riemann-Hurwitz condition reads

2(1− (n− 3))− 2n = 4(2− n)

so it is satisfied. To realize the candidate we should find θ1, θ2, . . . , θn−1 ∈ S4

with cyclic structures [2, 2] such that θ1 ·θ2 · · · θn−1 has cyclic structure [3, 1].
However for the product of two permutations of cyclic structure [2, 2] we
can assume that the the first one is (1, 2)(3, 4) and the second one is either
(1, 2)(3, 4) or (1, 3)(2, 4). But then the product is respectively the identity
or (1, 4)(2, 3), and the conclusion easily follows.

1.8 Realizability in non-positive Euler characteristic

The following result was proved in [8] after partial achievements in the same
direction in [15, 9].

Theorem 1.11. A candidate branch datum
(

Σ̃,Σ, d, n;π1, . . . , πn

)
is re-

alizable if χ(Σ) 6 0 and Σ̃ and Σ are either both orientable or both non-
orientable.

We slightly postpone the proof to record the following easy consequence:

Corollary 1.12. A candidate branch datum
(

Σ̃,Σ, d, n;π1, . . . , πn

)
is real-

izable if χ(Σ) 6 0 and Σ̃ is orientable while Σ is non-orientable.

Proof. Let p : Σ → Σ be the orientation double cover. By assumption d is
even and πi = π′i

⊔
π′′i where π′i and π′′i are partitions of d/2. Then we have

a candidate branch cover(
Σ̃,Σ, d/2, 2n;π′1, π

′′
1 , . . . , π

′
n, π

′′
n

)
which is realizable by Theorem 1.11 because Σ̃ and Σ are orientable and
χ(Σ) 6 0. Let h : Σ̃ → Σ be a branched cover realizing it, and suppose
π′i and π′′i are respectively the local degrees of h at the preimages of the
points x′i and x′′i of Σ. Suppose that p−1(p(x′i)) = {x′i, x′′′i }. Since Σ is
connected, one easily sees that for F ⊂ Σ finite and y, z 6∈ F there exists a
self-homeomorphism of Σ fixed on F and mapping y to z. Then there exists
a self-homeomorphism u of Σ such that u(x′i) = x′i and u(x′′i ) = x′′′i for all
i. Therefore we have (p ◦u)(x′i) = (p ◦u)(x′′i ) and we conclude by setting
f = p ◦u ◦h.
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We now report on the (elementary) algebraic machinery developed in [8]
to prove Theorem 1.11. For η ∈ Sd we make the following conventions:

• The number of cycles of η includes those of length 1;

• η is a q-cycle if its cycle decomposition consists of one cycle of length
q and d− q cycles of length 1.

Lemma 1.13. If θ ∈ Sd has ` cycles and t ∈ N is such `+ 2t 6 d then we
can write θ = σ · τ with σ a d-cycle and τ is an (`+ 2t)-cycle.

Proof. Suppose

θ = (1, . . . , a1)(a1 + 1, . . . , a2) · · · (a`−1 + 1, . . . , a`)

with a` = d. Choose b1, . . . , b2t ∈ {1, . . . , d} \ {a1, . . . , a`} arranged in in-
creasing order, and define

δ = (a1, . . . , a`, b1, . . . , b2t).

Now note that δ = δ0 · δ1 where

δ0 = (a1, . . . , a`) δ1 = (b1, . . . , b2t, a`).

Moreover

θ · δ0 = (1, . . . , a1)(a1 + 1, . . . , a2) · · · (a`−1 + 1, . . . , al) · (a1, . . . , a`)

= (1, . . . , a1, a1 + 1, . . . , a2, a2 + 1, . . .)

= (1, . . . , d).

Now we recall again that a` = d and we calculate

θ · δ = θ · δ0 · δ1

= (1, . . . , d) · (b1, . . . , b2t, d)

= (1, 2, . . . , b1, b2 + 1, b2 + 2, . . . , b3, b4 + 1, b4 + 2, . . . , b5, . . . ,

b2t−2 + 1, b2t−2 + 2, . . . , b2t−1, b2t + 1, b2t + 2, . . . d,

b1 + 1, b1 + 2 . . . , b2, b3 + 1, b3 + 2, . . . , b4, . . . ,

b2t−1 + 1, b2t−1 + 2, . . . , b2t)

finding that θ · δ is a d-cycle, so we conclude by setting σ = θ · δ and
τ = δ−1.
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Proposition 1.14. Every even θ ∈ Sd can be written in both the following
forms:

• θ = [α1, β1] with α1 a d-cycle;

• θ = α2
1 · α2

2 with α1 · α2 a d-cycle.

Proof. If θ has ` cycles, since θ is even we have that d− ` is even, so we can
set t = (d − `)/2 and use the previous lemma to write θ = σ · τ with σ, τ
d-cycles.

• Since τ and σ−1 are d-cycles, τ is conjugate to σ−1, so there exists
β1 ∈ Sd such that τ = β1 · σ−1 · β−1

1 . Therefore θ = [σ, β1] and we
only need to set α1 = σ;

• Since σ and τ are d-cycles, σ is conjugate to τ , so there exists α1 ∈ Sd

such that σ = α1 · τ ·α−1
1 . Therefore θ = α1 · τ ·α−1

1 · τ = α2
1 · (α

−1
1 · τ)2

and we only need to set α2 = α−1
1 · τ : since α1 · α2 = τ we have the

conclusion.

Proof of 1.11. Choose arbitrarily θi ∈ Sd with cycle lengths πi, and set
θ = θ1 · · · θn. The condition n · d ≡ ñ (mod 2) implies that θ is even.

For orientable Σ we have Σ = g · T with g > 1. We apply the first item
of the previous proposition to θ−1 to write θ−1 = [α1, β1] with α1 a d-cycle.
Then we conclude by setting α2 = β2 = . . . = αg = βg = id and invoking
Theorem 1.8.

For non-orientable Σ we have Σ = k ·P with k > 2. We apply the second
item of the previous proposition to θ−1 to write θ−1 = α2

1 · α2
2 with α1 · α2

a d-cycle. Then we conclude by setting α3 = . . . = αk = id. Invoking
Theorem 1.9, we are only left to note that α1 ·α2 is a d-cycle, so there exists
m such that α1 · (α1 · α2)m has a fixed point, and the conclusion follows. �

1.9 Reduction to the sphere

The next result is another major achievement of [8]:

Theorem 1.15. A candidate branch datum(
Σ̃,P, d,m;π1, . . . , πn

)
is realizable if Σ̃ is not orientable.

17



The proof uses a technology similar to that employed to establish The-
orem 1.11. In this case one has to find α1, θ1, . . . , θn ∈ Sd such that the
θi’s have cycles of lengths πi, and α2

1 · θ1 · · · θn = id. As opposed to the case
already discussed, however, one cannot choose θ1, . . . , θn randomly in their
conjugacy class and then α1. Instead, one has to choose representatives in
a careful manner using more work on Sd, for which we refer to [8].

Combining Theorems 1.11 and 1.15 we conclude that a candidate branch
datum is guaranteed to be realizable unless Σ = S or Σ = P and Σ̃ is ori-
entable. But the same argument showing Corollary 1.12 proves the following:

Proposition 1.16. A candidate branch datum(
Σ̃,P, d, n;π1, . . . , πn

)
with orientable Σ̃ is realizable if and only if it is possible to split πi as π′i

⊔
π′′i

so that (
Σ̃, S, d/2, 2n;π′1, π

′′
1 , . . . , π

′
n, π

′′
n

)
is realizable.

This implies that solving the Hurwitz existence problem for Σ = S would
give the full solution.

Example 1.17. The array (S,P, 20, 2; [2, . . . , 2], [6, 2, 2, 2, 1, . . . , 1]), with
ten 2’s in the first partition π1 and eight 1’s in the second one π2, is a
candidate branch cover because 2 − (10 + 4 + 8) = 20(1 − 2) and πi does
split as π′i

⊔
π′′i with π′i, π

′′
i partitions of 10 for i = 1, 2. However any such

splitting lead to a candidate branch datum(
S, S, 10, 4; [2, . . . , 2], [2, . . . , 2], π′2, π

′′
2

)
with π′2 containing an entry 6, and an application of Theorem 2.6 below
implies that any such datum is exceptional. Therefore the original datum
with Σ = P is exceptional as well.

1.10 The prime-degree conjecture

We now prove using dessins d’enfant a result also established in [8] using
permutations:

Proposition 1.18. If d is a composite integer then there exist exceptional
candidate branch data of the form (S, S, d, 3;π1, π2, π3).
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Figure 8: A dessin d’enfant matching [1, . . . , a], [b+ 1, 1, . . . , 1].

Proof. Suppose that d = ab with a, b > 1, choose q with 0 < q < b and set

π1 = [a, . . . , a] π2 = [b+ 1, 1, . . . , 1] π3 = [qa, (b− q)a].

Since ñ = b+(1+(ab−(b+1)))+2 = ab+2 the Riemann-Hurwitz condition
holds. Suppose there exists a dessin d’enfant Γ in S matching π1, π2. Since
Γ must be connected, b of the b + 1 edges leaving the white vertex v of
valence b+1 join v to the b black vertices of valence a. The last edge leaving
v therefore creates a double connection between v and one black vertex w.
For each black vertex u except w there is one edge joining u to v, while the
other a− 1 edges join u to 1-valent white vertices. For w, instead, there are
two edges joining w to v and the other a − 2 joining w to 1-valent white
vertices. This implies that Γ appears as in Fig. 8, with

0 6 x 6 b− 1 0 6 y 6 a− 2 x′ = b− 1− x y′ = a− 2− y.

Therefore Γ realizes a branch datum with π3 = [z, ab− z] with

z = y + 1 + x+ x(a− 1) = 1 + y + ax

(we have counted left to right the white vertices adjacent to the external
region). Since 1 + y+ ax is never a multiple of a, the proof is complete.

This fact (and many more that we will state in the next lectures) moti-
vate the following:
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Prime-degree conjecture If d is a prime number then every candidate

branch datum
(

Σ̃, S, d, n;π1, . . . , πn

)
is realizable.

The next result, whose proof is sketched again in [8], actually implies
that proving the conjecture for n = 3 would imply its validity for all n. This
is why in the sequel we will be mostly concerned with the case n = 3.

Proposition 1.19. Given d, if all the candidate branch data(
Σ̃, S, d, n;π1, . . . , πn

)
are realizable for n = 3 then they are for all n.

We only provide a vague idea of the argument underlying this result,
proceeding by induction on n > 3 and using the monodromy approach.
The base of the induction is the very assumption. For n > 4 we take

some
(

Σ̃, S, d, n;π1, . . . , πn

)
and randomly choose θn−1, θn ∈ Sd with cycle

lengths πn−1, πn, and set θ′n−1 = θn−1 · θn. Suppose that θ′n−1 has cycle
lengths π′n−1. Now if there exists a candidate branch datum of the form(

Σ̃′, S, d, n− 1;π1, . . . , πn−2, π
′
n−1

)
we can apply the inductive assumption and find θ1, . . . , θn−2 such that
θ1, . . . , θn−2, θ

′
n−1 realize the datum (note that one permutation can al-

ways be chosen at will within its conjugacy class). It readily follows that

θ1, . . . , θn−2, θn−1, θn realizes
(

Σ̃, S, d, n;π1, . . . , πn

)
. However, it is not true

in general that for randomly chosen θn−1, θn there exists a candidate branch
datum as stated. As a matter of fact, to carry out induction one has to first
suitably reorder π1, . . . , πn and then suitably choose θn−1, θn. See [8], and
note that in the statement one could suppose the data are realizable for
n = k, with k > 3 a given integer, and conclude that they are for all n > k.

2 Short partitions, enumeration, decomposability,
very even candidates, checkerboard graphs

We recall that we have reduced to the question whether a candidate branch

datum of the form
(

Σ̃, S, d, n;π1, . . . , πn

)
is realizable, and that, in view of

the prime-degree conjecture, we mostly care about the case n = 3.

20



We begin by reviewing some results where one of the partitions πi is
“short”. The next was proved in [36] for Σ̃ = S and in [8] in general. See
also [18] where uniqueness issues are discussed with the aid of the action
on the braid group on the monodromy (a topic we will not face in these
lectures):

Theorem 2.1. If π1 = [d] then any candidate branch datum(
Σ̃, S, d, n;π1, . . . , πn

)
is realizable.

We will give an almost complete proof of this result using a more modern
technology in Lecture 3.

We then turn to branch data with Σ = S and π1 = [k, d− k] to say that
their realizability was completely classified in the following cases:

• For all Σ̃, all n and k = 1 in [8];

• For n = 3, all k and π2 = π3 = [2, . . . , 2], whence Σ̃ = S, in [8];

• For all Σ̃, n = 3 and k = 2 in [29];

• For Σ̃ = S, all n and all k in [25].

We will discuss some of these results, and particularly those of [25], later
in this course.

Remark 2.2.

• A degree-d polynomial f(z) = a0+a1 ·z+. . .+ad ·zd can be viewed as a
map from the complex projective line P1(C) to itself mapping∞ to∞.
Moreover f−1(∞) = {∞} and f is a local homeomorphism away from
the finitely many points z at which f ′(z) = 0. This easily implies that f
gives a branched cover matching some (S, S, d, n; [d], π2, . . . , πn). Con-
versely, Theorem 2.1 and the facts announced in Remark 1.2 imply that
every candidate branch datum of the form (S, S, d, n; [d], π2, . . . , πn) is
realized by a polynomial.

• Similarly, a Laurent polynomial

f(z) = a−h · z−h + a−h+1 · z−h+1 + . . .+ ak−1 · zk−1 + ak · zk
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with a−h, ak 6= 0 gives f : P1(C)→ P1(C) with f−1(∞) = {0,∞} and
f is a branched cover matching some (S, S, k + h, n; [k, h], π2, . . . , πn).
And, conversely, by the facts announced in Remark 1.2, any realizable
candidate branch datum of the form (S, S, d, n; [k, d−k], π2, . . . , πn) is
realized by a Laurent polynomial.

2.1 Special cases

We will mention here without proof (and sometimes somewhat vaguely)
some realizability results that are known for a candidate branch datum(

Σ̃, S, d, n;π1, . . . , πn

)
, and related issues faced in the literature. Some

proofs or sketches of will be provided below.

• If n · d− ñ > 3(d− 1) then the candidate is realizable [8] except if it is

((n− 3) · T, S, 4, n; [2, 2], . . . , [2, 2], [3, 1]) .

• If Σ̃ = S and there exists r such that `1 + . . . + `r = (r − 1)d + 1
then the candidate is realizable [1]. Note that for r = 1 this reduces
to Theorem 2.1.

• If Σ̃ = S and n > d then the candidate is realizable [1].

• If Σ̃ = S, all dij are at most 2 and `i > d −
√
d/2 for all i then the

candidate is realizable [1].

• Some cases with Σ̃ = S, n = 3 and all πi of the form [ai, . . . , ai, 1]
where analyzed in [11] and later in [27].

• It was shown in [3] and later rediscovered in [37] and [26] that for
Σ̃ = S, n = 3 and π3 = [k, 1, . . . , 1], setting

x = GCD{dij : i = 1, 2, j = 1, . . . , `i},

the datum is realizable if and only if k 6 d/x.

• It was shown in [3] that for Σ̃ 6= S, n = 3 and π3 = [k, 1, . . . , 1] the
datum is always realizable.

• The results of [3] were extended in [35] to show that for Σ̃ = S, any
n > 3 and πi = [ki, 1, . . . , 1] for all i > 3, setting

x = GCD{dij : i = 1, 2, j = 1, . . . , `i},

the datum is realizable if and only if ki 6 d/x for all i > 3.
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Figure 9: A polygon X with 4(n − 1) edges, half of which are paired to give an n-
punctured sphere, and a spine of X.

• Certain very special data with Σ̃ = T , namely

(T, S, d, 3; [3, 5, 4, . . . , 4], [4, . . . , 4], [2, . . . , 2])
(T, S, d, 3; [2, 4, 3, . . . , 3], [3, . . . , 3], [3, . . . , 3])

were shown to be exceptional in [16] and then again using totally
different techniques in [7, 10].

• A series of paper by Gonçalves, Zieschang and their collaborators and
followers, initiated by [4], deals with the problem of realizing candi-
date branch data by indecomposable maps f , namely such that no
expression f = g ◦h exists with g, h non-trivial branched covers.

• Some attention, starting from [2] has been devoted to the issue of
uniqueness for realizations of simple candidate branch data, namely
data such that all πi have the form [2, 1, . . . , 1].

2.2 Zheng’s computational approach

We mention here the very interesting results from [38] that have led to a
complete computer-assisted classification of all the realizable and exceptional

candidate branch data
(

Σ̃, S, d, n;π1, . . . , πn

)
with d 6 20.

The idea is that a degree-d branched cover of the sphere with n branch
points is obtained by suitably gluing d copies X1, . . . , Xd of the 4(n − 1)-
polygon X shown in Fig. 9-left, with each γ−i of each Xq glued to some γ+

i of
another (or the same) Xq′ . Using the graph contained in X shown in Fig. 9-
right one then shows that the cover is determined by a connected graph
with d vertices of valence 2(n− 1) together with some structure that allows
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to reconstruct the gluing (we do not spell out this structure here, called
fat graph in [38]). The theoretical facts proved in [38] are then, roughly
speaking, as follows:

• The numbers of fat graphs matching specific candidate branch data
can be arranged in a generating function;

• The analysis of this generating function can be reduced to that of one
for which the connectivity assumption is dropped;

• The coefficients of the latter generating function can be expressed in
terms of characters of certain representations of Sd;

• These characters can be computed in terms of a certain polynomial
pσ(z) and rational function qσ(z) associated to each σ ∈ Sd;

• These pσ(z) and qσ(z) can be determined by computer for d 6 20.

We mention here that, based on his experimental results, Zheng conjectured
certain infinite families of candidate branch data to be exceptional, all of
which were later proved to be so in [29, 30].

2.3 A sample of counting results

In [31, 32, 33] the number ν(V ) of realizations up to very weak equivalence
was computed for the following candidate branch data

(g · T, S, 2k, 3; [2, . . . , 2], [2h+ 1, 1, 2, . . . , 2], π3)
(g · T, S, 2k, 3; [2, . . . , 2], [2h+ 1, 3, 2, . . . , 2], π3)

(g · T, S, 2k + 1, 3; [1, 2, . . . , 2], [2h+ 1, 2, . . . , 2], π3)

for arbitrary k and small values of g and h. For given g, h the value of ν(V )

in terms of k is sometimes easy and sometimes rather intricate. We provide
here as examples two cases belonging to the last of the three families listed
above (the most interesting one, since the degree is odd so it can be a prime).

• For (S, S, 2k + 1, 3; [1, 2, . . . , 2], [5, 2, . . . , 2], [p, q, r]) one has

ν(V ) =


0 if p = q = r

1 if two of p, q, r but not all three are equal to each other

2 if p, q, r are different from each other and one is > k

3 if p, q, r are different from each other and all are 6 k;
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• For (2T, S, 2k+1, 3; [1, 2, . . . , 2], [9, 2, . . . , 2], [2k+1]) one has ν(V ) = 10
for k = 4 and

ν(V ) =
k

16
(7k3 − 42k2 + 72k − 37) +

5

8
(2k − 3)

[
k

2

]
otherwise.

2.4 Special families with many 2’s

To give a flavour of how the arguments based on dessins d’enfant go, we will
prove now the following from [29]:

Proposition 2.3. The candidate branch datum

(T, S, d, 3; [2, . . . , 2], [5, 3, 2, . . . , 2], [p, q])

is realizable if and only if p 6= q.

Proof. Let us first check that the Riemann-Hurwitz condition is satisfied. If
d = 2k we have `1 = k, `2 = k − 2 and `3 = 2, so ñ = 2k, and the condition
reads 0− 2k = 2k(2− 3), so it holds.

We now analyze the dessins d’enfant Γ matching [2, . . . , 2], [5, 3, 2, . . . , 2].
Ignoring the vertices of valence 2, that do not contribute to the topology of
Γ, we only have the abstract graphs in Fig. 10-top. These graphs embed
in T as in Fig. 10-center. Now, restoring the valence-2 vertices, we have
the possibilities shown in Fig. 10-bottom, where an edge marked by a > 0
contains a white and a+1 black valence-2 vertices, and x+y+z+w = k−4.
Counting the lengths of the complementary regions is a routine matter,
showing that these graphs realize respectively the following π3’s:

[x+ 1, 2k − (x+ 1)] [x+ 1, 2k − (x+ 1)]
[y + z + 2, 2k − (y + z + 2)] [x+ y + z + 3, 2k − (x+ y + z + 3)].

This readily implies that [k, k] is not realized while all [p, q] with p < q
are.

Similar arguments lead to the following:

Proposition 2.4. The candidate branch datum

(S, S, d, 3; [2, . . . , 2], [5, 3, 2, . . . , 2], π3)

(with π3 of length 4) is realizable if and only π3 does not have the form
[p, p, q, q] or [p, p, p, 3p].
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Figure 10: Abstract graphs with two vertices of valences [5, 3], their embeddings in T
and their decorations with valence-2 vertices.

Proposition 2.5. The candidate branch datum

(S, S, d, 3; [2, . . . , 2], [3, 3, 2, . . . , 2], π3)

(with π3 of length 3) is realizable if and only if π3 does not contain d/2.

2.5 Exceptionality and realizability from decomposability

To confirm the exceptionality of some families of candidate branch data
conjectured to be so in [38], the following was shown in [29]:

Theorem 2.6. If a candidate branch datum (S, S, d, n;π1, . . . , πn) is realiz-
able and all the entries of π1 and π2 are even, then πi is the union of two
partitions of d/2 for all i > 3.

The proof is based on the idea that certain conditions on a candidate
branch datum force a map realizing it, if any, to be the composition of
two non-trivial maps. More exactly, Theorem 2.6 readily follows from the
following fact fully proved below:

Proposition 2.7. If f : S → S is a branched cover realizing

(S, S, d, n;π1, . . . , πn)
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with all the entries of π1 and π2 even, then f = g ◦h where g : S → S is
the map g(z) = z2 realizing (S, S, 2, 2; [2], [2]) and h : S → S is a branched
cover realizing some(

S, S, d/2, 2n− 2; [d1j/2]`1j=1, [d2j/2]`2j=1, π
′
3, π
′′
3 , . . . , π

′
n, π

′′
n

)
where πi = π′i

⊔
π′′i for i > 3.

Before proving Theorem 2.6 we illustrate a consequence that demon-
strated quite powerful in practice. This uses the next result also established
in [29]:

Proposition 2.8. If a candidate branch datum (S, S, d, n;π1, . . . , πn) is re-
alizable and there exists k > 2 such that each entry of π1 and π2 is a multiple
of k, then each entry of πi is at most d/k for all i > 3.

We do not reproduce here the argument leading to this proposition, we
only mention that it uses the exceptionality of certain candidate branch data
(S, S, d, n;π1, . . . , πn) with π1 = [k, 1, . . . , 1] and πi = [2, 1, . . . , 1] for i > 4,
together with a direct argument exploiting the monodromy approach. But
we show how Theorem 2.6 and Proposition 2.8 combine to give the following:

Corollary 2.9. If a candidate branch datum (S, S, d, n;π1, . . . , πn) is real-
izable and there exists k > 2 such that d is multiple of 2k, each entry of π1

is a multiple of k and each entry of π2 and π3 is even, then each entry of π2

and π3 is at most d/k and each entry of πi is at most d/2k for all i > 4.

Proof. We apply Proposition 2.7 to see that any f realizing the datum is
f = g ◦h with g(z) = z2 and h realizing(

S, S, d/2, 2n− 2;π′1, π
′′
1 , [d2j/2]`2j=1, [d3j/2]`3j=1, π

′
4, π
′′
4 , . . . , π

′
n, π

′′
n

)
with πi = π′i

⊔
π′′i for i 6= 2, 3. Now k divides all the entries of π′1 and π′′1 so

by Proposition 2.8 we have dij/2 6 (d/2)/k for i = 2, 3 and dij ≤ (d/2)/k
for i > 4.

Before establishing Proposition 2.7 we state without proof the following
result from [29] also based on the idea of taking compositions of branched
covers:

Theorem 2.10. Consider a candidate branch datum
(

Σ̃, S, d, 3;π1, π2, π3

)
.

If there exists k > 3 such that all the entries of all the πi’s are divisible by
k then the candidate is realizable.
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Figure 11: A simple path through n− 1 of the branching points.

Note that this result only applies for high genus of Σ̃, because ñ must
be small if all the entries of all πi are divisible by k. For instance, it shows
the realizability of the following candidate branch datum:

(3T, S, 12, 3; [6, 3, 3], [6, 3, 3], [6, 6]).

2.6 First generalization of dessins d’enfant

The proof of Proposition 2.7 depends on a geometric and an algebraic ar-
gument. Here we illustrate the former. Assuming some f : Σ̃ → S realizes

some candidate branch datum
(

Σ̃, S, d, n;π1, . . . , πn

)
with n > 4, we con-

sider in S a simple path e = e1 · · · en−2 going through the branching points
x1, . . . , xn−1 in this order, see Fig. 11. Setting Γ = f−1(e) we see that Γ is
a graph with vertices and edges labeled xi and ep, such that:

• The valences of the vertices labeled xi are the entries of πi for i = 1
and i = n− 1, and those of 2πi for i = 2, . . . , n− 2;

• Each edge labeled ep has ends at vertices labeled xp and xp+1;

• Around each vertex labeled xi for i = 2, . . . , n − 2 the edges labeled
ei−1 and ei alternate;

• The complementary regions of Γ are discs and on the boundary of each
of them the cycle x1, x2, . . . , xn−2, xn−1, xn−2, . . . , x2 repeats a certain
number of times, called the length of the region;

• The lengths of the complementary regions of Γ are the entries of πn.

Conversely, any such Γ gives a realization f of the candidate branch datum.

Remark 2.11. If Γ comes from a given f of course we see that it contains
precisely d edges for each of the labels e1, . . . , en−2. Conversely, if Γ satisfies
the above combinatorial conditions, one sees that the same conclusion holds,
either by a direct counting argument or invoking the fact that Γ defines a
map f .
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Figure 12: How to enumerate the edges ei and how to compute the action of θi.

We will need below an explicit descprition of the monodromy elements
θ1, . . . , θn−1 associated as in Theorem 1.8 to the map f realizing a branch
datum associated to Γ as above. The method is as follows (see Fig. 12):

• Enumerate the edges with label e1 as e
(1)
1 , . . . , e

(d)
1 in some arbitrary

fashion;

• Recursively enumerate the edges with label ei with i > 2 as e
(1)
i , . . . , e

(d)
i

in such a way that around each vertex labeled xi the edge e
(p)
i follows

e
(p)
i−1 in a clockwise order;

• Now for i = 1, . . . , n − 2 and k ∈ {1, . . . , d} the value of θi(k) is

computed by locating e
(k)
i and looking at the next e

(∗)
i in a counter-

clockwise order around the vertex labeled xi of e
(k)
i ; if that e

(∗)
i is e

(h)
i

then θi(k) = h; note that for i = 1 we have that e
(h)
i is simply the next

edge after e
(k)
i , while for i = 2, . . . , n− 2 there is one e

(∗)
i−1 in between;

• The value of θn−1(k) is found similarly, by locating e
(k)
n−2 and finding

the next edge e
(∗)
n−2 around the end of e

(k)
n−2 labeled xn−1, which is just

the next edge regardless of the label;

• Finally, θn = θ−1
n−1 · · · θ

−1
1 .

The justification of this rule is simply given, remembering that the action
of θi is obtained by lifting a circle going aroung xi. We leave the details to
the reader.

2.7 Block decompositions

For the algebraic machinery we develop here, see the references in [29].
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Definition 2.12. If k is a divisor of d, we call k-block decomposition of
γ ∈ Sd a partition

{1, . . . , d} =

d/k⊔
m=1

Bm

such that each Bm has cardinality k and γ(Bm) = Bγ̂(m) with γ̂ ∈ Sd/k.

Proposition 2.13. A degree-d branched cover f : Σ̃→ Σ with monodromy
ρ : π1(Σ•) → Sd can be expressed as g ◦h with h : Σ̃ → Ω a degree-k and
g : Ω→ Σ a degree-(d/k) branched cover if and only if there exists a common
k-block decomposition for all γ in Im(ρ).

Proof. Note first that ρ is only well-defined up to conjugation, because it
depends on the choice of an ordinary point x0 of f as a basepoint for π1(Σ•),
and on the numbering y1, . . . , yd for f−1(x0). However, if B1, . . . , Bd/k is a
common k-block decomposition for the elements of Im(ρ) and ρ′ = α−1 ·ρ ·α
with α ∈ Sd, then setting B′m = α−1(Bm) we see that B′1, . . . , B

′
d/k is a

common k-block decomposition for the elements of Im(ρ′). So the existence
of such a decomposition is well-defined.

Suppose now that an expression f = g ◦h exists, let g−1(x0) consist of
the points z1, . . . , zd/k and set Bm = {i : yi ∈ h−1(zm)}. Of course each Bm
has cardinality k. Moreover, if γ 7→ γ̂ is the monodromy of g, we readily see
that ρ(γ)(Bm) = Bγ̂(m) and we are done.

Conversely, if a common block decomposition exists for all the elements
of Im(ρ), we can subdivide into blocks of k points not only the fibre f−1(x0)
of the basepoint, but any fibre f−1(x). The labels of the blocks are only
defined up to conjugation, but not the blocks themselves, so it makes sense
to define h : Σ̃ → Ω as the map that collapses each block to a point, and
then g : Ω→ Σ as the map such that f = g ◦h, and we are done.

2.8 Checkerboard graphs

We introduce here a notion we will employ to prove Proposition 2.7 and also
later in this course.

Definition 2.14. A graph Γ in a surface Σ is called a checkerboard graph
if its complementary regions are discs that can be coloured black and white
so that each edge separates black from white.

Proposition 2.15. A graph Γ in the sphere S is a checkerboard graph if
and only if its complementary regions are discs and all its vertices have even
valence.
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Figure 13: A graph in the sphere with vertices of even valence is a checkerboard graph.

Proof. We proceed by induction on the number m > 1 of vertices of Γ.
For m = 1 we have that Γ is a bouquet of k > 1 circles and we proceed
by induction on k. For k = 1 the conclusion is obvious, while for k > 1 we
select and innermost such circle γ, we delete it to get a bouquet Γ′, we apply
the induction assumption to Γ′ and we colour the empty disc bounded by γ
of the opposite colour of the complementary disc of Γ′ in which γ lies.

For m > 1 we note that Γ must be connected because its complement
consists of discs, so there is an edge e of Γ with distinct ends. Then we
define Γ′ as the graph obtained from Γ by collapsing e to a point, we apply
the inductive assumption to Γ′ and, for the first time, we use the assumption
that the ends of e have even valence to conclude as suggested in Fig. 13 (on
the right the picture is not a general one, we make an example).

Remark 2.16. The previous result fails to be true for surfaces other than
the sphere. For instance, in the torus T there is a bouquet of two circles
whose complement is a single disc.

We are eventually ready to conclude the argument giving Theorem 2.6.

Proof of 2.7. To use the above notation, we rearrange the branch datum
associated to f assuming that the even entries are those of π1 and πn−1.
Now we associate to f a graph Γ with vertices labeled x1, . . . , xn−1 and edges

labeled e1, . . . , en−2, and we enumerate the edges labeled ei as e
(1)
i , . . . , e

(d)
i ,

as explained above. By our choice, all the vertices of Γ have even valence,
so Γ is a checkerboard graph.

By Proposition 2.13 (and its proof, to be completely honest) it is now
enough to prove that {1, . . . , d} splits into two blocks of d/2 elements such
that θ1 and θn−1 switch them and θ2, . . . , θn−2, θn leave them invariant. To
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Figure 14: Edge colours are well defined.

Figure 15: Action of the θi’s on the black and white edges.

define the blocks we orient all ei’s from xi to xi+1 and we declare an integer

p ∈ {1, . . . , d} to be black (respectively, white) if the orientation of e
(p)
i is

induced by the incident black (respectively, white) complementary region.
We are left to show that:

• This definition is independent of i, which is shown in Fig. 14;

• The permutations θ1 and θn−1 switch the black and the white blocks
while θ2, . . . , θn−2 leave them invariant, which is shown in Fig. 15,

• The permutation θn leaves the blocks invariant, which follows from
above because θn = θ−1

n−1 · · · θ
−1
1 .

�

2.9 More checkerboard graphs

An interesting technique was introduced in [1] and applied to show some
realizability and exceptionality results for candidate branch data with both
the base and the candidate covering surface equal to the sphere S. The

32



Figure 16: The dessin d’enfant matching [3, 3], [3, 3] and its embeddings in T .

method was generalized to any covering surface in [30], proving for instance
the following:

Theorem 2.17. Any candidate branch datum of the form(
Σ̃, S, d, 3;π1, π2, [d− 2, 2]

)
is realizable, except

(T, S, 6, 3; [3, 3], [3, 3], [4, 2]).

The fact that (T, S, 6, 3; [3, 3], [3, 3], [4, 2]) is exceptional is easily seen
using dessins d’enfant: if Γ matches [3, 3], [3, 3] then abstractly it is as in
Fig. 16, where also its only embeddings in T are shown, and one readily sees
that as π3 they realize [5, 1] and [3, 3].

The constructive part of the previous result relies on the following con-
struction, that we describe omitting some details. Let a map f realize a

candidate branch datum
(

Σ̃, S, d, n;π1, . . . , πn

)
, and arrange x1, . . . , xn as

the n-th roots of unity on the boundary of unit disc D ⊂ C ⊂ P1(C) = S.
Moreover paint D black and its complementaty disc white. Pull back ∂D
through f to get a checkerboard graph Γ ⊂ Σ̃ with vertices marked xi
having valences equal to the entries of 2πi, and complementary discs each
with a cycle of vertices x1, . . . , xn on its boundary, positively arranged for
the black discs and negatively for the white ones. Now we start merging
together distinct black discs and distinct white discs, as shown in Fig. 17.
Note that a merging of discs is performed at some vertex, and that there
is no unique merging strategy: as long as two or more distinct discs of the
same colour are incident to the same vertex, they can be merged together.
While performing this merging, however, we keep track of what we have
done by inserting a tree with the same label as the vertex through which we
have done the merging, as shown in Fig. 18. Note that collapsing the tree
to a point results in undoing the merging. Doing this as long as possible,
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Figure 17: A merging as on the left is performed if D1, D2, D3 are distinct discs. One
as on the right if D1 and D2 are distinct but perhaps D3 coincides with one of them.

Figure 18: Collapsing these trees results in undoing the mergings of Fig. 17.

we end up with a minimal checkerboard graph, namely one with just one
black and one white disc. Of course for Σ̃ = S this is just a circle, but for
other Σ̃ there are other possibilities. For instance for Σ̃ = T the minimal
checkerboard graphs are those shown in Fig. 19.

Example 2.18. Let us consider the candidate branch datum

(S, S, 7, 4; [2, 2, 2, 1], [4, 2, 1], [3, 3, 1], [2, 1, 1, 1, 1, 1]).

A checkerboard graph associated to a map realizing this datum is shown in
Fig. 20, where for simplicity we write i instead of xi (and we use light green

Figure 19: Minimal checkerboard graphs on the torus. In both cases the boundary of
the square is not part of the graph.

34



Figure 20: A checkerboard graph.

rather than black). In Fig. 21 we show the result of a maximal disc merging
for this graph, and in Fig. 22, we show the same picture again in a tidier
fashion.

The construction of a checkerboard graph with decorated trees attached
to it can actually be reversed, which gives a result of the following type: a
candidate branch datum (

Σ̃, S, d, n;π1, . . . , πn

)
is realizable if and only if there exists on Σ̃ a minimal checkerboard graph
Γ and a finite family of trees with labels 1, . . . , n having their valence-0 and
valence-1 vertices on Γ, but otherwise disjoing from Γ and from each other,
satisfying. . . a long list of combinatorial conditions depending on the πi’s.
The details of the statement are too complicated to be reproduced here
(see [1] for the case Σ̃ = S and [30] for the general case). But it is using
this result and an algorithmic machinery to construct minimal checkerboard
graphs in Σ̃ that Theorem 2.17 was established in [30].

3 Constellations and geometric orbifolds

In this lecture we describe two approaches that have led to major advance-
ments towards the solution of the Hurwitz existence problem.
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Figure 21: A minimal checkerboard graph.

Figure 22: The same minimal checkerboard graph as in Fig. 21.
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3.1 Data with one partition of length 2

We now provide a full statement of the following result from [25] already
announced above:

Theorem 3.1. A candidate branch datum (S, S, d, n;π1, . . . , πn) with `n = 2
is always realizable for n > 4, while for n = 3 it is if and only if it does not
belong to the following list:

• (S, S, 12, 3; [2, . . . , 2], [3, 3, 3, 1, 1, 1], [6, 6])

• (S, S, 2a, 3; [2, . . . , 2], [2, . . . , 2], [b, 2a− b]) with b 6= a

• (S, S, ab, 3; [a, . . . , a], [b+ 1, 1, . . . , 1], [qa, (b− q)a])

• (S, S, 2a, 3; [2, . . . , 2], [k, k − 1, 1, . . . , 1], [b, 2a− b]) with k > 3

• (S, S, 2a, 3; [2, . . . , 2], [k, k, 1 . . . , 1], [a− 1, a+ 1]) with k > 2

• (S, S, 2a, 3; [2, . . . , 2], [3, 1, 2, . . . , 2], [a, a]).

Exceptionality of the listed items is very easily established using dessins
d’enfant (note that the third one was already discussed in Lecture 1). Real-
izability of the other candidate branch data relies on a topological argument
that we now explain with some detail.

Remark 3.2. The statement in [25] contains 7 exceptional families, rather
than 6, but two of them actually coincide. More precisely, using the notation
of [25] (employed only within the present remark because incompatible with
our current one), the families (4) and (5)

Π1 = {2, . . . , 2},Π2 = {1, . . . , 1, d, d},Π3 = {2d− 3, n− 2d+ 3} d > 3
Π1 = {2, . . . , 2},Π2 = {1, . . . , 1, d, d},Π3 = {2d− 1, n− 2d+ 1} d > 3

are the same, because the Riemann-Hurwitz condition reads

2−
(n

2
+ (2 + n− 2d) + 2

)
= n(2− 3) ⇒ n = 4d− 4

therefore n− 2d+ 3 = 2d− 1 and n− 2d+ 1 = 2d− 3, whence

{2d− 3, 2d− 1} =
{n

2
− 1,

n

2
+ 1
}

which leads to the expression we have used in our penultimate item above.
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Figure 23: An (n− 1)-star.

3.2 Constellations

Let us call (n − 1)-star a planar graph as shown in Fig. 23, namely one
consisting of n−1 edges with one common unlabeled end (named the centre
of the star) and distinct other ends labeled 1, . . . , n − 1, arranged around
the centre according to the orientation of the plane. We then term (n− 1)-
constellation in Σ̃ a graph Γ ⊂ Σ̃ consisting of some number of stars such
that:

• Any two stars share at most some vertices with equal labels;

• The vertices labeled 1, . . . , n − 1 appear positively arranged around
the centre of each star according to the orientation of Σ̃;

• The complementary regions of Γ are discs.

Note that around the boundary of each complementary region R we see the
labels 1, . . . , n− 1 negatively arranged and appearing a certain number p of
times, called the length of R.

To a map f : Σ̃→ S realizing some candidate branch datum(
Σ̃, S, d, n;π1, . . . , πn

)
we can associate a constellation Γ defined as the pull-back through f of the
star in Fig. 23 not containing the branching point xn and with the vertices
labeled 1, . . . , n − 1 at the branching points x1, . . . , xn−1. Then Γ contains
d stars, the set of valences of its vertices labeled i (denoted henceforth by
πi(Γ)) is πi, and the set of lengths of the complementary discs of Γ (denoted
henceforth by πn(Γ)) is πn. Moreover, this construction can be reversed, so
the existence of a constellation matching a candidate branch datum implies
that the latter is realizable.

38



Figure 24: A constellation.

Example 3.3. In Fig. 24 we show a 4-constellation in the sphere, consisting
of 10 stars. Counting the valences of the vertices labeled 1, 2, 3, 4 and the
lengths of the complementary regions we see that the constellation realizes

(S, S, 10, 5; [2, 2, 2, 1, 1, 1, 1], [3, 3, 1, 1, 1, 1], [4, 3, 1, 1, 1],
[4, 1, 1, 1, 1, 1, 1], [3, 2, 1, 1, 1, 1, 1]).

3.3 The idea underlying Pakovich’s argument

The proof of Theorem 3.1 is too long to be reproduced here, but we will
explain the idea it is based on. To do so, we introduce the following notation:
for an array π of positive integers, we denote by π the same array π with all
1’s removed. The argument of [25] is in three steps:

Step 1: Show that to realize the given branch datum (S, S, n, d;π1, . . . , πn)
with πn = [s, d−s] it is enough to construct an (n−1)-constellation Γ with:

• πi(Γ) = πi for i = 1, . . . , n− 1;

• πn(Γ) containing s.

This means that in constructing Γ we do not need to count its valence-1
vertices and the number of stars it consists of.

Step 2: Suppose first that s is “small” compared to the total length of
π1, . . . , πn−1 and construct Γ as required in two passages: first define π′i as
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Figure 25: A circle with branches outside.

an array of 2’s of the same length as πi, and constuct Γ with πi(Γ) = π′i for
i = 1, . . . , n− 1 and πn(Γ) containing s as a circle with interior of length s,
no centres of stars in the interior but some branches outside, as suggested
in Fig. 25. Since all the 2’s in πi(Γ) are incident to the outside of the circle
one can now modify Γ by adding stars to the outside until πi(Γ) = πi for
i = 1, . . . , n− 1 and πn(Γ) still contains s.

Step 3: Given a constellation Γ as above with πi(Γ) = πi for i = 1, . . . , n−1
and πn(Γ) containing s, we can increase s without affecting the πi(Γ)’s by
reflecting some of the outer branches with respect to the circle, from the
outside to the inside. For instance in Fig. 26 we show a reflection that
increases s by 3 (but in the same situation we could increase it by 1 or
by 4). The conclusion of the proof is then obtained by showing that the
flexibility in the choice of the branches to reflect is enough to realize all the
values of s. This is based on some numerical estimates on the lengths of
the πi’s, and the upshot is that for n > 4 a sufficient flexibility is always
guaranteed, while for n = 3 some exceptions arise.

We will not provide all the details for Steps 2 and 3, but we will for
Step 1, and we will actually consider the general case of a candidate branch

datum
(

Σ̃, S, d, n;π1, . . . , πn

)
with arbitrary Σ̃. To this end denote by g the

genus of Σ̃ and we define mi as the length of πi and ui as `i−mi. We further
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Figure 26: Reflection of a branch.

assume that entries of πi are arranged non-increasingly, so πi is πi followed
by ui repetitions of 1.

Proposition 3.4. If `n = 2 then

n−1∑
i=2

mi∑
j=1

(dij − 2) = u1 +m1 − (m2 + . . .+mn−1) + 2g.

Corollary 3.5. A candidate branch datum
(

Σ̃, S, d, n;π1, . . . , πn

)
with Σ̃

of genus g and πn = [s, d− s] is determined by g, n, π1, . . . , πn−1, s.

Proof. π1, . . . , πn−1 determine m1, . . . ,mn−1, so by the previous result u1 is
determined, and hence also

d =

m1∑
j=1

d1j + u1

and whence all

ui = d−
mi∑
j=1

dij .

Proof of 3.4. The Riemann-Hurwitz condition reads

2(1− g)− (`1 + . . .+ `n−1 + 2) = d(2− n),
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namely `1 + . . .+ `n−1 = d(n− 2)− 2g. Now we compute

n−1∑
i=2

mi∑
j=1

(dij − 2) =
n−1∑
i=1

mi∑
j=1

(dij − 2)−
m1∑
j=1

(d1j − 2)

=

n−1∑
i=1

mi∑
j=1

(dij − 2) + 2m1 −
m1∑
j=1

d1j .

We next evaluate another sum in two different ways:

n−1∑
i=1

`i∑
j=1

(dij − 2) =
n−1∑
i=1

mi∑
j=1

(dij − 2) +
n−1∑
i=1

`i∑
j=mi+1

(−1)

=
n−1∑
i=1

mi∑
j=1

(dij − 2)−
n−1∑
i=1

ui

n−1∑
i=1

`i∑
j=1

(dij − 2) =
n−1∑
i=1

`i∑
j=1

dij − 2
n−1∑
i=1

`i

= (n− 1)d− 2(d(n− 2)− 2g)

where we have used the Riemann-Hurwitz condition in the last passage.
This shows, after easy computations, that

n−1∑
i=1

mi∑
j=1

(dij − 2) = d(3− n) + 4g +
n−1∑
i=1

ui.

Substituting this in the first formula above we get

n−1∑
i=2

mi∑
j=1

(dij − 2)

= d(3− n) + 4g +

n−1∑
i=1

ui + 2m1 −
m1∑
j=1

d1j

= d(3− n) + 4g +
n−1∑
i=1

(ui +mi)−
n−1∑
i=1

mi + 2m1 − (d− u1)

= d(3− n) + 4g + (d(n− 2)− 2g)−
n−1∑
i=1

mi + 2m1 − (d− u1)
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Figure 27: Abstract graphs with 4 trivalent vertices.

where we have used the Riemann-Hurwitz condition again. And now a direct
calculation shows that the last expression is

u1 +m1 − (m2 + . . .+mn−1) + 2g

as desired. �

3.4 Proofs by constellations

As already mentioned, the proof of Theorem 3.1 in [25] is rather complicated
and long, so instead of presenting it we will provide other applications of
the approach to the Hurwitz existence problem via constellations.

To begin, we give an alternative proof of Proposition 1.10 concerning the
exceptionality of ((n− 3) · T, S, 4, n; [2, 2], . . . , [2, 2], [3, 1]) . A constellation
realizing such a datum would be a graph Γ in the surface of genus g = n− 3
with only 4 actual vertices of valence n− 1, edges labeled 1, . . . , n− 1 (two
edges for each label), the labels 1, . . . , n−1 positively arranged around each
vertex, and two complementary regions incident respectively to n − 1 and
to 3(n− 1) vertices (with multiplicity).

We prove that no such Γ exists for n = 4 (and g = 1), leaving the general
case to the reader. The abstract graphs with 4 trivalent vertices are those
in Fig. 27 (I and II are those in which the only maximal tree is a segment,
III, IV and V are those in which there is a maximal tree with a trivalent
vertex). Their only relevant embeddings in T are those in Fig. 28 (namely,
I and III do not embed in T so that the complement consists of discs, IV
embeds in one way only, and II and V embed in two ways —not three, as
one might think: the two embeddings V ′ are the same). Now, one sees that
the numbers of vertices to which the complementary regions are incident are
[10, 2] for II ′, [6, 6] for II ′′, [11, 1] for IV ′, [9, 3] for V ′ and [8, 4] for V ′′. And,
finally, Fig. 29 proves that for II ′′ a choice of the labels as required is possible
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Figure 28: Embeddings in the torus.

Figure 29: Labels for the edges.

(but this constellation realizes π4 = [2, 2], not [3, 1]) while it is impossible
for V ′: after an acceptable choice is made for the three bottom vertices,
the ordering around the top vertex is not the good one. The argument is
complete.

We now turn to Theorem 2.1 according to which any candidate branch

datum
(

Σ̃, S, d, n;π1, . . . , πn

)
is realizable if π1 = [d].

Case 1: Σ̃ = S, n = 3. In this case we can use dessins d’enfant and
proceed by induction on d > 3. For the base step we have the candi-
date (S, S, 3, 3; [3], [2, 1], [2, 1]) which is realized by the only dessin matching
[2, 1], [2, 1] (a segment with two internal vertices). For the inductive step,
note that the Riemann-Hurwitz condition reads 2− (1 + `2 + `3) = d(2− 3),
namely `2 + `3 = d+ 1. We claim that up to change of notation π3 contains
a 1. Otherwise we would have dij > 2 for i = 2, 3 and all j, so `2, `3 6 d/2,
a contradiction. Assuming d21 > 1 and d31 = 1 we can inductively realize

(S, S, d− 1, 3; [d− 1], [d21 − 1, d22, . . . , d2`2 ], [d32, . . . , d3`3 ])

by a dessin d’enfant matching [d21 − 1, d22, . . . , d2`2 ], [d32, . . . , d3`3 ], and we
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get the conclusion by attaching to this dessin a segment with a white end
to the black vertex corresponding to d21 − 1.

Case 2: Σ̃ = S, n > 4. The argument is very similar using constellations.
To simplify the base of the induction we remove here the assumption that
each πi should be different from [1, . . . , 1], so we can start with d = 1, all
πi = [1] and the identity. For the inductive step, we write the Riemann-
Hurwitz condition `2 + . . .+ `n = (n−2)d+1 and claim that up to changing
notation π3, . . . , πn contain a 1. Otherwise, π2, π3 do not contain a 1, so
`2, `3 6 d/2, whence

(n− 2)d+ 1 = `2 + . . .+ `n 6 d/2 + d/2 + (n− 3)d = (n− 2)d,

a contradiction. So we can assume d21 > 1 (otherwise we induct on n) and
d31 = . . . = dn1 = 1 and we apply the induction assumption to

(S, S, d−1, n; [d−1], [d21−1, d22, . . . , d2`2 ], [d32, . . . , d3`3 ], . . . , [dn2, . . . , dn`n ])

finding a constellation with vertices having labels 2, . . . , n. We then attach
a star to the vertex labeled 2 corresponding to d21−1 (and all other vertices
3, . . . , n free) and we are done.

Case 3: Σ̃ = g · T, g > 1, n = 3. To face this case we define the extra
valence of the given candidate branch datum as the number

e =
3∑
i=2

∑
x∈πi

(x− 2)

and we claim that e > 4g−2. In fact we have 2(1−g)−(1+`2+`3) = d(2−3)
by the Riemann-Hurwitz condition, whence `2 + `3 = d− 2g+ 1. Joining π2

and π3 we get a partition η of 2d of length `2+`3. Note that e =
∑

x∈η(x−2).
If η contains both a 1 and an entry x > 2 we can reduce the value of e without
changing the length of η by replacing 1 by 2 and x by x− 1. Eventually we
get to some η′ such that one of the following holds:

• x 6 2 for all x ∈ η′; then `2 + `3 > d which contradicts the equality
`2 + `3 = d− 2g + 1;

• x > 2 for all x ∈ η′; then

e(η′) =
∑
x∈η

(x− 2) =
∑
x∈η

x− 2(`2 + `3) = 2d− 2(d− 2g + 1) = 4g − 2.
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Figure 30: A dessin d’enfant with 2g+1 edges in the surface of genus g. Its complement
is a single disc.

Our claim is proved.

We now note that d− 2g + 1 = `2 + `3 > 2, whence d > 2g + 1, and we
proceed by induction on d, with fixed g ≥ 1 and n = 3, so we use dessins
d’enfant. For d = 2g + 1 the candidate is

(g · T, S, 2g + 1, 3; [2g + 1], [2g + 1], [2g + 1])

and it is realized by the dessin in Fig. 30. For d > 2g + 1 we proceed by
induction on e > 4g − 2. The base step e = 4g − 2 is actually here much
harder than the inductive step. We first note that the above argument
proving that e > 4g − 2 implies that for e = 4g − 2 all the entries of π2 and
π3 are at least 2. So for instance for g = 1 we only have for π1, π2, π3 the
possibilities

[4 + 2k], [4, 2, . . . , 2], [2, . . . , 2]
[6 + 2k], [3, 3, 2, . . . , 2], [2, . . . , 2]
[3 + 2k], [3, 2, . . . , 2], [3, 2, . . . , 2]

with k > 0. These partitions are realized by the graphs shown in Fig. 31.
For general g, we first show that any triple of partitions of the form

[d], [4g − p, 2, . . . , 2], [2 + p, 2, . . . , 2]

can be realized. For p = 0, 1, 2, 3 these triples can be described as

[4g + 2k], [4g, 2, . . . , 2], [2, . . . , 2]

[4g − 1 + 2k], [4g − 1, 2, . . . , 2], [3, 2, . . . , 2]

[4g − 2 + 2k], [4g − 2, 2, . . . , 2], [4, 2, . . . , 2]

[4g − 3 + 2k], [4g − 3, 2, . . . , 2], [5, 2, . . . , 2]
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Figure 31: Dessins d’enfant on the torus; in each of these graphs k white and k black
vertices should be alternately added on any edge with black and white ends.

Figure 32: Dessins d’enfant on the genus-g surface; again, in each of these graphs k
white and k black vertices should be alternately added on any edge with black and white
ends.

for k > 0, and Fig. 32 shows dessins d’enfant realizing them and suggests
how to operate for arbitrary p. To conclude the base of the induction we
only need to remark that any triple of partitions with e = 4g − 2 can be
reached from one of the form [d], [4g − p, 2, . . . , 2], [2 + p, 2, . . . , 2] by the
black valence transfer move of Fig. 33, and its white analogue. Moving to
the inductive step, suppose that e > 4g − 2. Then e > 3, so the union of π2

and π3 contains at least an entry greater than or equal to 3. But the above
argument showing the inequality e > 4g−2 implies that the union of π2 and
π3 also contains at least an entry equal to 1. Now we have two cases: either
up to changing notation we have d21 > 1 and d31 = 1, or π2 = [2, . . . , 2]. In

Figure 33: Transfer of valence.

47



the first case we realize

(g · T, S, d− 1, 3; [d− 1], [d21 − 1, d22, . . . , d2`2 ], [d32, . . . , d3`3 ])

by a dessin d’enfant Γ matching the last two partitions and then we attach
an edge with a white end to the black vertex of Γ corresponding to d21 − 1,
getting a dessin d’enfant realizing the relevant candidate branch datum. In
the second case the candidate branch datum to realize is

(g · T, S, 2k, 3; [2k], [2, . . . , 2], π3)

for some k, with `3 = 1 + k − 2g. Finding a corresponding dessin d’enfant
is now an easy exercise: one first deals with the case

π3 = [k + 2g, 1, . . . , 1],

which is done with an explicit construction similar to that of Fig. 30, and
then one uses moves similar to that in Fig. 33 to do the general case.

To prove Theorem 2.1 in the general case g > 1 and n > 4 one should
now combine the above induction argument on the extra valence with the
use of constellations. We leave this to the reader.

3.5 Geometric 2-orbifolds

As a last topic, we describe here a geometric approach to the Hurwitz exis-
tence problem. To do so we start with some very general notions.

We will call n-orbifold a compact Hausdorff topological space X covered
by open charts U with homeomorphisms ϕ : V/Γ→ U , where V is an open
subset of Rn and Γ is a finite group of self-diffeomorphisms of V . The charts
should be compatible in the sense that two of them should intersect in a
subchart of both, where a subchart of ϕ : V/Γ → U is ϕ′ : V ′/Γ′ → U ′

where V ′ ⊂ V and Γ′ = {γ ∈ Γ : γ(V ′) = V ′} = {γ ∈ Γ : γ(V ′) ∩ V ′ 6= ∅}.
The formal definition as usual requires the choice of a maximal atlas of
compatible charts.

For an orbifold X and x ∈ X we can define the point group Γx as the
minimal Γ such that there exists a chart ϕ : V/Γ→ U with x ∈ U . From now
on we will confine ourselves to locally orientable orbifolds, namely such that
all the groups Γ as above consist of orientation-preserving diffeomorphisms.
And in this case it is not difficult to see that Γx can be identified with a
subgroup of SO(n). For n = 2 this implies that each Γx is some cyclic group
Cp generated by the rotation of angle 2π/p around 0 in R2, therefore a
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(locally orientable) 2-orbifold X is topologically a surface Σ, except that at
finitely many points x ∈ Σ the point group is Cp with some p > 1, and the
differentiable structure at x is a singular one. Any such point x will be called
a cone point of order p, and globally X will be denoted by Σ(p1, . . . , pk) if
it has cone points of orders p1, . . . , pk.

We define the singular locus of an orbifold X as the set

Sing(X) = {x ∈ X : Γx 6= {1}}.

Note that X \ Sing(X) is a manifold. We then define a Riemannian metric
µ on X as a Riemannian metric on X \ Sing(X) such that for any chart
ϕ : V/Γ→ U there is a Riemannian metric ν on V where:

• Γ acts isometrically with respect to ν;

• for any y ∈ V with x = ϕ(y) non-singular, ϕ is an isometry between
ν(y) and µ(x).

It is a fact that an orbifold X admits a cell decomposition C such that
for any c ∈ C there is a group Γc with Γx ∼= Γc for all x ∈ C. We can now
define the orbifold Euler characteristic of X as

χorb(X) =
∑
c∈C

(−1)dim(c)

#(Γc)
.

For a 2-dimensional X = Σ(p1, . . . , pk) we have

χorb(X) =
∑

c∈C, dim(c)=2

1−
∑

c∈C, dim(c)=1

1 +
∑
p>1

∑
c∈C, dim(c)=0, order(c)=p

1

p

=

 ∑
c∈C, dim(c)=2

1−
∑

c∈C, dim(c)=1

1 +
∑

c∈C, dim(c)=0

1


−
∑
p>2

∑
c∈C, dim(c)=0, order(c)=p

(
1− 1

p

)

= χ(Σ)−
k∑
j=1

(
1− 1

pj

)
.

We can now prove an orbifold version of the Gauss-Bonnet theorem. To
this end note that the curvature κ and the area form A of a Riemannian
metric on a 2-orbifold X are defined outside a finite set, so the integral of κ
over X with respect to A is well-defined:
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Theorem 3.6.
∫
X

κ dA = 2π · χorb(X).

Proof. The infinitesimal version of the Gauss-Bonnet theorem says that for
a geodesic triangle T with inner angles α, β, γ one has∫

T
κdA = α+ β + γ − π.

We can now take a triangulation T of X such that the set T (0) of the
vertices of T contains Sing(X), and T (1), the set of the edges of T , consists
of geodesic segments. Note that for v ∈ T (0) the sum of the angles at v of
the triangles in T (2) containing v is 2π/p if v has order p (in particular, it
is 2π for non-singular v). We then have∫

X
κdA =

∑
T∈T (2)

∫
T
κdA

= −π ·
∑

T∈T (2)

1 +
∑
v∈T (0)

2π

order(v)

= 2π ·

 ∑
T∈T (2)

1− 3

2

∑
T∈T (2)

1 +
∑
v∈T (0)

1

order(v)


= 2π · χorb(X)

because 3#(T (2)) = 2#(T (1)).

If X2 is one of the constant curvature model spaces S2, E2 or H2 we will
say that a 2-orbifold X has a geometric structure of, respectively, sperical,
Euclidean or hyperbolic type if it is endowed with a Riemannian metric
locally modeled on the quotient of a disc in X2 under the action of an
isometric rotation of order 2π/p around its centre. Theorem 3.6 implies that
X can be spherical only if χorb(X) > 0, it can be elliptic only if χorb(X) = 0,
and it can be hyperbolic only if χorb(X) < 0. Moreover the following is easily
established:

Proposition 3.7. Let X be a 2-orbifold with an underlying surface which
is compact, connected, orientable and without boundary.

• χorb(X) > 0 if and only if X is one of the following:

S S(p) S(p, q) S(2, 2, p) S(2, 3, 3) S(2, 3, 4) S(2, 3, 5);

• χorb(X) = 0 if and only if X is one of the following:

T S(2, 4, 4) S(2, 3, 6) S(3, 3, 3) S(2, 2, 2, 2).
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3.6 Orbifold covers

An orbifold cover f : X̃ → X is a map such that each x ∈ X has an open
neighbourhood U with f−1(U) a disjoint union of open sets Ũ for which there
exist charts ϕ̃ : V/Γ̃→ Ũ and ϕ : V/Γ→ U where Γ̃ < Γ and f ◦ ϕ̃ = ϕ ◦π,
for π : V/Γ̃→ V/Γ the natural projection. For locally orientable 2-orbifolds,
an orbifold cover is simply a map locally modeled on the natural projection
∆/Cp̃ → ∆/Cp, where ∆ is the unit disc in C and p̃ is a divisor of p.

In any dimension the following generalizations of what is known for or-
dinary covers hold:

• The orbifold Euler characteristic is multiplicative under orbifold cov-
ers;

• Every orbifold X has an orbifold universal cover π : Y → X, namely
one such that for any orbifold cover f : X̃ → X there exixts an orbifold
cover g : Y → X̃ with π = f ◦ g.

We will say that an orbifold X is good if it is orbifold covered by manifold
(or, equivalently, if its orbifold universal cover is a manifold), and bad if it
is not good. The following is due to Thurston:

Theorem 3.8. Let X be a 2-orbifold with an underlying surface which is
compact, connected, orientable and without boundary. Then X is bad if and
only if it is S(p) with p > 1 or S(p, q) with p > q > 1. If X is good then
it is geometric, and more precisely it can be realized globally as a quotient
X2/Γ, with Γ a discrete group of isometries of some X2.

Note that by Theorem 3.6 the type of geometry of X is dictated by its
orbifold Euler characteristic.

3.7 Candidate orbifold covers and the spherical case

We can now spell out the connection of the theory of 2-orbifolds with the
Hurwitz existence problem. For a candidate branch datum(

Σ̃,Σ, d, n;π1, . . . , πn

)
we define pi as the least common multiple of the entries of πi and qij = pi/dij .
Then one sees quite easily that the candidate is realizable if and only if there

exists an orbifold cover Σ̃({qij})
d:1−→Σ({pi}) with each cone point of order

qij mapped to the cone point of order pi. Note that the original candidate
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branch datum is determined by Σ̃({qij}), Σ({pi}), d and the instructions on
which qij should be mapped to which pi.

We now introduce the symbol Σ̃({qij})
d:1

- - ->Σ({pi}), termed candidate
orbifold cover, to denote a possibly non-existent orbifold cover as required.

Of course we restrict our attention to candidate orbifold covers X̃
d:1

- - ->X
with X having base surface S and Σ̃ having orientable base surface, and sat-

isfying χorb
(
X̃
)

= d · χorb(X), which coincides with the Riemann-Hurwitz

condition for the associated candidate branch datum.
In [27, 28] we have analyzed the realizability of candidate orbifold cov-

ers X̃
d:1

- - ->X using the geometry of X and X̃, and we have deduced the
realizability or exceptionality of several families of candidate branch data.
Note that X and X̃ have concordant orbifold Euler characteristics, whence
almost always the same geometry, except if they both have positive orbifold
Euler characteristics and one of them is bad (or both).

For the case of positive orbifold Euler characteristic the following proves
crucial:

Proposition 3.9. A candidate orbifold cover X̃
d:1

- - ->X with good X and
bad X̃ is exceptional.

Proof. Since X is good, the orbifold universal cover of X is a manifold Y .
If the candidate is realized by some map X̃ → X then Y covers X̃ as well,
but X̃ is bad.

The following is shown in [27]:

Theorem 3.10. A candidate orbifold cover X̃
d:1

- - ->X with positive χorb is
realizable unless X is good and X̃ is bad.

The argument underlying this result follows these steps:

• Enumeration of all the possible candidate orbifold covers X̃
d:1

- - ->X
with χorb > 0;

• Verification that X is never bad for any of them;

• For good X̃, description of the spherical structures X̃ = S2/Γ̃ and
X = S2/Γ, and

• Verification that Γ̃ can be realised as a subgroup of Γ.
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The exceptional candidate branch data corresponding to the exceptional
candidate orbifold covers of the previous statement are as follows:

• The infinite series

(S, S, 2k, 3; [2, . . . , 2], [2, . . . , 2], [a, b])

for a 6= b, for which the associated candidate orbifold covers is one of
the following:

S(p)
2k:1
- - ->S(2, 2, r) p > 1 S(p, q)

2k:1
- - ->S(2, 2, r) p > q > 1;

note that the exceptionality of the candidate branch data described is
easily proved using dessins d’enfant;

• 11 sporadic cases, among which for instance

(S, S, 16, 3; [2, . . . , 2], [3, . . . , 3, 1], [5, 5, 5, 1])

with associated S(3, 5)
16:1
- - ->S(2, 3, 5), and

(S, S, 45, 3; [2, . . . , 2, 1], [3, . . . , 3], [5, . . . , 5])

with associated S(2)
45:1
- - ->S(2, 3, 5).

3.8 The Euclidean case

The analysis of the candidate orbifold covers with χorb = 0 has led to the
most interesting results, and we explain here the ideas it is based on.

Proposition 3.11. If f : X̃
d:1−→X is an orbifold cover with

χorb(X) = χorb(X̃) = 0

then there exist discrete groups Γ, Γ̃ of isometries of E2 such that:

• X can be identified to the quotient E2/Γ with projection c : E2 → X;

• X̃ can be identified to the quotient E2/Γ̃ with projection c̃ : E2 → X̃;

• X and X̃ have the same area with respect to the Euclidean structures
thus defined;
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• There exists an affine map f̃(z) = λ · z + µ from E2 (viewed as C) to
itself such that c ◦ f̃ = f ◦ c̃ and d = |λ|2.

Proof. Choose any Euclidean structure onX given by a group Γ of isometries
and a projection c : E2 → X. Pull-back this structure to X̃ via f , getting
some isometry group Γ and projection c : E2 → X̃. Then there exists
f : E2 → E2 such that c ◦ f = f ◦ c. Now f is an orbifold cover, so it is
a genuine cover and actually a homeomorphism. In addition it is a local
isometry, whence a global isometry and hence an affine map. Now the area
of X̃ with respect to c is d times the area of X with respect to c. Therefore
we obtain equal area by rescaling the metric on X̃ by a factor 1/

√
d. If

c̃ is the corresponding projection we still have that there exists an affine
f̃(z) = λ · z + µ with c ◦ f̃ = f ◦ c̃, but now f̃ is

√
d times an isometry,

whence |λ|2 = d.

Corollary 3.12. With notation as in the previous proposition, Γ and Γ̃
have maximal sublattices Λ and Λ̃, and λ · Λ̃ ⊂ Λ.

To analyze the realizability of all X̃
d:1

- - ->X with χorb = 0, the first step
is to list all the possibilities for the cone points {qij} and {pi} with qij a

divisor of pi. Excluding the case X̃ = T , which is always realizable, there
are 7 cases for X̃ and X, and for each of them several possibilities for which
qij should be mapped to which pi. For instance for X̃ = X = S(2, 4, 4) we
have the following list:

1. 2 7→ 2, 4′ 7→ 4′, 4′′ 7→ 4′′ with associated candidate branch datum
(S, S, 4k + 1, 3; [2 . . . , 2, 1], [4, . . . , 4, 1], [4, . . . , 4, 1]);

2. 2 7→ 2, 4′, 4′′ 7→ 4′ with no associated candidate branch datum;

3. 2 7→ 4′, 4′, 4′′ 7→ 4′′ with associated candidate branch datum
(S, S, 4k + 2, 3; [2 . . . , 2], [4, . . . , 4, 2], [4, . . . , 4, 1, 1]);

4. 2, 4′ 7→ 4′, 4′′ 7→ 4′′ with no associated candidate branch datum;

5. 2, 4′, 4′′ 7→ 4′ with associated candidate branch datum
(S, S, 4k + 4, 3; [2 . . . , 2], [4, . . . , 4], [4, . . . , 4, 2, 1, 1]).

For the first case, the result we get is the following:

Theorem 3.13. (S, S, d, 3; [2 . . . , 2, 1], [4, . . . , 4, 1], [4, . . . , 4, 1]) is realizable
if and only if d = x2 + y2 with x, y ∈ Z of different parity.
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Proof. Let f realize the corresponding candidate orbifold cover and take
Γ, Γ̃, f̃ as in Proposition 3.11. Since the structure of S(2, 4, 4) is unique
up to scaling we can assume Γ̃ = Γ is the orientation-preserving subgroup
of the group generated by the reflections in the sides of the triangle with
vertices 0, 1, i (so that X and X̃ have area 1). Then Λ̃ = Λ = 2Z ⊕ 2iZ,
so 2λ = 2x + 2iy for x, y ∈ Z, and d = |λ|2 = x2 + y2. Since d is odd,
x and y have different parity. Conversely, if d = x2 + y2 we can define
f̃(z) = (x+ iy) · z and we get f .

A remarkable fact about Theorem 3.13 is that the set of odd integers of
the form x2 + y2 has asymptotic zero density, namely

lim
M→∞

1

M
#
{
d 6M : d odd d = x2 + y2, x, y ∈ Z

}
= 0.

However an old theorem of Fermat says that an odd prime is always the
sum of two squares. So the candidate branch datum

(S, S, d, 3; [2 . . . , 2, 1], [4, . . . , 4, 1], [4, . . . , 4, 1])

is exceptional with probability 1 but realizable when the degree is a prime.

We would also like to mention that a connection of Theorem 3.13 to the
theory of elliptic curves and universal ramified covers with signature was
developed in [6].

An argument similar to that proving Theorem 3.13 shows that

(S, S, 4k + 2, 3; [2 . . . , 2], [4, . . . , 4, 2], [4, . . . , 4, 1, 1])

is realizable precisely if d = 2(x2 + y2), and

(S, S, 4k + 4, 3; [2 . . . , 2], [4, . . . , 4], [4, . . . , 4, 2, 1, 1])

is realizable precisely if d = 4(x2 +y2). In fact, we still have d = n2 +m2 for
n,m ∈ Z, and the extra information about which cone points are mapped to
which gives conditions on the parity of n and m that lead to the conclusion.

In [27] we have carried out a complete analysis of the candidate branch
data with associated Euclidean candidate orbifold cover, getting various re-
alizability results, often in terms of integer quadratic forms. This is another
sample of our achievements:
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Theorem 3.14. The candidate branch data

(S, S, d, 3; [2 . . . , 2, 1], [3, . . . , 3, 1], [6, . . . , 6, 1])

(S, S, d, 3; [3 . . . , 3, 1], [3, . . . , 3, 1], [3, . . . , 3, 1])

are realizable if and only if d = x2 + xy + y2 with x, y ∈ Z.

A comment similar to that made for Theorem 3.13 applies here: the
integers of the form x2 + xy+ y2 have asymptotic zero density, but a prime
of the form 3k+1 (or equivalently 6k+1) can always be written as x2+xy+y2

by a result of Gauss.
Before concluding with the Euclidean case, we would like to mention

that the case where one of the involved orbifolds is S(2, 2, 2, 2) is somewhat
more complicated, because S(2, 2, 2, 2) does not have a unique geometric
structure up to scaling.

3.9 The prime-degree conjecture

Theorems 3.13 and 3.14 and the comments accompanying them give a strong
supporting evidence to the conjecture made in [8] that any candidate branch
datum with a prime degree is realizable. We mention here that more recently,
Zieve [39] conjectured that a candidate branch datum(

Σ̃, S, d, n;π1, . . . , πn

)
is realizable provided that

• GCD(πj) = 1 for j = 1, . . . , n, and

•
n∑
j=1

(
1− 1

lcm(πj)

)
6= 2.

As one easily sees, the candidate branch data with
n∑
j=1

(
1− 1

lcm(πj)

)
= 2

are precisely those whose associated candidate orbifold cover is of Euclidean
type. The results in [27], including those stated above, show that indeed
some of these data are exceptional (even with GCD(πj) = 1 for j = 1, . . . , n
in some cases). So an equivalent way of expressing Zieve’s conjecture is to
say that a branch datum is realizable if GCD(πj) = 1 for j = 1, . . . , n and
the datum is not one of the exceptional ones found in [27]. This would imply
the prime-degree conjecture, because:

• If one of the πi’s reduces to [d] only then the branch datum is realizable
by [8];

• All the exceptional data of [27] occur when the degree is composite.
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3.10 The hyperbolic case

We conclude by mentioning more results from [27] and from [28], where

the realizability of certain candidate orbifold covers X̃
d:1

- - ->S(p1, p2, p3) of
hyperbolic type was analyzed. To describe the choice we have made of
what candidates to study, we recall that the space of hyperbolic structures
on a surface of genus g with k cone points is an analytic space of complex
dimension 3(g−1)+k, so in particular any triangular hyperbolic S(p1, p2, p3)
is rigid, but in all other cases there are continuous deformations. We have
then concentrated on the cases where X̃ has deformation space of dimension
at most 1, getting the results summarized in the next table. For each possible
type of X̃ we indicate the number of candidate branch data for which there

exists a corresponding X̃
d:1

- - ->S(p1, p2, p3), and among these the number of
exceptional ones:

X̃ candidates exceptions

S(q1, q2, q3) 11 2

S(q1, q2, q3, q4) 146 29

T (q) 22 5

Remark 3.15. The fact that for a given Σ̃ and k there exist only finitely
many candidate branch data inducing some Σ̃(q1, . . . , qk) → S(p1, p2, p3) is
true but not completely obvious.

Remark 3.16. As opposed to what happened for the spherical and the
Euclidean case, the hyperbolic candidates analyzed in [27, 28] were selected
using geometry, but their realizability or exceptionality was mostly discussed
using combinatorial tools.
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