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38 GRAPHICAL ABSTRACT

39 We described the ecological niche of Echinococcus multilocularis, a zoonotic cestode with a 

40 complex life cycle, identifying four major drivers of its distribution (temperature of the coldest 

41 quarter, forest cover, urban cover and precipitation seasonality) and predicted its current and 

42 future distribution in Europe. Our analyses showed an increase of habitat suitability at northern 

43 latitudes and in the Alpine region and a loss of suitable areas in central Europe. Our results shed 

44 light on how complex life cycle parasites respond to global changes.

45

46 Figure 4
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47 ABSTRACT

48 Global change is expected to have complex effects on the distribution and transmission patterns of 

49 zoonotic parasites. Modelling habitat suitability for parasites with complex life cycles is essential 

50 to further our understanding of how disease systems respond to environmental changes, and to 

51 make spatial predictions of their future distributions. However, the limited availability of high-

52 quality occurrence data with high spatial resolution often constrains these investigations. Using 

53 449 reliable occurrence records for Echinococcus multilocularis from across Europe published 

54 over the last 35 years, we modelled habitat suitability for this parasite, the aetiological agent of 

55 alveolar echinococcosis, in order to describe its environmental niche, predict its current and future 

56 distribution under three global change scenarios, and quantify the probability of occurrence for 

57 each European country. Using a machine learning approach, we developed large-scale (25x25 km) 

58 species distribution models based on seven sets of predictors, each set representing a distinct 

59 biological hypothesis supported by current knowledge of the autecology of the parasite. The best-

60 supported hypothesis included climatic, orographic and land-use/land-cover variables such as the 

61 temperature of the coldest quarter, forest cover, urban cover and the precipitation seasonality. 

62 Future projections suggested the appearance of highly suitable areas for E. multilocularis towards 

63 northern latitudes and in the whole Alpine region under all scenarios, while decreases in habitat 

64 suitability were predicted for central Europe. Our spatially explicit predictions of habitat suitability 

65 shed light on the complex responses of parasites to ongoing global changes. 
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66 INTRODUCTION

67 Ongoing global change is dramatically influencing species distributions and biology, leading to 

68 range shifts and declines in population size and viability, with the most recent estimates predicting 

69 that 57–70% of all animal species will be extinct by 2050 (Román-Palacios &  Wiens, 2020). 

70 Global change also drives the spread and outbreak of many infectious diseases, in both human and 

71 wildlife populations (Jones et al., 2008, Kutz et al., 2005, Patz et al., 1996). Since it is estimated 

72 that more than 60% of known human infectious diseases, and about 75% of new or emerging 

73 infectious diseases are caused by pathogens of animal origin (zoonoses; Jones et al., 2008, Taylor 

74 et al., 2001), understanding the impact of the global change on parasite distribution and prevalence 

75 is considered of critical public health concern (Moffett et al., 2007).

76 Increasing evidence suggests that the effect of climate change is even more pronounced in 

77 zoonotic parasite species with complex life cycles and tight trophic dependencies (Parmesan, 2006, 

78 Tylianakis et al., 2008); that is, the greater the complexity of parasite life cycles, and their 

79 relationships with multiple hosts, the higher the risk of extinction of both parasites and their hosts 

80 (Rogers &  Randolph, 2006). However, although modelling the distribution of complex life cycle 

81 parasites is considered urgent, such analyses are often hampered by the lack of reliable occurrence 

82 data (Johnson et al., 2019). 

83 Echinococcus multilocularis (Leuckart 1863) (Em hereafter) is a complex life cycle parasite 

84 and the aetiological agent of alveolar echinococcosis (AE), the third most relevant human food-

85 borne disease worldwide (FAO/WHO, 2014). Extensive, high-quality occurrence data for this 

86 species are available in Europe as a result of its medical relevance. Therefore, modelling the 

87 distribution of this parasite under various global change scenarios provides the opportunity to 
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88 investigate how habitat suitability of parasites with complex life cycles might be influenced by 

89 environmental changes. 

90 Em is a dixenous parasite with a sylvatic cycle that typically involves foxes (Vulpes spp.), 

91 wolves (Canis lupus), and other canids such as coyotes (C. latrans) and golden jackals (C. aureus) 

92 as definitive hosts, whereas small mammals such as rodents act as intermediate hosts (Rausch, 

93 1967, Romig et al., 2017). Adult worms reproduce in the canid intestine, and the eggs are released 

94 in the environment with the faeces after passing through the intestinal lumen. Eggs are then 

95 accidentally ingested by an intermediate host, and oncospheres (first larval stage) are released and 

96 reach the target organs (mostly lungs and liver) where they develop into the asexually reproducing 

97 metacestode (second larval stage; Thompson et al., 2017). At this stage, Em causes a tumor-like 

98 infiltrative and destructive growth in the liver and other target organs of the intermediate hosts 

99 causing severe clinical conditions which are often fatal (Torgerson et al., 2010, Vuitton et al., 

100 2015). Finally, the metacestode larvae mature into protoscoleces (the last larval stage), and the 

101 cycle is completed when a canid definitive host preys on an infected intermediate host. 

102  Feral and domestic dogs and cats are also competent definitive hosts (Romig et al., 2017, 

103 Thompson et al., 2017), but there are also several aberrant or ‘dead-end’ hosts, including the 

104 domestic pig and wild boar, as well as humans (Romig et al., 2017, Wahlstrom et al., 2011). ‘Dead-

105 end’ hosts ingest the eggs accidentally acting as intermediate hosts, but transmission is interrupted 

106 as no definitive host is reached by the parasite (Romig et al., 2017).

107  Em has an extensive geographical range in the northern hemisphere, including an endemic 

108 region in central Europe (Austria, France, Germany and Switzerland), northern and central 

109 Eurasia, and North America (Thompson et al., 2017). In the last three decades, the distribution of 

110 this parasite has expanded considerably, to include many other European countries, such as the 
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111 Baltic countries, Belgium, Croatia, the Czech Republic, Denmark, Hungary, Italy, Liechtenstein, 

112 Luxembourg, the Netherlands, Norway, Poland and the Slovak Republic (Bagrade et al., 2008, 

113 Beck et al., 2018, Casulli et al., 2005, Dán et al., 2018, Eckert &  Deplazes, 1999, Romig et al., 

114 2017). However, the ecological processes underlying the expansion of Em are still unknown. 

115 Several authors have suggested possible causes, including the dispersal of Em with red foxes, the 

116 expanding distribution of certain intermediate hosts, changes in land use, and improved diagnostics 

117 (Vuitton et al., 2015, Vuitton et al., 2003). However, given that the most common definitive host 

118 is the red fox, a wide-ranging species present across the whole European continent (Hoffmann &  

119 Sillero-Zubiri, 2016), and the great variety of intermediate rodent hosts available as prey to this 

120 carnivore, host range is unlikely to be a limiting factor. Climate, instead, is known to influence Em 

121 distribution (Giraudoux et al., 2013), and a preference for colder regions and/or areas with a higher 

122 humidity has been reported from several European countries (e.g., Slovakia, Germany; 

123 Miterpáková et al., 2006, Staubach et al., 2001), as well as other areas (e.g., Central Asia; 

124 Shaikenov, 2006). 

125 In the case of Em, the overwintering egg stage are highly resistant to temperatures ranging from 

126 -18 to 4°C and high humidity, but not extreme temperatures or dry conditions (Veit et al., 1995). 

127 Primary terrain attributes, such as elevation, and land use are also known to influence the 

128 distribution and biology of Em (Thompson et al., 2017). A recent review suggested that a 

129 combination of host characteristics and assemblages, differential virulence in different hosts, and 

130 climate conditions might be acting in limiting Em distribution compared to other species of the 

131 Echinococcus genus (Massolo et al., 2022). 

132 In addition to the impact of climate, the environmental niche of Em in Europe has never been 

133 characterized, and spatially explicit predictions of current and future habitat suitability for the 
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134 species in Europe are still missing despite their usefulness for surveillance efforts (Atkinson et al., 

135 2013). Large-scale eradication of this parasite is deemed unlikely and instead, local scale 

136 anthelmintic baiting campaigns in foxes are recommended in areas of high transmission to reduce 

137 environmental contamination with parasite eggs (Hegglin & Deplazes, 2013). Hence, identifying 

138 the environmental drivers affecting its current and future distribution might help to deploy cost-

139 effective interventions.

140 The objectives of this study were then to: 

141 i) describe the currently reported and potential presence of Em in Europe; 

142 ii) characterize and model the large-scale environmental niche of Em in Europe by 

143 building and testing models based on different sets of predictors and representing 

144 contrasting biological hypotheses;

145 iii) predict Em distribution in Europe in the near future (2041-2060) under three global 

146 change scenarios;

147 iv) inform the assessment of the zoonotic transmission risk of Em for each European 

148 country under current and future conditions.

149 MATERIALS AND METHODS

150 Echinococcus multilocularis presence data

151 Presence data for Em were compiled from georeferenced records from across Europe. Of these, 

152 212 were downloaded from the freely accessible EmsB Website for Echinococcus Typing – EWET 

153 Project (https://ewet-db.univ-fcomte.fr/) developed by (Knapp et al., 2017), a database of the 

154 microsatellite profiles of E. multilocularis covering 12 European countries. In addition, an 
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155 exhaustive literature search performed on the 6th February 2020 in the SCOPUS and Google 

156 Scholar databases provided the remainder of the occurrence records. The search was performed 

157 using the keywords “Echinococcus multilocularis” AND “Europe”, resulting in a set of 

158 publications from which we selected those that: i) reported the presence of the parasite in the most 

159 common definitive host, V. vulpes, and; ii) indicated the precise coordinates, or at least the 

160 municipality where infected foxes were collected. If only municipality was available, we used 

161 Google Maps to calculate the coordinates of the center of the municipality for a particular record. 

162 Since the red fox is the most highly cited definitive host for Em (Romig et al., 2017), and studies 

163 of intermediate and other hosts are scarce, to guarantee the coherence of the dataset, we excluded 

164 studies involving hosts other than red fox (e.g., humans, companion animals, intermediate hosts 

165 or rare definitive hosts). 

166 To remove spatial sampling bias from the occurrence records, which could have resulted in an 

167 over-representation of the associated environmental parameters and, consequently, a biased 

168 prediction of Em distribution, the area of Europe between 24°W to 44°E longitude and 30°N to 

169 80°N latitude was divided into 57,120 raster cells (0.25° resolution; i.e., ~ 25x25 km) using the 

170 Geographic World Geodetic Survey 1984 (WGS_84) Coordinate System (GCS). One biological 

171 record of Em for each grid cell was randomly selected and spatial filtering in R (version 3.6.3; R 

172 Core Team 2020) was performed, selecting 75 % of data while maximizing the distance between 

173 records. This filtering process was essential to reduce spatial autocorrelation, as well as to avoid 

174 higher omission errors (false negatives) and commission errors (false positives; Kramer-Schadt et 

175 al., 2013).
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176 Environmental characterization 

177 To model the potential distribution of Em in Europe, we selected two time periods: i) 1970-

178 2000, to describe the parasite’s environmental niche and current distribution; and ii) 2041-2060, 

179 to predict the future distribution of Em, and for which climate and Land-Use/Land-Cover (LULC) 

180 predictions are available. Since we wanted to test the effect of climatic variables, which are 

181 typically defined over a 30-year period (Matthews et al., 2021), we decided to use this time period, 

182 rather than a shorter interval that matched the temporal distribution of occurrences.

183 Nineteen bioclimatic variables known to be drivers of species distributions (Hijmans et al., 

184 2005) were used to describe the climatic components of the parasite environmental niche, 

185 representing annual trends (e.g., mean annual temperature, annual precipitation), seasonality (e.g., 

186 annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., 

187 temperature of the coldest and warmest month, precipitation of the wet and dry quarters). We 

188 downloaded current climatic indices (computed over the period 1970-2000) from the WorldClim 

189 2 dataset (Fick &  Hijmans, 2017). The bioclimatic data for the 2041-2060 period were based on 

190 three Representative Concentration Pathways (RCPs; Moss et al., 2008, Weynat et al., 2009), or 

191 climate scenarios: RCP2.6 (optimistic scenario), RCP4.5 (moderate scenario) and RCP8.5 

192 (pessimistic scenario). To represent the components of uncertainty in future projections, we used 

193 three General Circulation Models retrieved from the WorldClim Coupled Model Intercomparison 

194 Project - Phase 5 dataset (Taylor et al., 2012): HadGEM2-ES, IPSL-CM5A-LR, MIROC5 

195 (Sanderson et al., 2015). Results from the most recent CMIP6 were not used as they did not include 

196 all three climatic scenarios selected above. Climatic data were downloaded at a 10 min resolution 

197 (~ 18.5 km) and resampled at a 25 km resolution with the ‘resample’ function in the raster R 

198 package (Hijmans &  van Etten, 2012). Although at continental and global scales, climate is the 
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199 major factor driving species distributions (Pearson &  Dawson, 2003), primary terrain attributes, 

200 such as elevation and slope, can also influence the distribution and biology of Em, especially in 

201 heterogeneous montane zones such as the Alps (Romig et al., 2017). Hence, median elevation 

202 raster data at a 30 arc-second resolution were obtained from the Global Multi-resolution Terrain 

203 Elevation Data (GMTED) 2010 (United States Geological Survey - available at 

204 https://topotools.cr.usgs.gov). Slope, aspect, roughness, Topographic Position Index (TPI) and 

205 Terrain Ruggedness Index (TRI) raster layers were then generated from median elevation raster 

206 data with the ‘terrain’ function of the raster R package (Hijmans &  van Etten, 2012) in R 3.6.3 

207 (R core Team 2020) and used to provide information on the geomorphology of the landscape, 

208 which served as a proxy for terrain complexity. 

209 Since correlation often occurs within or between bioclimatic and GMTED layers (Cruz-

210 Cardenas et al., 2014, Merow et al., 2013, Warren et al., 2014), we applied a Principal Components 

211 Analysis (PCA) to the 19 climatic and five orographic variables to remove collinearity among 

212 predictors. PCA was performed with the varimax rotation method in the jmv R package version 

213 1.6 (available at https://cran.r-project.org/web/packages/jmv/index.html; Selker et al., 2022). 

214 Since correlation among variables may vary in in different time periods, and as models fitted with 

215 PCs may behave erratically when transferred to different scenarios (Warren et al., 2014), we 

216 avoided the direct use of the PCs as predictors in the models; instead, for every PC, we selected 

217 the variable with the highest coefficient. Correlation among the chosen variables was then tested 

218 using the stats R package (Version 4.1.0; available at https://stat.ethz.ch/R-manual/R-

219 devel/library/stats/html/stats-package.html).

220 For the parasite cycle to persist in a particular area, both the definitive and intermediate hosts 

221 must be present. Therefore, we included a subset of LULC categories considered proxies of 
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222 environments where Em hosts are usually found as environmental variables in the model. LULC 

223 categories for the current time were described using the CORINE Land Cover Map of Europe 

224 (European Commission, European Environment Agency and European Topic Centre on Land 

225 Cover 1994) for 2018. We reclassified the original 0.1 km resolution map to obtain a set of layers 

226 describing the percentage cover of different LULC classes at the 28 km resolution, focusing on 

227 three categories that best represent habitats of red fox and their rodent prey according to literature 

228 (see Romig et al., 2017 for a review of the ecology of the parasite): I) Open, which included the 

229 subcategories I-i) Land under a rotation system, I-ii) Pastures, I-iii) Land principally occupied by 

230 agriculture, with significant areas of natural vegetation, I-iv) Natural grasslands, I-v) Moors and 

231 heathlands; II) Forest, which included II-i) Broad-leaved forest, II-ii) Coniferous forest, II-iii) 

232 Mixed forest; III) Urban, with subcategories III-i) Continuous urban fabric, III-ii) Discontinuous 

233 urban fabric. To represent the future conditions for LULC variables, we used the GCAM dataset 

234 provided by (Chen et al., 2020), covering three representative SSP scenarios: SSP1 

235 ‘Sustainability’, SSP3 ‘Regional rivalry’, and SSP5 ‘Fossil-fueled development’ (Di Marco et al., 

236 2019, Kim et al., 2018). Hence, our projections described three SSP-RCP scenarios: SSP1-RCP2.6 

237 (low climatic impact), SSP3-RCP4.5 (medium climatic impact), SSP5-RCP8.5 (severe climatic 

238 impact).

239 Machine learning modelling 

240 Due to unplanned sampling in the collection of presence data, and lack of homogeneity in 

241 temporal and spatial sampling effort, we chose the Maximum Entropy algorithm (Maxent; Version 

242 3.4.1; Phillips et al., 2006), a machine learning technique developed to classify the probability of 

243 species occurrence as a function of a set of environmental variables. Maxent is considered among 
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244 the best-performing methods for modelling species distributions and allows fine-tuning of model 

245 complexity (Muscarella et al., 2014).

246 We formulated seven biological hypotheses with appropriate combinations of environmental 

247 layers to be included in the model (Table 1) and developed a cycle of models for each one. To find 

248 the appropriate balance between the goodness-of-fit and model complexity, we generated 360 

249 candidate models for each hypothesis running Maxent with the ENMeval R package (Muscarella 

250 et al., 2014). Since the regularization multiplier β is a means to reduce collinearity and the risk of 

251 overfitting (Phillips et al., 2006, Rodriguez-Merino et al., 2018, Warren et al., 2014), and it is 

252 advisable to adjust the value of β as the default settings may not match the empirical conditions of 

253 all systems (Phillips &  Dudik, 2008), we varied β from 0 to 1 in increments of 0.1 and from 1 to 

254 10 in increments of 0.5. The algorithm was run using six possible combinations of feature classes 

255 (linear = L, quadratic = Q, product = P, threshold = T, hinge = H): I) L; II) LQ; III) H; IV) LQH; 

256 V) LQHP; VI) LQHPT (Table S1). The models were run with 10,000 random background points. 

257 To ensure a robust test of model performance, we used a block cross-validation procedure 

258 (Muscarella et al., 2014) where data are split into k geographically independent blocks and k 

259 models are developed using k-1 blocks for training, and the remaining for testing (Muscarella et 

260 al., 2014). We developed this procedure using the ENMeval R package with k = 4. Within each 

261 cycle of models elaborated using the different combinations of environmental variables, the model 

262 with the lowest Akaike Information Criterion (AIC; Burnham &  Anderson, 2004) value was 

263 selected as the best model of the cycle.

264 The Area Under the Receiver Operating Characteristic (ROC) Curve computed on test data 

265 (AUCtest; Fielding &  Bell, 1997), and the difference between the AUC computed on training and 

266 test data (AUCdiff; Radosavljevic &  Anderson, 2014) were also computed for the seven best-
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267 performing models to evaluate predictive ability according to the most widely used measure of 

268 SDM performance (AUCtest), as well as to quantify overfitting (Radosavljevic &  Anderson, 2014). 

269 Within the seven best-performing models, we identified the model showing the best trade-off 

270 among the three evaluation metrics (i.e., AIC, AUCtest, AUCdiff), and used it to gauge support for 

271 the corresponding biological hypothesis on the drivers of Em distribution, project current habitat 

272 suitability for the species, and examine the response curves of the environmental factors. Response 

273 curves represent the relationship between the predicted relative probability of species occurrence 

274 and the values of each environmental predictor and are useful for checking the ecological validity 

275 of a model (Elith et al., 2005), as well as to characterize the ecological niche of the modelled 

276 species.

277 Future projections

278 Future projections (hereafter, raw projections) for the period 2041-2060 were developed for 

279 each GCM and the mean among the three projections was used to represent future habitat 

280 suitability for a given SSP-RCP scenario. The standard deviation between the three projections 

281 was computed to describe the uncertainty deriving from the different scenarios (Beaumont et al., 

282 2008, Porfirio et al., 2014). The genetic diversity of Em is higher in the endemic area of central 

283 Europe compared to surrounding areas (Knapp et al., 2009). Therefore, an increased adaptive 

284 potential might buffer the negative effects of unfavorable climatic conditions (Hamann &  Aitken, 

285 2013). To account for the likely permanence of the parasite in these areas and hence provide a 

286 more biologically realistic prediction, for each SSP-RCP scenario, we produced a projection of 

287 future habitat suitability that considered the maximum between current and future habitat 

288 suitability values as probability of Em occurrence for each cell (hereafter, combined projection). 

289 Finally, to highlight the changes in habitat suitability, for each cell and under every SSP-RCP 
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290 scenario, we computed the difference in suitability between future (according to the raw 

291 projection) and current conditions.

292 Country-wise analysis

293 Describing suitability for the species in each European country can help to quantitatively assess 

294 the risk of transmission and hence drive epidemiological surveys (Mwima et al., 2017). We 

295 standardised the projections by reclassifying the probability of presence into three classes of 

296 occurrence probability: level 0 (0-0.33, low probability), level 1 (0.33-0.66, moderate probability) 

297 and level 2 (0.66-1, high probability), and quantified the number of raster cells in each category, 

298 separately for each European nation. Furthermore, we computed the percentage difference between 

299 current and future cells for all classes of occurrence probability and every country. The overall 

300 modelling workflow is described in more detail in the Overview, Data, Model, Assessment and 

301 Prediction (ODMAP) protocol (Zurell et al., 2020; Appendix S1).

302 RESULTS

303 Echinococcus multilocularis presence data

304 The bibliographic search identified 1,567 scientific papers, from which we were able to obtain 

305 the coordinates of 1,959 Em records in red fox in Europe and combine them with the 212 from the 

306 EWET database (for a total of 2,171), spanning the period 1985 – 2020. After retaining a maximum 

307 of one record per grid cell and performing the spatial filtering, 449 occurrence points were obtained 

308 and used to build the Maxent model (Figure 1). 
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309 Environmental variables selection and Maxent modelling

310 The PCA on the bioclimatic variables resulted in four PCs explaining the 91% of the total 

311 variance of the 19 layers. As for the orographic variables, once variables with low communality 

312 were removed, the PCA extracted a first PC explaining the 87% of the variance alone. Based on 

313 PC loadings, the variables with the greater loading for every PC were selected: these proved not 

314 to be highly correlated (0.06 < r < 0.51). The set of environmental variables selected for the 

315 climatic set included: mean temperature of the coldest quarter, precipitation of the wettest month, 

316 precipitation seasonality and temperature annual range, whereas from the orographic set of 

317 variables, roughness and TPI were included in Maxent models. 

318 The comparison of the best models of the different biological hypotheses obtained from Maxent 

319 (Table 1) indicated that the first biological hypothesis run with the complete set of environmental 

320 variables (mean temperature of the coldest quarter, precipitation of the wettest month, precipitation 

321 seasonality, temperature annual range, roughness, TPI, open, forest and urban) produced the best 

322 performing model, and was used to describe Em potential current distribution (Figure 2) projected 

323 under different scenarios.

324 Environmental niche

325 The proxies of habitat suitability for Em included in the best performing model were mean 

326 temperature of the coldest quarter (percentage contribution: 59.2), percentage of forest cover 

327 (percentage contribution: 11.0), percentage of urban cover (percentage contribution: 8.5) and 

328 precipitation seasonality (percentage contribution: 6.8). A unimodal relationship between habitat 

329 suitability and mean temperature of the coldest quarter was noted, with maximum temperature 

330 suitability between -10 and 10 °C, whereas a negative linear relationship with precipitation 

331 seasonality was detected (Figure 3). The percentage of forest cover showed a unimodal 
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332 relationship with suitability for Em, with a peak at 40-60 % cover, whereas suitability increased 

333 with the percentage of urban cover up to an asymptote at a relatively low cover (Figure 3). 

334 Current probability of occurrence

335 The probability of Em presence in Europe was higher in central and eastern Europe (Figure 2), 

336 a historical endemic zone for the cestode, and decreased towards areas with more extreme climates, 

337 either hot and dry (e.g., western France, Spain, Southern Italy, Greece) or very cold (e.g., 

338 Fennoscandian peninsula) conditions. At the southern margin of the historical endemic zone, the 

339 match between areas of high suitability and occurrence points was low (Figure 2).

340 Future projections

341 Raw projections for Em highlighted a shift in suitable areas from the central European 

342 endemicity area (north-eastern France, Switzerland, Germany) towards northern latitudes, in 

343 particular Great Britain and the Fennoscandian peninsula (Figure 4a). A high increase in suitability 

344 was also reported in the Alps, an area largely unsuitable at present, but entirely suitable according 

345 to future projections (Figure 4a). Besides the central European endemicity area, suitability is also 

346 predicted to decrease in the three Mediterranean peninsulas (Iberia, Italy, Balkans), as well as in 

347 eastern Europe. 

348 The three climatic-LULC scenarios influenced predictions (Figure 4a). That is, as the severity 

349 of scenarios increased, suitability was predicted to undergo stronger reductions in the central 

350 European endemicity area and in eastern Europe (in the latter case particularly under SSP 5 – RCP 

351 8.5, Figure 4). Instead, the predicted expansion of suitable areas in northern Europe and the Alps 

352 was similar under all scenarios (Figure 4a). 
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353 Combined projections predicted an expansion of suitable areas towards higher altitudes and 

354 latitudes (Figure 4b), with patterns similar to those described for future projections; i.e., the 

355 probability of occurrence increased towards northern latitudes (Great Britain, Fennoscandian 

356 peninsula) and in the Alps (Figure 4b). 

357 The agreement between raw predictions was low for different General Circulation Models in 

358 the central European endemic area (particularly in Germany and Belgium), in Denmark and along 

359 the coasts of Sweden (Figure 5a). Under more severe scenarios, the agreement was lower although 

360 similar patterns of spatial uncertainty were reported (Figure 5a).

361 The analysis of cell-wise change of habitat suitability depicted similar patterns of change under 

362 all scenarios, although more marked changes were reported for the SSP 5 – RCP 8.5 scenario and 

363 in the central and eastern European areas (Figure 5b). In all scenarios, the Alps were expected to 

364 undergo a marked increase in habitat suitability and central and eastern Europe were predicted to 

365 experience low to marked decreases in suitability (Figure 5b). Small increases were instead 

366 predicted for most of the Fennoscandian peninsula, with some areas of marked increase (Figure 

367 5b).

368 Country-wise analysis

369 The countries with the highest percentage of cells in the ‘high occurrence probability’ class 

370 were mainly located in central Europe, e.g., Germany (71.4 % of national geographical area with 

371 a high occurrence probability), Poland (55.8 %), Switzerland (56.3 %), Austria (42.9 %) and 

372 Czechia (61 %) (Table S2). Outside this core area of endemicity, an extensive area of suitability 

373 for Em was also reported for Belgium (44.8 %) and Lithuania (47.1 %) (Table S2). 

374 Under future conditions, a general decrease of occurrence probability was reported, especially 

375 in the endemic area, e.g., in the intermediate scenario (SSP 3 – RCP 4.5), the percentage of highly 
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376 suitable geographical areas was 7.8 % for Germany, 9.6 % for Poland and 14.8 % for Austria 

377 (Tables S3 – S5). The predicted decrease was higher according to more severe scenarios, e.g., for 

378 Germany the percentage of high occurrence probability cells changed from 14.0 % (SSP1 – 

379 RCP2.6) to 7.8 % (SSP 3 – RCP 4.5) to 1.6 % (SSP 5 – RCP 8.5) (Tables S3 – S5). Some countries 

380 highly suitable for Em were reported in northern Europe, e.g., under the SSP 3 – RCP 4.5 the 

381 percentage of highly suitable cells was 59.9 % for Lithuania and 39.4 % for Latvia (Tables S3 – 

382 S5). 

383 The percentage change of high occurrence probability cells was notable for central Europe 

384 where losses were reported, e.g., in Germany (- 88.9 % under the SSP 3 – RCP 4.5 scenario), 

385 Austria (- 65.4 %), Poland (- 82.6 %) and Czechia (- 92.1 %) (Tables S6-S8). Instead, an increase 

386 was indicated for northern European countries like Norway (+ 52.4 % under the SSP 3 – RCP 4.5 

387 scenario) and the Great Britain (+ 1000 %, although only 10 cells were gained) (Tables S6-S8). 

388 The countrywide analysis for combined projections reported a higher suitability for Em in the 

389 core endemic area (Tables S9 - S11). Under the SSP 3 – RCP 4.5 scenario, the percentage of cells 

390 with high suitability values in Germany was 72.0 %, with 53.2 % in Austria, 58.6 % in Poland and 

391 75.4 % in Switzerland (Tables S9 - S11). The percentage change was similar to that reported for 

392 raw predictions, although central European countries had small gains (e.g., 0.8 % for Germany 

393 under the SSP 3 – RCP 4.5 scenario) (Tables S12 – S14). 

394 DISCUSSION

395 Using publicly available records of E. multilocularis in red fox, and a hypothesis-based 

396 evaluation of alternative species distribution models generated using these data, we identified the 
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397 main environmental drivers of habitat suitability for Em in Europe at large scale (25x25km) and 

398 produced spatially explicit projections of current and future suitability for the parasite. 

399 Among the suite of developed models, the one with the highest performance, which employed 

400 the full set of variables, predicted a marked decrease in habitat suitability for Em in central Europe 

401 (Germany, Poland, Switzerland, Austria, Czechia), but increases towards higher altitudes (the 

402 Alpine region) and latitudes (Great Britain and the Fennoscandian peninsula).

403 A mechanistic explanation for these predictions has been proposed (Atkinson et al., 2013); that 

404 is, the survival of eggs is severely impaired by high temperatures and desiccation (Federer et al., 

405 2015), so Em is often found in cold and humid areas (Shaikenov, 2006); therefore, rising 

406 temperatures might reduce egg survival in lower latitudes and altitudes, causing a shift of suitable 

407 areas towards northern countries. The negative impact of high temperatures on egg survival might 

408 also explain why the observed reduction of Em probability of occurrence in Central Europe under 

409 all global change scenarios was far more extensive than its increase at higher latitudes.

410 Another possible mechanistic explanation for our predictions is linked to changes in the 

411 distribution of key intermediate hosts (Massolo et al., 2022), as definitive hosts are widespread 

412 and cannot explain large-scale patterns of Em distribution and its changes (Hoffmann &  Sillero-

413 Zubiri, 2016). However, intermediate hosts might not always be able to track suitable habitats 

414 under global change scenarios as a result of dispersal and biogeographical limitations. Hence, the 

415 projected expansion of Em at higher latitudes might be limited by intermediate host availability. 

416 The role of temperature in shaping Em distribution has been highlighted in several regions 

417 (Miterpakova et al., 2006, Tolnai et al., 2013), and the preference for relatively cold winter 

418 temperatures that we highlighted is consistent with this environmental preference. The negative 
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419 relationship with precipitation seasonality also confirms a possible negative impact of drought 

420 periods on egg survival and Em transmission.

421 The positive relationship of suitability with urban areas is also well known for Em (Deplazes et 

422 al., 2004, Liccioli et al., 2015), and it is probably explained by the urbanization of red foxes in 

423 Europe, as reported in the city of Zurich (Hofer et al., 2000), Vienna (Duscher et al., 2005) and 

424 Brussels (Brochier et al., 2007), as well as in other types of urbes (sensu Liccioli et al., 2015). In 

425 addition, the extensive occurrence of human-occupied areas in the historically endemic rural areas 

426 of eastern France might also explain this pattern (Knapp et al., 2018). In these rural landscapes, 

427 forested areas interspersed with urban settlements and open spaces result in a landscape that is 

428 highly conducive to the transmission of this parasite (Knapp et al., 2018). The unimodal 

429 relationship of suitability with forest cover (with a peak at intermediate cover) suggested by our 

430 best model appears to reflect this phenomenon.

431 Our raw projections suggested there will be a marked loss of suitability in central Europe 

432 regardless of the considered scenario. Furthermore, combined predictions indicated a spreading of 

433 the parasite out of the core endemicity area and towards higher altitudes and latitudes. Future 

434 northern shifts in preferred habitat have already been projected for some parasites (ticks and 

435 lungworms: Jore et al., 2014, Kafle et al., 2020), and future latitude/altitude shifts in others (viruses 

436 and haemosporidians: Harrigan et al., 2014, Perez-Rodriguez et al., 2014).

437 Our country-wise predictions of transmission risk provide a useful guide for surveillance and 

438 pre-emptive efforts towards areas where the risk is high or predicted to increase. However, current 

439 predictions at the range margins (e.g., northern Italy) do not match actual occurrence records, 

440 possibly reflecting the preponderance of data from the historically endemic areas in the definition 

441 of species-environment relationships. Suitable areas for peripheral populations are often poorly 
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442 described by continental models built at a large coarse scale (Vale et al., 2014); therefore, future 

443 work should aim to determine the fine-scale determinants of habitat suitability for Em along its 

444 range margins. Future research might also aim to integrating a wider set of GCMs (Thuiller et al., 

445 2019), following an increased availability of corresponding LULC scenarios. Although we used 

446 presence data of parasites in their main definitive host, assuming that environmental conditions at 

447 the occurrence sites were conducive to all stages of the life cycle, a better mechanistic 

448 understanding of the autecology of each life cycle stage and of the hosts might help to detect 

449 mismatches in host-parasite responses to global change (Cizauskas et al., 2017, Pickles et al., 

450 2013). 

451 As extensive intraspecific genetic variation might buffer the negative impacts of global change 

452 via local adaptation (Razgour et al., 2019, Valladares et al., 2014), we cannot rule out that areas 

453 where the parasite is currently highly endemic might continue to host viable parasite populations 

454 despite the predicted loss of habitat suitability. More refined ways to account for this phenomenon 

455 in species distribution models for Em should therefore be developed. In addition, the integration 

456 of other factors into our models, such as the distance of an occurrence record from endemic areas, 

457 could be used to weigh the probabilities of presence of the parasite between areas which are equally 

458 environmentally suitable, but not yet reached by the parasite. In addition, since our analyses were 

459 conducted on data collected in Europe, the results may not apply elsewhere, and predictions of 

460 occurrence probability for Em outside Europe should be developed to attain a more thorough 

461 understanding of the response of this species to global changes.

462 By exploiting the large availability of high-quality occurrence data for Em in Europe, we 

463 modelled its current and future occurrence probability in this continent, providing insights on how 

464 habitat suitability for complex life cycle parasites is expected to vary under global change. Our 
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465 hypothesis-driven modelling framework should prove useful to model spatial patterns of 

466 occurrence probability for other trophically-transmitted parasites with a complex life cycle. 

467 Indeed, despite the complexity of the ecology of this parasite, our framework allowed us to rapidly 

468 test biological hypotheses on the drivers of Em distribution and to obtain robust predictions of 

469 current and future occurrence probability, accounting for both climate and LULC. Furthermore, in 

470 the case of zoonotic parasites, our framework could be employed to provide rapid, reliable 

471 assessments of parasite occurrence probability to aid the prevention of pathogen outbreaks.

472
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473 DATA ACCESSIBILITY

474 The data that support the findings of this study are openly available in Dryad

475 at https://doi.org/10.5061/dryad.dv41ns230.
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701 LIST OF TABLE LEGENDS

702 Table 1. Combinations of environmental factors included in the Maxent model for Echinococcus 

703 multilocularis in Europe according to different biological hypotheses. A grey block 

704 indicates that the variable/set of variables has been included in the models representing 

705 a given hypothesis. The performance of the best model selected for each hypothesis is 

706 reported according to three performance measures: the Area Under the Receiver-

707 Operating Characteristic Curve computed on the test data (AUCtest), the difference 

708 between the AUC computed on the train data and the AUCtest (AUCdiff), and the Akaike 

709 Information Criterion corrected for a small sample size (AICc). In bold: performance 

710 measurements of the model used to predict the current and future probability of 

711 occurrence for the species. Variable names are abbreviated as follows: Bio = Bioclimatic 

712 predictors (Temperature annual range, Mean temperature of the coldest quarter, 

713 Precipitation of the wettest month, Precipitation seasonality), Rou = Roughness, TPI = 

714 Topographic Position Index, Urb = Urban, Dis = Discontinuous, For = Forest, Rot = 

715 Rotation, Pas = Pastures, R_p = Rotation and pastures, G_m = Grasslands and 

716 moorlands. References are numbered as follows: 1Craig et al., 2000, 2Danson et al., 

717 2003, 3Danson et al., 2004, 4Deplazes et al., 2004, 5Giraoudoux et al., 2003, 6Giraudoux 

718 et al., 2013, 7Hegglin et al., 2015, 8Liccioli et al., 2015, 9Marston et al., 2014, 10Pearson 

719 & Dawson, 2003, 11Raoul et al., 2015, 12Romig et al., 2006, 13Umhang et al., 2013, 

720 14Veit et al., 1995. Hp = Hypothesis; Refs = References.

721 Table 2. Relative contribution (%) of the environmental variables in the Maxent model used to 

722 predict the current and future probability of occurrence of Echinococcus multilocularis 

723 in Europe as a function of climatic, topographic and land-use/land-cover variables.
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Table 1.

Hp Variables AUCtest AUCdiff AICc Refs

Bio Rou TPI Urb Dis For Open Rot Pas R_p G_m

1
0.825 0.028 7546.7

(Giraudoux et al., 2003, Marston et al., 2014, Pearson &  Dawson, 2003) 

2
0.819 0.033 7814.3

(Marston et al., 2014, Tackmann et al., 2001)

3
0.835 0.026 7613.0 (Craig et al., 2000, Danson et al., 2003, Giraudoux et al., 2013, Pearson &  Dawson, 

2003, Veit et al., 1995), 

4
0.826 0.031 7594.1 (Danson et al., 2004, Giraudoux et al., 2013, Pearson &  Dawson, 2003, Tackmann 

et al., 2001, Veit et al., 1995) 

5
0.841 0.029 7586.1 (Danson et al., 2004, Giraudoux et al., 2013, Pearson &  Dawson, 2003, Tackmann 

et al., 2001, Veit et al., 1995)

6
0.813 0.019 7582.2 (Giraudoux et al., 2003, Romig et al., 2002, Tackmann et al., 2001, Veit et al., 

1995)

7
0.819 0.048 7567.8 (Deplazes et al., 2004, Giraudoux et al., 2003, Liccioli et al., 2015, Romig et al., 

2002, Tackmann et al., 2001, Veit et al., 1995)
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LIST OF FIGURE CAPTIONS

Figure 1. Occurrence records of Echinococcus multilocularis in Europe, used to model its current 

and future probability of occurrence as a function of climatic, topographic and land-

use/land-cover variables. Data from a bibliographic search were combined with data 

from the EmsB Website for Echinococcus Typing (EWET) database (updated to 6th 

February 2020). Map lines delineate study areas and do not necessarily depict accepted 

national boundaries.

Figure 2. Current probability of occurrence for Echinococcus multilocularis in Europe as 

estimated by the best performing Maxent model. Points represent presence points used 

to calibrate the model. The probability of occurrence is reported in five classes of 

increasing value from dark green to red. Map lines delineate study areas and do not 

necessarily depict accepted national boundaries.

Figure 3. Response curves of the Maxent model representing Echinococcus multilocularis 

probability of occurrence against the top four environmental predictors. a) Mean 

temperature of coldest quarter - expressed in °C; b) Percentage of forest cover; c) 

Percentage of urban cover; d) Precipitation seasonality - expressed as the coefficient of 

variation.

Figure 4. a) Projections of future habitat suitability for Echinococcus multilocularis under three 

global change scenarios of increasing severity (Shared Socioeconomic Pathway 1 - 

Representative Concentration Pathway 2.6; SSP3 - RCP 4.5; SSP5 - RCP 8.5). As future 

projections are developed over averaged 2041-2060 climate and land-use/land-cover 
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conditions, we assumed these maps to represent E. multilocularis distribution around 

2050. b) Maps combining current and future predictions of habitat suitability for 

Echinococcus multilocularis under three global change scenarios of increasing severity 

(Shared Socioeconomic Pathway 1 - Representative Concentration Pathway 2.6; SSP3 

- RCP 4.5; SSP5 - RCP 8.5). For each grid cell, the maximum predicted value between 

current and future predictions is retained. These maps account for the plausible 

persistence of E. multilocularis in historically endemic Central European areas due to a 

higher adaptive potential, despite the predicted reduction in occurrence probability. Map 

lines delineate study areas and do not necessarily depict accepted national boundaries.

Figure 5. a) Standard deviation among habitat suitability projections for Echinococcus 

multilocularis in Europe developed with three General Circulation Models: HadGEM2-

ES, IPSL-CM5A-LR, MIROC5. b) Predicted change of habitat suitability for 

Echinococcus multilocularis in Europe under three global change scenarios of 

increasing severity (Shared Socioeconomic Pathway 1 - Representative Concentration 

Pathway 2.6; SSP3 - RCP 4.5; SSP5 - RCP 8.5). Areas with a suitability less or equal to 

the Minimum Training Presence under both current and future scenarios are reported in 

grey. Map lines delineate study areas and do not necessarily depict accepted national 

boundaries.
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Occurrence records of Echinococcus multilocularis in Europe, used to model its current and future probability 
of occurrence as a function of climatic, topographic and land-use/land-cover variables. Data from a 

bibliographic search were combined with data from the EmsB Website for Echinococcus Typing (EWET) 
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Current probability of occurrence for Echinococcus multilocularis in Europe as estimated by the best 
performing Maxent model. Points represent presence points used to calibrate the model. The probability of 
occurrence is reported in five classes of increasing value from dark green to red. Map lines delineate study 

areas and do not necessarily depict accepted national boundaries. 
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Response curves of the Maxent model representing Echinococcus multilocularis probability of occurrence 
against the top four environmental predictors. a) Mean temperature of coldest quarter - expressed in °C; b) 

Percentage of forest cover; c) Percentage of urban cover; d) Precipitation seasonality - expressed as the 
coefficient of variation. 
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a) Projections of future habitat suitability for Echinococcus multilocularis under three global change
scenarios of increasing severity (Shared Socioeconomic Pathway 1 - Representative Concentration Pathway 

2.6; SSP3 - RCP 4.5; SSP5 - RCP 8.5). As future projections are developed over averaged 2041-2060 
climate and land-use/land-cover conditions, we assumed these maps to represent E. multilocularis 
distribution around 2050. b) Maps combining current and future predictions of habitat suitability for 

Echinococcus multilocularis under three global change scenarios of increasing severity (Shared 
Socioeconomic Pathway 1 - Representative Concentration Pathway 2.6; SSP3 - RCP 4.5; SSP5 - RCP 8.5). 
For each grid cell, the maximum predicted value between current and future predictions is retained. These 

maps account for the plausible persistence of E. multilocularis in historically endemic Central European areas 
due to a higher adaptive potential, despite the predicted reduction in occurrence probability. Map lines 

delineate study areas and do not necessarily depict accepted national boundaries. 
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a) Standard deviation among habitat suitability projections for Echinococcus multilocularis in Europe
developed with three General Circulation Models: HadGEM2-ES, IPSL-CM5A-LR, MIROC5. b) Predicted

change of habitat suitability for Echinococcus multilocularis in Europe under three global change scenarios of 
increasing severity (Shared Socioeconomic Pathway 1 - Representative Concentration Pathway 2.6; SSP3 - 
RCP 4.5; SSP5 - RCP 8.5). Areas with a suitability less or equal to the Minimum Training Presence under 

both current and future scenarios are reported in grey. Map lines delineate study areas and do not 
necessarily depict accepted national boundaries. 
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