
ar
X

iv
:2

40
5.

08
46

1v
1 

 [
m

at
h.

A
P]

  1
4 

M
ay

 2
02

4

Velocity-vorticity geometric constraints

for the energy conservation of 3D ideal

incompressible fluids

Luigi C. Berselli and Rossano Sannipoli

Dipartimento di Matematica - Università di Pisa, Italy

email: luigi.carlo.berselli@unipi.it, rossano.sannipoli@dm.unipi.it

May 15, 2024

Abstract

In this paper we consider the 3D Euler equations and we first prove
a criterion for energy conservation for weak solutions with velocity sat-
isfying additional assumptions in fractional Sobolev spaces with respect
to the space variables, balanced by proper integrability with respect to
time. Next, we apply the criterion to study the energy conservation of
solution of the Beltrami type, carefully applying properties of products
in (fractional and possibly negative) Sobolev spaces and employing a
suitable bootstrap argument.
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1 Introduction

We consider the homogeneous incompressible 3D Euler equations

$

’

&

’

%

Btu ` pu ¨ ∇q u ` ∇p “ 0 pt, xq P p0, T q ˆ T
3,

div u “ 0 pt, xq P p0, T q ˆ T
3,

up0, xq “ u0pxq x P T
3,

(1.1)

where T
3 :“ R

3zZ3, and u : p0, T q ˆ T
3 Ñ R

3 and p : p0, T q ˆ T
3 Ñ R

represent respectively the velocity vector field and the kinematic pressure of
an ideal fluid. It is well known that for smooth solution to (1.1) (which are
known to exists only locally in time) the kinetic energy

Eptq “
1
2

ż

T3

|upt, xq|2 dx “
1
2

}uptq}2
2,
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is constant. Let u and p smooth enough to perform the following calcula-
tions: we rewrite the convective term of (1.1)1 as follows

pu ¨ ∇q u “ divpu b uq.

Multiplying (1.1)1 by the solution itself, and integrating over the domain,
we get, that }uptq}2

2 “ }u0}2
2 since

ż

T3

divpu b uq : u dx “ ´

ż

T3

pu b uq : ∇u dx “ ´

ż

T3

u ¨ ∇
|u|2

2
dx “ 0.

We report this very basic calculation since we will use it several times and
also since we will show how it changes with a curl-formulation of the con-
vective term.

Since physical experiments show that taking the limit as the viscosity
vanishes, the energy dissipation seems not to vanish (cf. Frisch [18]), it has
been a subject of many studies to understand if this conservation remains
valid supposing certain (limited) regularity on the solution of the Euler
equation. In 1954, Lars Onsager [23] conjectured that if u is sufficiently
regular in space, say u P L8p0, T ; Cθq, with θ ą 1

3
, then the kinetic energy

is preserved; on the other hand for θ ă 1
3

a dissipation phenomenon could be
possible, even in absence of viscosity. The positive part of this conjecture was
solved 40 years later by Constantin, E, Titi (see [12]), where they proved a
slightly more general result in Besov spaces (which implies the Hölder case).
See also Eyink [17]. To be more precise, in [12] it is proved the conservation
of energy if u P L3p0, T ; Bθ

3,8q, for θ ą 1
3
. Sharpest results were proved

later on by Duchon and Robert [15] and Cheskidov et al. [10]. Results in
scales of classical Hölder functions are proved in [7], while the boundary value
problem is analyzed in Bardos and Titi [2]. In the last fifteen years –starting
from the celebrated result by De Lellis and Székelyhidi [13]– also the negative
part of the Onsager conjecture has been addressed, with an endpoint in the
work by Isett [20] and Buckmaster et al. [9]. Nevertheless there is still
a strong activity to determine the minimal space-time assumptions which
are sufficient for the energy conservation, and some recent results are those
in [8, 26].

Taking inspiration also from the work by De Rosa [14] and Liu, Wang,
and Ye [21], we consider here criteria in scales of fractional Sobolev spaces,
instead of Besov or Hölder spaces. This will allow us also to obtain sharp
results which reach the critical exponents, see the discussion in Lemma 2.7.

The first result we prove concerns the conservation of energy in the
fractional Sobolev setting. We restrict to the Hilbertian case W s,2pT3q “
HspT3q, but similar results in scales of fractional Sobolev spaces W s,ppT3q
can be obtained along the same lines.

Theorem 1.1. Let u P L
5

2s p0, T, HspT3qq, with 5
6

ď s ă 5
2
, be a weak

solution to the Euler equation (1.1). Then, the kinetic energy is conserved,
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that is
}uptq}L2pT3q “ }u0}L2pT3q for a.e. t P r0, T s.

We observe that the condition L3p0, T ; H5{6pT3qq is exactly the same con-
dition proved in Cheskidov, Friedlander, and Shvydkoy [11] for the Navier-
Stokes equations (even if a more technical setting of the problem with bound-
aries), see also Beirao and Yiang [5, Prop. 4.5], again in the viscous case. In
this paper we identify the same as a sufficient condition also for the prob-
lem without viscosity. In this respect note also that the extension to the
Euler equations of results known for the Navier-Stokes equations is one of
the results proved in [8]. Note also that, similar to other observations in
Nguyen, Nguyen, and Tang [22], Wang et al. [26], the criteria involve the
“critical spaces” and not slightly smaller spaces, as when considering Besov
or Hölder spaces, cf. [7, 12], where the smooth functions are not dense with
respect to the norm of the space itself.

As an application of the criteria in Theorem 1.1 (which are obviously valid
also for periodic Leray-Hopf weak solutions to the Navier-Stokes equations),
we analyze the energy conservation of a family of solutions with a particu-
lar geometric meaning: the Beltrami (also known as Trkal) flows. Beltrami
solutions are well known in fluid dynamics as they provide a family of sta-
tionary solutions to the Euler equations (1.1). These are such that the curl
of the velocity field, denoted by ω :“ ∇ˆu, is proportional to the field itself,
i.e.

ωpx, tq “ λpx, tqupx, tq, (1.2)

where λp¨, ¨q is a suitable scalar function of the space and/or time variables.
Note that these flows, despite being in some cases very simple and smooth

(note that for instance potential flows are Beltrami flows with λ ” 0) they
are genuinely 3D flows, since in 2D the (scalar) vorticity is orthogonal to
the plane of motion.

In addition, we observe that, by using the so-called Lamb vector ω ˆ u, it
is possible to write the alternative rotational formulation of the convective
term

pu ¨ ∇q u “ ω ˆ u `
1
2

∇|u|2.

This implies that in the case of Beltrami flows the convective term is equal to
a gradient (Bernoulli pressure) which can be included in the pressure: Bel-
trami flows (if smooth) satisfy linear (non-local) evolution equations, since
the quadratic term becomes simply a gradient and the nonlinearity disap-
pears. This means that the flow is laminar, but there are two caveat: a)
the numerical simulation of the pressure and especially that of the Bernoulli
pressure is particularly critical: if not using pressure-robust numerical meth-
ods, the result at very high Reynolds numbers could be affected by large os-
cillations (see Gauger, Linke, and Schroeder [19]); b) more important from
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the theoretical point of view is the fact that pω ˆ uq ¨u formally vanishes; for
non-smooth functions the fact pω ˆ uq ¨ u “ 0 (at most almost everywhere)
does not directly imply that

ż t

0

ż

T3

pω ˆ u `
1
2

∇|u|2q ¨ u dxdτ “ 0,

since the integration could be not justified. One sufficient condition could
be that of showing that the above integral exists: then it will vanish, but
unfortunately this is not the case for weak solutions. At least with respect
to the space variables, u P L2pT3q and the vorticity field is a distribution in
H´1pT3q and so the term pω ˆ uq ¨ u could be not defined.

We start making some observations on the regularity which follows from
the geometric constraint (1.2). If λpx, tq ” λ P R (such a condition corre-
sponds to the circularly polarized plane waves used in electromagnetism),
then u is smooth and the conservation of energy is an obvious consequence.
This follows by a standard bootstrap argument using the Biot-Savart for-
mula: in fact using that ´∆u “ curl ω, from u P L8p0, T ; L2pT3qq we
can infer by elliptic regularity in the space variables that then ω “ λu P
L8p0, T ; L2pT3qq, which implies u P L8p0, T ; H1pT3qq. Iterating we get
u P L8p0, T ; H3q, which is a class of classical solutions. This implies that
a continuation argument for smooth solutions is valid, provided that the
initial datum is smooth.

The second observation comes from a simple computation in the case in
which λpx, tq “ λptq P Lpp0, T q, for some p ě 1. Observe that in this case
∇¨ω “ λptq∇¨u “ 0, so the divergence-free constraint is satisfied without any
further assumption on λptq. Then (1.2) implies that ω P Lpp0, T ; L2pT3qq,
and consequently we have more regularity on u, indeed u P Lpp0, T ; H1pT3qq.
Iterating this procedure we get that if λptq P Lpp0, T q, for some p ě 1, and
u P L8p0, T ; L2pT3qq then

ω P L
p

3 p0, T ; H2pT3qq ãÝÑ L
p

3 p0, T ; L8pT3qq.

Hence, if p ě 3, this is the Beale-Kato-Majda [3] criterion for continuation
of smooth solutions (which conserve the energy). Hence, a first elementary
results is the following.

Proposition 1.2. Let u be a weak solution to the Euler equations, which is
a Beltrami solution with λ P Lpp0, T q, with p ě 3. Let u0 P H3pT3q, with
∇ ¨ u0 “ 0, then u is the unique a classical solution of (1.1) in r0, T s and
conserves the energy.

If λ depends also on the space variables a compatibility condition to pre-
serve the divergence condition is that ∇λ¨u “ 0. This has some consequences
on the effective velocity fields to be considered, especially if the solutions
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are classical, see Beltrami [6] and Trkal [25]. For recent results on possi-
ble existence of non-trivial Beltrami fields, see Enciso and Peralta [16] and
Abe [1]. In our case we suppose to have a weak solution, which is also a
Beltrami field and work directly on it.

The second Theorem we prove is about the conservation of energy when
u is a Beltrami field.

Theorem 1.3. Let be a weak solution to the Euler equation (1.1), such that
it is a Beltrami field, i.e. (1.2) is satisfied. If λ P Lβp0, T, Hτ pT3qq, with
β ą 5

2τ´1
, for 1

2
ă τ ď 3

2
, or if λ P L5{2p0, T ; Hτ pT3qq, with τ ą 3

2
, then the

kinetic energy is conserved.

This result derives from Theorem 1.1 after a proper (even iterated) use of
some precise results about the continuity of the multiplication operator in
(negative) Sobolev spaces, see the results summarized in the next section.

Plan of the paper: In Section 2 we give some basic definition and
introduce functional spaces we will work with, recalling different results
that will be used later on in the paper. In Section 3 we will give the proofs
of the two main results, namely Theorems 1.1-1.3.

2 Preliminaries

2.1 Functional Spaces and weak solutions

In this paper we will use the classical periodic Lebesgue spaces pLppT3q, }¨}pq
and Sobolev spaces pW k,ppT3q, }¨}W k,pq of natural order k P N, all considered
with zero mean value. When p “ 2 we also use the notation Hk “ W k,2pT3q.
Here we will denote by p¨, ¨q and } ¨ } the scalar product and the norm in
L2pT3q respectively. In addition we do not distinguish norm of scalar or
vector valued functions.

A central role in this paper will be played by the fractional Sobolev spaces
that we define in the following (see [4]).

Definition 2.1 (Fractional Sobolev spaces). Let s P R and 1 ď p ď 8. We
define the Sobolev-Slobodeckij spaces as follows

• Let s P p0, 1q, then we will say that u P W s,ppT3q if

}u}W s,p :“ }u}p ` rusW s,p ă 8,

where

rusW s,p “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ˆ
ż

T3

ż

T3

|upxq ´ upyq|p

|x ´ y|n`sp
dxdy

˙ 1

p

p P r1, `8q

ess sup
x,yPT3

x‰y

|upxq ´ upyq|

|x ´ y|s
p “ 8;
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• Let s “ θ ` k, with θ P p0, 1q and k P N0. Then, we will say that
u P W s,ppT3q if

}u}W s,p :“ }u}W k,p `
ÿ

|r|“k

rBrusW θ,p ă 8;

• If s ă 0, and p1 is the Sobolev conjugate exponent of p, then

W s,ppT3q “ pW ´s,p1
pT3qq˚,

where ˚ denotes the topological dual space.

Remark 2.2. Note that for p “ 2 one can use also an equivalent semi-norm
rusW α,2 “ }p´∆qα{2u}L2 .

In the case of the whole space, but also for bounded domains with a
proper definition of the restriction fractional spaces can be defined even by
means of Bessel potentials, and in this case the space is denoted in literature
by Hs,ppΩq. For our purposes, we do not give this definition since for s P R

and p “ 2, the two definitions coincide, see Triebel [24] . That is why we
will denote W s,2pΩq as HspΩq.

Here we state some propositions that will be useful when considering
the product of two fractional Sobolev functions u P Hs1pT3q, λ P Hs2pT3q
(see [4, Thm 6.1, 7.3, 8.1, 8.2] for the whole space case and the results in
the periodic setting follow along the same lines. Here results are rephrased
in the simpler case pi “ p “ 2 ).

The first proposition regards the case of non-negative exponents.

Proposition 2.3. Let s, si P R be parameters such that for i “ 1, 2

1. s ě 0;

2. si ě s;

3. s1 ` s2 ´ s ą 3
2
.

If u P Hs1pT3q and λ P Hs2pT3q, then λu P HspT3q and the map of pointwise
multiplication

Hs1pT3q ˆ Hs2pT3q Ñ HspT3q,

is continuous and bilinear. Moreover if s P N0, the strictness of inequalities
p2q and p3q can be interchanged.

In the case of non-negative exponents we have the following proposition

Proposition 2.4. Let s, si P R be parameters such that for i “ 1, 2

1. si ě s;

6



2. mints1, s2u ă 0;

3. s1 ` s2 ě 0;

4. s1 ` s2 ´ s ą 3
2
.

If u P Hs1pT3q and λ P Hs2pT3q, then λu P HspT3q and the map of pointwise
multiplication

Hs1pT3q ˆ Hs2pT3q Ñ HspT3q,

is continuous and bilinear. Moreover, if we substitute the condition p2q by
the condition

5. mints1, s2u ě 0 and s ă 0,

and the inequality p3q is strict, the same result holds.

Additionally, if s R N0, proposition 2.3 is valid even in open and bounded
set with Lipschitz boundary.

To complete these definitions we will say that the Bochner measurable
function u P Lqp0, T, W s,ppΩqq if the following norm

}u}LqpW s,pq :“

$

’

’

&

’

’

%

ˆ

şT

0
}uptq}q

W s,p dt

˙ 1

q

if q ă 8,

ess sup
tPr0,T s

}uptq}W s,p if q “ 8,

is finite.
We want to introduce now the notion of a weak solution to the Euler equa-
tions, it is necessary to introduce the spaces H and V , which are respectively
the closure in L2pT3q and W 1,2pT3q of the smooth, periodic, divergence-free
and with zero mean-value vector fields. The space of test functions will be

DT “ tϕ P C8
0 pr0, T r; C8pT3qq : ∇ ¨ ϕ “ 0u.

Now we are able to define the notion of weak solutions for the Euler equations
which we will consider.

Definition 2.5. Let v0 P H. A measurable function v : p0, T q ˆ T
3 Ñ T

3 is
called a weak solution to the Euler equation if v P L8p0, T, Hq is such that

ż 8

0

rpv, Btϕq ` ppv b vq, ∇ϕqs dt “ ´pvp0q, ϕp0qq @ ϕ P DT .

7



2.2 Mollification

A fundamental tool in the sequel will be that of mollification and we recall
the most relevant properties, stated for periodic functions. Let us consider
a centrally symmetric function ρ P C8

0 pR3q, such that ρ ě 0, supp ρ Ă B1p0q
and }ρ}L1pR3q “ 1. Let ε P p0, 1s, we define the family of Friederichs mollifiers
as follows ρεpxq “ ε´3ρpε´1xq. Then for every f P L1

locpT3q we can define
the well-posed mollification of f , that is

fεpxq “

ż

T3

ρεpx ´ yqfpyq dy “

ż

T3

ρεpyqfpx ´ yq dy,

which is nothing else the convolution of ρε and f .
Since for small ε ą 0, supp ρε Ă Bεp0q Ăs ´ π, πr3, then we can say that

fεpxq “

ż

T3

ρεpyqfpx ´ yq dy.

We note that if f P L1pT3q, then f P L1
locpT3q and fε is 2π-periodic along

the xi-axis, for i “ 1, 2, 3.
Apart classical result on mollification in Lebesgue, Hölder and, Sobolev

spaces, most of the results can be extended to fractional Sobolev spaces. An
useful Lemma, contained in [14], can be summarized as follows.

Lemma 2.6. Let f, g : T
3 Ñ T

3 are such that f P W α,ppT3q and g P
W β,qpT3q, for some 0 ă α, β ă 1 and p, q ě 1 such that 1

p
` 1

q
“ 1

m
. Then.

for every 1 ď m ă `8, there exists a constant C “ Cpmq, such that

}∇fε}p ď Cεα´1rf sW α,p , (2.1)

}pf b gqε ´ fε b gε}m ď Cεα`βrf sW α,prgsW β,q . (2.2)

Moreover, in the case α “ β “ 0 it also follows that

lim sup
εÑ0

}pf b gqε ´ fε b gε}m “ 0. (2.3)

We end this section with a Lemma whose proof comes from the esti-
mate (2.1) and the fact that C8pT3q is dense in W α,ppT3q, as it is done
in [22, Lemma 2.1] for the case α “ 0

Lemma 2.7. Let f : T3 Ñ T
3 be a function in Lqp0, T ; W α,ppT3qq, for some

α Ps0, 1r. Then, for every 1 ď p, q ă 8, we have

lim sup
εÑ0`

ε1´α}∇fε}LqpLpq “ 0.

Moreover if f P Lqp0, T ; LppT3qq, then

lim sup
εÑ0`

}fε ´ f}LqpLpq “ 0.

8



Proof. The proof of this result is based on the observation that, if f P
W α,ppT3q, then fε is infinitely smooth but higher norms are not uniform
bounded in ε ą 0. In particular, from (2.1) one can deduce immediately the
boundedness

sup
εą0

ε1´α}∇fε}Lp ď Crf sW α,p ă `8.

To prove the Lemma it is enough to observe that for each λ ą 0 we can
find g P C8pT3q such that }f ´ g}W α,p ă λ. Then, applying again the
estimate (2.1) to f ´ g one gets

ε1´α}∇fε}p ď ε1´α}∇gε}p ` Crf ´ gsW α,p ď ε1´α}∇gε}p ` Cλ.

Since λ can be chosen arbitrarily small and since limεÑ0 ε1´α}∇gε}p “ 0
(being g smooth and fixed) we get the proof. The need for the density of
smooth function excludes the case p “ 8 and, more generally excludes from
this type of results Nikol’skĭı and Hölder spaces. Then, the extension to f

in the Bochner space Lqp0, T ; W α,ppT3qq is simply obtained by raising to the
q-th power the above estimate and integrating over p0, T q. l

3 Main results

In this section we give the proof of the main results of the paper. We start
with the proof of a criterion about conservation of energy for velocities in
the fractional Sobolev spaces.

Proof of Theorem 1.1. By following a very standard procedure to deal with
non-smooth functions we use as test function in the definition of weak so-
lutions ρε ˚ pρε ˚ uq. To be precise the argument will also need another
smoothing in time which is nevertheless standard to justify, see [2]. By
using the identity

ż t

0

ż

T3

puε b uεq : ∇uε dxdτ “ 0,

being uε smooth and divergence-free, we get the equality

1
2

}uεptq}2 ´
1
2

}u0,ε}2 “

ż t

0

ż

T3

ppu b uqε ´ uε b uεq : ∇uε dxdτ.

If we manage to estimate the integrand of the previous inequality in such
a way the right-hand side goes to zero, we have finished since the L2-
convergence of uεptq to uptq as ε Ñ 0 holds almost everywhere in t P p0, T q,
by the properties of smoothing. The proof will be slightly different depend-
ing on the values of the exponent “s P R” in the extra-assumption in the

9



fractional space HspT3q. For this reason we split the proof in two parts but
in all cases the main step is a proper estimate of the integral

Iε :“
ż t

0

ż

T3

|uε b uε ´ pu b uqε||∇uε| dxdτ.

The case 5
6

ď s ă 1. Applying Hölder inequality and the convex interpo-

lation inequality in Lebesgue spaces we get

Iε ď

ż t

0

}uε b uε ´ pu b uqε}2 }∇uε}2 dτ

ď

ż t

0

}uε b uε ´ pu b uqε}1´θ
1 }uε b uε ´ pu b uqε}θ

p }∇uε}2 dτ,

where
θ “

p

2pp ´ 1q
.

and clearly p ě 2.
Note that both the L1-norm of uεpτq b uεpτq and pupτq b upτqqε can be

easily estimated by using the properties of mollifiers as follows

}uε b uε ´ pu b uqε}1 ď }uε}2
2 ` }pu b uqε}1 ď c1}uε}2

2 ď c2}u}2
2 ď C,

hence proving an uniform bounded since u is a weak solution to (1.1).
Next, we fix p “ 5´2s

5´4s
, hence θ “ 5´2s

4s
, and we get

Iε ď C

ż t

0

}uε b uε ´ pu b uqε}
5´2s

4s
5´2s
5´4s

}∇uε}2 dτ,

It only remains to estimate the term involving the L
5´2s
5´4s -norm. Us-

ing (2.2), and the assumption u P HspT3q we have

}uε b uε ´ pu b uqε}p ď Cε2αrus2

W
α,2

5´2s
5´4s

ď Cε2α}u}2
Hs ,

for α “ 2ps´1qs
2s´5

, fixed in such a way that

1
2

´
s

3
“

1
2p

´
α

3
ùñ α “

3 ´ 3p ` 2ps

2p
,

since this is the value for which the (fractional) Sobolev embedding HspT3q “
W s,2pT3q ãÝÑ W α,2ppT3q, holds true. Putting all together, since 2αθ “ 1 ´ s

we arrive to the following estimate

Iε ď C

ż t

0

}u}
5´2s

2s

Hs ε1´s}∇uε}2 dτ.

10



Hence by Hölder inequality with exponents x “ 5
5´2s

and x1 “ 5
2s

we get

Iε ď C}u}
5´2s

2s

L5{2spHsq
ε1´s}∇uε}L5{2spL2q.

Finally by using the assumptions of Theorem 1.1 and Lemma 2.7 we get

lim sup
εÑ0`

Iε ď C lim sup
εÑ0`

ε1´s}∇uε}L5{2spL2q “ 0.

This is enough to end the proof since uεptq Ñ uptq for almost all t P p0, T q.

The case 1 ď s ă 5{2. In the case s ě 1 the proof is a little different
since now we can estimate directly the term ∇uε. Observe also that for
s ą 5

2
, then HspT3q ãÝÑ W 1,8pT3q and so one recovers the Beale-Kato-Majda

criterion for regularity if u P L1p0, T ; HspT3qq, s ą 5
2
.

We first recall that, for 1 ď s ă 3
2

have the following embedding HspT3q ãÝÑ
W 1,ppT3q, where p is such that 1

2
` 1´s

3
“ 1

p
, and so

p “
6

5 ´ 2s
and p1 “

p

p ´ 1
“

6
1 ` 2s

. (3.1)

We distinguish two further sub-cases.

The sub-case 1 ď s ă 3
2
. With this position we have 2 ď p ă 3.

Moreover the bound s ă 3
2
, gives even the following embedding HspT3q ãÝÑ

Lp˚
pT3q, where

p˚ “
6

3 ´ 2s
.

Applying to Iε Hölder inequality with conjugate exponents p and p1, and
an interpolation inequality with suitable exponents (always possible since
p˚{2 ą p1) we get

Iε ď

ż t

0

}uε b uε ´ pu b uqε}1´θ
1 }uε b uε ´ pu b uqε}θ

p˚

2

}∇uε}p dτ,

with θ satisfying the following equality 1`2s
6

“ 1 ´ θ ` θ
p˚

2

, hence

θ “
5 ´ 2s

4s
.

As in the previous case we have }uε b uε ´ pu b uqε}1 ď C.
Moreover, by HspT3q ãÝÑ W 1,ppT3q and Hölder inequality with exponents

5{p5 ´ 2sq and 5{2s we have

Iε ď C}uε b uε ´ pu b uqε}
5´2s

4s

L
5

4s p0,T ;L
p˚

2 q
}u}

L
5

2s p0,T ;Hsq
.

11



Next, we observe that

uε b uε ´ pu b uqε “ uε b puε ´ uq ` puε ´ uq b u ` u b u ´ pu b uqε,

and, since u P L
5

2s p0, T ; HspT3qq implies u b u P L
5

4s p0, T ; L
p˚

2 pT3qq, then
estimate (2.3) from Lemma 2.7 implies again that lim supεÑ0 Iε “ 0, ending
the proof.

The sub-case 3
2

ď s ă 5
2
. Again we apply Hölder inequality with

conjugate exponents p and p1 defined in (3.1) and interpolating the Lp1
-

norm between 1 and q{2 “ 3 we get

Iε ď

ż t

0

}uε b uε ´ pu b uqε}
2s´1

4

1 }uε b uε ´ pu b uqε}
5´2s

4

3 }∇uε}p dτ.

We use the same control as before for the L1pT3q norm and considering
the interpolation of H1pT3q between L2pT3q and HspT3q and the uniform
L2-bound, we have

}u}H1 ď }u}
1´1{s

L2 }u}
1{s

Hs ď C}u}
1{s

Hs .

This implies also that from u P L
5

2s p0, T ; HspT3qq it follows –by interpolation
with L8p0, T ; L2pT3qq– that u P L

5

2s p0, T ; H1pT3qq ãÑ L
5

2s p0, T ; L6pT3qq,
hence u b u P L

5

4s p0, T ; L3pT3qq. Hence by using the Hölder inequality we
get

Iε ď C}uε b uε ´ pu b uqε}
5´2s

4s

L
5

4s pL3q
}u}

L
5

2s pHsq
,

and Lemma 2.7 implies again that lim supεÑ0 Iε “ 0. This ends the proof
of the conservation of energy. l

After having finished the proof of the criterion for energy conservation in
fractional spaces, we can pass to prove to a criterion for energy conservation
who employs vorticity/velocity in a sort of “geometric” special situation.
This should be compared with the results in [14] where an “analytic” com-
bination of the two quantities is considered.

Proof of Theorem 1.3. Let u P L8p0, T ; L2pT3qq be a weak solution to the
Euler equation (1.1) and let us consider λ P Lβp0, T ; Hτ pT3qq, for some
β ě 1 and τ P R. Moreover, we are assuming that u is a Beltrami field, i.e.
its curl can be written as the product of λ and itself as in (1.2). We want to
apply Proposition 2.3-2.4 in order to infer sharp regularity for the vorticity
ω, which –in turn– would give additional regularity for the velocity u. Doing
so, possibly iterating, we try to show that u belongs to some of the spaces
as those in the hypotheses of Theorem 1.1 to have conservation of energy.

12



Following the notation of Propositions 2.3 and 2.4, we have s1 “ 0, s2 “ τ

and, in both statements, it is required si ě s, i “ 1, 2, which gives

s ď 0.

Moreover, a further requirement is that

s ă τ ´
3
2

.

We have to distinguish different cases.

The case 0 ď τ ď 3
2
. In this case, we have s ă 0 and we fall in the

hypotheses of Proposition 2.4. Consequently we get

ω P Lβp0, T ; Hτ´ 3

2
´εpT3qq, for any arbitrarily small ε ą 0,

where the integrability in time remains unchanged since u is essentially
bounded in time.

But again, ω is the curl of u, so that by elliptic regularity

u P Lβp0, T ; Hτ´ 1

2
´εpT3qq, for any arbitrarily small ε ą 0.

We first note that this will give an improvement in the known regularity
for the velocity of a weak solution only if τ ą 1{2, hence from now on we
consider τ in the restricted range τ Ps1{2, 3{2s. Next, we can directly apply
Theorem 1.1 to prove conservation of energy if,

5
6

ă τ ´
1
2

ď
5
2

,

which holds if τ Ps4{3, 3{2s, and if in addition

β ą
5

2τ ´ 1
.

Within this range for both τ and β, the weak solution u satisfies the hy-
potheses of Theorem 1.1.

Let us now see what we can infer for smaller τ , that is τ Ps1{2, 4{3s: We
iterate the same process with a bootstrap argument. We start the iteration
of the result on product in Sobolev spaces from u P Lβp0, T ; Hτ´ 1

2
´εpT3qq,

λ P Lβp0, T ; Hτ pT3qq and for this reason we define two sequences tβnu, tσnu,
as follows

β1 “ β, and σ1 “ τ ´
1
2

.

Next, we define by recursion (which follows as a formal application of Propo-
sition 2.3 in the limiting case ε “ 0)

βn`1 :“
βnβ

βn ` β
and σn`1 :“ min

"

σn, τ, σn ` τ ´
3
2

*

` 1.
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Remark 3.1. The real index s for the space regularity of the velocity field
after n applications of the product theorem will be any number strictly less
than σn. While βn will be the exact Lebesgue index with respect to the time
variable.

Note that, since τ ă 3
2

and if σn ď 3
2

then

min

"

σn, τ, σn, σn ` τ ´
3
2

*

“ σn ` τ ´
3
2

.

These relations imply, that

βn “
β

n
and σn “ npτ ´

1
2

q @ n P N.

By a now rigorous application of Proposition 2.3 this finally proves that

u P L
β

n p0, T ; Hnpτ´ 1

2
q´εpT3qq, for any arbitrarily small ε ą 0,

and this argument can be iterated as long as npτ ´1{2q´ε ă npτ ´1{2q ď 3
2
.

Since we are considering the range τ Ps1{2, 4{3s we have now τ ´ 1{2 ď 5
6
.

We then fix n0 P N such that

n0pτ ´
1
2

q ď
5
6

ă pn0 ` 1qpτ ´
1
2

q,

and iterate till reaching the regularity

u P L
β

n0`1 p0, T ; Hpn0`1qpτ´ 1

2
q´εpT3qq, for any arbitrarily small ε ą 0,

which is a suitable class for energy conservation. In fact, since n0pτ ´
1{2q ´ ε ă 5

6
the iteration is well-defined and moreover τ ă 3{2 implies

pn0 ` 1qpτ ´ 1{2q ă 5{6 ` 1 ă 5{2. Finally we observe that if β ą 5
2τ´1

, then

βn0`1 “ β
pn0`1q ą 5

pn0`1qp2τ´1q , showing that the hypotheses of Theorem 1.1
are then satisfied.

The case τ ą 3
2
. In this case note that Hτ pT3q Ă L8pT3q, hence we get

immediately that ω P Lβp0, T ; H0pT3qq, which implies

u P Lβp0, T ; H1pT3qq,

and if β ě 5
2

we are done, since it falls within the assumptions of Theo-
rem 1.1. Note that the result will not be improved with a further iteration.
At least in the case τ ą 5

2
(but the other case τ P r3{2, 5{2r is similar)

one will get ω P Lβ{2p0, T ; H1pT3qq, which gives u P Lβ{2p0, T ; H2pT3qq ãÑ
Lβ{2p0, T ; C1{2pT3qq, which is an energy conservation class if β ě 4, see [7].

l

14



Acknowledgments

Both authors are members of INdAM GNAMPA and they are funded by
MIUR within project PRIN20204NT8W “Nonlinear evolution PDEs, fluid
dynamics and transport equations: theoretical foundations and applica-
tions” and MIUR Excellence, Department of Mathematics, University of
Pisa, CUP I57G22000700001.

Conflicts of interest and data availability statement

The authors declare that there is no conflict of interest. Data sharing not
applicable to this article as no datasets were generated or analyzed during
the current study.

References

[1] K. Abe. Existence of vortex rings in Beltrami flows. Comm. Math.
Phys., 391(2):873–899, 2022.

[2] C. Bardos and E.S. Titi. Onsager’s conjecture for the incompress-
ible Euler equations in bounded domains. Arch. Ration. Mech. Anal.,
228(1):197–207, 2018.

[3] J.T. Beale, T. Kato, and A. Majda. Remarks on the breakdown of
smooth solutions for the 3-D Euler equations. Comm. Math. Phys.,
94(1):61–66, 1984.

[4] A. Behzadan and M. Holst. Multiplication in Sobolev spaces, revisited.
Ark. Mat., 59(2):275–306, 2021.

[5] H. Beirão da Veiga and J. Yang. On the energy equality for solutions
to Newtonian and non-Newtonian fluids. Nonlinear Anal., 185:388–402,
2019.

[6] E. Beltrami. Sui principii fondamentali dell’idrodinamica razionale.
Mem. dell’Accad. Scienze Bologna, page 394, 1873.

[7] L. C. Berselli. Energy conservation for weak solutions of incompress-
ible fluid equations: the Hölder case and connections with Onsager’s
conjecture. J. Differential Equations, 368:350–375, 2023.

[8] L. C. Berselli and S. Georgiadis. Three results on the energy con-
servation for the 3D Euler equations. NoDEA Nonlinear Differential
Equations Appl., 31:33, 2024.

15



[9] T. Buckmaster, C. de Lellis, L. Székelyhidi, Jr., and V. Vicol. Onsager’s
conjecture for admissible weak solutions. Comm. Pure Appl. Math.,
72(2):229–274, 2019.

[10] A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy. Energy
conservation and Onsager’s conjecture for the Euler equations. Nonlin-
earity, 21(6):1233–1252, 2008.

[11] A. Cheskidov, S. Friedlander, and R. Shvydkoy. On the energy equal-
ity for weak solutions of the 3D Navier-Stokes equations. In Contri-
butions to current challenges in mathematical fluid mechanics, Adv.
Math. Fluid Mech., pages 171–175. Birkhäuser, Basel, 2010.

[12] P. Constantin, W. E, and E.S. Titi. Onsager’s conjecture on the energy
conservation for solutions of Euler’s equation. Comm. Math. Phys.,
165(1):207–209, 1994.

[13] C. De Lellis and Jr. L. Székelyhidi. The Euler equations as a differential
inclusion. Ann. of Math. (2), 170(3):1417–1436, 2009.

[14] L. De Rosa. On the helicity conservation for the incompressible Euler
equations. Proc. Amer. Math. Soc., 148(7):2969–2979, 2020.

[15] J. Duchon and R. Robert. Inertial energy dissipation for weak solu-
tions of incompressible Euler and Navier-Stokes equations. Nonlinear-
ity, 13(1):249–255, 2000.

[16] A. Enciso and D. Peralta-Salas. Beltrami fields with a nonconstant
proportionality factor are rare. Arch. Ration. Mech. Anal., 220(1):243–
260, 2016.

[17] G. L. Eyink. Energy dissipation without viscosity in ideal hydrodynam-
ics. I. Fourier analysis and local energy transfer. Phys. D, 78(3-4):222–
240, 1994.

[18] U. Frisch. Turbulence, The Legacy of A.N. Kolmogorov. Cambridge
University Press, Cambridge, 1995.

[19] N. R. Gauger, A. Linke, and P. W. Schroeder. On high-order pressure-
robust space discretisations, their advantages for incompressible high
Reynolds number generalised Beltrami flows and beyond. SMAI J.
Comput. Math., 5:89–129, 2019.

[20] P. Isett. A proof of Onsager’s conjecture. Ann. of Math. (2), 188(3):871–
963, 2018.

[21] J. Liu, Y. Wang, and Y. Ye. Energy conservation of weak solutions for
the incompressible Euler equations via vorticity. J. Differential Equa-
tions, 372:254–279, 2023.

16



[22] Q.-H. Nguyen, P.-T. Nguyen, and B. Q. Tang. Energy equalities for
compressible Navier-Stokes equations. Nonlinearity, 32(11):4206–4231,
2019.

[23] L. Onsager. Statistical hydrodynamics. Nuovo Cimento (9), 6(Supple-
mento, 2 (Convegno Internazionale di Meccanica Statistica)):279–287,
1949.

[24] H. Triebel. Interpolation theory, function spaces, differential operators,
volume 18 of North-Holland Mathematical Library. North-Holland Pub-
lishing Co., Amsterdam-New York, 1978.

[25] V. Trkal. A note on the hydrodynamics of viscous fluids. Czech J.
Phys., 44(2):97–106, 1994. English translation of Časopis Pěst. Mat. 48
(1919) 302–311.

[26] Y. Wang, W. Wei, G. Wu, and Y. Ye. On the energy and helicity
conservation of the incompressible Euler equations. Technical Report
2307.08322v1, arXiv, 2023.

17


	Introduction
	Preliminaries
	Functional Spaces and weak solutions
	Mollification

	Main results

