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A B S T R A C T   

Objectives: Predictive biomarkers of response to immune checkpoint inhibitors (ICIs) have been extensively 
studied in non-small cell lung cancer (NSCLC) with controversial results. Recently, gene-network analysis 
emerged as a new tool to address tumor biology and behavior, representing a potential tool to evaluate response 
to therapies. 
Methods: Clinical data and genetic profiles of 644 advanced NSCLCs were retrieved from cBioPortal and the 
Cancer Genome Atlas (TCGA); 243 ICI-treated NSCLCs were used to identify an immunotherapy response sig-
natures via mutated gene network analysis and K-means unsupervised clustering. Signatures predictive values 
were tested in an external dataset of 242 cases and assessed versus a control group of 159 NSCLCs treated with 
standard chemotherapy. 
Results: At least two mutations in the coding sequence of genes belonging to the chromatin remodelling pathway 
(A signature), and/or at least two mutations of genes involved in cell-to-cell signalling pathways (B signature), 
showed positive prediction in ICI-treated advanced NSCLC. Signatures performed best when combined for pa-
tients undergoing first-line immunotherapy, and for those receiving combined ICIs. 
Conclusions: Alterations in genes related to chromatin remodelling complexes and cell-to-cell crosstalk may force 
dysfunctional immune evasion, explaining susceptibility to immunotherapy. Therefore, exploring mutated gene 
networks could be valuable for determining essential biological interactions, contributing to treatment 
personalization.   

1. Introduction 

Non-Small Cell Lung Cancer (NSCLC) treatment for advanced-stage 
disease recently underwent remarkable changes, first with targeted 
therapies and, in the last years, with the introduction of immune 
checkpoint inhibitors (ICIs). In terms of biomarkers, the clinical benefit 
of first line pembrolizumab is greater for patients with advanced NSCLC 
when PD-L1 expression is ≥ 50% in cancer cells [1]. While, in 
subsequent-lines, pembrolizumab demonstrated clinical benefit in pa-
tients with PD-L1 expression ≥ 1% of tumor cells [2]. Moreover, only 
about 20% of unselected patients respond to these treatments [1–7], 

highlighting the unreliable nature of PD-L1 expression as predictive 
biomarker of clinical benefit. Other anti-PD-1/PD-L1 have been 
approved for the treatment of patients with advanced NSCLC regardless 
of PD-L1 expression [5,8]. Therefore, additional biomarkers have been 
investigated, including serum molecules, peripheral blood cells, and 
tumor-infiltrating lymphocytes (TILs) [9]. The tumor mutational burden 
(TMB) is the most studied biomarker, which is defined as the total 
number of somatic/acquired mutations per tumor genome coding area 
(Mut/Mb). The higher the TMB, the greater the therapeutic effect of PD- 
1/PD-L1 inhibitors [10]. Despite being scientifically intriguing, TMB 
lacks compelling clinical data and has shown several limitations to its 
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potential adoption in clinical practice [11]. Historically, TMB has been 
evaluated by whole-exome sequencing (WES), looking for the entire 
coding regions [12]. However, it is unrealistic to do WES analysis for all 
immunotherapy candidate patients due to the high cost of the proced-
ure, despite several comprehensive gene panels have been developed to 
use next-generation sequencing (NGS). Nonetheless, analyses remain 
expensive, and despite the efforts to standardize TMB calculation, the 
reproducibility of results across laboratories is still poor. Moreover, 
there is no clear consensus on the TMB cutoff for patient stratification 
[13,14], and intratumor heterogeneity and subsequent spatially diver-
gent mutational profiles influence TMB estimation [15]. Conversely, a 
TMB-related signature of somatic mutations could be considered a more 
stable and reliable biomarker: they are few, categorical (binary, the 
abnormalities are either present or absent), and may be the driver of 
tumor progression and proliferation. Therefore, a network of function-
ally significant alterations, dialoguing between each other (gene- 
network), may be a more powerful biomarker than a summary of all 
mutant genes harboured by a tumour (TMB). In detail, gene networks 
may be considered as diagrams consisting of nodes, which represent 
mutated genes, and edges, which represent pair-wise relationships be-
tween mutated genes. When mutated, some hub genes increased their 
degree in the tumor network compared to their degree in the normal 
network, suggesting their regulatory role in cancer [16]. 

The present study proposes to classify NSCLC based on relational 
patterns (i.e., networks) of mutated genes with great value for prediction 
of response to immunotherapy. Exploring these networks could be a 
valuable tool to determine essential biological interactions of mutated 
genes, contributing to patient classification and personalized treatment 
decisions. 

2. Materials and Methods 

2.1. Data collection 

cBioPortal for Cancer Genomics web resource (RRID: SCR_014555, 
http://www.cbioportal.org/) [17,18] was used to explore, visualize, 
and obtain multidimensional data from NSCLC patients. Data from 
published studies [19–23] were downloaded to create the group 
receiving immunotherapy. Patients were then randomly assigned to a 
training or test set. At the same time, all NSCLCs with genomic and 
clinical data available on The Cancer Genome Atlas (TCGA, RRID: 
SCR_003193) [24–26] have been included to create a control group of 
patients treated with standard chemotherapy. Data were retrieved via 
the Bioconductor (RRID: SCR_006442) R package TCGABiolinks [27]. 
Clinical information included patient demographics, smoking history, 
tumor type, disease status, therapeutic management, and survival data. 
The datasets also retained sampled tumors’ details, such as PD-L1 
expression and molecular profiles (i.e., mutations count, TMB, inser-
tion/deletions, copy number variations). 

Clinical features and genes tested for somatic alterations common 
between studies were selected. Data from patients with localized disease 
and treated in the neoadjuvant/adjuvant setting combined with surgery 
or radiotherapy were removed. Further, patients undergoing target 
therapy or immunotherapy were excluded from the control group. 

The study populations underwent tumor and germline DNA 
sequencing using either the Memorial Sloan Kettering (MSK)-IMPACT 
targeted sequencing assay [19,22] or whole-exome sequencing (WES) 
[20,21,23–26]. However, subsequent analyses considered only the 341 
genes included in the MSK-IMPACT panel. Tumor tissues were obtained 
from the primary or metastatic site, stage III-IV, lung adenocarcinoma 
(LUAD), and squamous cell carcinoma (LUSC). Samples were either 
formalin-fixed paraffin-embedded (FFPE) or flash frozen material and 
were collected for sequencing before dosing with ICIs. 

Overlaps were avoided. For duplicate patients appearing in different 
datasets, duplicate data were crossed out while non-overlapping infor-
mation were used to replenish the database. Whenever possible, missing 

data from the cBioPortal downloaded datasets have been completed 
using supplementary information from published articles. 

2.2. General statistics and data preparing 

Clinical categorical variables - sex, smoking habits, tumor subtype, 
tumor stage at diagnosis, PD-L1 score, treatments received, line of 
therapy, and patient clinical outcome - have been described by absolute 
and relative frequencies; quantitative factors such as age, smoking pack- 
years, and TMB by mean ± standard deviation. Data were compared 
using the χ2-test for categorical variables and Spearman’s correlation/ 
Mann-Whitney U test for continuous variables. The study’s primary 
endpoint was the PFS, computed from the date of initiation of immu-
notherapy to the date of progression or death by any cause, as assessed 
and documented in the selected studies. Also, durable clinical benefit 
(DCB) was defined as responsive/stable disease lasting ≥ 6 months. 
Secondary endpoints included the overall survival (OS), intended from 
the first-line treatment start date to death by any cause. Patients were 
scored censored if they did not reached the outcome of interest. PFS and 
OS were illustrated using the Kaplan-Meier method and log-rank tests. 
Cox proportional hazard models evaluated hazard ratio (HR) and 95% 
confidence interval (CI). The Oncoprint feature of cBioPortal [17,18] 
was used to visualize individual genetic alterations of each selected 
patient comprehensively. cBioPortal algorithms like GISTIC or RAE were 
used to define copy number alterations (CNAs). Deep deletions and 
amplifications as biologically relevant for individual genes by default 
were considered. The Bioconductor R package Maftools [28] was used to 
efficiently describe and analyse somatic variants and CNAs. 

2.3. Delineating mutated gene networks and analysis 

To calculate the extent to which mutated gene networks might pre-
dict the survival of patients undergoing immunotherapy, an R (R 
Foundation for Statistical Computing, Vienna, Austria) approach was 
designed to use baseline molecular information in the cases training data 
set. Custom scripts have been associated with confirmed packages 
available from CRAN or Bioconductor. The pipeline is available for free 
upon request to the authors. 

The workflow was developed in 2 parts: 1) determining the rela-
tionship networks between mutated genes and their analysis; 2) mutated 
genes unsupervised clustering and survival analyses. 

Firstly, results were retrieved from the cBioPortal exclusive/co- 
occurring event analysis. The study considered all the possible pair-
ings between the MSK-IMPACT panel genes within the training dataset. 
The Odds Ratio (OR) distribution of the events (co-occurrence/mutual 
exclusivity) was normalized by taking the respective log2 and consid-
ered against the related p-value. Only positive co-occurrence relation-
ships were selected based on the strength of their association. To achieve 
minimal spurious co-occurrences and avoid subsequent network 
distortion, pairs of mutated genes were supposed to be meaningful if 
they showed significant co-occurrence (p < 0.05) and the respective 
Log2OR was greater than +3. 

Therefore, an adjacency list was created to identify a network of 
mutated genes, thanks to the igraph R package [29]. The first two col-
umns of the adjacency list reported paired mutated genes (i.e., the 
network’s nodes). Also, a non-zero numeric value in the third column of 
the list indicated the presence of an edge between the nodes and cor-
responded to their respective co-occurrence Log2OR value. 

The network was plotted, and statistics were produced to describe 
the position and connectedness of mutated genes within the network, 
including the Degree, Betweenness, Closeness, Eigen Centrality, and Bona-
cich Power [30]. The Degree indicates the number of connections of one 
with other mutated genes and is a way of measuring gene activity within 
the network. The Betweenness is a more complex trait that counts the 
number of times a mutated gene is on the shortest path among other 
mutated genes. The Betweenness characterizes how much control a 
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mutated gene can exert within the nearby network (its centrality). 
Mutated genes are nodes within the gene network. The Closeness 

measures the average proximity of a node to every other network node, 
which is a way to measure its efficiency. The Eigen Centrality also as-
sesses the number of connections of one with other nodes within the 
network. However, unlike Degree and by calculating the extended links 
of a node, Eigen Centrality can identify the influence of a mutated gene 
on the whole network, and not just direct connections. 

In 1987 Bonacich proposed that even Power was a function of the 
connections of the mutated genes in one’s neighborhood, to be described 
together with centrality. The more the connections between nodes in the 
mutated gene nearby network, the more central the mutated gene is. The 
fewer the links, the more powerful it is. 

2.4. Unsupervised clustering and survival analyses 

After z-standardized the distributions of the above network statistics 
as they failed the Shapiro-Wilk test, a series of filters were performed to 
select mutated genes with relevance for survival. Mutated genes with 
spurious connections to the nearby and whole network were removed 
while accepted if the following requirements were met: 1) z-Degree >
-0.5 (z-Degree ranged from − 1.24 to 3.08); 2) z-Betweenness > -0.5 (z- 
Betweenness ranged from − 1 to 6.79 respectively); 3) z-Eigen Centrality 
> -0.5 (z-Eigen Centrality ranged from − 0.77 to 3.42); 4) z-proximity >
-0.5 (z-proximity ranged from − 2.88 to 2.39). Further, to reduce false- 
positive calls of non-essential variants to the network, mutated genes 
were preserved when their z-Bonacich Power ranged from − 2.53 to 
3.02, excluding those whose value was between − 0.5 and 0.5. 

Taking advantage of these features, an unsupervised machine 
learning clustering algorithm (K-means) [31] was used to group 65 
mutated genes significantly connected. 

Degree, Betweenness, Closeness, Eigen Centrality, and Bonacich 
Power offered a multidimensional description of genes that needed 
preprocessing with Principal Component Analysis (PCA) [32,33]. PCA 
removed noise by reducing the number of predictors to a weighted 
combination that captures as much information as possible, i.e., the 
principal components (PCs). PCs are orthogonal projections of data into 
lower-dimensional space. PC1 is computed to explain the original fea-
tures’ most significant variance (within-cluster sum of squared errors). 
PC2, orthogonal to PC1, presents the most significant variance left after 
PC1. PC3, orthogonal to PC1 and PC2, explains the most significant 
variance left after PC1 and PC2, and so on. 

A K-means algorithm was fitted on the top two PCs using Caret, 
Kernlab, and Factoextra R-packages to obtain an insightful clustering. Of 
the many K-Means clustering variants, the most popular one – the Lloyd 
algorithm – was used [34,35]. K-means automatically uncovered the 
underlying data structure among mutated genes and partitioned them 
into the desired number (K) of non-overlapping clusters based on their 
similarity concerning normalized Degree, Betweenness, Closeness, 
Eigen Centrality, and Bonacich Power. The optimal number of clusters 
was determined through the Elbow method [36]. The elbow method 
plots the variance against the number of clusters. First clusters will 
introduce a lot of variance and information, but the information gain 
will become low at some point, thus giving the graph an elbow angle. 
This point (i.e., the elbow point) suggests the optimal number of clusters. 

Mutated genes were clustered into three distinct groups based on the 
elbow criterion. Only genes altered in more than five patients were 
assumed to describe a signature. Patients were deemed signature- 
positive if they harbored mutations in at least two genes from one of 
the three groups. 

Results from the cases’ training set were verified to match an inde-
pendent validation test set. Therefore, patients receiving immuno-
therapy were compared with controls undergoing chemotherapy only. 

2.5. Enrichment analysis 

Finally, ShinyGO v0.76 [37] and the Gene Set Enrichment Analysis 
(GSEA) [38] were used to get mechanistic facts about the clustered gene 
lists. ShinyGO found pathways involving signature-related genes by 
analysing their functional enrichment. Additionally, GSEA conduction 
determined whether mutated cancer genes were differentially expressed 
and involved in activating/silencing specific biological pathways more 
than expected by chance. The Broad Institute’s Cancer Cell Line Ency-
clopedia (CCLE) portal was explored to retrieve mRNA expression 
profiling (corrected by reads per kilobase per million reads, RPKM) of 
16192 between genes and respective variants of 92 NSCLC cell lines - for 
which the mutational status of signature-related genes had already been 
investigated. As for patients, cell lines were considered signature- 
positive if they harbored mutations in at least two genes from one of 
the three pre-identified gene sets. Statistically significant and concor-
dant differences between signature-positive and signature-negative cell 
lines were studied using GSEA by focusing on well-defined biological 
states or processes of the hallmark molecular signatures collection [39] 
from the Molecular Signatures Database (MSigDB). GSEA software can 
be downloaded from https://www.gsea-msigdb.org/gsea/downloads. 
jsp after login. Also, molecular signatures to use with GSEA can be 
recovered from https://www.gsea-msigdb.org/gsea/msigdb/index.jsp. 

Statistical analyses were also performed using the free and open 
statistical software program JAMOVI® (RRID: SCR_016142, http 
s://www.jamovi.org/). Differences were considered significant at p <
0.05. 

3. Results 

3.1. Patients’ clinical traits 

The study included a total of 485 patients, collected from different 
studies (Supplementary Fig. 1). Clinical data and somatic mutations 
were retrieved from the cBioPortal for Cancer Genomics web resource 
(http://www.cbioportal.org/) [17,18]. Case clinical traits are summa-
rized in Table 1. 

The median follow-up was 21.7 months (95% CI 20.0–24.9). Two 
hundred fifteen patients died, 154 were still alive, and 116 were lost at 
the follow-up. All patients had advanced stage (III/IV) NSCLC and were 
treated with anti-PD-1, anti-CTLA-4, or a combination of ICI. Overall, 
median OS was 12.6 months (95% CI 11–15.5), and median PFS was 
4.63 (95% CI 3.80–5.57). Patients who received first-line ICIs had a 
better median PFS (7.82 months) and OS (46 months) than those who 
undertook second- (median PFS of 3.43 months, p < 0.001; median OS of 
16 months, p = 0.003), or third-/subsequent-line immunotherapy (me-
dian PFS of 2.90 months, p < 0.001; median OS of 13 months, p = 0.001) 
(Supplementary Fig. 2A and B). Similarly, when combined, ICIs com-
bined proved to perform better than the monotherapy, and patients 
reported a median PFS of 7.75 vs 4.17 months (p < 0.001). Also, patients 
undergoing combined ICIs did not reach a median OS value, unlike those 
treated as monotherapy (median OS 12 months, p = 0.015; Supple-
mentary Fig. 3A and B). Queried genes were altered in 475 (98%) of 
cases. There were 4300 mutations in the coding sequence, excluding 
silent mutations. Missense mutations were 3265, 435 nonsense, 3 STOP 
codon, 9 loss-of-codon START, 305 frameshift IN/DELs, and 90 in-frame 
IN/DELs. One hundred ninety-three mutations were in the splice sites 
(Fig. 1A); a median of 7 mutations was observed for each patient (range 
2–89; Fig. 1B). In addition, 37 genes harboured copy number aberra-
tions: 28 and 6, respectively, showed high-level copy number increase 
and loss, while three genes showed both (Fig. 1C). TP53 was mutated in 
most cases (59%), followed by KRAS (33%), KEAP1 and STK11 (20%), 
EGFR (15%), PTPRD (12%), SMARCA4 (11%) and KMT2D (10%) 
(Supplementary Fig. 4). 
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3.2. Classification of NSCLC patients according to their altered genes 

The training data set was used to develop the clustering model of 
relations between altered genes. To achieve minimal spurious co- 
occurrences and avoid subsequent network distortion, an exclusive/ 
co-occurring event analysis considered all 57,970 possible pairings be-
tween the 341 genes of the MSK-IMPACT panel. As a result, 2683 sig-
nificant pairs of mutated genes were selected to describe the gene 
network (Fig. 2A). Unessential genes to the network were filtered-out 
through distribution normalization of degree, betweenness, closeness, 
Eigen Centrality, and Bonacich Power analysis. Among the selected 65 
genes, network features related directly, to define a complex five- 
dimensional structure: Degree and Betweenness (Spearman’s ρ 0.60, p 
< 0.001), Degree and Closeness (Spearman’s ρ 0.94, p < 0.001), Degree 
and Eigen Centrality (Spearman’s ρ 0.89, p < 0.001), Closeness and 
Betweenness (Spearman’s ρ 0.61, p < 0.001), Closeness and Eigen 
Centrality (Spearman’s ρ 0.85, p < 0.001), Eigen Centrality and 
Betweenness (Spearman’s ρ 0.41, p < 0.001) (Supplementary Fig. 5A-B). 

To avoid the “curse of dimensionality” while preserving the overall 

Table 1 
Clinical characteristics of patients.   

CASES CONTROLS Cases vs. Controls p- 
value 

Training-set Test-set Traning- vs. Test-set p- 
value 

Overall Overall 

N◦ of patients 243 242  485 159  
AGE       
Missing 10 6  16 3  
Mean (SD), years 65.1 (10.2) 65.2 (10.7) 0.992 65.2 (10.4) 65.1 (9.7) 0.973 
SEX       
Female 128(52.7%) 127 (52.5%) 0.966 255 (52.6%) 67 (42.1%) 0.022 
Male 115 (47.3%) 115 (47.5%) 230 (47.4%) 92 (57.9%) 
SMOKING HISTORY       
Missing 72 56  128 9  
Ever 139 (81.3%) 143 (76.9%) 0.307 282 (79.0%) 135 (90.0%) 0.003 
Never 32 (18.7%) 43 (23.1%) 75 (21.0%) 15 (10.0%) 
SMOKING PACK-YEARS       
Missing 215 208  423 39  
Mean (SD), pack-years 24.2 (19.8) 25.3 (24.3) 0.932 24.8 (22.2) 45.3 (32.0) <0.001 
CANCER SUBTYPE       
LUAD 207 (85.2%) 205 (84.7%) 0.884 412 (84.9%) 89 (56.0%) <0.001 
LUSC 36 (14.8%) 37 (15.3%) 73 (15.1%) 70 (44.0%) 
TUMOR STAGE       
Advanced (Stage III-IV) 243 

(100.0%) 
242 
(100.0%) 

1 485 
(100.0%) 

159 (100.0%) 1 

SAMPLE TYPE       
Missing 71 68  139 2  
Metastasis 94 (54.7%) 89 (51.1%) 0.514 183 (52.9%) 0 (0%) <0.001 
Primary 78 (45.3%) 85 (48.9%) 163 (47.1%) 157 (100.0%) 
TMB       
Mean (SD), Mut/Mb 10.0 (11.0) 9.3 (9.0) 0.448 9.6 (10.1) 9.3 (7.7) 0.366 
PD-L1 SCORE       
Missing 161 146  307 159  
Negative 29 (35.4%) 42 (43.8%) 0.333 71 (39.9%) – – 
Strong 16 (19.5%) 21 (21.9%) 37 (20.8%) – 
Weak 37 (45.1%) 33 (34.4%) 70 (39.3%) – 
INVESTIGATED THERAPY TYPE       
anti-PD-1(Pembrolizumab) 194 (79.8%) 184 (76.0%) 0.313 378 (77.9%) – <0.001 
anti-PD-1 plus anti-CTLA-4 (nivolumab plus 

ipilimumab) 
49 (20.2%) 58 (24.0%) 107 (22.1%) – 

Chemotherapy – – – 159 (100.0%) 
LINE OF THERAPY       
Missing 88 69  157   
1 60 (38.7%) 70 (40.5%) 0.91 130 (39.6%) 159 (100.0%) – 
2 59 (38.1%) 66 (38.2%) 125 (38.1%) 0 (0%) 
≥3 36 (23.2%) 37 (21.4%) 73 (22.3%) 0 (0%) 
DURABLE CLINICAL BENEFIT       
Missing 89 78  167 159  
NO 94 (61.0%) 96 (58.5%) 0.649 190 (59.7%) – – 
YES 60 (39.0%) 68 (41.5%) 128 (40.3%) – 

Categorical variables are described by absolute and relative frequencies, while quantitative factors by mean ± standard deviation (SD). Abbreviation: LUAD, Lung 
Adenocarcinoma; LUSC, Lung Squamous Cell Carcinoma; TMB, Tumor Mutational Burden; Mut/Mb, mutations per megabase; PD-1, programmed death 1 protein; PD- 
L1, programmed death ligand 1 protein; CTLA-4, Cytotoxic T-Lymphocyte Associated Protein 4. 

Fig. 1. Characteristics of variants identified in the 485 NSCLC cases underwent 
immunotherapy. (A) Bar chart showing the absolute counts of variants across 
NSCLC cases, grouped by type. (B) Histogram showing the cumulative fre-
quency of variants for individual cases (on the x-axis). The median number of 
mutations per sample is 7. (C) Bar chart showing absolute counts of CNAs 
among patients. 
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structure, we used PC1 and PC2 scores as inputs to the K-means clus-
tering method. Indeed, PCA demonstrated PC1 to account for 64% of the 
dataset variance, while PC1 plus PC2 had a 0.882 (0.635 + 0.247) 
proportion of variance. Together, PC1 and PC2 explain approximately 
90% of the data set. 

Three clusters were arbitrarily defined based on the elbow criterion. 
Twenty-four altered genes made up “cluster A” (MLH1, MPL, CDK6, 

FGF3, IKZF1, PRKN, RICTOR, ARID1A, SPEN, ARID1B, KDM6A, PAK5, 
ALOX12B, TERT, CARD11, ATR, DDR2, ASXL2, SETD2, NTRK2, TET1, 
TSHR, IGF2 and RPTOR), 33 defined the “cluster B” (AXIN2, PIK3R1, 
IRS2, TOP1, MDC1, EPHA3, SMO, MAP3K13, BRCA2, DIS3, BCL2, 
PIK3R2, NOTCH1, FLT1, KDM5A, CREBBP, MAP2K4, DOT1L, FANCA, 
MRE11, RPS6KA4, IL7R, JAK1, MAP3K1, AKT2, NTRK1, NBN, CDKN2C, 
MED12, CIC, BMPR1A, PIK3C2G and SOX9), while 8 were included in 

Fig. 2. Networks of mutated genes and K-Means clustering. (A) Gene network graphs from the cases’ training set. Mutated genes are the nodes, while the lines are the 
edges denoting interactions. (B) Three clusters of mutated genes were defined in a principal component 1 (PC1) and PC2 biplot of network statistics for mutated genes 
defining the network. Data points represent PC scores. Within each cluster, only genes altered in more than five patients were assumed to describe a signature. 
Selected genes were colored in light magenta. Both mutations and CNAs as events were considered. 

Fig. 3. Survival analysis for the cases training dataset. Kaplan-Meier curves of PFS with mutations in the set of genes of signature A (A), signature B (B), signature C 
(C), signature A ∪ B (D), and signature A ∩ B (E), evaluating 243 patients included in the training dataset. Kaplan-Meier curves of OS with mutations in the set of 
genes of signature A (F), signature B (G), signature C (H), signature A ∪ B (I), and signature A ∩ B (J), evaluating 243 patients included in the training dataset. A ∪ B- 
positive patients had at least two mutated genes from signature A OR at least two mutated genes from signature B. A ∩ B-positive patients had at least two mutated 
genes from signature A AND at least two mutated genes from signature B. 

F. Cucchiara et al.                                                                                                                                                                                                                              



Lung Cancer 183 (2023) 107308

6

“cluster C” (RPS6KB2, BRD4, IGF1R, BLM, AXIN1, CD274, MSH6 and 
FGFR4). However, only genes altered in more than five patients were 
assumed to describe a signature. Fifteen out of 24 genes were more likely 
to describe “signature A” (FGF3, RICTOR, ARID1A, ARID1B, KDM6A, 
PAK5, TERT, CARD11, ATR, DDR2, ASXL2, SETD2, TET1, TSHR, and 
RPTOR), 18 out of 33 were more likely to describe “signature B” (AXIN2, 
IRS2, MDC1, EPHA3, SMO, BRCA2, NOTCH1, FLT1, KDM5A, CREBBP, 
DOT1L, FANCA, IL7R, NTRK1, MED12, CIC, PIK3C2G and SOX9), while 
only 3 out of 8 genes were selected to characterize “signature C” (IGF1R, 
BLM and FGFR4) (Fig. 2B). 

Patients with at least two mutated genes from signature A had a 
better median PFS than those with < 2 mutated genes (15.13 vs. 3.6 
months, p = 0.004; Fig. 3A). Patients with at least two mutated genes 
from signature A had a better median PFS than those with < 2 mutated 
genes (8.37 vs. 3.71 months, p = 0.041; Fig. 3B). Also, if a patient had 
one mutated gene from signature A and one from signature B, he was 
considered neither A-positive nor B-positive: comprehensively “A or B” 
(A ∪ B) positive patients showed an increase in median PFS (9.10 vs. 
3.50 months, p = 0.010), which was even more for patients positive to 
both signatures “A and B” (A ∩ B) (21.71 vs. 3.50 months, p = 0.009) 
(Fig. 3D-E). Nothing significant emerged for signature C (Fig. 3C). A ∪ B 
positive patients also had a better median OS of 21 vs. 8 months (p =
0.004). The OS median value was not even reached for those A ∩ B 
positives (p = 0.013) (Fig. 3F-J). 

To test the results from the training model, an independent dataset of 
comparable cases was used. Independent survival analyses for the cases’ 
test set confirmed the predictive value of the A ∪ B signature. When 
signatures were assessed together, patients with at least two mutated 
genes from signature A or at least two mutated genes from signature B 
showed longer PFS (10.39 vs. 4.13 months, p = 0.007) and OS (not 
reached vs. 13 months, p = 0.049) (Fig. 4A and C). Increments were also 
for patients who tested positive for both signatures A ∩ B (Fig. 4B and D). 
None of the patients in the test set harbored ≥ 2 mutated genes of the 

signature C. 
Finally, cases from the training and test sets were gathered: univar-

iate and multivariate analyses confirmed the A ∪ B signature as an in-
dependent predictive factor (PFS HR 0.58, 95% CI 0.43–0.77 and p <
0.001 for univariate analysis, PFS HR 0.58, 95% CI 0.36–0.93 and p =
0.024 for multivariate analysis; OS HR 0.52, 95% CI 0.35–0.77 and p =
0.001 for univariate analysis, OS HR 0.53, 95% CI 0.29–0.97 and p =
0.039 for multivariate analysis) (Supplementary Table 1). Conversely, 
although the A ∩ B signature predicted a reduced risk of disease pro-
gression (HR 0.46, 95% CI 0.27–0.77, p = 0.004) and death (HR 0.27, 
95% CI 0.11–0.66, p = 0.004), the multivariate Cox regression model did 
not ensure it (Supplementary Table 2). 

As expected, the A ∪ B signature had longer-lasting clinical benefits 
for first-line ICIs patients (10.39 vs. 5.42, p = 0.004) than for those 
receiving second (or subsequent) immunotherapy lines (5.47 vs. 2.70, p 
= 0.017) (Fig. 5A). And so was the A ∩ B signature (23 vs. 5.42, p =
0.012 in patients treated with first-line immunotherapy; 8.37 vs. 2.70, p 
= 0.05 in patients who received ICIs as subsequent-line of therapy) 
(Fig. 5B). While A or B positive patients were about 40% of those with 
DCB, 82.6% of cases with no-DCB harbored neither signature A nor B (χ2 

= 35.6, p < 0.001; Fig. 5C). Among DCB patients, 16% had at least two 
mutated genes of signature A and at least two mutated genes of signature 
B (A ∩ B). Also, 21.2% of them received first-line immunotherapy, while 
16.9% received subsequent-line of ICIs. Of patients with no-DCB, 23.3% 
were immediately treated with immunotherapy, while 59.3% received it 
subsequently. Similarly, signatures proved to work better in patients 
receiving anti-PD-1 plus anti-CTLA-4 (Fig. 5D-F). 

Notably, positivity to A or B signatures not only bridged the clinical 
benefit gap for patients undergoing subsequent-line immunotherapy or 
not receiving combined ICIs, but also improved outcomes. However, this 
was not the case for a separate TCGA [24] control group of 159 chemo- 
naïve advanced NSCLCs (Table 1). They all underwent WES and mainly 
received doublets regimens with one of the platins and one of the third- 

Fig. 4. Survival analysis for the cases test dataset. Kaplan-Meier curves of PFS with mutations in the set of genes of signature A ∪ B (A) and signature A ∩ B (B) 
evaluating 242 patients included in the test dataset. Kaplan-Meier curves of OS with mutations in the set of genes of signature A ∪ B (C) and signature A ∩ B (D) 
evaluating 242 patients included in the test dataset. (E) Venn diagram of patients clustering according to the harboring signatures. A ∪ B-positive patients had at least 
two mutated genes from signature A OR at least two mutated genes from signature B. A ∩ B-positive patients had at least two mutated genes from signature A AND at 
least two mutated genes from signature B. 
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generation chemotherapy agents [40,41]. For them, survival analyses 
showed no PFS benefit for signature A (HR 1.07, 95% CI 0.71–1.61, p =
0.753), B (HR 0.72, 95% CI 0.47–1.08, p = 0.112), A ∪ B (HR 0.99 95% 
CI, 0.67–1.45, p = 0.952) and A ∩ B (HR 0.72, 95% CI 0.41–1.29, p =
0.274). Nothing emerged concerning OS either (HR 0.95, 95% CI 
0.61–1.48 and p = 0.824 for signature A; HR 0.76, 95% CI 0.50–1.17 and 
p = 0.11 for signature B; HR 0.89, 95% CI 0.59–1.33 and p = 0.566 for A 
∪ B; HR 0.73, 95% CI 0.40–1.32 and p = 0.297 for A ∩ B). 

Two hundreds and seventy-seven different mutations were identified 
among 15 genes defining the signature A, 64 of which were known 
disease drivers (Supplementary Table 3). Most resulted in a loss-of- 
function (LoF), except for the DDR2 amplification and the TERT pro-
moter mutation, for which a gain-of-function (GoF) was recognized. 
Similarly, 347 different mutations were found in the 18 genes describing 
the signature B, including 33 known disease drivers (Supplementary 
Table 4). Again, these were mostly LoF mutations, except for the GoF 
NTRK1 amplification. Some of the driver mutations found in genes 
including NOTCH (F853C/I), IL7R (I241M), and EPHA3 
(C202_P203delins *) do not yet have a known biological effect. 

ShinyGO analyses revealed significant involvement of signature A- 
related genes ARID1A, ARID1B, KDM6A, and SETD2 in nucleosome 
remodelling (Fold Enrichment 21.107, Enrichment adjusted p = 0.002). 
Remodelling was mainly related to the SWI/SNF family of the ATP- 
dependent chromatin remodelling complex (including ARID1A and 
ARID1B; Fold Enrichment 607.893, Enrichment adjusted p < 0.001) and 
the ATM-dependent pathway (involving KDM6A and SETD2; Fold 
Enrichment 253.289, Enrichment adjusted p = 0.002). Similarly, altered 
expression of the signature A-related genes RICTOR, RPTOR, CARD11, 
DDR2, FGF3, TERT, TET1, and TSH3 were proved to affect cell survival 
and proliferation (Fold Enrichment 11,668, Enrichment adjusted p <
0.001). Survival and proliferation were guaranteed through the activa-
tion of the TOR signalling (involving RICTOR, RPTOR, CARD11, and 
FGF3 mutations; Fold Enrichment 37.067, Enrichment adjusted p <
0.001). Negative regulation of the gene silencing (involving TERT and 
TET1; Fold Enrichment 84.429, Enrichment adjusted p = 0.007) and the 

extrinsic apoptotic signalling pathway (involving TERT and PAK5; Fold 
Enrichment 25.329, Enrichment adjusted p = 0.04) contributed to sur-
vival and proliferation, as well. ShinyGO pathway analyses also dis-
closed the significant involvement of signature B-related genes. CREBBP, 
NOTCH1, SOX9, MED12, SMO, NTRK1, IRS2, IL7R, FLT1, and AXIN2 
controlled cell number homeostasis (Fold Enrichment 10.307, Enrich-
ment adjusted p < 0.001) via evolutionarily conserved cell-to-cell sig-
nalling pathways including NOTCH pathway (involving CREBBP, 
NOTCH1, SOX9, and MED12; Fold Enrichment 29.682, Enrichment 
adjusted p = 0.004) and the IL7-mediated FoxO pathway (involving 
CREBBP, IRS2, and IL7R; Fold Enrichment 84.429, Enrichment adjusted 
p = 0.005). The role of NOTCH1, SMO, NTRK1, PIK3C2G, FLT1, IRS2, 
and EPHA3 in chemotaxis was also noted (Fold Enrichment 12,682, 
Enrichment adjusted p < 0.001). CREBBP and SMO have critical posi-
tions in the hedgehog signalling (Fold Enrichment 148.993, Enrichment 
adjusted p = 0.004), while NTRK1, FLT1, SOX9, IRS2, and IL7R appear to 
be necessary for the PI3K-Akt pathway activation (Fold Enrichment 
51.692, Enrichment adjusted p < 0.001). 

Through GSEA, was also found A ∪ B signature to significantly 
correlate (false discovery rate q < 0.05) with the epithelium- 
mesenchymal transition (EMT) and the inflammatory response. 
Expressly, signature-positive cell lines showed enriched expression of 
genes usually up-regulated by α and γ interferon proteins, TNF-α (via NF- 
kB), TGF-β, and IL6 (via STAT3). Angiogenesis was also promoted. 
Conversely, the A ∪ B altered cell lines also exhibited reduced expression 
of genes handling oxidative phosphorylation and unfolded protein 
response. GSEA results are summarized in Supplementary Table 5 and 
Supplementary Figure 6. 

4. Discussion 

Large-scale evidence of non-random mutation patterns indicates 
dependency networks (i.e., epistatic relationships) between genes in 
multi-steps carcinogenesis [42–44]. While synergistic alterations often 
occur together to collaborate, antagonistic or functionally redundant 

Fig. 5. Signature-related survival analysis. Kaplan-Meier curves of PFS with mutations in the set of genes of signature A ∪ B (A) and signature A ∩ B (B) evaluating 
the 485 cases who received ICI as first or subsequent-line of therapy. (C) Stacked bar plots showing the percentage of patients having durable clinical benefit with 
respect to A ∪ B signature positivity and line of immunotherapy. Kaplan-Meier curves of PFS with mutations in the set of genes of signature A ∪ B (D) and signature A 
∩ B (E) evaluating the 485 cases who received ICI as mono- (anti-PD-1 only) or combined therapy (anti-PD-1 plus anti-CTLA-4). (F) Stacked bar plots showing the 
percentage of patients having durable clinical benefit with respect to A ∪ B signature positivity and immunotherapy combination. 
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events are likely mutually exclusive [42,43]. For example, KEAP1 and 
TP53 mutations - which frequently co-occur - proved to promote 
collaborative cancer-related pathways in response to oxidative stress 
[45]. Conversely, mutations in EGFR, KRAS, and BRAF genes - involved 
in the same MAPK signaling pathway - may be redundant and are not 
usually observed in the same tumor [43]. Dependency networks are 
explored with network analysis. Although this approach has its roots in 
sociology and computer science [46], it can also describe, explore, and 
understand the connection of somatic variants (whether drivers or pas-
sengers) in cancer. The analysis is both a methodological tool and a 
theoretical paradigm aiding in integrating multi-omics data and infer-
ring the tumor’s biological underpinning. Dependency networks have 
been studied primarily in microbial ecosystems, where environmental 
forces select concomitant or mutually exclusive growing microorgan-
isms [47,48]. Similarly, tumor microenvironment (TME) hypoxia, 
acidosis, competition for space and resources, and predation by the 
immune system could exert selective pressure and are necessary to 
define the compendium of genes cancer-related alterations [49]. In 
addition, selective pressure imposed by previous anticancer treatments 
can substantially influence co-mutation patterns. These deterministic 
insights are consistent with the hypothesis that different relationships 
between mutated genes imply diverse functional cooperation, leading to 
divergent clinical behaviors and variable sensitivity to therapy [43]. 
Based on the assumption that co-dependent alterations influence each 
other’s probability of co-existing, measures of the connectedness of each 
pro-tumorigenic alteration (Degree, Betweenness, Closeness, Eigen 
Centrality, and Bonacich Power [30]) were used to reveal that some act 
like hubs in their molecular networks and can co-drive receptivity to 
immunotherapies. An artificial intelligence (AI)-based pattern recogni-
tion task clustered them into two main groups. The presence of at least 
two mutations in the coding sequence of FGF3, RICTOR, ARID1A, 
ARID1B, KDM6A, PAK5, TERT, CARD11, ATR, DDR2, ASXL2, SETD2, 
TET1, TSHR, and RPTOR (signature A) and/or the presence of at least 
two mutations in the coding sequence of AXIN2, IRS2, MDC1, EPHA3, 
SMO, BRCA2, NOTCH1, FLT1, KDM5A, CREBBP, DOT1L, FANCA, IL7R, 
NTRK1, MED12, CIC, PIK3C2G and SOX9 (signature B), have positive 
predictive values in advanced NSCLCs undergoing ICIs. Predictivity of 
signatures was confirmed in an independent cohort of comparable pa-
tients. By contrast, no survival benefits were observed in a matched 
control group of advanced NSCLCs receiving standard chemotherapy. 
Signatures performed best 1) when combined, 2) for patients undergo-
ing first-line immunotherapy, 3) and for those receiving combined ICIs. 
Immunotherapy has been changing the paradigm of NSCLC treatment in 
different settings and improved patients quality of life. However, only 
about 20% of unselected patients respond to these treatments [1–7] and 
the availability of predictive biomarkers is still an important need. While 
driver mutations in EGFR, BRAF, ALK, and HER2 dictate the choice of 
target-specific therapy, the same cannot be attributed to PD-L1 and/or 
TMB because they are dynamic, inducible, and disease-dependent [50]. 

PD-L1 and TMB are continuous variables with no apparent upper 
limit to the relationship between increased marker levels and the degree 
of clinical benefit derived from the intervention [51]. Conversely, the 
biomarker’s binary signaling of positivity or negativity excludes 
threshold problems [51]: somatic alterations are present or not. As a 
result, mutation-based signatures appear more stable, and the classifi-
cations designed on them may be more reproducible. 

No correlation emerged between the signatures and PD-L1 expres-
sion. However, ICI administration in treatment-naïve patients with 
advanced NSCLC and A ∪ B signature positivity was associated with 
higher PFS (10.39 vs. 5.42 months), agreeing with the KeyNote 024 
study [52] that used pembrolizumab in advanced NSCLC with PD-L1 >
50% (10.3 vs. 6.7 months). This clinical benefit was not achieved in PD- 
L1 positive patients enrolled in the IMpower 110 [6] and CheckMate 026 
[4] studies. While Spigel and colleagues [6] found 8.1 vs. 5.0 months of 
median PFS in patients treated with atezolizumab compared to those 
receiving chemotherapy, the median PFS in the nivolumab group of 

CheckMate 026 [4] was 4.2 months versus 5.9 months in favor of 
platinum-based therapy. A ∪ B positive patients undergoing anti-PD-1 
plus anti-CTLA-4 also showed higher PFS than A ∪ B negatives (23 vs. 
5.09 months). Results were even better than CheckMate 227 [53], where 
the therapeutic strategy of combining nivolumab plus ipilimumab in 
advanced NSCLC and TMB ≥ 10 Mut/Mb resulted in a median PFS of 7.2 
vs. 5.5 months compared to those underwent chemotherapy only. As 
expected, benefits were higher in patients who were positive to both 
signature A and B (A ∩ B). 

Moreover, from a mechanistic point of view, the risks of assuming 
that non-synonymous mutations (TMB) or even PD-L1 expression led to 
ICI sensitivity are high. TMB is a biomarker that reflects the generic 
processes involved in initiating immune reactivity; it is generic (non- 
checkpoint-specific factor) and of little service in predicting immune- 
related therapies effectiveness [51]. On the other end, the PD-L1 pre-
dictive biomarker is related to the final effector phases of the immune 
cascade and is relevant only for specific conditions [51]. However, be-
tween TMB-h and high PD-L1 expression, two other events must occur: 
non-synonymous mutations should be translated into neoantigens and 
presented to the host immune system via MHC class I; the TME should 
offer pro-inflammatory traits. TME context is paramount when evalu-
ating the efficacy of immunotherapy [51]. To reduce risks by assuming 
PD-L1 upregulation as tumor dependence on the PD-1/PD-L1 axis to 
evade an antitumor initiated and primed immune response, the combi-
nation of assessments of PD-L1 expression levels with phenotypic fea-
tures of the tumor immune microenvironment is being actively 
explored. The suggested signatures are ideally suited to these 
circumstances. 

Indeed, signature B-related genes (CREBBP, NOTCH1, SOX9, MED12, 
SMO, NTRK1, IRS2, IL7R, FLT1, and AXIN2) emerge to retain cell 
number homeostasis through evolutionarily conserved cell–cell 
signaling pathways. Cell-to-cell crosstalk is critical in allowing tumor 
cells to co-opt and modulate stromal and immune cells. Functional 
crosstalk between tumor and surrounding cells promotes pre-metastatic 
niche formation, neovascularization, and immune suppression [54]. 
More interestingly, pathway analysis revealed that the signature A- 
related genes (ARID1A, ARID1B, KDM6A, and SETD2) belong to the 
mammalian switch/sucrose non-fermentable (SWI/SNF) family 
affecting chromatin remodeling. Four different complexes use the en-
ergy of ATP hydrolysis to regulate DNA accessibility in vital cellular 
processes (including transcription, DNA repair, and replication). They 
are the imitation switch (ISWI) family, the chromodomain helicase 
DNA-binding (CHD) family, the INO80 family, and the SWI/SNF family 
[55]). Nevertheless, interestingly mutations in the SWI/SNF family- 
associated genes are the most frequent after genome doubling in lung 
cancers [56,57]. These mutations may remove tissue-specific constraints 
on the cancer genome and provide advantages to emerging subclones 
later in evolution [56]. 

Growing evidence reports that mutations in SWI/SNF components 
underlie tumorigenesis and drug sensitivity [57–59], such as the para-
digmatic ones affecting ARID1A, which is a key member of the SWI/SNF 
family that serves histone methylation in somatic cells [60]. Respective 
LoF mutations occur in 5%-11% of lung cancers [61] and correlate 
positively with enhanced antitumor immunity in both preclinical 
[62,63] and clinical models [64]. ARID1A deficiency contributes to the 
high microsatellite instability and TMB, and modulates the immune 
microenvironment by promoting the PD-L1 expression [63]. Therefore, 
ARID1A deficiency tumors should be sensitized to anti-PD-L1 treatment 
[64]. Our previous findings concur with this view, confirming the role of 
ARID1A in promoting the hyper-mutated cancer phenotype and thus its 
immunogenicity [50]. Additionally, aberrations in ARID1A and other 
commonly mutated genes (e.g., KDM6A and SETD2) proved to regulate 
chromatin accessibility to IFN- and IL6-responsive genes and to asso-
ciate with high upstream expression of IFNs and IL6 pathways [65–68]. 
The result is increased trafficking of cytokines, including TNF-α and 
TGF-β. In the presence of TNF-α, TGF-β may synergistically promote 

F. Cucchiara et al.                                                                                                                                                                                                                              



Lung Cancer 183 (2023) 107308

9

inflammation [69]. IL6 is another major pro-inflammatory cytokine that 
blocks TGF-β-induced Treg differentiation [70,71], and in presence of 
TGF-β, it can polarize tumor-infiltrated CD4 + T cells towards Th17 
[72]. Inflammatory signals induced in the tumor milieu regulate the 
functional fate of Th17 cells. On the one hand, they play a pro-cancer 
role by promoting angiogenesis and STAT3 oncogenic signaling [73]. 
On the other, they foster anticancer immunity both through direct IFN-γ 
production and by recruiting dendritic cells (DCs), natural killer cells 
(NKs), and CD8 + cytotoxic T lymphocytes (CTLs) in the TME [73]. 

Consistent with the above results, the present work demonstrated 
that signature-positive cell lines exhibit enriched expression of genes 
usually up-regulated by INF-α and IFN-γ proteins, IL6 (via STAT3), TNF- 
α (via NF-kB), and TGF-β. In addition, angiogenesis and EMT were also 
promoted. 

During EMT, cancer cells lose their epithelial characteristics and 
acquire mesenchymal traits. This phenotypic switch often involves the 
upregulation of cell surface antigens targeted by immunotherapy, such 
as PD-L1 [74–76]. In addition, EMT can lead to the loss of major his-
tocompatibility complex (MHC) molecules and antigen presentation 
machinery contributing to the immunotherapy resistance [77,78]. This 
impairment in antigen presentation can hinder the recognition of tumor 
cells by cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells, 
which are crucial for eliminating cancer cells [79]. All these factors 
contribute to the formation of an immunosuppressive tumor microen-
vironment, compromising the efficacy of immunotherapy by inhibiting 
immune cell activation and effector functions. 

On the contrary, A ∪ B altered cell lines exhibited reduced expression 
of genes handling oxidative phosphorylation (preferring aerobic 
glycolysis due to the Warburg effect [80]) and reduced response to 
unfolded proteins (which would be a pro-survival adaptive mechanism 
triggered by the accumulation of unfolded or misfolded proteins in the 
endoplasmic reticulum [81]). 

The retrospective nature of the present study and the relatively small 
sample size are major limitations of the analysis. However, a proper 
statistical approach was used to avoid type 1 errors and minimize se-
lection bias. Early-stage, surgically resected, and locally advanced tu-
mors pretreated with radiotherapy were excluded. The reason is that 
several distinct co-mutations patterns are enriched in the late-stage 
disease, likely reflecting the acquisition of traits promoting tumor pro-
gression and metastatic dissemination. Further, since selective pressure 
imposed by previous anticancer therapy and combination treatments 
can substantially influence the patterns of co-mutations, a stratified 
analysis was conducted considering the line of therapy and the therapy 
combination. 

The restriction of the present analysis to the 341 genes included in 
the MSK-IMPACT panel is a strength of the study. This smaller gene 
dataset increased the power to identify significantly different networks 
focusing on genes known to be necessary for cancer growth. 

In conclusion, the present study suggests a dependency between 
mutated genes and a peculiar profile of mutations in late-stage NSCLCs 
with immune sensitivity. The hypothesis is that somatic LoF mutations 
in SWI/SNF-related genes and impaired cell-to-cell crosstalk may result 
in dysfunctional immune evasion and persistent buffering of pro- 
inflammatory cytokines across the TME. This “inflamed milieu” could 
affect TILs activity once immune checkpoint blockers are inhibited. 
Therefore, the signatures underlying these abnormalities could repre-
sent a clinically relevant readout and provide a suitable biomarker to 
improve the selection of patients who benefit from immunotherapy, 
with possibly important implications for personalized therapeutic 
decisions. 
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