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Abstract
The article illustrates a position-based finite element formulation, which greatly simplifies the statement of nonlinear elasticity
problems. The formulation adopts as main unknowns the nodal positions in the current configuration instead of the nodal
displacements. As a result, simple analytical expressions are obtained of the secant and tangent stiffness matrices for general
isoparametric finite elements. Contrary to most formulations of the literature, the secant stiffness matrices turn out to be
symmetric. Furthermore, any hyperelastic constitutive law can be easily implemented. Specialised expressions are deduced
for the stiffness matrices of a two-node truss bar element and a three-node planar triangular element. The validity of the
proposed approach is illustrated through the analysis of a steep von Mises truss and Cook’s membrane. For illustration, the
de Saint Venant–Kirchhoff and neo-Hookean material models are considered.
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1 Introduction

1.1 Motivation

In the finite element method (FEM) [1], the linear static equi-
librium equations can be written in the following form:

Ku = p + r, (1)

where u, p, and r ∈ R
N are the vectors of (generalised) nodal

displacements, loads, and restraint reactions, respectively;
K ∈ R

N×N is the symmetric and positive-definite stiffness
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matrix; N is the number of degrees of freedom (DOFs) of
the model.

In the standard displacement-based finite element formu-
lation (DFEF), the nodal displacement vector, u, is the main
unknown. In the solution procedure, first, Eq. (1)—together
with the kinematic restraint equations, if present—are solved
with respect to u. Then, the nodal restraint reaction vector,
r, is calculated.

In a total Lagrangian formulation [2, 3], the nonlinear
static equilibrium equations can be written in a form similar
to Eq. (1),

K (u) u = p + r, (2)

where K (u) is the secant stiffness matrix that now depends
on u. Because of nonlinearity, Eq. (2) have to be solved
by using some incremental and/or iterative method. The
incremental, or updated Lagrangian, formulation requires
the introduction of the tangent stiffness matrix, KT (u) =
∂ [K (u) u] /∂u. In this respect, it is worth noting that while
the tangent stiffnessmatrix,KT (u), is always symmetric, the
secant stiffness matrix, K (u), is in general unsymmetric—
which is undesirable from the computational point of view.
Moreover, the secant stiffness matrix has no unique repre-
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sentation: indeed, several alternative expressions are possible
that yield the same result for the elastic force vector, f (u) =
K (u) u. Such circumstances stimulated a number of studies
aimed at obtaining simple, possibly symmetric, expressions
of the secant stiffness matrix. For a historical survey on early
developments, the interested reader is referred to the works
by Felippa et al. [4] and Oñate [5].

Oñate [5] used the principle of virtual work (PVW)
to deduce a general parametric expression of the secant
stiffness matrix for three-dimensional (3D) isoparametric
elements and specialised expressions for truss bar elements.
In general, the obtained secant stiffnessmatrices are not sym-
metric, but become symmetric for a particular choice of the
parameters. A linear relationship is assumed between the
Green–Lagrange strain and second Piola–Kirchhoff stress
tensors. Hence, strictly speaking, the proposed formulation
is valid only for the de Saint Venant–Kirchhoff (SVK) mate-
rial model. However, it can be used also for other nonlinear
hyperelastic materials in incremental form.

Morán et al. [6] applied the principle of stationary total
potential energy (TPE) to deduce symmetric expressions of
the secant stiffnessmatrix under the assumption that the strain
energy density can be decomposed into a set of homogeneous
functions. As an example, they derived the expressions for a
two-dimensional (2D) Euler–Bernoulli beam element.

Pedersen [7] determined analytical expressions of the
secant stiffness matrix for 2D triangular elements in plane
elasticity problems. He considered both linear and nonlin-
ear power-law stress–strain relationships. Also, he extended
the same formulation to tetrahedral elements in 3D elasticity
problems [8]. Later, Gülümser et al. [9] proposed a faster
implementation of Pedersen’s method for tetrahedral ele-
ments. The obtained secant stiffness matrices are generally
unsymmetric.

As a matter of fact, if arbitrary hyperelastic constitu-
tive laws are assumed, the secant stiffness matrices obtained
within the standard DFEF turn out to be unsymmetric. More-
over, their analytical expressions may be complicated and
cumbersome to implement, except for a few special cases
(see Appendix A). Therefore, in the literature, the explicit
derivation of the secant stiffness matrix is often avoided and
the nonlinear elastic force vector, f (u), is assembled directly
from the elemental contributions [2].

1.2 Main idea

This paper illustrates a method for the derivation of sym-
metric secant stiffness matrices for general isoparametric
elements with arbitrary hyperelastic constitutive law. The
formulation can be used for both 2Dand 3Dnonlinear elastic-
ity problems. The obtained expressions are simple and easy
to implement in a software code. The key to achieve such
results is to adopt a position-based finite element formula-

tion (PFEF). Accordingly, the vector of nodal positions in
the current configuration, x ∈ R

N , is chosen as the main
unknown instead of the nodal displacement vector, u. With
this choice, the nonlinear static equilibrium Eq. (2) can be
rewritten as follows:

S (x) x = p + r, (3)

where S (x) ∈ R
N×N is the secant stiffnessmatrix referred to

the nodal position vector. Aswill be detailed in the following,
this secant stiffness matrix turns out to be always symmetric
[10].

1.3 Comparison with similar approaches

To the best of the Author’s knowledge, Bonet [11] was the
first to propose using the nodal positions instead of the nodal
displacements in the implementation of Newton–Raphson’s
iterative method for the finite element simulation of plas-
tic flow. Later, Bonet et al. [12] successfully extended this
approach to the analysis of inflated membranes, as well as
to the nonlinear static and dynamic analysis of hyperelastic
solids undergoing large displacements and strains [13, 14].

The PFEF was independently adopted by Coda and Greco
[15] for the large displacement analysis of 2D frames. Then,
the same research group applied this formulation to the
elasto-plastic analysis of space trusses [16], the dynamic
analysis of flexiblemulti-body systems [17], and the geomet-
rically nonlinear analysis of shells [18]. In all of such early
papers, linearly elastic material behaviour is assumed. In
more recent contributions, the PFEF is applied to the analysis
of elasto-plastic and hyperelastic solids [19], incompressible
fluids [20], and multiscale materials [21].

The PFEF turns out to be similar to the absolute nodal
coordinate formulation (ANCF) introduced by Shabana [22,
23] in the context of flexible multibody dynamics. In the
ANCF, the nodal coordinates and their derivatives with
respect to a global Cartesian reference system are assumed
as main unknowns. This formulation was originally intro-
duced for beam elements, and later extended to plates and
shells [24, 25]. Apparently, less efforts have been devoted to
the development of finite elements for the discretisation of
general continuous bodies [26, 27].Most studies adopting the
ANCF assume linearly elasticmaterial behaviour in linewith
the SVK material model. Few contributions consider more
general nonlinear hyperelastic materials: also in this case,
most studies focus on beam elements [28]. Orzechowski and
Frączeks [29] developed an ANCF straight beam element
made of incompressible neo-Hookean (NH) or Mooney-
Rivlin (MR) material. Obrezkov et al. [30] formulated an
ANCF straight beam element with three alternative nonlin-
ear hyperelastic constitutive laws: namely, the NH, MR, and
Gasser-Ogden-Holzapfel (GOH) material models. Recently,
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Li et al. [31] developed anANCF curved beam element made
of incompressible NH material. Luo et al. [32] formulated
ANCF shell elements considering both theNHandMRmate-
rial models. In the ANCF, emphasis is on dynamic problems.
Thus, special attention is paid to the formulation of the mass
matrix, which turns out to be constant and lacking of terms
depending on centrifugal and Coriolis forces.

In all of the above-mentioned studies on the PFEF and
ANCF, the secant stiffnessmatrix is not determined explicitly
and the internal force vector is directly assembled from the
elemental contributions. A notable exception is the work by
García-Vallejo et al. [33],who deduced an explicit expression
of the symmetric secant stiffness matrix for an ANCF beam
element made of linearly elastic material.

Lastly, it should be mentioned that symmetric stiffness
matrices depending on the nodal positions were obtained by
Pauletti [34] in the formulation of the natural force density
method (NFDM) for the form finding of taut structures. The
method was first presented for cable and triangular mem-
brane elements [35], and later extended to quadrilateral [36]
and tetrahedral elements [37]. The NFDM stiffness matrices
depend on the force densities, which are related to the sec-
ond Piola–Kirchhoff stress. However, no constitutive laws
are explicitly introduced as the NFDM is used only for form
finding and not for nonlinear structural analysis.

1.4 Paper organisation

This paper is organised as follows. In Sect. 2, first, the
theoretical framework is outlined of the position-based
finite element formulation. Then, analytical expressions are
deduced of the secant and tangent stiffness matrices for gen-
eral isoparametric elements. The nonlinear static equilibrium
equations are derived from the principle of stationary total
potential energy. In Sect. 3, the general expressions of the
secant and tangent stiffness matrices are specialised for a
two-node truss bar element and a three-node planar trian-
gular element with linear shape functions. In Sect. 4, the
effectiveness of the proposed approach is illustrated through
the analysis of two benchmark problems: a steep von Mises
truss and Cook’s membrane. Next, in Sect. 5, the strengths
and weaknesses of the proposed formulation are discussed,
also with reference to computational performances. Lastly,
in Sect. 6, some possible future developments are briefly out-
lined.

2 Theoretical formulation

2.1 Finite element discretisation

Let us consider a continuous solid body, B, occupying a con-
figuration, Ω (here, regarded as a bounded and connected

region), in the Euclidean space, E . The dimension of the
space is denoted by d ∈ {1, 2, 3}. Let us fix a global Carte-
sian reference system, Ox1 . . . xd . The unit vectors of the
reference axes are denoted e1, . . . , ed .

In the finite element (FE) model, the region Ω is approx-
imated by the union of m regions, Ωe (with e = 1, . . . ,m),
corresponding to the finite elements (Fig. 1). Elements inter-
act with each other and the surroundings only at a discrete
set of points, K1, . . . , Kn , called nodes. All of the material
properties of the continuous body, as well as the distributed
forces andkinematic restraints, aremodelled as lumpednodal
entities in the discrete FE model [1, 2].

Let x j = K j − O ∈ R
d be the position vector of the

j-th node (with j = 1, . . . , n). The position vectors of all
the nodes of the model are collected into the global position
vector, x = [x1; . . . ; xn] ∈ R

nd .
Among themany configurations that the body can occupy,

a particular one, Ω̄ , is chosen as the reference configura-
tion. Here, let K̄1, . . . , K̄n be the points corresponding to
the node positions. Consistently, x̄ j = K̄ j − O ∈ R

d

denotes the reference position vector of the j-th node and
x̄ = [x̄1; . . . ; x̄n] ∈ R

nd collects the reference position vec-
tors of all the nodes of the model. Displacements and strains
aremeasured starting from the reference configuration. Thus,
by definition, the reference configuration is undeformed. In
what follows, it will also be assumed to be stress-free.

The displacement vector of the j-th node is defined as
u j = K j − K̄ j = x j − x̄ j ∈ R

d . The displacement vectors
of all the nodes of the model are collected into the global
displacement vector, u = [u1; . . . ;un] ∈ R

nd . In the stan-
dard FE formulation, u is assumed as the main unknown.
Here, the problem will be alternatively formulated in terms
of the global nodal position vector, x = x̄+ u, in the current
configuration [10].

2.2 Isoparametric elements

Let us consider a general finite element of dimension de ≤
d. The element has ne nodes, whose indices are denoted
j e1 , . . . , j ene in the global node numbering of the model.
The position vectors of all the nodes of the element are
collected into the elemental nodal position vector, xe =[
x j e1

; . . . ; x j ene

]
∈ R

ned .

The region,Ωe, occupied by the element in a configuration
is assumed to be the image of a regular domain, Ω̂e ⊂ R

de ,
called the parent element, under a smooth invertiblemapping,
φ : Ω̂e → Ωe (Fig. 2). Each point in the parent element,
P̂ ∈ Ω̂e, is mapped onto a point, P = φ(P̂) ∈ Ωe. The
geometry of the parent element is described with respect to
a system of dimensionless natural coordinates, ξ1, . . . , ξde .
Let ξ = [

ξ1; . . . ; ξde
] ∈ R

de be the vector of the natural

coordinates of P̂ and xP = P − O = [
x P1 ; . . . ; x Pd

] ∈ R
d
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Fig. 1 Finite element discretisation: reference configuration (left) and current configuration (right). The Euclidean space dimension is d = 3

denote the position vector of P with respect to the global
Cartesian reference system.

The mapping φ can be represented as follows:

xP = Ne (ξ) xe, (4)

where

Ne (ξ) = [
Ne
1 (ξ) I . . . Ne

ne (ξ) I
] ∈ R

d×ned (5)

is the shape function matrix of the element. Here, Ne
k (ξ)

(with k = 1, . . . , ne) are the nodal shape functions and I ∈
R
d×d is the identity matrix.
According to the isoparametric concept [1, 2], the refer-

ence configuration of the element, Ω̄e, is obtained through
a mapping, φ̄ : Ω̂e → Ω̄e, described by the same shape
function matrix of Eq. (4). Thus, each point P̂ ∈ Ω̂e is
mapped onto a point P̄ = φ̄(P̂) ∈ Ω̄e, whose position vector,
x̄P = P̄ − O = [

x̄ P1 ; . . . ; x̄ Pd
] ∈ R

d , is

x̄P = Ne (ξ) x̄e, (6)

where x̄e =
[
x̄ j e1

; . . . ; x̄ j ene

]
∈ R

ned is the elemental nodal

position vector in the reference configuration.
As a consequence of Eqs. (4) and (6), the displacement

vector of point P turns out to be

uP = xP − x̄P = Ne (ξ)ue, (7)

where ue =
[
u j e1

; . . . ;u j ene

]
= xe − x̄e ∈ R

ned is the nodal

displacement vector of the element. Equation (7) shows that
the displacement field of an isoparametric element is inter-
polated by the same shape functions used to describe its
geometry.

Fig. 2 Isoparametric mapping: parent element (top), mapped element
in reference configuration (bottom, left), andmapped element in current
configuration (bottom, right). The Euclidean space dimension is d = 3
and the element dimension is de = 2

2.3 Assembly

The nodal position and displacement vectors of an element
can be expressed in terms of the corresponding global vectors
as follows:

xe = Aex, x̄e = Aex̄, and ue = Aeu, (8)
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where Ae ∈ R
ned×nd is the assembly matrix of the element

[38].
For each element,Ae can be defined as a matrix having all

null entries, except for the rows and columns corresponding
to the element nodes. These are the rows from (k − 1)d + 1
to kd and columns from ( j ek − 1)d + 1 to j ek d (with k =
1, . . . , ne). In such positions, identity matrices, I ∈ R

d×d ,
are placed.

The assemblymatriceswill be used in the following to for-
mally describe the assembly procedure of the global stiffness
matrices from the elementalmatrices. However, direct imple-
mentation of Eq. (8) is not recommended because it may be
computationally inefficient. Instead, the classical assembly
procedure of the element stiffness matrices can be used [1].

2.4 Strain

At each point, P̄ , of the reference configuration, Ω̄e, of an ele-
ment, a local system of orthogonal coordinates, s̄1, . . . , s̄de ,
is fixed. Let ā1, . . . , āde be the unit vectors of the local axes.
Then,

Q̄ =
⎡
⎢⎣
e1 · ā1 . . . e1 · āde

...
...

ed · ā1 . . . ed · āde

⎤
⎥⎦ ∈ R

d×de (9)

is the change-of-reference matrix that transforms the local
coordinates into the global Cartesian coordinates. It is noted
that, in general, the dimension of an element may be less than
the dimension of the Euclidean space, so that de < d. In this
case, Q̄ is a rectangular semi-orthogonal matrix. Instead, if
the dimension of the element is equal to the space dimension,
de = d, then Q̄ is a square orthogonal matrix.

The Green–Lagrange strain tensor, E, is introduced as a
suitable measure of finite deformations [39]. At each point
P̄ ∈ Ω̄e, the components of the strain tensor in the local
coordinates can be expressed as

Eαβ = 1

2

(
∂xᵀ

P

∂ s̄α

∂xP
∂ s̄β

− ∂ x̄ᵀ
P

∂ s̄α

∂ x̄P
∂ s̄β

)
, (10)

where indices α and β range from 1 to de, and ᵀ denotes the
transpose operation. By recalling Eqs. (4) and (6), the strain
components can also be expressed as

Eαβ = 1

2
(xe + x̄e)ᵀ �αβ (xe − x̄e) , (11)

where

�αβ = 1

2

(
∂Nᵀ

e

∂ s̄α

∂Ne

∂ s̄β
+ ∂Nᵀ

e

∂ s̄β

∂Ne

∂ s̄α

)
∈ R

ned×ned (12)

make up a set of symmetric matrices. These �-matrices
depend on the derivatives of the shape function matrix,

∂Ne

∂ s̄α
=
[
∂Ne

1

∂ s̄α
I . . .

∂Ne
ne

∂ s̄α
I
]

, (13)

in turn depending on the derivatives of the single nodal shape
functions. The latter can be evaluated through the chain rule
as follows:

∂Ne
k

∂ s̄α
=

de∑
γ=1

d∑
j=1

∂Ne
k

∂ξγ

∂ξγ

∂ x̄ Pj

∂ x̄ Pj
∂ s̄α

. (14)

It is convenient to put Eq. (14) into matrix form. To this
aim, let us first introduce the Jacobian matrix,

J̄ = ∂ x̄P
∂ξ

=
[
∂Ne

∂ξ1
x̄e . . .

∂Ne

∂ξde
x̄e

]
∈ R

d×de , (15)

of the mapping φ̄ : Ω̂e → Ω̄e described by Eq. (6) and the
Jacobian matrix,

J̄+ = ∂ξ

∂ x̄P
=

⎡
⎢⎢⎢⎣

∂ξ1
∂ x̄ P1

. . .
∂ξ1
∂ x̄ Pd

...
...

∂ξde
∂ x̄ P1

. . .
∂ξde
∂ x̄ Pd

⎤
⎥⎥⎥⎦ ∈ R

de×d , (16)

of the inverse mapping φ̄−1 : Ω̄e → Ω̂e. Then, observing
that

∂ x̄P
∂ s̄

=

⎡
⎢⎢⎢⎣

∂ x̄ P1
∂ s̄1

. . .
∂ x̄ P1
∂ s̄de

...
...

∂ x̄ Pd
∂ s̄1

. . .
∂ x̄ Pd
∂ s̄de

⎤
⎥⎥⎥⎦ = Q̄, (17)

the following relationship in matrix form is obtained:

⎡
⎢⎢⎢⎣

∂Ne
1

∂ s̄1
. . .

∂Ne
1

∂ s̄de
...

...
∂Ne

ne
∂ s̄1

. . .
∂Ne

ne
∂ s̄de

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

∂Ne
1

∂ξ1
. . .

∂Ne
1

∂ξde
...

...
∂Ne

ne
∂ξ1

. . .
∂Ne

ne
∂ξde

⎤
⎥⎥⎥⎦ J̄+Q̄. (18)

It is worth noting that if de = d, then the Jacobian matrix
of the inverse mapping is the inverse of the Jacobian matrix,
J̄+ = J̄−1 ∈ R

d×d . But, if de < d, then J̄ is a rectangu-
lar matrix, which has no standard inverse. In this case, the
Moore-Penrose pseudo-inverse [40],

J̄+ = (
J̄ᵀJ̄

)−1
J̄ᵀ, (19)

can be used. Evidently, the pseudo-inverse of a square matrix
coincides with the standard inverse.
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Lastly, for what follows, it is useful to calculate the deriva-
tives of the strain components from Eq. (11):

∂Eαβ

∂xe
= �αβxe. (20)

2.5 Stress

Stresswill be represented through the secondPiola–Kirchhoff
stress tensor, S, which is work-conjugate to the Green–
Lagrange strain tensor, E [39].

Since the material is assumed to be hyperelastic, the stress
tensor components can be derived from an elastic potential
energy function, ϕ̄, having the physical meaning of strain
energy density:

Sαβ = ∂ϕ̄

∂Eαβ

, (21)

where α and β range from 1 to de.

2.6 Potential energy

In thiswork, the governing nonlinear static equilibrium equa-
tions are derived based on the principle of stationary total
potential energy. To this aim, besides the assumption of
hyperelastic material, the applied loads are assumed to be
conservative. However, the latter hypothesis is not strictly
required to deduce the expressions of the secant and tangent
stiffness matrices.

The total potential energy of the system, V , is the sum
of the internal potential energy, Vint, corresponding to the
elastic strain energy, U , and the external potential energy,
Vext, which is the opposite of the virtual work of the applied
loads, W [41]:

V = Vint + Vext = U − W. (22)

The strain energy stored in the whole model can be
computed by summing the contributions coming from each
element:

U =
m∑
e=1

Ue, (23)

where

Ue =
∫

Ω̄e

ϕ̄ dV̄e (24)

is the strain energy storedwithin the e-th element. In Eq. (24),
the integration is carried out over the volume of the element,
V̄e, in the reference configuration.

Besides, the virtual work done by the applied nodal loads
on the corresponding displacements (from the reference con-
figuration to the current configuration) is

W =
n∑
j=1

pᵀ
j u j , (25)

where p j ∈ R
d is the load vector applied to the j-th node.

Here, it is assumed that all loads vary proportionally to a
single load multiplier, λ. Hence, the global load vector, p =[
p1; . . . ;pn

] ∈ R
nd , can be expressed as

p = λp̄, (26)

where p̄ is a reference load vector. As a consequence, the
expression of the virtual work becomes

W = pᵀu = λp̄ᵀ (x − x̄) . (27)

2.7 Equilibrium equations

Based on the previous assumptions, static equilibrium can
be imposed through the stationarity of the total potential
energy [41]. For the sake of simplicity, nokinematic restraints
are here considered. If present, kinematic restraints can be
included in the formulation of the problem as explained in
Appendix B.

By recalling Eqs. (22) and (27), the nonlinear static equi-
librium equations become:

g (x) = ∂V
∂x

= ∂U
∂x

− ∂W
∂x

= f (x) − λp̄ = 0, (28)

where

f (x) = ∂U
∂x

(29)

is the global elastic force vector.

2.8 Secant stiffness matrix

By recalling Eqs. (23) and (24), and applying the chain rule
for differentiation, the elastic force vector can be expressed
as

f (x) =
m∑
e=1

∫

Ω̄e

de∑
α=1

de∑
β=1

∂ϕ̄

∂Eαβ

∂Eαβ

∂x
dV̄e. (30)

Furthermore, by recalling Eqs. (8), (20), and (21), the elas-
tic force vector becomes

f (x) =
m∑
e=1

Aᵀ
e fe (xe) , (31)
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where

fe (xe) = Se (xe) xe (32)

is the elastic force vector of the e-th element and

Se (xe) =
∫

Ω̄e

de∑
α=1

de∑
β=1

Sαβ�αβ dV̄e (33)

is the secant stiffness matrix of the same element. Here, the
matrix Se (xe) ∈ R

ned×ned depends on the nodal position
vector, xe, of the element and is always symmetric because
of the symmetry of the �-matrices defined in Eq. (12).

In general, the evaluation of the integral in Eq. (33) may
require numerical integration. This can be carried out by
using the Gauss quadrature method [1, 2]:

Se (xe) ≈
ge∑
h=1

de∑
α=1

de∑
β=1

(
Sαβ�αβ J̄

)|ξ=ξh
wh, (34)

where J̄ = 1/ det
(
J̄+Q̄

)
, ξh is the vector of natural coordi-

nates of the h-th Gauss point,wh is the corresponding weight
factor, and ge is the number of Gauss points of the element.

From Eqs. (8), (31), and (32), the global elastic force vec-
tor,

f (x) = S (x) x, (35)

is determined as a function of the global secant stiffness
matrix,

S (x) =
m∑
e=1

Aᵀ
e Se (xe)Ae. (36)

Equation (36) symbolically represents the assembly pro-
cedure of the stiffness matrix [1]. It is worth noting that the
global secant stiffnessmatrix,S (x) ∈ R

nd×nd , turns out to be
always symmetric because of the symmetry of the assembled
elemental matrices.

By substitutingEq. (35) into (28), the nonlinear static equi-
librium equations take the form:

g (x) = S (x) x − λp̄ = 0. (37)

2.9 Tangent stiffness matrix

The implementation of incremental-iterative solution meth-
ods, aswell as the evaluation of equilibrium stability, requires
the introduction of the tangent stiffness matrix [2, 3]:

T (x) = ∂f
∂x

= ∂ [S (x) x]
∂x

. (38)

By recalling Eqs. (8), (20), (33), (35), and (36), the global
tangent stiffness matrix can be expressed as follows:

T (x) =
m∑
e=1

Aᵀ
e Te (xe)Ae, (39)

where

Te (xe) = Se (xe) +

+
∫

Ω̄e

de∑
α=1

de∑
β=1

de∑
γ=1

de∑
δ=1

Cαβγ δ�αβxexᵀ
e �γδ dV̄e (40)

is the tangent stiffness matrix of the e-th element. In Eq. (40),

Cαβγ δ = ∂Sαβ

∂Eγ δ

= ∂2ϕ̄

∂Eαβ∂Eγ δ

, (41)

with α, β, γ, δ = 1, . . . , de, are the components of the
fourth-order material elasticity tensor [13].

From inspection of Eqs. (39) and (40), it is clear that both
T (x) ∈ R

nd×nd and Te (xe) ∈ R
ned×ned are symmetric

matrices. Also, it is worth noting that since x and u differ by
a constant, the position-based tangent stiffness matrix,T (x),
is numerically coincident with the displacement-based tan-
gent stiffness matrix, KT (u). In particular, the two addends
in Eq. (40) correspond to the so-called initial stress and con-
stitutive contributions to the tangent stiffness matrix [13].
Interestingly, since Se (xe) depends on the stress compo-
nents, Sαβ , compressive (negative) stresses add negatively
to the structural stiffness. This qualitatively explains why
increasing compressive stresses may cause a progressive loss
of structural stiffness, ultimately leading to local and global
instability phenomena.

Similarly to Eq. (34), the integral in Eq. (40) may be eval-
uated numerically by using the Gauss quadrature method [1,
2]:

Te (xe) ≈ Se (xe) +

+
ge∑
h=1

de∑
α=1

de∑
β=1

de∑
γ=1

de∑
δ=1

(
Cαβγ δ�αβxexᵀ

e �γδ J̄
)|ξ=ξh

wh .

(42)

3 Applications

3.1 Truss bar element

As a first application, a one-dimensional (de = 1), two-node
(ne = 2) truss bar element is developed, which can be used
to model both planar (d = 2) and spatial (d = 3) structures.
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Fig. 3 Truss bar element: parent element (top), mapped element in
reference configuration (bottom, left), and mapped element in current
configuration (bottom, right)

In a general configuration, the element is supposed to
occupy a region, Ωe, in the shape of a right cylinder with
straight centreline, Λe, and constant cross-section area, Ae.
The two nodes of the element are placed at the centres of
the cylinder bases. Let i = j e1 and j = j e2 denote the
indices of the element nodes. Thus, xi = Ki − O and
x j = K j − O are the position vectors of the element nodes
and xe = [

xi ; x j
] ∈ R

2d is the nodal position vector of the
element. The same quantities in the reference configuration
will be distinguished by bars on top of the symbols (Fig. 3).

Let us define

Li j = x j − xi = [−I I
]
xe (43)

as the vector going from Ki to K j . Then, the squared length
of the bar can be calculated as

L2
e = ‖Li j‖2 = Lᵀ

i jLi j . (44)

By substituting Eq. (43) into (44), the squared length can
be also expressed as

L2
e = xᵀ

e Δxe, (45)

where the following nodal-position difference matrix,

Δ =
[

I −I
−I I

]
, (46)

has been introduced.
For the truss bar element, the only relevant strain and

stress components are in the axial direction. To calculate such
components, a local coordinate, s̄1, is fixed in the reference
configuration of the element, Ω̄e. The local s̄1-axis is placed
with the origin at themidpoint, Ḡ, of the bar centreline, Λ̄e, in
the direction going from K̄i towards K̄ j . The corresponding
unit vector is

ā1 = 1

L̄e
L̄i j , (47)

where L̄i j = x̄ j − x̄i and L̄e = ‖L̄i j‖. The change-of-
reference matrix, Eq. (9), turns out to be

Q̄ = ā1 ∈ R
d×1. (48)

The parent element can be represented as Ω̂e = [−1, 1] ⊂
R. A single natural coordinate, ξ1, is introduced and linear
shape functions are assumed as follows:

Ne
1 (ξ1) = 1

2
(1 − ξ1) ,

Ne
2 (ξ1) = 1

2
(1 + ξ1) . (49)

The shape function matrix, Eq. (5), is

Ne (ξ1) = 1

2

[
(1 − ξ1) I (1 + ξ1) I

]
(50)

By substituting Eq. (50) into (15), the Jacobian matrix can
be calculated as

J̄ = 1

2

(
x̄ j − x̄i

) = 1

2
L̄i j ∈ R

d×1 (51)

and its pseudo-inverse, also recalling Eq. (44), turns out to
be

J̄+ = 2

L̄2
e

L̄ᵀ
i j ∈ R

1×d . (52)

By substituting Eqs. (47), (48), (49), and (52) into (18),
and again recalling Eq. (44), the derivatives of the shape
functions are obtained as

∂Ne
1

∂ s̄1
= − 1

L̄e
and

∂Ne
2

∂ s̄1
= 1

L̄e
. (53)
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Hence,

∂Ne

∂ s̄1
= 1

L̄e

[−I I
]
. (54)

By substituting Eq. (54) into (12), the following �-matrix
is obtained:

�11 =
(

∂Ne

∂ s̄1

)ᵀ
∂Ne

∂ s̄1
= 1

L̄2
e

Δ. (55)

Next, by substituting Eq. (55) into (11), the axial compo-
nent of the Green–Lagrange strain in the bar element,

E11 = 1

2L̄2
e

(xe + x̄e)ᵀ Δ(xe − x̄e) , (56)

is determined.
Lastly, by substituting Eq. (55) into (33) and (40), and

observing that the integrand functions are constant in the
reference volume element, V̄e = Āe L̄e, the secant stiffness
matrix,

Se = S11
Āe

L̄e
Δ, (57)

and tangent stiffness matrix,

Te = S11
Āe

L̄e
Δ + C1111

Āe

L̄3
e

Δxexᵀ
e Δ, (58)

of the truss bar element are obtained. In Eq. (58),

C1111 = ∂S11
∂E11

= ∂2ϕ̄

∂E2
11

(59)

is the component of the material elasticity tensor in the bar
axial direction or, in other words, the tangent elastic modulus
of the material.

More explicit expressions of Eqs. (57) and (58) can be
obtained, once the constitutive relationship between the axial
components of the second Piola–Kirchhoff stress, S11, and
Green–Lagrange strain, E11, are specified. Examples of such
relationships are given in Appendix C.2.

3.2 Plane triangular element

As a second application, a plane (de = 2) triangular element
with three nodes (ne = 3) is developed. The element can
be used to model either plane stress or plane strain elasticity
problems (d = 2), aswell as planar (d = 2) or spatial (d = 3)
thin membranes.

In a general configuration, the element is supposed to
occupy a region, Ωe, in the shape of a right triangular prism.

Fig. 4 Plane triangular element: parent element (top), mapped element
in reference configuration (bottom, left), andmapped element in current
configuration (bottom, right)

The height of the prism—corresponding to the thickness of
the element—is denoted by te. The three nodes of the element
are placed at the midpoints of the prism edges orthogonal
to the triangular bases. Let i = j e1 , j = j e2 , and k = j e3
denote the indices of the element nodes. Thus, xi = Ki −O ,
x j = K j − O , and xk = Kk − O are the position vectors of
the element nodes and xe = [

xi ; x j ; xk
] ∈ R

3d is the nodal
position vector of the element. The same quantities in the
reference configuration will be distinguished by bars on top
of the symbols (Fig. 4).

For the formulation of the element, it is assumed that all
quantities varying along the thickness can be reduced to the
mid-plane triangle, Δe, defined by the positions of the three
element nodes. Let us define

Li j = x j − xi = [−I I 0
]
xe (60)

and

Lki = xi − xk = [
I 0 −I

]
xe (61)

as the vectors going from Ki to K j and from Kk to Ki ,
respectively. Then, the internal angle, αi , of the triangle Δe

at vertex Ki can be calculated from
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cosαi = −Lᵀ
i jLki

Li j Lki
, (62)

where Li j = ‖Li j‖ and Lki = ‖Lki‖. Besides, the area of
Δe can be calculated as

Ae = 1

2
Li j Lki sin αi . (63)

For spatial problems (d = 3), the unit normal vector to
the mid-plane of the element can be calculated through the
following vector product:

ne = 1

2Ae
Lki × Li j . (64)

A system of local orthogonal coordinates is fixed in the
reference configuration of the triangular element, Ω̄e. Two
local axes, s̄1 and s̄2, are placed in themid-plane triangle, Δ̄e,
with origin at the centre point, Ḡ, and directions respectively
parallel and orthogonal to the direction going from K̄i to K̄ j .
The unit vectors of the local axes can be expressed as

ā1 = 1

L̄i j
L̄i j , (65)

where L̄i j = x̄ j − x̄i and L̄i j = ‖L̄i j‖, and

ā2 = L̄i j

2 Āe

(
ā1ā

ᵀ
1 − I

)
L̄ki , (66)

where L̄ki = x̄i − x̄k and L̄ki = ‖L̄ki‖.
The change-of-reference matrix, Eq. (9), turns out to be

Q̄ = [
ā1 ā2

] ∈ R
d×2. (67)

The parent element can be represented as Ω̂e = {(ξ1, ξ2) :
ξ1 ∈ [0, 1] , ξ2 ∈ [0, 1 − ξ1]} ⊂ R

2, where ξ1 and ξ2 are the
natural coordinates. Linear shape functions are assumed as
follows:

Ne
1 (ξ1, ξ2) = 1 − ξ1 − ξ2,

Ne
2 (ξ1, ξ2) = ξ1, and Ne

3 (ξ1, ξ2) = ξ2. (68)

The shape function matrix, Eq. (5), becomes

Ne (ξ1, ξ2) = [
(1 − ξ1 − ξ2) I ξ1I ξ2I

]
(69)

By substituting Eq. (69) into (15), the Jacobian matrix,

J̄ = [
L̄i j −L̄ki

] ∈ R
d×2, (70)

is calculated. Its pseudo-inverse, also recalling Eqs. (62),
(63), (65), and (66), turns out to be

J̄+ = 1

2 Āe

[
L̄ki (ā1 sin ᾱi − ā2 cos ᾱi )

ᵀ

L̄i j ā
ᵀ
2

]
∈ R

2×d , (71)

where ᾱi is the internal angle of the mid-plane triangle Δ̄e at
K̄i in the reference configuration.

By substituting Eqs. (67), (68), and (71) into (18), and
again recallingEq. (63), the derivatives of the shape functions
are obtained as

∂Ne
1

∂ s̄1
= − 1

L̄i j
,

∂Ne
2

∂ s̄1
= 1

L̄i j
,

∂Ne
3

∂ s̄1
= 0, (72)

∂Ne
1

∂ s̄2
= L̄ jk

1

2 Āe
,

∂Ne
2

∂ s̄2
= L̄ki

1

2 Āe
,

∂Ne
3

∂ s̄2
= L̄i j

1

2 Āe
, (73)

where

L̄i j
1 = āᵀ

1 L̄i j = L̄i j , L̄ jk
1 = āᵀ

1 L̄ jk, L̄ki
1 = āᵀ

1 L̄ki , (74)

with L̄ jk = x̄k − x̄ j .
By substituting Eqs. (72) and (73) into (12), the following

�-matrices are obtained:

�11 = 1

L̄2
i j

⎡
⎣

I −I 0
−I I 0
0 0 0

⎤
⎦ , (75)

�12 = 1

4 Āe L̄i j

⎡
⎢⎢⎣

−2L̄ jk
1 I

(
L̄ jk
1 − L̄ki

1

)
I −L̄i j

1 I(
L̄ jk
1 − L̄ki

1

)
I 2L̄ki

1 I L̄i j
1 I

−L̄i j
1 I L̄i j

1 I 0

⎤
⎥⎥⎦ ,

(76)

and

�22 = 1

4 Ā2
e

⎡
⎢⎢⎢⎣

(
L̄ jk
1

)2
I L̄ jk

1 L̄ki
1 I L̄ jk

1 L̄i j
1 I

L̄ki
1 L̄ jk

1 I
(
L̄ki
1

)2
I L̄ki

1 L̄i j
1 I

L̄i j
1 L̄

jk
1 I L̄i j

1 L̄
ki
1 I

(
L̄i j
1

)2
I

⎤
⎥⎥⎥⎦ . (77)

Then, from Eqs. (33) and (40), by observing that the inte-
grand functions are constant in the reference volume of the
element, V̄e = Āet̄e, the secant stiffness matrix,

Se = (S11�11 + 2S12�12 + S22�22)V̄e, (78)

and tangent stiffness matrix,

Te = Se +
2∑

α=1

2∑
β=1

2∑
γ=1

2∑
δ=1

Cαβγ δ�αβxexᵀ
e �γ δ V̄e, (79)
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of the triangular element are obtained. In Eq. (79),

Cαβγ δ = ∂Sαβ

∂Eγ δ

= ∂2ϕ̄

∂Eαβ∂Eγ δ

, (80)

with α, β, γ, δ ∈ {1, 2}, are the components of the material
elasticity tensor in the local reference of the element.

4 Numerical examples

4.1 Constitutive laws

One of the main advantages of the present formulation is
that any hyperelastic constitutive law can be implemented
by simply introducing the suitable expressions of the stress
and material elasticity tensor components into Eqs. (33) and
(40), respectively.

For the sake of illustration, in the following examples, two
material models are considered:

(i) a linear de Saint Venant–Kirchhoff material with strain
energy density [13]:

ϕ̄ = 1

2
λ
(
I E1

)2 + μ I E2 , (81)

where I E1 = trE and I E2 = trE2 are the first and second
invariants, respectively, of the Green–Lagrange strain tensor;

(ii) a neo-Hookean material with strain energy density [42]:

ϕ̄ = 1

4
λ
(
I C3 − ln I C3 − 1

)
+ 1

2
μ
(
I C1 − ln I C3 − 3

)
,

(82)

where I C1 = trC and I C3 = detC are the first and third invari-
ants, respectively, of the right Cauchy-Green strain tensor,
C = 2E + I.

In the above expressions, λ and μ are Lamé’s parameters
of the material, in turn related to the Young’s modulus, E ,
and Poisson’s ratio, ν, as follows:

μ = E

2 (1 + ν)
,

λ = νE

(1 + ν) (1 − 2ν)
. (83)

From Eqs. (81) and (82), the expressions of the com-
ponents of the second Piola–Kirchhoff stress and material
elasticity tensor can be derived by using Eqs. (21) and (41),
respectively. In Appendix C, such expressions are worked
out for the truss bar element in uniaxial stress and the
plane triangular element in plane stress. The limiting case of

Fig. 5 Von Mises truss: a vertical load is applied to the crown node

incompressible material—corresponding to ν → 1/2, hence
μ → E/3 and λ → +∞—is also explicitly calculated.

4.2 VonMises truss

As a first example, the two-bar planar truss depicted in Fig. 5
is analysed using the element formulation of Sect. 3.1. This
simple truss was originally proposed by von Mises [43, 44]
as a prototype for the study of elastic instability phenomena.

Depending on the angle of inclination of bars, θ , von
Mises trusses can be broadly classified as either ’shallow’
or ’steep’ (note that the exact distinction between the two
cases depends on the assumed strainmeasure and constitutive
law). The shallow von Mises truss is presented in textbooks
as the typical structure featuring snap-through instability
[41]. This type of response emerges even under the assump-
tions of small strains and linear constitutive law, provided
that static equilibrium is imposed in the current configura-
tion. However, Pecknold et al. [45] showed that, assuming
finite strains and the SVK material model, steep von Mises
trusses also feature bifurcation instability. They obtained
the analytical solution for a symmetric two-bar truss sub-
ject to vertical and horizontal loading. Ligarò and Valvo [46]
extended such solution to asymmetric two-bar trusses. Pelli-
ciari and Tarantino [47] formulated the equilibrium problem
for a symmetric vonMises truss under the general hypothesis
of hyperelasticmaterial. Theydeduced the analytical solution
for Mooney-Rivlin material and showed a numerical exam-
ple, where the equilibrium path is made of three separate
branches. Fonseca and Gonçalves [48] investigated further
the same problem, unveiling that for very steep two-bar
trusses, the three separate branches of the equilibrium path
merge and secondary bifurcation points arise. The interested
reader can find further details and a more comprehensive lit-
erature survey in the recent papers by Pelliciari et al. [49] and
Dao and Thi [50] (the latter with focus on dynamic analysis).

In the present study, a steep vonMises truss is considered.
The following numerical values are taken from the work by
Fonseca and Gonçalves [48]: half-base length, b = 25 mm;
angle of inclination of bars, θ = 75 deg; Lamé’s material
parameter, μ = 1.30 MPa; Poisson’s ratio, ν = 0.2 and 0.5
for the compressible and incompressible cases, respectively.

123



Computational Mechanics

Fig. 6 Equilibrium path of a steep von Mises truss subject to vertical
loading according to the SVK (top) and NH (bottom) material models

The samematerial parameters are here used for both the SVK
and NH material models. The reference load magnitude is
‖p̄A‖ = μ Āe/2, where Āe is the bar cross-section area in
the reference configuration.

A nonlinear analysis was conducted to trace the equilib-
rium path of the structure by using the admissible direction

cone (ADC) method by Ligarò and Valvo [46]. The ADC
method improves the accuracy of the classical arc-length
methods by Riks [51] and Crisfield [52] by varying the arc-
length increment as a function of the local curvature of the
path.

Figure6 shows a three-dimensional view of the obtained
equilibrium paths in the space of the load multiplier, λ, vs.
the vertical and horizontal components of displacement, uA,
of the crown node. According to the SVK material model,
the path turns out to be composed of an S-shaped primary
branch and an elliptic secondary branch. The primary branch
exhibits two bifurcation points, at which it intersects the sec-
ondary branch, and two limit points. According to the NH
material model, two more bifurcation points appear on the
primarybranch, fromwhich twounbounded tertiary branches
stem.

Table 1 reports the values obtained of the load multiplier
at the first critical points on the primary branch. An excellent
agreement can be appreciated between the results of present
analysis and previous studies of the literature.

4.3 Cook’s membrane

As a second example, the trapezoidal membrane depicted in
Fig. 7 is analysed. The membrane is clamped on its major
base and subject to a uniformly distributed shearing load,
p0, on its minor base. This problem was originally proposed
by Cook [53, 54] to test the performances of some newly
formulated quadrilateral finite elements in linear static anal-
ysis. More recently, Schröder et al. [42] selected Cook’s
membrane as a benchmark problem for nonlinear finite ele-
ment analysis. They considered both plane strain and plane
stress conditions, 2D and 3D finite element formulations,
compressible and nearly incompressible materials, as well
as elastic and elasto-plastic material models.

In the present study, Cook’s membrane is analysed by
using the 2D triangular element of Sect. 3.2 in plane stress
conditions. Both structured and unstructured meshes were

Table 1 Results for the von
Mises truss: load multiplier, λ,
at critical points

Material model Behaviour Critical point λ (present) λ [Ref.]

SVK Incompressible Bifurcation 0.7186 0.7186[45]
Limit 2.0813 2.0813[45]

SVK Compressible Bifurcation 0.5748 0.5748[45]
Limit 1.6650 1.6650[45]

NH Incompressible Bifurcation 1.1146 1.1[48]
Bifurcation 13.3100 13.3[48]
Limit 22.2600 22.3[48]

NH Compressible Bifurcation 0.8189 –

Bifurcation 8.2480 –

Limit 8.8193 –
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Fig. 7 Cook’smembrane. Themajor base is clamped to a fixed support.
A uniformly distributed shearing load is applied on the free vertical
edge. All dimensions are in mm. The thickness (not shown) is t = 1
mm

Fig. 8 Finite elementmodel ofCook’smembrane: structuredmeshwith
Nsubdiv = 4 (top) and unstructured mesh with Nsubdiv = 2 (bottom).
Reference nodes for checking the analysis results are: A, midpoint of
lower edge; B, midpoint of upper edge; C , midpoint of minor base; P ,
top right corner; Q, leftmost free node on upper edge

Table 2 Number of DOFs of structured and unstructured meshes of
Cook’s membrane

Nsubdiv Structured mesh Unstructured mesh
N N

2 18 74

4 50 248

8 162 912

16 578 3,496

32 2,178 13,578

64 8,450 53,686

Fig. 9 Analysis of Cook’s membrane with the SVK (top) and NH
(bottom) material models: reference and deformed configurations. The
figure refers to a structuredmeshwith N = 2, 178DOFs (Nsubdiv = 32)
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Fig. 10 Analysis of Cook’s membrane with the SVK (top) and NH
(bottom) material models: load multiplier vs. vertical displacement of
reference nodes. The figure refers to a structured mesh with N = 2, 178
DOFs (Nsubdiv = 32)

adopted (Fig. 8). The latter were created by using the gener-
ateMesh function available in the Partial Differential Equa-
tion Toolbox of MATLAB [55]. Convergence studies were
conducted by checking the analysis results in terms of dis-
placement and stress components at selected reference nodes.
To this aim,more andmore refinedmesheswere generated by
progressively increasing the number of subdivisions, Nsubdiv,
of theminor base of the trapezoidalmembrane. Table 2 shows
the number, N , of DOFs of the structured and unstructured
meshes. For the same number of subdivisions, unstructured
meshes have a greater number of DOFs. Besides, unstruc-
turedmeshes featuremoreuniformsize and lower aspect ratio
of elements—which is expected to improve convergence of
the analyses.

Both the SVK and NH material models are considered.
For the SVK model, the following numerical values are
assumed from Cook’s [54] paper: Young’s modulus E =

Fig. 11 Linear analysis of Cook’s membrane with the SVK material:
Cauchy stresses. The figure refers to an unstructured mesh with N =
13, 578 DOFs (Nsubdiv = 32)
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Fig. 12 Nonlinear analysis of Cook’s membrane with the NHmaterial:
second Piola–Kirchhoff stresses. The figure refers to an unstructured
mesh with N = 13, 578 DOFs (Nsubdiv = 32)

1 MPa; Poisson’s ratio, ν = 1/3; distributed shear load,
p0 = 1 N/(16 × 1 mm2). For the NH model, the material
properties are taken from the study by Schröder et al. [42]:
Young’s modulus E = 500 MPa; Poisson’s ratio, ν = 0.35;
distributed shear load, p0 = 20 N/mm2.

For the SVK material model, first, a linear analysis was
conducted to compare the present results with those by Cook
[54]. To this aim, the tangent stiffness matrix of the model
was evaluated in the reference configuration and inverted
to calculate the displacements produced by the assigned
loads. Then, a geometrically nonlinear analysis was con-
ducted under load control. The assigned load was applied
step by step by increasing the load multiplier, λ, between 0
and 1. At each incremental step, Newton–Raphson’s iterative
method was used to achieve convergence. For the NH mate-
rial model, only the nonlinear analysis under load control
was conducted.

Typical analysis results are shown in Figs. 9, 10, 11, and
12. In particular, Fig. 9 depicts some exemplary reference and
deformed configurations: it can be noted that the linear analy-
sis predicts larger displacementswith respect to the nonlinear
analysis. This is confirmed by the load vs. displacement plots
in Fig. 10: nonlinear analysis highlights a stiffening response
with the increase of load level. Figures11 and 12 show typ-
ical stress contour plots obtained from linear and nonlinear
analyses, respectively. These plots were created by using the
griddata function available in MATLAB [55] to interpolate
and extrapolate the stress values calculated at the centroids
of the elements over the whole region occupied by the mem-
brane.

Tables 3, 4, and 5 summarise the results of the convergence
study conducted for the linear analysis with the SVK mate-
rial. The vertical displacement, uC2 , of nodeC , the maximum
principal stress, σ A

I , at node A, and the minimum princi-
pal stress, σ B

II , at node B are reported as functions of the
number, N , of DOFs. The principal stresses were calculated
from the node-averaged global stress components evaluated
at the centroids of the adjacent elements. The same results
are also shown in graphical form in Fig. 13. As the number of
DOFs increases, all the considered results converge for both
structured and unstructured meshes: as expected, unstruc-
tured meshes perform better and achieve convergence faster
than structured meshes. A good agreement is observed with
the same quantities calculated byCook [54] with hybrid local
(HL) and hybrid global (HG) quadrilateral elements. Cook’s
analyses reached convergence with fewer elements: in this
respect, it should be noted that he used quadrilateral ele-
ments with variable strain and stress, while the present study
adopts triangular elements with constant strain and stress.

Table 6 shows the results of the convergence study con-
ducted for the geometrically nonlinear analysis with the SVK
material. It is noteworthy that, contrary to linear analysis,
the vertical displacement of the reference node, uC2 , does
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Table 3 Linear analysis of
Cook’s membrane with the SVK
material: convergence study for
the vertical displacement of
node C

Structured mesh Unstructured mesh HL elements [54] HG elements [54]

N uC2 /mm N uC2 /mm N uC2 /mm N uC2 /mm

18 11.9928 74 21.0768 18 18.169 18 22.323

50 18.2837 248 23.1536 50 22.023 50 23.516

162 22.0224 912 23.7436 162 23.393 162 23.803

578 23.4120 3,496 23.9039 578 23.805 578 23.911

2,178 23.8155 13,578 23.9483 – – – –

8,450 23.9241 53,686 23.9617 – – – –

Table 4 Linear analysis of
Cook’s membrane with the SVK
material: convergence study for
the maximum principal stress at
node A

Structured mesh Unstructured mesh HL elements [54] HG elements [54]

N σ A
I /MPa N σ A

I /MPa N σ A
I /MPa N σ A

I /MPa

18 0.0760 74 0.1763 18 0.1582 18 0.0933

50 0.1498 248 0.2112 50 0.1980 50 0.1628

162 0.1999 912 0.2277 162 0.2205 162 0.2060

578 0.2217 3,496 0.2327 578 0.2294 578 0.2225

2,178 0.2303 13,578 0.2343 – – – –

8,450 0.2339 53,686 0.2356 – – – –

Table 5 Linear analysis of
Cook’s membrane with the SVK
material: convergence study for
the minimum principal stress at
node B

Structured mesh Unstructured mesh HL elements [54] HG elements [54]

N σ B
II /MPa N σ B

II /MPa N σ B
II /MPa N σ B

II /MPa

18 −0.0360 74 −0.1262 18 −0.1335 18 −0.1394

50 −0.1002 248 −0.1687 50 −0.1700 50 −0.1566

162 −0.1567 912 −0.1908 162 −0.1931 162 −0.1844

578 −0.1844 3,496 −0.1978 578 −0.2005 578 −0.1952

2,178 −0.1954 13,578 −0.2001 – – – –

8,450 −0.1999 53,686 −0.2020 – – – –

not converge with mesh refinement. Indeed, for the meshes
with larger number of DOFs, the analyses under load control
failed before reaching the assigned load level (λ = 1). In such
cases, application of theADCarc-lengthmethod [46] showed
that a limit point with λ < 1 is present in the equilibrium
paths (Fig. 14). As a matter of fact, as the meshes get finer,
larger compressive stresses develop in the neighbourhood
of the upper left corner of the membrane (where a theoret-
ical stress singularity is expected). Such large compressive
stresses—associated to the higher deformability of the finer
meshes and the softening behaviour of the SVK material
in compression—lead to local instability. Similar instability
issues have been reported, amongst others, by Düster et al.
[56] and Pascon [57].

Moving on to the nonlinear analysis with the NHmaterial,
Tables 7, 8, and 9 show the results of the convergence study
in terms of the vertical displacement of the reference node,
P , and the maximum and minimum principal stresses, SA

I
and SB

II , at nodes A and B, respectively. The same results are
also shown in Fig. 15 in graphical form. As the number, N ,

of DOFs increases, all the considered quantities converge for
both structured and unstructuredmeshes. An excellent agree-
ment can be observed with the results obtained by Schröder
et al. [42] with hexaedral p-FEM and tetrahedral mixed
displacement-pressure (T2P0) elements. It should be noted,
however, that the p-FEMelements enable faster convergence
thanks to their higher-order shape functions.

Lastly, the behaviour is evaluated of the formulated trian-
gular element for nearly incompressible and incompressible
materials. Following Schröder et al. [42], one of Lamé’s
material parameters, μ = 500/2.7 MPa ≈ 185.185 MPa, is
kept fixed,while the other one,λ, is suitably increased, so that
Poisson’s ratio approaches the incompressibility limit. For
this study, the unstructured mesh with N = 53, 686 DOFs
was used. Results of this parametric study are presented in
Table 10. A very good agreement can be appreciated with
the results obtained by Schröder et al. [42] for nearly incom-
pressible materials. The present formulation was able to deal
also with the perfectly incompressible case (ν = 0.5), which
was not calculated in the cited study.
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Fig. 13 Linear analysis of Cook’s membrane with the SVK material:
convergence study for the vertical displacement of node C (top), the
maximum principal stress at node A (middle), and the minimum prin-
cipal stress at node B (bottom)

Table 6 Geometrically nonlinear analysis of Cook’s membrane with
the SVK material: convergence study for the vertical displacement of
node C

Structured mesh Unstructured mesh

N uC2 /mm N uC2 /mm

18 10.3524 74 14.4406

50 13.4883 248 15.0839

162 14.7593 912 15.2823

578 15.1620 3,496 *

2,178 15.3439 13,578 *

8,450 * 53,686 *

∗ No solution for λ = 1 due to a limit point with λ < 1

5 Discussion

The main advantage of the proposed position-based formu-
lation lies in the simplicity of its analytical formulation.
The expressions of the secant and tangent stiffness matri-
ces obtained in Sect. 2 for a general isoparametric element
can be specialised for elements with any given dimension, d,
and number of nodes, ne. In Sect. 3, this procedure has been
illustrated for a two-node truss bar element and a three-node
triangular element.

Furthermore, any hyperelastic constitutive law can be eas-
ily implemented without having to rewrite the software code
from scratch. This potential has been illustrated in Sect. 4 for
the de Saint Venant–Kirchhoff and neo-Hookean material
models. The present formulation is capable of dealing also
with incompressible materials, as illustrated for truss bars
and plane stress triangular elements. It should be mentioned,
however, that for incompressiblematerials in plane strain, the
PFEF—as well as the DFEF—might not work because the
constitutive laws for the stress components become indeter-
minate. To overcome such difficulties, a mixed formulation
with pressure DOFs could be adopted [58].

Contrary to most formulations of the literature, the secant
stiffness matrices obtained from the present formulation turn
out to be symmetric. This is favourable from the computa-
tional point of view as only the upper (or lower) triangular
parts need to be computed and stored in the computer mem-
ory. Moreover, specialised algorithms can be used for their
processing [59].

Compared to the standard DFEF, the PFEF is also advan-
tageous in terms of computation time. For the sake of
illustration, the analyses of the von Mises truss and Cook’s
membrane with the SVK material have been conducted also
by using the DFEF according to Appendix A. For the von
Mises truss, Table 11 shows the computation times, tDFEF
and tPFEF, corresponding to the two formulations and their
difference, Δt = tPFEF − tDFEF. The PFEF enabled a saving
in computation time up to 8.6%. However, since the absolute
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Fig. 14 Geometrically nonlinear analysis of Cook’s membrane with
the SVK material: view of the equilibrium paths in the plane of the
vertical displacement of node Q (close to the upper left corner of the
membrane) and load multiplier. The figure refers to structured (top)
and unstructured (bottom) meshes with increasing number of DOFs,
N . Circles mark the limit points for the load

computation times are few tenths of a second, these results
should be considered only as a general indication of the bet-
ter performances of the PFEF. For Cook’s membrane, Table
12 shows that the PFEF enabled savings in computation time

Table 8 Nonlinear analysis of Cook’s membrane with the NHmaterial:
convergence study for the maximum principal stress at node A

Structured mesh Unstructured mesh

N SA
I /MPa N SA

I /MPa

18 21.7036 74 42.0551

50 37.0794 248 48.0001

162 45.9609 912 50.7050

578 49.6442 3,496 51.5268

2,178 51.0995 13,578 51.8098

8,450 51.7072 53,686 52.0243

Table 9 Nonlinear analysis of Cook’s membrane with the NHmaterial:
convergence study for the minimum principal stress at node B

Structured mesh Unstructured mesh

N SB
II /MPa N SB

II /MPa

18 −9.3830 74 −31.0611

50 −24.5651 248 −40.3421

162 −37.9910 912 −47.1463

578 −45.0174 3,496 −48.9402

2,178 −48.0516 13,578 −49.3410

8,450 −49.3586 53,686 −50.0329

up to about 20%. This estimate is deemed to be more reli-
able, given the longer absolute computation times measured
in this case.

6 Conclusions

A position-based finite element formulation has been intro-
duced for the analysis of nonlinear elasticity problems.
Simple analytical expressions have been deduced for the
secant and tangent stiffness matrices of general isoparamet-
ric finite elements. Such expressions have been specialised
for a two-node truss bar element and a three-node triangu-
lar element. Contrary to most formulations of the literature,
the secant stiffness matrices turn out to be symmetric—with
positive consequences from the computational point of view.

Table 7 Nonlinear analysis of
Cook’s membrane with the NH
material: convergence study for
the vertical displacement of
node P

Structured mesh Unstructured mesh p-FEM [42] T2P0 elements [42]

N uP
2 /mm N uP

2 /mm N uP
2 /mm N uP

2 /mm

18 7.0138 74 10.5999 1,308 11.3781 3,696 11.3209

50 9.5423 248 11.1615 1,996 11.3782 14,304 11.3792

162 10.7716 912 11.3233 2,914 11.3793 31,824 11.3842

578 11.1999 3,496 11.3701 4,101 11.3803 56,256 11.3846

2,178 11.3318 13,578 11.3826 5,596 11.3808 87,600 11.3843

8,450 11.3708 53,686 11.3857 7,438 11.3811 125,856 11.3839
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Fig. 15 Nonlinear analysis of Cook’s membrane with the NH mate-
rial: convergence study for the vertical displacement of node P (top),
the maximum principal stress at node A (middle), and the minimum
principal stress at node B (bottom)

Table 10 Nonlinear analysis of Cook’s membrane with the NH mate-
rial: parametric study for nearly incompressible materials

λ/MPa ν uP
2 /mm uP

2 /mm [42]

432.1 0.35000 11.3857 11.3811

750 0.40099 11.1631 11.1564

9,260 0.49020 10.7930 10.7827

92,600 0.49900 10.7577 10.7464

926,000 0.49990 10.7541 10.7406

+∞ 0.50000 10.7537 –

Table 11 Analysis of the von Mises truss with the SVK material:
comparison of computation times

Material behaviour tDFEF/s tPFEF/s Δt/tDFEF (%)

Incompressible 0.308 0.282 −8.6

Compressible 0.287 0.279 −2.8

Table 12 Analysis of Cook’s membrane with the SVK material: com-
parison of computation times

N tDFEF/s tPFEF/s Δt/tDFEF (%)

18 0.069 0.057 −17.4

50 0.244 0.215 −11.9

162 0.856 0.653 −23.8

578 3.927 3.057 −22.2

2,178 18.229 14.194 −22.1

The formulation is valid for any hyperelastic constitu-
tive law. In this paper, the de Saint Venant–Kirchhoff and
neo-Hookean material models have been considered for
illustration. The effectiveness of the proposed formulation
has been proven through the analysis of two well-known
benchmark problems: the von Mises truss and Cook’s mem-
brane. An excellent agreement has been found with previous
results of the literature. Strengths and weaknesses of the pro-
posed formulation have been discussed. In particular, the
position-based formulation has been shown to be more com-
putationally efficient than the standard displacement-based
formulation.

Possible future developments of the present research
include, but are not limited to:

– implementation of other hyperelastic material models,
for instance to analyse wrinkling [60] and anisotropic
membranes [61];

– formulation of three-dimensional and higher-order ele-
ments: this development only requires the specialisation
of the general expressions of the stiffness matrices here
deduced for isoparametric elements;

123



Computational Mechanics

– formulation of structural elements for the analysis of
beams, plates, and shells: this extension requires the
introduction of rotational DOFs. This can be done, for
instance, by using Hermite polynomial shape functions,
as recently proposed for 2D and 3D Kirchhoff beams by
Armero [62, 63];

– application to form finding and structural optimisation
problems: to this aim, the formulation by Pauletti et al.
[34–37] could be enhanced with the introduction of spe-
cific constitutive laws;

– application to structural dynamics: in this direction, a first
study has been conducted on the dynamic simulation of
deployable cable nets for space applications [64];

– extension to rate-dependent material models, such as
elastoplasticity, viscoplasticity, and viscoelasticity: to
this aim, an objective stress rate shall be introduced, e.g.
the Jaumann rate. The interested reader can find further
details on this topic in the books by Wriggers [2], Bonet
et al. [13], and Simo and Hughes [65].

Appendix A: Displacement-based FE formu-
lation

In the DFEF, the Green–Lagrange strain is calculated based
on the nodal displacements. To this aim, the nodal displace-
ment vector of an element, ue = xe − x̄e can be substituted
into Eq. (11), which becomes

Eαβ =
(
x̄e + 1

2
ue

)ᵀ
�αβue. (84)

The strain components can be collected into a column
vector,

e =

⎧⎪⎨
⎪⎩

E11
...

Edede

⎫⎪⎬
⎪⎭

, (85)

and expressed in terms of the nodal displacements as follows:

e = B (ue) ue, (86)

where

B (ue) = B0 + B1 (ue) , (87)

is the strain–displacement matrix. It is the sum of a constant
part,

B0 =
⎡
⎢⎣

x̄ᵀ
e �11
...

x̄ᵀ
e �dede

⎤
⎥⎦ , (88)

and a part depending linearly on ue,

B1 (ue) = 1

2

⎡
⎢⎣

uᵀ
e �11
...

uᵀ
e �dede

⎤
⎥⎦ . (89)

If a linear constitutive law is assumed (according to
the SVK material model), then the second Piola–Kirchhoff
stresses can be expressed as follows:

Sαβ =
de∑

γ=1

de∑
δ=1

Cαβγ δEγ δ, (90)

where Cαβγ δ are the fourth-order material elasticity tensor
components. Then, by substituting Eqs. (84) and (90) into
Eqs. (32) and (33), the elastic force vector of the element is
obtained as a function of the nodal displacement vector:

fe (ue) = K̂e (ue) ue, (91)

where

K̂e (ue) =
∫

Ω̄e

de∑
α=1

de∑
β=1

de∑
γ=1

de∑
δ=1

Cαβγ δ ·

�αβ (x̄e + ue)
(
x̄e + 1

2
ue

)ᵀ
�γδ dV̄e (92)

is the secant stiffness matrix of the element. Matrix K̂e is
not symmetric, but can be replaced by a symmetric matrix as
explained below.

By substituting Eq. (92) into (91) and rearranging the
terms depending on x̄e and ue, the elastic force vector of
the element can be expressed as

fe (ue) = Ke (ue) ue, (93)

where

Ke (ue) = Ke
0 + Ke

1 (ue) + Ke
2 (ue) (94)
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is a symmetric secant stiffness matrix. In Eq. (94), the fol-
lowing three contributions appear: a constant term,

Ke
0 =

∫

Ω̄e

de∑
α=1

de∑
β=1

de∑
γ=1

de∑
δ=1

Cαβγ δ�αβ x̄ex̄ᵀ
e �γδ dV̄e, (95)

which corresponds to the stiffness matrix used in linear anal-
ysis; a linear term in ue,

Ke
1 (ue) = 1

2

∫

Ω̄e

de∑
α=1

de∑
β=1

de∑
γ=1

de∑
δ=1

Cαβγ δ ·

�αβ

[(
x̄euᵀ

e + uex̄ᵀ
e

)
�γδ + (

x̄ᵀ
e �γδue

)
I
]
dV̄e;

(96)

and a quadratic term in ue,

Ke
2 (ue) = 1

2

∫

Ω̄e

de∑
α=1

de∑
β=1

de∑
γ=1

de∑
δ=1

Cαβγ δ ·

�αβueuᵀ
e �γδ dV̄e. (97)

Unfortunately, the above procedure cannot be applied in
general for arbitrary nonlinear hyperelastic materials.

Appendix B: Kinematic restraints

If the system is subject to kinematic restraints in the form of
imposed nodal displacements, these can be incorporated into
the governing equations as explained in the following.

Let ρ ∈ R
N be a vector, whose generic component

ρI =
{
1, if the I -th DOF is restrained,

0, otherwise,
(98)

with I = 1, . . . , N . Besides, let P = diag (ρ1, . . . , ρN ) ∈
R

N×N be a matrix having the components of ρ on its main
diagonal.

The kinematic restraints can be described by the following
equations:

Px = P (x̄ + ū) , (99)

where ū ∈ R
N is a vector of imposed (not necessarily

null) nodal displacements. It should be noted that because
of multiplication by matrix P, only imposed displacements
corresponding to restrained DOFs will be effective.

Thegoverning static equilibriumequations canbededuced
from the stationarity of the total potential energyEq. (22) sub-
ject to restraint Eqs. (99). To this aim, themethod ofLagrange

multipliers can be exploited. Let us consider the Lagrangian
function

L (x,μ) = V (x) − μᵀP (x − x̄ − ū) , (100)

where μ ∈ R
N is a vector of Lagrange multipliers. The

stationarity of the Lagrangian function Eq. (100) is imposed
by setting to zero its derivatives with respect to x,

g (x) = ∂L
∂x

= S (x) x − p − r = 0, (101)

and μ,

h (x) = ∂L
∂μ

= −P (x − x̄ − ū) = 0. (102)

Equations (101) represent the static equilibrium equations
for a system with kinematic restraints. Here,

r = Pμ (103)

is the vector of nodal restraint reactions. Because of multi-
plication by matrix P, non-zero reactions can occur only at
restrained DOFs. Besides, it is easy to recognise that Eqs.
(102) are equivalent to the kinematic restraint Eqs. (99).

To solve the problem, it is convenient to introduce Eqs.
(102) into (101) in place of the equations containing the
unknown restraint reactions. As a result, the following static-
kinematic governing equations are obtained:

g∗ (x) = S∗ (x) x − p∗ = 0, (104)

where the modified secant stiffness matrix,

S∗ (x) = (I − P)S (x) (I − P) + P, (105)

and modified load vector,

p∗ = (I − P) p + [I − (I − P) S (x)]P (x̄ + ū) , (106)

have been defined. In Eqs. (105) and (106), I ∈ R
N×N is the

identity matrix.

Appendix C: Constitutive laws

C.1 Stress–strain relationships

For each assumedmaterial model, the specific expressions of
the second Piola–Kirchhoff stress tensor, S, can be obtained
by suitably differentiating the strain energy density func-
tion, ϕ̄, with respect to the Green–Lagrange strain tensor,
E, according to Eq. (21). Thus, after some manipulations
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and simplifications (for further details, see also [13]), from
Eqs. (81) and (82), the following stress–strain relationships
are obtained for the SVK material,

S = λI E1 I + 2μE, (107)

and the NH material,

S = 1

2
λ
(
I C3 − 1

)
C−1 + μ

(
I − C−1

)
. (108)

In the principal strain reference system, the stress–strain
relationships become as follows for the SVK material,

Sα = λ (EI + EI I + EI I I ) + 2μEα, (109)

and the NH material,

Sα = 1

2
λ (CICI ICI I I − 1)

1

Cα

+ μ

(
1 − 1

Cα

)
, (110)

where Eα and Cα denote the principal values (eigenvalues)
of tensors E and C, respectively, with α ∈ {I , I I , I I I }.

C.2 Truss bar element

The truss bar element is assumed to be in a uniaxial stress
state with the first principal direction, I , coincident with the
axial direction and the other two principal directions, I I and
I I I , lying in the cross-section plane. Thus, by substituting
SI I = SI I I = 0 into Eqs. (109) and (110), the principal
strains in the cross-section plane are obtained. Then, the axial
component of the second Piola–Kirchhoff stress, S11 = SI ,
turns out to be

S11 = EEI = EE11 (111)

for the SVK material and

S11 = μ

(
1 + μ/λ

C2
I

−
√
1 + 2μ/λ

C3
I

+ (μ/λ)2

C4
I

)
, (112)

with CI = 2EI + 1 = 2E11 + 1, for the NH material. It is
worth noting that, for incompressible materials, λ → +∞
and the latter equation simplifies to

S11 = μ

(
1 − 1

C3/2
I

)
. (113)

According to Eqn. (59), the tangent elastic modulus is

C1111 = E (114)

for the SVK material and

C1111 = μ

C3
I

⎡
⎣4 (μ/λ)2 + 3 (1 + 2μ/λ)CI√

(μ/λ)2 + (1 + 2μ/λ)CI

− 4μ/λ

⎤
⎦(115)

for the NH material. For incompressible materials, the latter
equation reduces to

C1111 = 3μ
1

C5/2
I

. (116)

C.3 Plane triangular element

The triangular element is assumed to be in a plane stress
state with null stress along the third principal direction, I I I ,
normal to the element mid-plane. By substituting SI I I = 0
into Eqs. (109) and (110), the principal strain in the same
direction is calculated. Then, the components are detemined
of the second Piola–Kirchhoff stress along the in-plane prin-
cipal directions, I and I I :

SI = E

1 − ν2
(EI + νEI I ) , (117)

SI I = E

1 − ν2
(νEI + EI I ) , (118)

for the SVK material and

SI = μ

(
1 − 1

CI

1 + 2μ/λ

CICI I + 2μ/λ

)
, (119)

SI I = μ

(
1 − 1

CI I

1 + 2μ/λ

CICI I + 2μ/λ

)
, (120)

withCI = 2EI +1 andCI I = 2EI I +1, for theNHmaterial.
For incompressible materials, the latter expressions reduce
to

SI = μ

(
1 − 1

C2
I CI I

)
, (121)

SI I = μ

(
1 − 1

CIC2
I I

)
. (122)

The stress components in the local reference system of the
element can be obtained from a suitable rotation as follows:

S11 = SI + SI I
2

+ SI − SI I
2

cos 2 θI , (123)

S22 = SI + SI I
2

− SI − SI I
2

cos 2 θI , (124)

S12 = SI − SI I
2

sin 2 θI , (125)
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where θI is the angle between the local s̄1-axis and the first
principal direction, I , as computed from the following equa-
tion:

tan 2 θI = 2E12

E11 − E22
, (126)

where E11, E22, and E12 are the components of the Green–
Lagrange strain tensor in the local reference system. In the FE
implementation, such components are calculated from Eqn.
(11) with Eqns. (75)–(77). Then, EI and EI I are obtained
from a suitable rotation of the tensor.

Lastly, the components of the material elasticity tensor
Eqn. (80) in the local reference system are computed from
the derivatives of the stresses in the principal strain directions
by applying a suitable rotation as follows [13]:

C1111 = c4
∂SI
∂EI

+ c2s2
(

∂SI
∂EI I

+ ∂SI I
∂EI

)
+ s4

∂SI I
∂EI I

+ 2c2s2
ΔS

ΔE
, (127)

C1112 = c3s

(
∂SI
∂EI

− ∂SI
∂EI I

)
+ cs3

(
∂SI I
∂EI

− ∂SI I
∂EI I

)

− cs
(
c2 − s2

) ΔS

ΔE
, (128)

C1122 = c2s2
∂SI
∂EI

+ c4
∂SI
∂EI I

+ s4
∂SI I
∂EI

+ c2s2
∂SI I
∂EI I

− 2c2s2
ΔS

ΔE
, (129)

C1212 = c2s2
(

∂SI
∂EI

− ∂SI
∂EI I

− ∂SI I
∂EI

+ ∂SI I
∂EI I

)

+ 1

2

(
c2 − s2

)2 ΔS

ΔE
, (130)

C1222 = cs

(
s2

∂SI
∂EI

+ c2
∂SI
∂EI I

− s2
∂SI I
∂EI

− c2
∂SI I
∂EI I

)

+ cs
(
c2 − s2

) ΔS

ΔE
, (131)

C2222 = s4
∂SI
∂EI

+ c2s2
(

∂SI
∂EI I

+ ∂SI I
∂EI

)
+ c4

∂SI I
∂EI I

+ 2c2s2
ΔS

ΔE
, (132)

where c = cos θI , s = sin θI , and

ΔS

ΔE
= SI − SI I

EI − EI I
. (133)
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61. Firouzi N, Żur KK (2023) On the generalized nonlinear mechanics
of compressible, incompressible, isotropic, and anisotropic hyper-
elastic membranes. Int J Solids Struct 264:112088. https://doi.org/
10.1016/j.ijsolstr.2022.112088

62. Armero F (2024)AnewHermite finite element for nonlinearKirch-
hoff rods: the plane case. Int J Numer Meth Eng 125(12):e7448.
https://doi.org/10.1002/nme.7448

63. Armero F (2024) A finite element for nonlinear three-dimensional
Kirchhoff rods. Comput Struct 299:107393. https://doi.org/10.
1016/j.compstruc.2024.107393

64. Fisicaro P, Pasini A, Valvo PS (2022) Simulation of deploy-
able cable nets for active debris removal in space. J Phys: Conf
Ser 2412(1):012010. https://doi.org/10.1088/1742-6596/2412/1/
012010

65. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer,
New York . https://doi.org/10.1007/b98904

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.2514/3.5594
https://doi.org/10.2514/3.5594
https://doi.org/10.1061/JSDEAG.0003877
https://doi.org/10.1061/JSDEAG.0003877
https://www.mathworks.com
https://www.mathworks.com
https://doi.org/10.1016/j.cma.2003.07.003
https://doi.org/10.1016/j.cma.2003.07.003
https://doi.org/10.1007/s40091-019-00234-w
https://doi.org/10.1007/s40091-019-00234-w
https://doi.org/10.1007/978-1-4612-3172-1_6
https://doi.org/10.1007/978-1-4612-3172-1_6
https://doi.org/10.1137/0614039
https://doi.org/10.1016/j.ijmecsci.2021.106816
https://doi.org/10.1016/j.ijmecsci.2021.106816
https://doi.org/10.1016/j.ijsolstr.2022.112088
https://doi.org/10.1016/j.ijsolstr.2022.112088
https://doi.org/10.1002/nme.7448
https://doi.org/10.1016/j.compstruc.2024.107393
https://doi.org/10.1016/j.compstruc.2024.107393
https://doi.org/10.1088/1742-6596/2412/1/012010
https://doi.org/10.1088/1742-6596/2412/1/012010
https://doi.org/10.1007/b98904

	Symmetric stiffness matrices for isoparametric finite elements in nonlinear elasticity
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Main idea
	1.3 Comparison with similar approaches
	1.4 Paper organisation

	2 Theoretical formulation
	2.1 Finite element discretisation
	2.2 Isoparametric elements
	2.3 Assembly
	2.4 Strain
	2.5 Stress
	2.6 Potential energy
	2.7 Equilibrium equations
	2.8 Secant stiffness matrix
	2.9 Tangent stiffness matrix

	3 Applications
	3.1 Truss bar element
	3.2 Plane triangular element

	4 Numerical examples
	4.1 Constitutive laws
	4.2 Von Mises truss
	4.3 Cook's membrane

	5 Discussion
	6 Conclusions
	Appendix A: Displacement-based FE formulation
	Appendix B: Kinematic restraints
	Appendix C: Constitutive laws
	C.1 Stress–strain relationships
	C.2 Truss bar element
	C.3 Plane triangular element

	References


