
Journal of Neural Engineering      

PAPER • OPEN ACCESS

A multimodal approach to capture post-stroke
temporal dynamics of recovery
To cite this article: Camilla Pierella et al 2020 J. Neural Eng. 17 045002

 

View the article online for updates and enhancements.

You may also like
Single DoF Hand Orthosis for
Rehabilitation of Stroke and SCI Patients
Rajesh Kannan Megalingam, K G S
Apuroop and Sricharan Boddupalli

-

Realistic anatomically detailed open-
source spinal cord stimulation (RADO-
SCS) model
Niranjan Khadka, Xijie Liu, Hans Zander et
al.

-

Advances in 3D printing scaffolds for
peripheral nerve and spinal cord injury
repair
Juqing Song, Baiheng Lv, Wencong Chen
et al.

-

This content was downloaded from IP address 146.241.227.156 on 11/06/2024 at 14:49

https://doi.org/10.1088/1741-2552/ab9ada
https://iopscience.iop.org/article/10.1088/1757-899X/225/1/012202
https://iopscience.iop.org/article/10.1088/1757-899X/225/1/012202
https://iopscience.iop.org/article/10.1088/1741-2552/ab8344
https://iopscience.iop.org/article/10.1088/1741-2552/ab8344
https://iopscience.iop.org/article/10.1088/1741-2552/ab8344
https://iopscience.iop.org/article/10.1088/2631-7990/acde21
https://iopscience.iop.org/article/10.1088/2631-7990/acde21
https://iopscience.iop.org/article/10.1088/2631-7990/acde21
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsvAM2FvtmCBbnCz6KVw2Bv-LxACjvb6Ec8yBEV6bbcT0vULhJwNkwQCkrn4kawkttxNXSgciyLwoZKzqYPPJe3apFrPCIEh7rPsnfc5MZP4GXNeAxTj7T_Wd1Uf0si1EnNqXTq2ybyzhaCIU2jU0Sk5s5YUmBoU_UKzcquxRYMAiRqlJd3GeP90Y_ctBORTlc7QmJrIv9v1sBLJnU-GWQ1MZHqQAB2sUS32YxhfI3qwp6EGEts9QmQS-POkhzCH6iIByTGu8tTcYvNqR3M14TwEAkDCYwQLdTp8VLieQl5PnxjUSSH8QeAF9nKbXK2XHgBmhY4x0A0LYIEwrTJud1wRn37EMglC&sig=Cg0ArKJSzLX3MdnRru_x&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://www.owlstonemedical.com/about/events/breath-biopsy-conference-2024/%3Futm_source%3Diop%26utm_medium%3Dad-lg%26utm_campaign%3Dbbcon-bbcon24-reg%26utm_term%3Diop-journal


J. Neural Eng. 17 (2020) 045002 https://doi.org/10.1088/1741-2552/ab9ada

Journal of Neural Engineering

OPEN ACCESS

RECEIVED

15 January 2020

REVISED

5 June 2020

ACCEPTED FOR PUBLICATION

9 June 2020

PUBLISHED

8 July 2020

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

A multimodal approach to capture post-stroke temporal dynamics
of recovery
Camilla Pierella1, Elvira Pirondini2,3, Nawal Kinany1,2,3, Martina Coscia4, Christian Giang1,
Jenifer Miehlbradt1, Cécile Magnin5, Pierre Nicolo5,6, Stefania Dalise7, Giada Sgherri7,
Carmelo Chisari7, Dimitri Van De Ville2, Adrian Guggisberg5,6 and Silvestro Micera1,8

1 Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School
of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland

2 Medical Image Processing Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
3 Department of Radiology and Medical Informatics, University of Geneva, Geneva 1202, Switzerland
4 Wyss Center for Bio- and Neuro- Engineering, Geneva 1202, Switzerland
5 Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital Geneva, Geneva 1206, Switzerland
6 Laboratory of Cognitive Neurorehabilitation, Department of Clinical Neurosciences, Medical School, University of Geneva, Geneva
1206, Switzerland

7 Department of Translational Research and of new Technologies in Medicine and Surgery, University Hospital of Pisa, Pisa, Italy
8 Translational Neural Engineering Area, The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa 56025, Italy

E-mail: camilla.pierella@epfl.ch and silvestro.micera@epfl.ch

Keywords: stroke, motor impairment, biomarker, neuro-rehabilitation, upper limb

Supplementary material for this article is available online

Abstract
Objective. Several training programs have been developed in the past to restore motor functions
after stroke. Their efficacy strongly relies on the possibility to assess individual levels of impairment
and recovery rate. However, commonly used clinical scales rely mainly on subjective functional
assessments and are not able to provide a complete description of patients’ neuro-biomechanical
status. Therefore, current clinical tests should be integrated with specific physiological
measurements, i.e. kinematic, muscular, and brain activities, to obtain a deep understanding of
patients’ condition and of its evolution through time and rehabilitative intervention. Approach.We
proposed a multivariate approach for motor control assessment that simultaneously measures
kinematic, muscle and brain activity and combines the main physiological variables extracted from
these signals using principal component analysis (PCA). We tested it in a group of six sub-acute
stroke subjects evaluated extensively before and after a four-week training, using an upper-limb
exoskeleton while performing a reaching task, along with brain and muscle measurements.Main
results. After training, all subjects exhibited clinical improvements correlating with changes in
kinematics, muscle synergies, and spinal maps. Movements were smoother and faster, while muscle
synergies increased in numbers and became more similar to those of the healthy controls. These
findings were coupled with changes in cortical oscillations depicted by EEG-topographies. When
combining these physiological variables using PCA, we found that (i) patients’ kinematic and
spinal maps parameters improved continuously during the four assessments; (ii) muscle
coordination augmented mainly during treatment, and (iii) brain oscillations recovered mostly
pre-treatment as a consequence of short-term subacute changes. Significance. Although these are
preliminary results, the proposed approach has the potential of identifying significant biomarkers
for patient stratification as well as for the design of more effective rehabilitation protocols.

1. Introduction

Stroke is the leading cause of adult long-term dis-
ability in Western societies. More than 1.5 million

people are affected every year in Europe [1]. Even
though acute stroke care and intensive rehabilitation
are improving, two-thirds of chronic stroke survivors
have to cope with persisting neurologic deficits, and
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only 20% of them are able to go back to their normal
professional and private life [2].

The most common impairments in the acute and
chronic stages are cognitive conditions and motor
deficits contralateral to the affected brain hemi-
sphere [3]. A profound neuromuscular reorganiz-
ation occurs after stroke [4, 5]. The affected limb
is typically characterized by spasticity [6], stereo-
typed movement patterns, mainly caused by abnor-
mal muscle co-activation and an enlarged activity
of the antagonist muscles [7, 8], which result in a
reduced range of motion against gravity [5], and,
thus, to a limited workspace in three-dimensional
reaching movements [9, 10].

A key factor in stroke recovery is the intensity
of training, especially in the acute phase, to enhance
functional restoration and prevent inactivity-related
complications [11]. Yet because of the patient-specific
clinical picture, treatment programs might vary in
duration, intensity, and frequency [12]. Therefore,
the success of the rehabilitation processes depends on
the ability of the clinician to discern the individual
levels of impairment and responses to treatment with
simple, robust, and effective methods.

Currently, patients are evaluated mainly using
clinical scales, with Fugl-Meyer being one of the most
adopted measures of motor impairment after stroke.
Yet, the precision of these clinical tests are limited
by inter-rater and intra-rater reliability [13–15], as
well as by floor and ceiling effects [16, 17]. Moreover,
some of them require a consider amount of time to
be administered. Clinical scales should, therefore, be
integrated with targeted neuro-biomechanical assess-
ments, in order to provide amore detailed description
of the patients’ clinical status.

Many instrumental approaches that investigate
different domains of the hierarchical organization of
the neuromusculoskeletal system can be employed for
this purpose, includingmeasures of kinematics, mus-
cular, and brain activities.

In a recent work, Thrane and colleagues coupled
standard clinical tests with upper extremity kinemat-
ics to reduce the ceiling effects of the Fugl-Meyer
Assessment [18]. They showed that post-stroke par-
ticipants with near or fully recovered sensorimotor
function still showed deficits in movement kinemat-
ics that were not captured by the clinical assessment.
These kinematic measures provide a detailed and
quantitative description of motor behaviors.

However, the neural deficits may be masked at
the kinematic level by compensatory strategies and
similar movements may be produced through differ-
ent neuromuscular mechanisms. Therefore, muscu-
lar control strategies should be also considered in the
patients’ clinical picture. Indeed, several behavioral
studies on animals and humans [19–22] have showed
that muscle synergies extracted from the factoriz-
ation analysis of electromyographic signals (EMG)
can reveal underlying patterns in muscle activity that

may reflect different levels of neural functions and
their integrity has been proposed as a physiological
marker of cortical damage. For instance, Cheung et al
observed that in severe stroke patients there is a lack
of preservation of muscle synergies in the affected
side [23], and their level of preservation correlates
with the level of motor impairment [24]. Finally,
recordings of neural activity can also inform about
the central nervous system reorganization after brain
damage. Indeed, previous electrophysiological stud-
ies in post-stroke patients showed that compromised
cortical areas are characterized by augmented slow
potentials, which are predictive of long-term post-
stroke outcome [25, 26].

Despite these interesting and promising results,
each of the proposed approach investigates a spe-
cific domain of the neuro-musculoskeletal system.
Therefore, each methodology provides a detailed
but sectorial assessment. Conversely, merging all the
domains may provide a comprehensive framework
for a more complete and quantitative patient profil-
ing [27, 28].

To this end, the main goal of this study was to
develop amultivariate analysismethod to couple clin-
ical evaluations with multimodal instrumental evalu-
ations in order to provide a deeper characterization
of the neuro-biomechanical status of stroke patients
undergoing different rehabilitation protocols. We
first introduced an exhaustive and diverse set of
measures extracted from different sources, including
motor performance as well asmuscle activity during a
motor task and brain activity at rest. Then, we presen-
ted a methodological approach combining and integ-
rating these parameters, which allowed to identify
neuro-biomechanical features modifications at dif-
ferent time points during intervention and recovery.
We tested this methodology on a small cohort of
stroke subjects that went through a period of intense
motor training using a 3D reaching task. We believe
that the features extracted with our comprehensive
multivariate analysis can increase the understanding
of the mechanisms underlying motor impairments
and recovery, and, additionally, they can potentially
help designmore effective rehabilitative interventions
and monitor the progress of the disease as well as the
effects of rehabilitative treatments [29, 30].

2. Methods

2.1. Subjects
Six stroke subjects (4 females, age 68± 18 yo) between
2 and 6 weeks from the occurrence of the stroke
lesion, all with right hemiplegia and at least 10◦ of
residual motion in shoulder and elbow joints (details
in table 1), and six healthy subjects (4 females, age
58 ± 16 yo) were enrolled in the study. All sub-
jects were right-handed. The healthy subjects did not
present any evidence or known history of skeletal or
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neurological diseases, and they exhibited intact joint
range of motion and muscle strength.

The study was carried out in the Neurorehab-
ilitation Unit of the University Hospital of Geneva
(HUG), Switzerland and of the University Hospital
of Pisa (Cisanello hospital), Italy. It was approved by
theCommissionCantonale d’Ethique de la Recherche
(CCER) de Genève, Switzerland, and by the Comitato
Etico Area Vasta Nord Ovet (CEAVNO) in Pisa. The
recordings were carried out in agreement with the
Declaration of Helsinki and Good Clinical Practice
norms. The study is registered with the number
NCT02770300 in ClinicalTrials.gov. The participants
were informed of the procedure and they signed an
informed consent, which included the consent for the
use of all data collected during the experiment in sci-
entific publications.

2.2. Experimental set-up and procedure
The experimental protocol for the stroke patients
consisted of four sessions of clinical and robotic
assessment interleaved by four weeks of experimental
training—three sessions of 30 min per week—
proposed in addition to the habitual physical rehab-
ilitative treatment of the patient. The stroke popula-
tion completed two assessment sessions before (A1
and A2) and two after (A3 and A4) the experimental
training. The initial assessment sessions were com-
pleted two weeks (A1, baseline) and one week (A2)
before the beginning of the training. A2 was done
in order to estimate the rate of the changes due to
spontaneous recovery and inpatient therapy, since the
patients were in the subacute phase of the stroke.
The final two assessment sessions were completed one
week after the end of the training (A3), in order to
evaluate the effects of the rehabilitation protocol, and
onemonth after the end of the training (A4) to evalu-
ate the retention of the changes induced by the exper-
imental training (figure 1(a)).

The enrolled stroke participants were receiving
different therapies during the period of experi-
mental training, including extra sessions of conven-
tional therapy without the use of robotic devices;
or standard robot-assisted rehabilitation therapy
with an upper-limb exoskeleton; or automatic per-
sonalized robot-assisted rehabilitation therapy with
an upper-limb exoskeleton [31] (see supplement-
ary material for details on patients’ division dur-
ing the experimental training (available online at
stacks.iop.org/JNE/17/045002/mmedia)).

During the robotic assessment sessions and the
treatment sessions involving a robot, the subjects
were assisted by an exoskeleton for the upper limb
(Arm Light Exoskeleton Rehab Station, ALEx RS)
developed by Wearable Robotics srl [32, 33]. The
task proposed while working with ALEx RS was a 3D
point-to-point reaching task. Specifically, the parti-
cipants were instructed to start from the center of the
workspace, reach one of the eighteen outer targets,

and then move back to the starting position at a com-
fortable speed. Visual feedback was displayed on a
monitor placed in front of the subjects (figure 1(b)).
A yellow sphere corresponded to the position of the
exoskeleton’s end-effector, while a red sphere indic-
ated the target to be reached. The outer targets were
in total eighteen, equally distributed along a spherical
workspace of 19 cm radius (figure 1(c)). The selected
radius of the sphere allows for a maximum explora-
tion of the workspace, whilemaintaining the reaching
movement executable for people of most body sizes.
This design of the motor task allowed exploiting an
extensive three-dimensional workspace. The spher-
ical workspace was positioned so that its center was
aligned with the acromion of the right arm (i.e. arm
trained with the exoskeleton) mid-way between the
center of the target panel and the subject’s acromion.
In order to preserve the depth perception, the dimen-
sions of the target spheres were modified in accord-
ance with their position in the 3D space. If a sub-
ject was unable to reach a target (i.e. the subject
did not move for more than 3 s), ALEx RS activ-
ated its assistance mode to guide the subject towards
the target according to a minimum jerk speed pro-
file [33, 34]. During the assessment sessions, the sub-
jects were asked to reach all the eighteen targets as
many times as possible within 30 min, while during
the robotic training the subjects practiced only a sub-
section (8 targets) of the available workspace. During
each training session, the choice of which target to
reach among the available eighteenwas done either by
the physical therapist (standard robot-assisted rehab-
ilitation therapy) or by an automatic-personalized
algorithm. The algorithm was embedded in the con-
trol scheme of ALEx RS and selected the targets at the
beginning of each session and changed them within
the same session accordingly to the subject’s perform-
ance (automatic personalized robot-assisted rehabil-
itation therapy) [31]. Patients that performed stand-
ard rehabilitation without ALEx RS were trained with
a similar amount of upper limb movements.

In addition to the experimental training sessions
described above, all the patients received habitual
physical therapy at the stroke unit during the acute
and sub-acute phase, while hospitalized. Specific-
ally, all patients received two times 30 min of phys-
ical therapy per day on five days per week and five
times 30 min of occupational therapy per week on an
inpatient basis for 8 to 16 weeks. Following the end
of the hospitalization, patients continued receiving
outpatient treatments consisting of 1–4 h of phys-
ical and occupational therapy per week. Therapy was
adapted by the therapists to the current capacities
of each patient by choosing from a list of appropri-
ate exercises comprising upper-extremity relaxation
techniques, unilateral task-specific mobilizations,
bilateral upper limb exercises with a wand, ball exer-
cises, active ante/retropulsion exercises, active prona-
tion/supination exercises and grasping exercises.
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Table 1. Demographics of the stroke population recruited in the study.

Subject Age (yo) Gender Time after stroke Lesion type and location FMA

S1 79 female 3 weeks Ischemic, left middle cerebral artery 24
S2 82 female 4 weeks Ischemic, left corona radiata, internal capsule and putamen 16
S3 34 female 2 weeks Ischemic, left middle cerebral artery 17
S4 78 male 4 weeks Ischemic, left paramedian pontine 5
S5 65 male 2 weeks Ischemic, left corona radiata 50
S6 73 female 6 weeks Ischemic, left parasagittal pontine 54

All subjects were hospitalized until the assessment
performed at the end of the experimental treatment
(A3). At the time of A4 all subjects were no longer
hospitalized and participated at the assessment as
outpatients. Therefore, we can considerer the dosage
of inpatient and outpatient therapies globally equival-
ent across subjects.

The healthy subjects went through a single robotic
assessment session where they were asked to reach the
eighteen targets 5 times.

During each robotic assessment session, both for
stroke patients and healthy controls,muscular (EMG)
and brain (EEG) activity were recorded. Resting state
eye-closed EEG was recorded for 5 min before the
beginning of each robotic assessment session. Kin-
ematic data acquisition was synchronized with EMG
signals acquisition by using trigger signals sent from
ALEx RS at the following events: movement start,
movement end, and at the occurrence of robotic-
assistance.

For the goal of this studywe considered all 6 stroke
subjects together independently from the therapy
received during the experimental training period.
Therefore, we are going to compare motor perform-
ance of two groups: healthy and stroke subjects.

2.3. Clinical evaluation
Along with the robotic assessments, and at the same
time points (A1, A2, A3 and A4), the stroke subjects
were evaluated with clinical tests by a therapist not
directly involved in the study and blind to the group
allocation. The sensorimotor status of the patient was
evaluated using the upper limb section of the Fugl-
Meyer Assessment (FMA) scale [35]; and the grip
force measured using a Jamar dynamometer [36].

2.4. Data analysis
For the data analysis of all subjects, stroke and healthy,
we considered only the six targets (figure 1(c), blue
spheres) that all the stroke patients were able to
actively reach, which were, in addition, representat-
ive of the 3 main movement directions: up and down
(target 1 and target 5), right and left (target 3 and
target 7), near to and far from the body (target 10
and target 13). We only considered the movements
going from the center of the workspace to the outer
targets. The selected set of movements differed in
terms of elbow and shoulder joints combination in

order to fully capture subjects’ impairment. In par-
ticular, target 13 elicited elbow extension, which is
generally more difficult than elbow flexion (i.e. tar-
get 10). Target 7 required extension of both elbow
and flexion of the shoulder as opposite to target 3,
which involved a coordination of elbow extension
and shoulder flexion. Finally, movements toward tar-
get 5, the one placed at the bottom of the spherical
workspace, were facilitated by gravity. All reaching
movements performed by the subjects were requir-
ing active gravity compensation of the subject’s arm,
while the exoskeleton was compensating only for the
weight of its components. In all further analyses, we
did not consider each selected target separately but we
pulled all movements together.

For the healthy subjects the total number ofmove-
ments was 30 (i.e. 5 repetitions of 6 targets), while for
the stroke subjects it depended on the level of resid-
ual mobility at each assessment. The session lasted
30 min, during which the stroke subjects could per-
form a minimum number of one repetition of each
target and a maximum of 5 repetition of 6 targets.

2.5. Kinematic analysis andmeasures
Kinematic parameters were computed from the
handle (i.e. exoskeleton’s end-effector) positions
recorded by ALEx RS during each reaching move-
ment. The start and end of the reaching movement
were defined as the time points when the speed pro-
file of the EE of the exoskeleton respectively exceeded
or dropped below 2% of the local maximum value
[33]. We adopted the following parameters [31, 37]:
MV, themean tangential velocity of the handle; nMD,
the mean absolute value of the distance between the
actual trajectory and the straight line connecting the
starting position with the target (theoretical path)
normalized by the length of the theoretical path,
which is a measure of movement accuracy; nPK, the
number of peaks in the speed profile, a well-known
parameter quantifying movement smoothness; the
spectral arc-length metric (SAL), (expressed as a neg-
ative value), that uses a movement speed profile’s
Fourier magnitude spectrum to quantify movement
smoothness [38]; the distance from target when the
exoskeleton started to assist the movement normal-
ized by the distance between the target and the cen-
ter of the workspace (Dtrgt); the robot assistance fre-
quency, i.e. the number of assisted movements (RAF,
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Figure 1. (a) experimental protocol: the protocol was organized in four assessments (A1 to A4) and four weeks of training.
During the assessments, clinical scales were measured along with kinematic, muscular activity and brain activity before and while
training with the exoskeleton. (b) experimental set up: the subject was sitting in front of a computer screen while wearing the
exoskeleton and was given a visual feedback of the end effector of the robot in the shape of a yellow sphere. A red sphere indicated
the position of a target that the subject had to reach for. (c) reaching task: the reaching task consisted in center-out reaching
movements towards 18 targets equally distributed along a sphere. The blue targets were the ones considered in the multimodal
performance analysis, while the set of blue and red targets together constituted the full training target set.

in percentage); the percentage of workspace explored
without the help of the robotic-assistance normalized
by the ideal workspace corresponding to the volume
of a sphere of radius 19 cm (WS); and the time to
complete the task (ttask, i.e. reaching of the outer
target). MV, nMD, nPK have been computed only
over the path’s trajectory in which the patient moved
actively.

2.6. EMG analysis
2.6.1. Data acquisition and pre-processing
We recorded the activity of 15 upper limb muscles:
upper trapezius, TRAPS, trapeziusmedialis, TRAPM,
anterior deltoid, DANT, medial deltoid, DMED, pos-
terior deltoid, DPOS, pectoralis major, PECM, latis-
simus dorsi, LAT, infraspinatus, INFRA, rhomboid
major, RHO, biceps brachii long head, BICL, biceps
brachii short head, BICS, brachioradialis, BRAD, tri-
ceps brachii lateral, TRILA, triceps brachii long head,
TRILO, and pronator, PRO. The EMG were recor-
ded with a Noraxon Desktop DTS wireless system at
a sampling rate of 1.5 kHz by using superficial Ag-
AgCl electrodes (Kendall H124SG, ECG electrodes
30 × 24 mm) after appropriate skin preparation.
Electrodes were placed according to guidelines of
the Surface Electromyography for the Non-Invasive
Assessment ofMuscles European Community project
(SENIAM) [39] and Anatomical guideline [40].

EMG data were preprocessed offline using MAT-
LAB (MathWorks, Natick MA). The raw EMG sig-
nals were detrended, band-pass filtered 50–500 Hz
(Butterworth filter, 7th order), rectified, low-pass

filtered with a cut-off frequency of 10 Hz (But-
terworth filter, 7th order) to obtain the envelopes
[41, 42]. To correct the EMG-amplitude differences
due to electrode placement and to ensure that the
extraction of the synergies would not be biased
against the low-amplitude muscles, the envelope of
each muscle signal was normalized by the median
computed for each individual across each session. The
normalization based on the median value instead of
the maximum is more robust to outliers [41]. Then,
for each subject and session, EMG data were epoched
considering the six different directions and were con-
catenated for muscle synergies analysis.

2.6.2. Muscle synergies extraction and measures
For each subject, muscle synergies were extrac-
ted by using the non-negative matrix factoriza-
tion algorithm (NNMF) [43]. The NNMF algorithm
decomposes the EMG envelope in a defined num-
ber of positive components or muscle synergies. The
organization of a synergy is determined by the con-
tribution (weight coefficient) of each muscle, as spe-
cified by the weight matrix W. Its activation pro-
file is defined by the activation coefficients, specified
by the matrix H [43]. Since, the iterative algorithm
can find a solution as a local and not global min-
imum, each extraction was repeated 50 times, and
the repetitionwith the solution explaining the highest
overall amount of EMG variance was selected. For
each subject, to objectively determine the minimum
number of muscle synergies required to reconstruct
the data set, we used the variance accounted for by
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the synergies model and chose as threshold the num-
ber of synergies at which the VAF was higher than
95% [41]. The same number of muscle synergies
was retained for all healthy subjects to allow an easy
intra-task comparison (i.e. mean number of muscle
synergies across healthy subjects). For the patients,
instead, the individual number of muscle synergies
was considered. Indeed, the number of retained syn-
ergies has been proposed as a biomarker of cortical
damage and recovery [23].

Muscle synergies were matched among subjects
and sessions according to their similarity (determ-
ined by using normalized scalar products) with a set
of reference synergies. The set of reference synergies
was obtained by grouping the muscle synergies of the
healthy subjects with a hierarchical clustering proced-
ure based onminimization of theMinkowski distance
between weighting coefficient vectors [41].

Muscle synergies structure was compared within
the healthy population and between the stroke
patients and the healthy subjects by using the scalar
products (dotHEALTHY and dotSTROKE respectively).
When a stroke subject presented a lower number of
synergies, the value of the dot product between the
healthy synergy and the correspondent missing syn-
ergy of the stroke was set to zero.

2.6.3. Spinal maps extraction and measures
The same preprocessed EMG data were resampled on
the minimum number of time points (2 s) across dir-
ections, sessions and subjects and were used to estim-
ate the spinal maps along the rostro-caudal direction
related to C2-T1. The spinal maps describe the spa-
tiotemporal organization of the peripheral EMG sig-
nals at the level of the spinal cord, by estimating the
motoneuronal (MN) activity for each spinal segment
as previously described in literature to investigate the
muscle activity in the lower and upper extremities
[44–46]. The weight coefficients approximating the
rostro-caudal distribution of the MN pools innerv-
ating the upper limb muscles included in the study
were located in the segments from C2 to T1, as
reported by Kandel [47] (see table 1 supplementary
material).

In order to assess the similarity between
two different spinal maps, we used the 2D
correlation coefficient between two maps [46]
(RMAP,H and RMAP,S when comparing respect-
ively the spinal maps within the healthy popu-
lation and between the healthy population and
the stroke patients) and the root mean square
error (RMSEMAP,H and RMSEMAP,S), calculated as

RMSEMAP =

√
1

N ∗M
∗
∑M

m=1

∑N

n=1
(MAP1 (n,m)−MAP2 (n,m))

2

whereMAP1 andMAP2 are the two spinalmaps under
comparison. N (i.e. number of spinal segments) is
equal 8 and M (i.e. time samples) is equal 3000
samples.

We first computed these measures comparing the
maps within the healthy population. Then, we com-
pared the maps of each stroke subject and for each
session with those of the healthy subjects.

2.7. EEG analysis
2.7.1. Data acquisition and pre-processing
EEG data were continuously acquired at 500 Hz using
an Active II EEG system (Biosemi, Amsterdam) with
64 pre-amplified (active) EEG channels with stand-
ard 10–20 configuration. EEG data were preprocessed
offline usingMATLAB (MathWorks, NatickMA) and
EEGLAB toolbox [48]. The rawEEGdatawere filtered
(1 Hz to 40 Hz, Butterworth zero-phase 8th order
IIR filter [49–51]) and down-sampled to 128 Hz.
EEG electrodes with prolonged prominent artifacts
(assessed by visual inspection) were removed and
interpolated using spherical interpolation [52, 53].
The data were, then, re-referenced to a common

average. Finally, the data were visually inspected to
remove periods contaminated by artifacts (i.e. amp-
litude >80 µV) and the remaining data were concat-
enated.

2.7.2. Resting-state EEG measures
Resting-state EEG measures were obtained by singu-
lar value decomposition (SVD) of the EEG signals
[54, 55]. We followed the same approach of our pre-
vious work [53, 55]. The SVD of a real matrix is
a factorization of the form E=MSN′. In this case,
E ∈ RC ×RT was the matrix of the pre-processed
EEG signals concatenated across sessions and par-
ticipants with C equals to 64 EEG channels and T
equal to the total time of recordings summed over
sessions and participants. The left-singular vectors of
M ∈ RC ×RC are a set of orthonormal eigenvectors
that in our case represented the group-level EEG-
SVD topographical maps. The right-singular values
vectors of N ∈ RT ×RC represented the group-level
temporal courses. They are ranked according to their
non-zero singular values (i.e. diagonal values of S). In
order to obtain the subject-specific temporal courses
of each EEG-SVD topography for each participant
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and session, the EEG activity of each individual for
each session was projected on the group-level EEG-
SVD topographical maps corresponding to 75% of
the explained variance [53, 55], which was calculated

from the singular values as: VARj =
∑C

j
S2j∑
S2j
∗ 100.

For instance, the time courses for the first {1, · · · , p}
SVD components for one subject was obtained as
Ẽ1 =MT

1,...,pE1.
We assessed reproducibility of the group-level

topographies by a split-half reproducibility analysis.
We randomly split the original set of subjects and
sessions (i.e. the six healthy controls and the four
assessments of the patients) into 2 groups, each with
14 sessions. We generated ten different random splits.
Subsequently, for each split, EEG-SVD topographies
were computed for each group concatenating the data
of all subjects and sessions within the group. EEG-
SVD topographies obtained from the two groups
were then matched using Hungarian algorithm,
and their similarity was assessed by Pearson
correlation [56].

For each topographical map and each sub-
ject/session, a time-frequency representation of the
corresponding subject-specific temporal course was
calculated from 1 to 64 Hz by convolving the signals
with a complex-valued Morlet wavelet with 3 cycles.
Time-frequency power was calculated as the squared
magnitude of the complex wavelet-transformed data.
We then computed coefficient of variation (CVs—i.e.
ratio between variance and mean spectral power over
time) for four typical frequency bands (i.e. δ: 1–4 Hz;
θ: 4–8 Hz; α: 8–12 Hz; β: 15–30 Hz).

In order to identify whether these resting-state
EEG measures represented reliable biomarkers of
motor recovery, we deployed a multivariate ana-
lysis of correlation, i.e. canonical correlation (CCA),
between the FMA score and the CVs of each EEG-
SVD topography and frequency band. If we consider
the CVs of the EEG-SVD and the Fugl-Meyer scores
as vectors of random variables (X= (x1, . . . , xn) with
n= 1 and Y= (y1, . . . , ym) with m= 12—i.e. 4 fre-
quency bands per 3 EEG-SVD components), and
there are correlations among these variables, then the
CCA would find linear combinations (i.e. canonical
components) of the CVs that have maximum cor-
relation with the Fugl-Meyer. Specifically, the CCA
seeks vectors a ∈ Rn and b ∈ Rm such that the ran-
dom variables aTX and bTYmaximize the correlation
p= corr(aTX, bTY). We used a permutation test to
very the significance of the found canonical compon-
ents. In details, the CVs of each EEG-SVD topography
and frequency band were permuted over subjects and
we then used CCA to find correlation between these
permuted data and the Fugl-Meyer. We repeated this
procedure 1000 times and considered the 99th per-
centile of the resultant distribution of correlation as a
significance threshold. Once identified the significant

canonical components, the brain canonical scores (V)
were obtained by projections over the canonical cor-
relation vectors (V= bTY). We then evaluated the
changes of the brain canonical scores over assessment
sessions for each individual patient.

2.8. Multimodal analysis
In order to quantitatively assess the presence of a
relationship between the various parameters extrac-
ted from the different sources (kinematic, muscle
and brain activity) we ran a correlation analysis
among all of them. In this way, links between spe-
cific pairs of parameters extracted not only from
the same type of signal but also from different ones
(i.e. kinematic and brain, or muscle and brain) can
be highlighted. In particular, we extracted Pearson
correlation coefficients from a matrix Q (28 × 18),
where each column was a parameter and each row
an observation. Data of stroke and healthy subjects
were pulled together. We obtained a matrix of cor-
relation coefficients resulting from pairwise compar-
isons between the columns of Q and we retained only
the correlation coefficients that resulted significant
(p-value < 0.05).

To identify the neuro-biomechanical paramet-
ers that were most important for post-stroke motor
recovery, we applied a multistep statistical proced-
ure based on principal component analysis (PCA)
[57]. Specifically, PCA was applied to all the para-
meters extracted from the kinematic, EMG and EEG
analysis for all healthy and stroke subjects together.
To avoid introducing bias due to the different scales
of the various parameters, we normalized measures
before running PCA, so as to have zero mean and a
standard deviation equal to 1 (z-score). We retained
the first three principal components (PCs), which
explained more than 50% of the total variance, and
we projected the original dataset in the 3D space
defined by the constructed PC1-3. For each distri-
bution, the coordinates of the centroid were com-
puted by averaging all the coordinates of the points
included in that distribution. We then computed the
distance between the centroid of the distribution of
the healthy controls and the projection of the data
of each stroke subject in the identified PCs space,
for each session. The distance was computed in the
3PCs space (distALL) but also along each individual
PC (distPC1, distPC2, distPC3). Finally, to determine the
relation between the clinical outcome and the iden-
tified neuro-biomechanical measures, we correlated
the PC scores with the clinical scores computing Pear-
son correlations coefficients.

2.9. Statistical procedures
In order to summarize the information, the res-
ults reported were averaged across subjects. All data
are reported as mean values +/−standard error
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Table 2. Clinical scales results. Upper limb Fugl-Mayer assessment
scale (FMA) and grip strength test performed in the four
assessment sessions (A1 to A4). Subject 1 (S1) did not have the
follow-up session. EEG data of subject (S2) were not considered
because of contaminated by artifacts.

FMA Grip strength

Subjects A1 A2 A3 A4 A1 A2 A3 A4

S 1 24 27 29 n/a 0 0 0 n/a
S 2 16 16 30 34 0 0 0 0.5
S 3 17 34 46 52 0 4.00 6.3 8.1
S 4 5 7 19 19 0 0 0 0
S 5 50 59 62 65 0 1 3.33 6.3
S 6 54 59 63 62 9.72 11.41 13.27 13.71

(SE) of the mean. Results of the Kolmogorov-
Smirnov normality test for all the extracted indicat-
ors confirmed that the later were not normally dis-
tributed. For this reason, in order to verify if there
were significant changes over the four assessments we
performed a Friedman test. Post-hoc analysis, two-
sided Wilcoxon signed rank test with no correction
for multiple comparisons due to the small sample
size, was used to verify statistically significant differ-
ences obtained with Friedman test. We used instead
the Wilcoxon rank-sum test when comparing stroke
data with those of the healthy controls. The signific-
ance level was set to p < 0.05.

3. Results

3.1. Clinical outcome improvement
Patients showed a reduction of impairment along
with an increase of grip forces during the evaluation
time. Significant improvements in the FMA
(χ2 = 16.68, p < 0.001) and in the grip strength
(χ2 = 9, p = 0.020) occurred throughout the four
assessments for all six patients. Changes in the clin-
ical scores ensued between the first (A1) and the
second assessment (A2) (on average 6 ± 2.5 points,
p= 0.031, in the FMA and 1.12± 0.64 Kg, p= 0.250,
in the grip strength) and likely reflect the short-
term changes typical of the subacute phase (see table
2). Yet, stronger improvements occurred between
A2 and the assessment after the training (A3). On
average all subjects increased of 7.8 points (±2.1
SE, p = 0.031) in the FMA and 1.08 Kg (±0.49 SE,
p = 0.250) in the grip strength. Finally, these meas-
ures did not change significantly at the assessment
performed one month following the end of the train-
ing (A4; on average 2.4 ± 1.2 points, p = 0.250 in
the FMA and 1.14 ± 0.49 Kg, p = 0.250, in the grip
strength).

3.2. Motor performances improvement is captured
by the kinematic measures
Motor performances significantly improved in all
patients, with the exception of the dimension of
the workspace (figure 2, table 3). Between A1
and A2 patients’ movement increased in speed

(on average from 0.074 ± 0.012 m s−1 in A1 to
0.094± 0.012 m s−1 in A2) with a concurrent reduc-
tion, yet not significant, of the jerkiness and of the
robotic-assistance (respectively from −5.44 ± 0.60
to −5.11 ± 0.36 and from 57.95 ± 18.84% to
47.15± 20.40%).

After the month of training these improvements
were stronger and statistically significant. Mean velo-
city and SAL reached level comparable with those of
the controls (respectively 0.151 ± 0.013 m s−1 and
−3.67 ± 0.21 for stroke and 0.153 ± 0.011 m s−1

and −4.18 ± 0.37 for healthy subjects, differences
between the two groups were not significant: for
the velocity p = 0.589 and SAL p = 0.240) and
subjects S3, S5, and S6 did not require anymore
the robotic assistance. Noticeably, subjects S2 and
S4, even if they still needed robotic-assistance in all
the assessments, they were able to complete a lar-
ger portion of the workspace without the robot, as
highlighted by a decrease in Dtrgt, (overall along the
four assessment from 1.39 ± 0.15 to 0.42 ± 0.07
for S2 and from 1.61 ± 0.75 to 0.25 ± 0.11 for
S4). Finally, along the four assessments, patients per-
formed straightermovements (i.e. reduction of nMD:
from 0.191 ± 0.029 at A1 to 0.094 ± 0.011 at A4,
χ2 = 9.24 p = 0.026) in a shorter amount of time
(from 0.191 ± 0.029 at A1 to 0.094 ± 0.011 at A4,
χ2 = 13.77 p= 0.003).

3.3. Muscle coordination improves with training as
highlighted by muscle synergies
Six (5.8 ± 0.5) muscle synergies were found for each
healthy participant, when considering themovements
from the center of the workspace to the sixmain outer
targets (figure 3(a)). The muscle synergies structure
was similar to that already reported in literature for
analogous tasks [33].

Specifically, synergy 1 involvedmainly the pector-
alis, which was responsible for the arm flexion. Syn-
ergies 2 and 4 were dedicated to the extension of the
armand included respectively the anterior andmedial
part of the deltoid (Syn 2), and the two triceps and
the posterior part of the deltoid (Syn 4). Synergy 5
was mostly composed of the activation of the fore-
arm muscles (i.e. BRAD and PRO). Finally, syner-
gies 3 and 6 accounted for the activity of the pos-
tural muscles (i.e. both trapezii, INFRA and RHO
for Syn 3, and LAT, INFRA and RHO for Syn 6)
involved in the elevation of the arm against gravity.
The stroke subjects presented a significant increase in
the number of synergies fromA1 to A4, χ2 = 8.54 and
p = 0.036. Specifically, the number of synergies aug-
mented between A2 (4.1 ± 0.4) and A3 (5.0 ± 0.3)
and it was maintained at A4 (5.4 ± 0.4 synergies
modules) (figure 3(b)). This change highlights an
increased level of complexity of muscle activity as
expected during motor recovery [24]. Additionally,
through time and training the structure of the syner-
gies of the stroke subjects became more similar to the
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Table 3. Results of the Friedman test on the kinematic metrics.

metric MV SAL RAF WS nMD nPK Dtrgt ttask

χ2 14.04 11.88 10.95 6.12 9.24 11.88 16.77 13.77
p-value 0.003 0.008 p= 0.012 0.106 0.026 0.008 <0.001 0.003

Figure 2. Kinematic parameters. Mean velocity (MV), spectral arc length (SAL), percentage of movement assisted by the robot,
percentage of the workspace explored without robotic assistance (WS), linearity index (nMD), number of peaks in the velocity
profile (nPK), distance from the target when the assistance started normalized by the distance of the external target from the
central one (Dtrgt) and reaching time (ttask) extracted from the trajectories of the end-effector of the exoskeleton during the four
robotic assessments (A1 and A2 in the shades of blue and A3 and A4 in the shades of green). The behavior of the healthy,
mean± standard error of the mean, is shown in grey.

structure of the controls. Indeed, the dotSTROKE aug-
mented significantly for each stroke subject,χ2= 9.49
and p = 0.023. Specifically, it was stable during
the first two assessments (dotSTROKE = 0.48 ± 0.07
and dotSTROKE = 0.47 ± 0.04 at A1 and A2,
respectively). At A3, instead, there was a signific-
ant improvement of this indicator with respect to
A2 (dotSTROKE = 0.58 ± 0.03, p = 0.031), and it
continued to significantly evolve also at follow-up
(dotSTROKE = 0.67± 0.03, p= 0.031).

3.4. Motoneuronal activity in the spinal circuits
increases with training
We further investigated the global muscular strategies
adopted by the participants by computing spinal
maps, which estimate spatiotemporal motoneuronal
activation. For the controls, spinal maps were charac-
terized by amain period of activation towards the end
of the reaching task, localized around C7-T1 (figure
4(a)). For the stroke subjects, instead, at A1 and A2
the motoneuronal activity was either almost absent
because they were not able to accomplish the task
without the help of the exoskeleton or it was diffused
across all the spinal segments and not localized, in
contrast to the controls (figure 4(b)).

Along the four assessments, the spinal maps of
the stroke subjects became significantly more similar
to those of the controls, both in term of correlation
RMAP,S, χ2 = 9.56 and p = 0.022, and of root mean

square error RMSEMAP,S, χ2 = 10.62 and p = 0.014.
Yet, the greatest and the only significant changes for
both metrics occurred between A2 and A3 (i.e. with
training), where RMAP,S augmented from 0.18 ± 0.06
to 0.42 ± 0.08 (p = 0.031) and RMSEMAP,S dimin-
ished from 60.50± 5.17 to 46.33± 3.23 (p= 0.031).
Importantly, the improvement remained stable at
follow-up as indicated by a non-significant difference
of the values of RMAP,S and RMSEMAP,S between A3
and A4.

3.5. Cortical activity gets closer to healthy level
with training as highlighted by EEG topographies
We utilized SVD decomposition of the EEG signals
concatenated in time across participants and sessions
to identify reliable and reproducible topographical
maps [53, 55]. We selected the first three EEG-SVD
components, which accounted for 75% of the vari-
ance (figure 5(a)). We tested the consistency of the
maps by split-half reproducibility analysis. All the
three components were highly reproducible (aver-
age correlation± STD across splits and components:
0.98± 0.01).

We computed canonical correlation between the
FMA scores and the coefficients of variation of
each EEG-SVD topography and frequency band. We
found one significant canonical correlation compon-
ent (p < 0.01 permutation test; correlation: 0.96,
figure 5(b)) with highest coefficients for CV of delta
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Figure 3.Muscle synergies. (a) Muscle synergies structure of the healthy subjects presented as mean (black) and standard
deviation (in grey) computed across the healthy population. Each row is a muscle synergy, ordered from the one that was more
similar across the healthy to the less similar one. (b) Number of synergies that explained more than the 95% of the VAF. (c) Mean
similarity index (dotSTROKE) between all the synergies of the stroke subjects and the ones of the healthy population. Data of the
two assessments before the training (A1 and A2) are presented in the shades of blue and in the shades of green are the data of the
assessments after the training (A3 and A4). The grey areas in section (c) is the mean± std of dothealthy resulting from averaging
across all the 6 identified synergies of the healthy population.

and alpha bands for the 1st EEG-SVD component,
theta and alpha bands for the 2nd component, and
delta and beta bands for the 3rd component (figure
5(a)). Through time and training the CVs got closer
to those of the healthy controls, in particular for S3,
S5, and S6. Yet, no significant difference was found
between the three assessments when considering all
subjects together.

3.6. Multimodal analysis reveals different temporal
dynamics of recovery
Before running the multimodal analysis, we looked
for correlations between specific pairs of paramet-
ers obtained both from the same domain and from
different domains. Results are summarized in figure
6(a). We found that there were some significant
correlations between couples of parameters extrac-
ted from the same domain, like between the nPK and
time to reach the target or the linearity index (nMD)
and the robotic assistance (RAF) obtained from the
kinematic domain. Similarly, we found significant

correlations between dotsyn1 and dotsyn3 or between
the number of synergies and dotsyn6. Interestingly,
we noticed significant correlations also between para-
meters of different domains, for example the percent-
age of workspace explored without robotic assistance
and the number of muscle synergies or the time to
reach the target and the RMSEMAP extracted from
the spinal maps. Nevertheless, despite these signific-
ant correlations, the value of the correlation coeffi-
cient was, on average, relatively modest: r = mean
0.53± STD 0.12.

We then combined together all the measures
extracted from the robotic assessment (kinematic,
EMG and EEG metrics) in a multimodal analysis
using PCA. The explained variance for the first
three PCs was 59.75%. The metrics extracted from
the kinematic and spinal maps were those mostly
contributing to PC1. The second PC, instead, was
mainly associated with the workspace coverage, the
number of synergies, and the similarity of synergy
2 and 6. Finally, the factor loadings associated with
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Figure 4. Spinal maps. (a) Temporal activation of the spinal map extracted from the EMG activities of the healthy population. (b)
Temporal activation of the spinal map extracted from the EMG activities of S3 in the four assessments. (c) Mean and standard
deviation of the 2D correlation (RMAP) between the spinal map of each stroke subject and the healthy subjects at the different
assessments. Mean and STD of the correlation across the healthy population is showed with the grey area. (d) Mean and standard
deviation of the distance (RMSEMAP) between the spinal map of each stroke subject and the healthy subjects at the different
assessments. Mean and STD of the correlation across the healthy population is showed with the grey area. In the shades of blue are
presented the results of assessment 1 and 2 (A1 and A2) while in the shades of green the data concerning assessments 3 and 4 (A3
and A4).

Figure 5. EEG topographies. (a) Canonical correlation coefficients for the coefficients of variation of the first three EEG-SVD
topographies and the four frequency bands (delta, theta, alpha, and beta). (b) 2D correlation plot of canonical correlation scores
for FMA (y-axis) and resting-state EEG measures (y-axis). Black dots represent healthy subjects. Blue, cyano, and light and dark
green dots represent stroke patients at A1, A2, A3, and A4, respectively. (c) Brain canonical scores for each subject for A1 (blue
bars), A2 (cyano bars), A3 (light green bars), and A4 (dark green bars) and for controls (grey bars).

the third PC were the number of peaks in the speed
profile, movement duration, the workspace cover-
age, the structure of synergy 1, and the EEG scores
(figure 6(c)). When projecting the individual data
points into the 3D space defined by the newly con-
structed variables PC1–3, clear differences emerged
between the healthy subjects and the stroke patients
(figure 6(b)). Importantly, these differences were,
also, affected by time and training (figures 6(b) and
(d)). Indeed, the distance between the patients’ and
controls’ data points in the 3D space significantly
decreased along the four assessments, χ2= 10.22 and
p= 0.016. In particular, the distance decreased signi-
ficantly (p = 0.031) from A2 (distALL = 4.07 ± 0.32)
to A3 (distALL = 2.52 ± 0.37), and it remained stable

at A4 (distALL = 2.17± 0.36). Interestingly, we found
different temporal dynamics of recovery for the three
principal components, summarized in figure 6(e).
Indeed, the distance along PC1 changed along the
four assessments, χ2 = 9.61 and p = 0.022, with a
significant decrease in particular between A1 and A2
(distPC1 = 4.73 ± 0.98 and distPC1 = 2.43 ± 0.56 at
A1 and A2, respectively −p = 0.031) and between
A2 and A3 (distPC1 = 0.80 ± 0.17 −p = 0.031).
PC2 significantly decrease between A2 and A3
(distPC2 = 2.76 ± 0.29 and distPC2 = 1.51 ± 0.23
at A2 and A3, respectively—p = 0.031). Instead,
the distance along PC3 decreased throughout the
four assessments, χ2 = 8.39 and p = 0.03, yet
mainly between A1 and A2 (distPC3 = 1.91 ± 0.53
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Figure 6.Multimodal analysis. (a) Matrix of Pearson correlation coefficients resulting from pairwise comparisons between each
parameter extracted from healthy and stroke population each assessment. The grey intensity of the figure corresponds to the value
of the p-values of the correlations, only the correlations that resulted significant are reported. The bold lines are delimitating the
area of features extracted from the same source. (b) Projection of the dataset in the 3D space identified by the first three principal
components (PCs). The data relative to the healthy subjects are in black, the data of the stroke subjects at A1 in blue, A2 light blue,
A3 light green and A4 dark green. The centroid of each group of data is highlighted by a marker of bigger size and higher intensity
with respect of the majority. (c) Coefficients of the three PCs. In the shades of red data relative to the kinematic, in the shades of
brown data relative to muscle synergies, shades of purple data relative to the spinal maps and in orange data relative to EEG. (d)
Top: Distance between the healthy and the stroke group in the space of PCs1-2-3 (distALL) and along each PC separately (distPC1,
distPC2, distPC3). Bottom: Distance between the healthy group and each stroke subject in the space of PCs1-2-3 (distALL) and along
each PC separately (distPC1, distPC2, distPC3). Highlighted in grey the regions where there was a significant change. (e) Summary
image illustrating the different temporal dynamics of recovery identified by the proposed methodology.

distPC3 = 0.95 ± 0.14 at A1 and A2, respectively—
p= 0.031). When correlating the 3 PCs with the clin-
ical scores we found a significant correlation between
PC1 and the FMA, r = 0.74 p < 0.001, and between
PC1 and grip force, r= 0.54 p= 0.003.

4. Discussion

The current study aimed to introduce a comprehens-
ive set of movements, muscle, and brain measures
as well as to present a multivariate methodological

approach combining them in a unique framework.
This approach can be applied to any dataset con-
taining multidomain measures. Here we applied this
method to a multidomain dataset, including a small
group of subacute stroke subjects that went through
a month of intense motor rehabilitation.

4.1. Multimodal assessment
Motor rehabilitation aims at maximizing the recov-
ery and independence in daily living by discouraging
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dysfunctional compensatory behaviors and promot-
ing the re-learning of appropriate motor control
strategies [58]. For this, rehabilitation protocols have
to adapt to the individual dynamics of recovery
[59]. However, because of the multifaceted nature of
stroke, recovery assessments should explore different
aspects of the nervous system. For this reason, in this
study, we simultaneously recorded kinematic, EMG,
and EEG signals to gather a general understanding
of the neuro-biomechanical state of the subjects and
of its evolution over time after a rehabilitative treat-
ment, independently from the nature of the latter (e.g.
robotic or conventional therapy). Importantly, all
domains of the neuromuscular system—kinematic,
muscle, and neural activity—were affected by the
motor training. Besides, significant correlations could
also be observed across them, although they could
not fully capture the complex variations pertain-
ing to the different domains. As such, these obser-
vations support the feasibility and the need for a
multimodal approach that could efficiently summar-
ize these factors in a single metric. For this pur-
pose, we deployed principal component analysis. We
projected the individual data points into the 3D
space defined by the first three principal compon-
ents explaining a high percentage of variance, and
we computed the distance between the healthy con-
trols and the stroke subjects at each assessment. Dur-
ing the training, the distance between the patients’
and controls’ data points in the 3D space significantly
decreased, yet with different dynamics. Previous stud-
ies already reported different evolutions of the recov-
ery factors formovement speed, efficiency, and accur-
acy [60–62]. We here extended these findings to new
physiologicalmeasures, hence providing amore com-
plete characterization of the neuro-biomechanical
status of the patients and of its evolution. We found
that patients’ kinematic and spinal maps paramet-
ers were mainly clustered over the first principal
component (PC1) and improved continuously dur-
ing the four assessments. These quantitativemeasures
were also those exhibiting a higher correlation with
the post-stroke impairments captured by the FMA
assessment and by the grip force. A strong correl-
ation between kinematics and the patient status as
described by clinical scales is in general well accep-
ted and expected since theymeasure similar paramet-
ers [63, 64]. A more striking observation is, instead,
the strong correlation with the spinal maps, as they
have been so far rarely used to describe upper limb
movements [33, 65] and levels of impairment after
stroke [46].

Together with spinal maps, we also estimated
muscle synergies as metrics of motor coordination
extracted from electromyographic signals. Interest-
ingly, muscle synergies features clustered in a sep-
arated principal component (PC2), as compared
to spinal maps, and they normalized already in
the shorter period of the training, highlighting

that motoneuronal activity and muscle coordination
evolve differently over time.

Finally, the third component mainly included
metrics related to some kinematics measures (speed
profile, movement duration, and workspace cover-
age), the structure of synergy 1, and the brain features
that normalized in the shorter period post-lesion (i.e.
between A1 and A2).

Overall these results highlighted that post-stroke
recovery develops at different stages for different
aspects of the nervous systems. A short-term recov-
ery (between A1–A2) likely due to a combination
of spontaneous recovery and inpatient therapy; a
medium-term recovery (between A2–A3) probably as
result of our intervention and the inpatient rehab-
ilitative therapy and finally, a long-term recovery
(between A3–A4) that showed a maintenance of the
functional improvements achieved at A3 probably
supported as well by the outpatient therapy. While
further studies should confirm these preliminary res-
ults in larger datasets, these different dynamics were
previously not captured when considering standard
clinical approaches or mono-parameter analysis and
should be taken in consideration when designing new
rehabilitation protocols.

4.2. Specific unimodal analysis
Stroke subjects performed the 3D point-to-point
reaching task worst as compared to healthy controls.
In accordance with previous studies [4, 5, 28, 66]
patients’ movements were less smooth and slower,
and often required assistance from the exoskeleton,
especially during the A1 assessment, a few weeks after
the injury. Already at the second assessment, which
was performed before the extra dose of rehabilitat-
ive intervention (either robotics or standard therapy),
performances improved. This progress immediately
after the injury is typical of the recovery that usually
arises in the acute phase [67].Moreover, in this period
patients were already receiving inpatient physical and
occupational therapy. Yet, the strongest improvement
occurred betweenA2 andA3 (i.e. after the treatment).
At A3, kinematic performances became comparable
to those of the controls and maintained an analogous
pattern at follow-up (i.e. assessment A4).

The multimodal set-up deployed in this study
linked this trend of kinematic improvements to the
motoneuronal changes estimated using spinal maps.
The use of spinal maps to characterize upper limb
movements had so far been limited [33, 65, 68] and
they were never exploited in stroke patients to explore
upper limb impairments. Moreover, we recently
demonstrated a strong correlation between spinal
maps activation and blood-oxygen-level-dependent
signal of the spinal cord captured by functional
magnetic resonance imaging, which further supports
the use of this analysis technique to infer motoneur-
onal activity [69]. In our stroke population, the
motoneuronal activity described by the spinal maps
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was reduced after the stroke lesion with respect to the
one of healthy participants, both in terms of temporal
activation (RSTROKE) and magnitude of activation
(RMSESTROKE), but it increased during the training,
getting closer to the one of the healthy participants at
A3 and A4.

The number and structure of the patients’ muscle
synergies also became more similar to those of the
healthy controls, in particular after the month of
intense training. Similarly to observations reported
in previous studies, the number of synergies for the
stroke subjects increased through timewith the recov-
ery of motor functions [23, 24, 41, 46] and this
increase was also accompanied by changes in their
structure. The synergies structure improved also for
the subjects that did not recover all the six syner-
gies characteristic of the healthy population (see also
figure 1 in supplementary material for more details).
These results are in accordance with studies showing
that the conjunction between the spontaneous recov-
ery and the intensive treatment improved motor per-
formance, both in terms of kinematics and muscle
activation patterns [24, 70, 71]. Interestingly, muscle
synergies related to the control of the shoulder (i.e.
Syn 2 and 4) were those with the strongest changes
particularly after training with the exoskeleton (see
figure 1 supplementary material) paralleling our pre-
vious findings [24].

The kinematic andmuscle factors explored in this
study provide a detailed description of the biomech-
anical status of the patients. Yet, they do not tap
into the complex neural reorganization processes that
occur after brain insult. To capture these changes,
we deployed topography-based analysis of the EEG
signals acquired at rest. We opted for a topography-
based approach, in contrast to traditional EEG wave-
form analysis, as we believe this approach can bet-
ter capture post-stroke large-scale neural processes
without any a priori hypothesis on the spatial location
of abnormal brain activity [52, 72]. Indeed, stroke
has been nowadays reconsidered as a distributed net-
work disease with structural and functional changes
occurring between brain areas distant to the lesion
[29, 73, 74]. We deployed singular-value decomposi-
tion to extract EEG topographies that resemble previ-
ously identified microstates, whose preserved occur-
rence and duration has been shown to correlate with
a better effective motor recovery [72]. Specifically,
in our approach we concatenated in time the data
recorded for healthy subjects and patients and sub-
sequently derived group-level spatial maps that come
with subject-specific time courses. Indeed, we were
interested on preserving the subject-specificity only
in the time courses, while considering the same spatial
subspace across subjects. We further supported this
assumption by performing SVD decomposition of
the EEG signal of each participant and every ses-
sion (see supplementary figure 2), which showed a
high correlation across all subjects for all top-three

components. We recently deployed similar analysis to
discriminate patients with spatial neglect of different
severity levels [53]. Here, we paralleled these previ-
ous results showing that spectral power of the SVD
topographies, which has a typical 1/f fall-off typical
of the EEG spectral power for all components, and
particularly delta and alpha rhythms, correlated with
level of motor impairments. Interestingly, through
time and training the aberrant brain oscillation pat-
terns were restored, in particular for the subjects
that showed a stronger motor improvement. Indeed,
the three patients (S1, S2, and S4) for which brain
rhythms remained abnormal not only had lower FMA
scores, but also aberrant motoneuronal activation.
Furthermore, they still needed robotic assistance after
the intensive training and at follow-up.

Overall kinematic, muscle, and cortical activity
showed an improvement particularly evident during
the training and correlated with the clinical status
of the patients. Yet, when summarizing these affinit-
ies across the different physiological measures using
a multivariate approach, the latter highlighted that
post-stroke recovery develops at different stages for
different aspects of the nervous systems, suggesting
that kinematic, muscle, and brain features should be
taken into consideration when designing new rehab-
ilitation protocols. For this, our approach could be an
effective method to summarize the different psycho-
logical measures in few metrics that could be mon-
itored over time to personalize the treatment [31, 37].

4.3. Limitations of the study
Although the findings presented in this study sug-
gest that the proposed multimodal approach has the
capacity to provide additional information regarding
the evolution of the recovery after stroke, the lim-
ited sample size limits the generalizability of the res-
ults. Nevertheless, the main goal of this study was
to propose a potential comprehensive method that
included various types of information rather than
probing its clinical efficacy. Moreover, the hetero-
geneity of the stroke subjects included in the study
does not allow for an ideal homogeneous stratifica-
tion of the population. However, this could not be
precisely controlled, as we were working with sub-
acute stroke and the recruitment was done on a con-
tinuous basis one patient at the time. Therefore, fur-
ther studies including larger cohorts of participants
would be necessary to draw meaningful conclusions
about the clinical efficacy of the presented approach.
One further limitation regards the number of move-
ments performedby the patients recruited in the three
different groups. To ensure comparability among the
groups, we proposed the same duration of the ses-
sion and we asked the therapist to provide a train-
ing with a similar intensity as the one provided by
the robot. Yet, the number of moments performed
highly depended on the ability level of each stroke
subject.
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5. Conclusion

The use of an instrumental assessment followed by a
multimodal approach identified quantitative neuro-
physiological metrics correlating with clinical meas-
ures such as the FMA and grip force, as well as
clustered metrics that evolve distinctly during recov-
ery, underlining their functional and clinical relev-
ance. A combined analysis of kinematic, muscular,
and brain activity seems to be able to provide a good
and accurate patient characterization in line with the
outcome of the clinical scales. In the future, similar
methods should be implemented in order to track
the evolution of the neuro-biomechanical state of the
patients after brain damage, to define suitable per-
sonalized rehabilitative intervention strategies and to
provide a deeper insight into the recovery process
after stroke.

Trial registration

This study is registered in ClinicalTrials.gov
(NCT02770300, registered 30 March 2016,
https://clinicaltrials.gov/ct2/show/NCT02770300).
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