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Reply to: Multiple induced seismicity mechanisms
at Castor underground gas storage illustrate the
need for thorough monitoring
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We welcome the call for seismic monitoring infra-
structures around potential sources of anthropogenic
seismicity1 in response to our report about seismicity

at the Castor gas reservoir2. The lack of a proper seismic mon-
itoring at the Castor site was previously recognized3 and potential
monitoring solutions for offshore industrial operations
proposed3. Our case of a successful analysis and interpretation
despite poor instrumentation does not, of course, imply that a
poor instrumentation is desirable. Independent of the setting and
the analysis tools involved, more data and shorter recording
distances generally allow for a better resolution of focal para-
meters and the identification of more details of seismicity. In
particular, routine and near-real-time monitoring efforts depend
heavily on the quality of the recording network to detect
microseismic activity. On the other hand, we disagree with the
technical comments about source depth and triggering
mechanism1, suggesting that significant uncertainties may hinder
the identification of the drivers of those seismogenic processes.
We extensively quantified, reported, and discussed seismic para-
meters uncertainties2. We aimed to understand partially dis-
crepant results of previous works, where uncertainties were rarely
reported4–8. Out of our extended analysis of seismicity two sets of
results are disputed1: the hypocentral depths and the mechanisms
leading to seismicity. These issues are discussed below.

First, the comment1 states that large earthquakes nucleate at
larger depths. We located the seismicity at 3–5 km depth, better
constraining the more extensive range of previous estimates4–7,
finally suggesting depths of ~3–4 km, to further account for
relocation and centroid moment tensor inversion results. It may
be typical for large earthquakes in the continental lithosphere to
nucleate at medium depths within the earth’s crust9. However,
there are notable exceptions here too, such as the 1992 Mw 7.3

Landers, nucleating at 3–6 km10, or the 2020 Mw 6.5 Monte-Cristo
Range earthquake, where the mainshock depth was 3.74 km below
the mean station elevation (~2 km b.s.l.)11 to cite just two. How-
ever, our main objection is that magnitude 4 earthquakes like those
at Castor can hardly be considered large earthquakes. Such events
are classified as small or moderate in the seismological literature. At
Castor they involved ~1 km2 of rupture2, with propagation that is
little affected by the primary stress gradient within the crust.
Seismic catalogs in areas of dense instrumentation show that
magnitude 4 events at depths about 3 km are quite common12–15,
corroborating that there are no objections from physics to the
existence of shallow earthquakes of this size. The Californian
seismic catalog for the years 1985–2021 (Northern and Southern
California Earthquake Center), for example, includes more than
250 earthquakes of magnitude M ≥ 4 with a depth shallower than
4 km12–14. The 2017ML 4.3 Château-d’Oex earthquake, among the
largest occurring in Switzerland over the last years, had a depth of
4 km, well constrained by P and S onsets recorded at only 3 km
distance15. The case of induced seismicity is even more striking, as
this is favored at shallow depths, where stress and pore pressure
conditions are more easily altered by shallow underground
operations3. Examples of earthquakes induced by fluid injection at
shallow depth include the Mw 5.6 2011 Prague, Oklahoma,
earthquake (depth 4 km)16 and its aftershock sequence (mostly
with depth <5 km and early aftershocks within the sedimentary
layers)17, earthquakes of up to Mw 5.3 in the Raton Basin, Col-
orado (mostly with depths 1–4 km)18, the multiple Mw ≥ 4
Timpson, Texas earthquakes (depths 1.6–4.6 km)19 or the Mw
5.4–5.5 2017 Pohang, South Korea, earthquake (depth 4.2 km)20.
The Raton Basin and Timpson earthquakes occurred exclusively in
the sedimentary section, while the Prague earthquake faulted both
sediments and the underlying basement.
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Our depth estimates were based on the tpP-tP differential time
between seafloor-reflected pP phase and direct P arrival. Records
at multiple seismic stations constrain such delay to 1.5–1.8 s for
the largest earthquakes at Castor. Converting these delays into a
source depth requires knowing the velocity structure above the
source. This can introduce epistemic uncertainty additional to
aleatory uncertainty associated with the measurement of tpP-tP.
For this reason, we tested a broad range of 1D velocity models
and openly reported the estimated depths2. The suggested1 depth
assessment using two additional 1D velocity models7 confirms a
shallow focus (2–4 km). Hypocentral relocation and waveform
similarity2 further constrain the seismicity within a narrow depth
range. If depth would have been as large as 6–10 km, explaining
differential tpP-tP times2 of ~1.65 s would require an unrealistic
average P wave velocity of 7.3–12.1 km/s.

Besides the depths, also epicentral locations have been a matter
of debate in the past2. A new location comparison is here illus-
trative (Fig. 1): our relocations2 (Fig. 1b) improve the resolution
of the NE-SW fault geometry, compared to absolute locations7,21

(Fig. 1a, c). Absolute locations can partially reconstruct the lateral
distributions of the high waveform similarity clusters2 along the
NE-SW direction but not along the NW-SE direction. This
direction roughly corresponds to the orientation of the largest
epicentral uncertainties (median orientation 122°)5, controlled by
the asymmetric network geometry. Note that the epicentral
locations (Fig. 1d) used by the comments’ authors to suggest a

different fault geometry8 differ substantially from those they cite
as source5,7, questioning their overall interpretation.

Regarding the mechanisms controlling the seismicity, we wel-
come the comments to be open to different plausible triggering
mechanisms, including buoyancy, stress transfer, or por-
omechanical effects1. However, these mechanisms came into play
to explain large source depths5,7 that would place the Castor
seismic series within the crystalline basement underneath the
reservoir. According to our relocations, the earthquakes occur
within the sediments, in a location where a hydraulic connection
to the reservoir is more plausible. The balance of evidence indi-
cates that the characteristic speed-limited migration of seismicity
follows a diffusion process. The migration was resolved using
robust and well-recognized seismological techniques, namely
hypocentral relocation22 and template matching23,24. The
hydraulic diffusivity at Castor is poorly known. A value of 0.5 m2/
s, which is not unusual25–27, was based on the observed migration
of seismicity2. The comment’s claim that diffusivity should be
substantially smaller is not supported by any reference1. Further,
the comment states that ‘hydraulic connection between the sto-
rage formation and the depth of the earthquakes requires the
existence of some unknown high permeability conduit or fault.’1.
Conversely, several faults are reported close to the reservoir6 and
some of them could have facilitated diffusion through permeable
damage zones. Specifically, the Amposta fault bounds the reser-
voir and extends deeper6, next to the fault activated by the

Fig. 1 Comparison of epicentral location maps. a Catalog of the National Geographic Institute of Spain (IGN), b relocation based on cross-correlations2,
c absolute locations using a 3D model5, and d subset of 13 events8 referred to such catalog5 but with discrepant locations. Epicenters are plotted for a
common dataset of 49 earthquakes with magnitudes larger than 2, out of the 51 for which a waveform-based classification was performed2, except in
(d), where we only plot the 13 available events in such dataset. Colored epicenters correspond to different families of earthquakes with high waveform
similarity, which should be tightly located. Uncertainties are reported for the clustered events in (b) (as latitude and longitude bars) and (c) (ellipses). A
black square marks the location of the Castor platform.
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seismicity2. A hydraulic connection between the reservoir and
greater depths is also suggested by pressure measurements made
during the exploitation of the former Castor oil field6. The
pressure decreased moderately between 1973 and 1976, during
peak oil production, and then increased gradually accompanying
the drop of the production rate, indicating aquifer support from
below. Therefore, it is not surprising that raising the pressure in
the reservoir during gas injection would communicate pressure
below it. The largest earthquakes occurred with delays of
~20 days after an injection of 15 days. However, we attributed the
seismicity to pore pressure diffusion and to asperities loading.
The largest earthquakes did not occur when the pressure front
reached their location, but were delayed as the later failure of
unbroken, loaded asperities2. Other processes might have con-
tributed to induce seismicity1. For example, the effects of buoy-
ancy have been invoked8. However, it remains to be proven
whether such a model can explain the NE-SW spatial distribution
of seismicity at Castor and its migration: indeed, the disputed
distribution of seismicity and the uncertainties in location, depth,
and focal mechanisms were ignored when assessing that model8.

Data availability
Seismic data (catalogs) used in this study are available as Supplementary Dataset of our
previous manuscript2, at the website of the Instituto Geográfico Nacional (IGN)21, or in
the reference publication5, respectively. A fourth catalog5 may be available in full form
upon request to the corresponding author, and a subset for 14 events is openly available7.

Code availability
Reported analyses were performed in the cited publications.
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appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.
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