
Decoding-free Two-Input Arithmetic for Low-Precision Real Numbers⋆

John L. Gustafson[xxxx−xxxx−xxxx−xxxx], Marco Cococcioni1[0000−0002−7020−1524], Federico
Rossi1[0000−0002−4906−6997], Emanuele Ruffaldi2[0000−0001−6084−6938], and Sergio Saponara1[0000−0001−6724−4219]

1 University of Pisa {marco.cococcioni, federico.rossi, sergio.saponara}@unipi.it
2 MMI s.p.a eruffaldi@mmimicro.com

Abstract. In this work, we present a novel method for directly computing functions of two real numbers using
logic circuits without decoding; the real numbers are mapped to a particularly-chosen set of integer numbers.
We theoretically prove that this mapping always exists and that we can implement any kind of binary operation
between real numbers regardless of the encoding format. While the real numbers in the set can be arbitrary
(rational, irrational, transcendental), we find practical applications to low-precision posit™ number arithmetic.
We finally provide examples for decoding-free 4-bit Posit arithmetic operations, showing a reduction in gate
count up to a factor of 7.6× (and never below 4.4×) compared to a standard two-dimensional tabulation.

Keywords: decoding-free arithmetic · posit format · low-precision arithmetic · tabulated functions.

1 Introduction

For nearly a century, the method to expressing real numbers on digital computers has been with scientific notation:
some form of significant digits (fixed-size storage representing a signed integer) scaled by a base number raised
to a signed integer power, also in fixed-size storage. The IEEE 754 standard gave guidance for the details of this
two-integer approach.

The artificial intelligence (AI) sector has been pushing the boundaries of Machine Learning (ML) and inference,
which has reignited the debate over what is the appropriate representation for real numbers. The bandwidth and
storage requirements of 32-bit IEEE standard floats, in particular, have prompted academics to consider 16-bit (and
smaller, even down to 2-3-4 bits for extremely quantized neural networks [1]) alternatives to represent the numbers
required for AI. According to the IEEE 754 standard, the half precision (binary16) format has 5 exponent bits and
10 fraction bits.

The posit™ number system, which was introduced in 2017, deviates from all previous fixed-field floating-point
forms. It features the quire fixed-point accumulator, which is comparable to the Kulisch accumulator [2–4]. The AI
Group on Facebook employs posits with the Logarithmic Number System kind of binade [5]. We focus on posits in
this paper, but the method is applicable to any collection of 2N real-valued values represented by N bits. Posits
are particularly well-suited to the approach, as we shall demonstrate in the next sections.

We propose an optimum method for mapping real numbers to integers, allowing us to execute exact two-input
arithmetic operations on real numbers with simply integer addition. This significantly reduces hardware complexity
(in terms of AND-OR gates), particularly when just a few bits are required to describe the two inputs. We employ
a non-linear variant of integer linear programming to get the best mapping. Unlike traditional circuit designs that
require decoding a format bit string into the scale (exponent) and significand in order to operate on floats and
their variations, our solution just requires an integer mapping (two logic levels), an unsigned integer addition, and
another integer mapping. The approach reaches its limit when the integer sizes get too large, but we demonstrate
that it works for posit precision adequate for ML and inference.

The paper is organised as follows: i) In section 2 we summarise the posit format and its key properties, ii)
in section 3 we recap the standard way to perform binary mathematical operations between real numbers, iii) in
section 4 we present the mathematical foundation for the proposed approach, iv) in section 5 we present the problem
formulation and the feasibility of finding a solution for such problem, iv) in section 6 we show the application of
the proposed approach to the Posit⟨4, 0⟩ format and we report some quality metrics for the provided solution.

2 The Posit Format

The mapping method we describe in this paper can be applied to any set of real values, including algebraic and
transcendental values, simply by assigning each real value to a natural number. Our method can be applied to
⋆ Research supported by Horizon H2020 projects EPI-SGA2 and TextaRossa.

2 J. L. Gustafson, M. Cococcioni et al.

the legacy floating-point formats (floats), but IEEE Standard floats lack a mapping to integers that is one-to-one
and onto, and redundant bit patterns make them inefficient at low precision. The IEEE Standard also specifies ten
different exception categories and makes asymmetric use of tapered precision, complicating the use of our approach.
For these reasons, we will focus on the posit format for encoding real values.

The posit format for real numbers was introduced in 2017 [4]. The format is n bits in length, n ⩾ 2. There are
only two exception values, 0 represented by 00 · · · 0 and Not-a-Real (NaR) represented by 10 · · · 0. Non-exception
values have four fields as shown in Figures 1 and 2, with color coding for clarity:

– Sign field: A single bit with digit value s
– Regime field: variable length, composed of a run of k + 1 1 bits or −k 0 bits, ended by the opposite bit or by

the end of the number
– Exponent field: es bits (bits beyond the end have value 0) representing an exponent e as an unsigned integer
– Fraction field: fraction f with up to n− es − 3 significant bits.

The real value r represented by the encoding is

r = (1− 3s+ f)× 2(1−2s)×(2esk+e+s).

012345678910111213141516171819202122232425262728293031

s Regime k Exponent e Fraction f

Fig. 1: Bit fields of a posit⟨32, 6⟩ data type.

0123456789101112131415

s k e f

1 11 0 001 000100111

Fig. 2: An example of a 16-bit posit with 3 bits for the exponent size (n = 16, es = 3). The sign is simply the bit
value, s = 1. The regime has (k+ 1) = 2 bits equal to 1 (pair 11) in its run before terminating in a 0 bit, so k = 1.
The exponent value (unsigned integer) is e = 1. The nine fraction bits represent 39/29 = 39/512. The associated
real value is therefore (1− 3 · 1 + 39/512)× 2(1−2·1)×(8·1+1+1) = −1.923828125× 2−10 ≈ −0.0018787.

While the formula may be non-intuitive, the posit format provides a monotonic mapping of reals to 2’s com-
plement signed integers with symmetric dynamic range and symmetric accuracy tapering. It also eliminates non-
mathematical complications like “negative zero.”

3 Standard two-input arithmetic for reals

Consider a very simple case, that of Posit⟨4, 0⟩ format. The sixteen values are shown in Table 1.

Table 1: Posit⟨4, 0⟩ binary representations (bistrings) and corresponding real values
Posit Value Posit Value
1000 NaR 0000 0
1001 −4 0001 1/4
1010 −2 0010 1/2
1011 −3/2 0011 3/4
1100 −1 0100 1
1101 −3/4 0101 3/2
1110 −1/2 0110 2
1111 −1/4 0111 4

Decoding-free Two-Input Arithmetic for Low-Precision Real Numbers 3

Notice that the mapping is a bijection, and if the posit representation is interpreted as a 2’s complement integer,
the mapping is also monotone. The Posit Standard treats NaR as “less than” any real value, so posits are ordered.
We focus on posit format instead of float format because float format is not a bijection, not monotone, and not
ordered, which makes mathematical formalizations awkward and complicated.

Table 2 shows the multiplication table for positive values from the Posit⟨4, 0⟩ set. Note that the table entries
are exact (not rounded to the nearest posit value).

Table 2: Multiplication table, positive Posit⟨4, 0⟩ values.
× 1/4 1/2 3/4 1 3/2 2 4

1/4 1/16 1/8 3/16 1/4 3/8 1/2 1
1/2 1/8 1/4 3/8 1/2 3/4 1 2
3/4 3/16 3/8 9/16 3/4 9/8 3/2 3
1 1/4 1/2 3/4 1 3/2 2 4

3/2 3/8 3/4 9/8 3/2 9/4 3 6
2 1/2 1 3/2 2 3 4 8
4 1 2 3 4 6 8 16

The table is symmetric because multiplication is commutative and the input row and input column are the same
set; the method described here generalizes to non-commutative functions (like division, as shown later) and to
inputs from different sets of real values. Two of the entry values are colour-coded (3/8 and 4) to make clear
that arithmetic tables can be many-to-one, where several pairs of inputs result in the same value. This is key to
understanding the mathematical formalization in the Sections that follow.

The classical hardware implementation of an arithmetic operation on two real arguments in binary float or posit
format consists of the following four steps:

1. Test for exception cases using or or and trees on the bit fields, and trap to the appropriate output if an
exceptional case is detected.

2. Otherwise, decode each argument into its significand and scale factor (exponent), each stored as a signed integer
using the usual positional notation.

3. Operate, using traditional circuits for integer operations such as shift, add/subtract, multiply, and count lead-
ing zeros. For example, argument multiplication involves the addition of the integer scale factors and integer
multiplication of the significands.

4. Encode the result into the format using rounding rules, which for round-to-nearest, tie-to-even requires an or
tree of some of the truncated bits and other logic, and an integer increment if the rounding is upward.

The decoding and encoding are costly for time, circuit resources, and electrical energy compared to the task of
simply adding two unsigned integers. The first two steps can be done concurrently (speculatively) to save time, at
the cost of wasting additional energy on the path not needed. The stages lend themselves to pipelining to improve
throughput, but pipelining slightly increases the latency because of latching the result of each stage.

4 Mapping method and mathematical formalization

Let X,Y ⊂ R be two finite sets of real numbers, and X∗, Y ∗ ⊂ N be the sets of bit strings that digitally encode them.
The encodings are bijective maps (as an example taken from Table 1, xi =

3
4 ∈ X is encoded as x∗

i = 0011 ∈ X∗).
Let ▽ be any operation on an element of X and an element of Y . Let Z ⊂ R be the set of values obtainable as
zi,j = xi▽yj , where xi ∈ X, yj ∈ Y . The number of elements in Z, |Z|, can be as high as |X| · |Y |, when every
xi▽yj is unique. In general, 1 ⩽ |Z| ⩽ |X| · |Y].

Let us introduce the ordered sets of distinct natural numbers Lx ≡ {Lx
i }, Ly ≡ {Ly

j}, (hence Lx, Ly ⊂ N) and let
us suppose that ∃fx : X 7−→ Lx, fx being a bijective mapping from the reals in X encoded by X∗ to the naturals
in Lx. Similarly, let us suppose that ∃fy : Y 7−→ Ly, fy being a bijective mapping from the reals in Y encoded by
Y ∗ to the naturals in Ly. Under such hypotheses, each xi will be uniquely mapped into the corresponding value
Lx
i . The same happens for the yi, which are uniquely associated to Ly

i .
Let Lz be the set of all distinct sums of elements in Lx and Ly: Lz ≡ {Lz

k}, Lz = distinct{Lz
i,j}, Lz

i,j = Lx
i +Ly

j

and let fz be a mapping between the natural numbers in Lz and Z: fz : Lz 7−→ Z.

4 J. L. Gustafson, M. Cococcioni et al.

When choosing the values for the sets Lx and Ly, we must ensure that whenever xi▽yj and xp▽yq differ, the
same must happen for the values Lx

i + Ly
j and Lx

p + Ly
q :

xi▽yj ̸= xp▽yq ⇒ Lx
i + Ly

j ̸= Lx
p + Ly

q (1)

In section 5 we formulate the optimization problem to solve this task, i.e., we show a constructive way on how
to build fx, fy and fz (more precisely, on how to obtain the ordered sets Lx, Ly and the function fz).
If (1) holds, then for any pair of elements xi ∈ X, yj ∈ Y , we have that:

zi,j = xi▽yj = fz(fx(xi) + fy(yj)) (2)

where + is simply the addition between natural numbers, something digital computers can perform perfectly within
a finite range using the Arithmetic Logic Unit. Figure 3 summarizes the approach.

xi ∈ X Lx
i ∈ Lx

yj ∈ Y Ly
j ∈ Ly

▽ +

zi,j ∈ Z Lz
i,j ∈ Lz

fz

fx

fy

Fig. 3: Mapping between the product of reals and sum of natural numbers. Note that we can generalize it to any
kind of operation if we are able to provide the appropriate fx(), fy() and fz() functions. All the three functions
can be implemented using one-dimensional look-up tables and fx(), fy() are bijective functions.

As a recap, instead of implementing a full-fledged hardware processing unit for a given format (e.g., a Floating
Point Unit), this approach aims to find once the three functions fx(), fy() and fz() as shown before. These
functions can be straightforwardly implemented as one-dimensional look-up tables and enables us to perform real
number arithmetic using only the Arithmetic Logic Unit (ALU). Furthermore, these functions always exist and the
optimal mapping can be obtained as shown in Section 5.

4.1 A note on the Z set

As said before, Z can be obtained as the set of values obtainable as zi,j = xi▽yj , where xi ∈ X, yj ∈ Y . Since we
want to be able to represent zi,j ,∀i, j for the given format, we are limited by its dynamic range and decimal accuracy.
The representable values of the format are equivalent to the set X (and Y , since in all practical implementations
Y ≡ X).

This means that the following phenomena occur when constructing the Z set:

– Overflow: the result zi,j = xi▽yj > max(X) = max(Y). Saturation can occur, forcing zi,j = max(X) = max(Y).
– Underflow: the result 0 < zi,j < min(|xi|, xi ∈ X), zi,j > 0 . The underflow can be forced to zi,j = min(|xi|, xi ∈

X). The same holds for zi,j < 0 and the underflow occurs to −min(|xi|, xi ∈ X).
– Rounding: in general zi,j may not be representable – i.e. zi,j does not belong to X. Depending on the format,

a rounding scheme must be applied. As an example, the rounding scheme of Posit numbers is round to nearest
even.

Decoding-free Two-Input Arithmetic for Low-Precision Real Numbers 5

If we apply the three previous rules (overflow handling, underflow handling and rounding scheme, overall named
"casting") we get a new set Ẑ = {distinct(cast(zi,j))} = {ẑt}, Ẑ ⊆ X. Let |Ẑ| be the cardinality of such set.
Since it can be sorted, we will indicate it as Z̃ = {ẑ1, ..., ẑt, ..., ẑ|Ẑ|}.

For the purposes of this work, this new set Ẑ is even more relevant than Z itself, as shown in the following
sections.

5 Obtaining the mapping: problem formulation and its solvability

The general problem of finding the mapping can be formulated as the integer programming problem in (3).

min
∑
i

Lx
i +

∑
j

Ly
j

s.t. Lx
1 ≥ 0

Ly
1 ≥ 0

Lx
i1 ̸= Lx

i2 ∀i1 ̸= i2

Ly
j1

̸= Ly
i2

∀j1 ̸= j2

Lx
i + Ly

j ̸= Lx
p + Ly

q ∀i, j, p, q s.t. xi▽yj ̸= xp▽yq

Lx
i , L

y
j ∈ Z ∀i, ∀j

(3)

Since the not-equals constraints introduce disjoint domains for the solution, to ease the solver computation, we
can exploit characteristics of the specific operation to specialize said constraints.

Let us consider an operation that is non-decreasing monotonic and commutative (e.g. sum and multiplication).

min
∑
i

Lx
i +

∑
j

Ly
j

s.t. Lx
1 ≥ 0

Ly
1 ≥ 0

Lx
i ≥ Lx

j + 1 i > j

Ly
i ≥ Ly

j + 1 i > j

Lx
i + Ly

j = Lx
j + Ly

i ∀i,∀j
Lx
i + Ly

j + 1 ≤ Lx
p + Ly

q ∀i, j, p, q s.t. xi▽yj < xp▽yq

Lx
i , L

y
j ∈ Z ∀i,∀j

(4)

This integer programming formulation is more tractable, since now the domain is a single polyhedron and not
the disjunction of multiple ones. In addition, it can be constructively proved that its feasible region is not empty
(see the procedure described in the Appendix 7). Furthermore, the minimization problem is bounded from below,
since the variables must stay on the first quadrant and the coefficients of the objective function are all positive.

Under these assumptions, the problem always admits a minimum for its objective value [6], although its solution
is not guaranteed to be unique. The latter means that different optimal sets Lx and Ly might exist, but they will
be associated to the same (optimal) value of the objective function

∑
i L

x
i +

∑
j L

y
j .

6 Application: Posit⟨4, 0⟩

In this section we show an application of the aforementioned method with a low-precision Posit⟨4, 0⟩ format. We
applied the method to derive the mapping for the four algebraic operations: +,−,×, /. For each operation we report
the fx(·),fy(·) and fz(·) mappings as well as the resulting look-up tables and the respective logic functions that
implement the mapping. The four different problems were solved enforcing different policies on the values that
Lx and Ly sets can contain. These policies help the solving algorithm to converge to the solution faster. Table 3
summarise the policies adopted for the solution.

6 J. L. Gustafson, M. Cococcioni et al.

Table 3: Policies for the solver algorithm. All policies are to be intended as monotonic.
Lx Ly

SUM Increasing Increasing
MUL Increasing Increasing
SUB Decreasing Increasing
DIV Increasing Decreasing

We run the solver for the problems defined in section 5 obtaining, for each operation, the following outputs:

– The Lx, Ly and Lz sets.
– The fx,fy and fz functions (or one-dimensional look-up tables) for that perform the mapping between the

X,Y, Ẑ and, respectively, the Lx, Ly, Lz sets.

Table 4: Lx and Ly sets for Posit⟨4, 0⟩ (X ≡ Y ≡ { 1
4 , 1

2 , 3
4 , 1, 3

2 , 2, 4})
operation Lx Ly

+ {0, 1, 2, 3, 5, 6, 11} {0, 1, 2, 3, 5, 6, 11}
× {0, 2, 3, 4, 5, 6, 8} {0, 2, 3, 4, 5, 6, 8}
− {0, 1, 2, 3, 5, 6, 7} {15, 14, 13, 12, 10, 8, 0}
/ {0, 2, 3, 4, 5, 6, 8} {8, 6, 5, 4, 3, 2, 0}

The first step consists in obtaining the mapping between the two Posit⟨4, 0⟩ operands and, respectively, the Lx

and Ly sets. Table 4 shows the obtained mapping (fx(·), fy(·)) for the four different operations. As stated at the
beginning of this section, we enforced different Lx, Ly policies for the different operations. Indeed, we can see that,
for addition and multiplication, the Lx, Ly sets are identical and monotonic increasing. This reflects the commutative
properties of the addition and multiplication. On the other hand, for subtraction and division, the Lx, Ly sets are
different: for the division, the two sets have the same elements, but the ordering is different, with Lx being monotonic
increasing and Ly monotonic decreasing; for the subtraction the two sets are different, while preserving the same
properties of the division ones – i.e. one being monotonic increasing and the other being monotonic decreasing.

Table 5: Cross-sum of the Lx, Ly sets, producing the Lz
i,j elements for multiplication (left) and addition (right)

Lx Ly 0 2 3 4 5 6 8
0 0 2 3 4 5 6 8
2 2 4 5 6 7 8 10
3 3 5 6 7 8 9 11
4 4 6 7 8 9 10 12
5 5 7 8 9 10 11 13
6 6 8 9 10 11 12 14
8 8 10 11 12 13 14 16

Lx Ly 0 1 2 3 5 6 11
0 0 1 2 3 5 6 11
1 1 2 3 4 6 7 12
2 2 3 4 5 7 8 13
3 3 4 5 6 8 9 14
5 5 6 7 8 10 11 16
6 6 7 8 9 11 12 17
11 11 12 13 14 16 17 22

Table 6: Cross-sum of the Lx, Ly sets, producing the Lz
i,j elements for division (left) and subtraction (right)

Lx Ly 8 6 5 4 3 2 0
0 8 6 5 4 3 2 0
2 10 8 7 6 5 4 2
3 11 9 8 7 6 5 3
4 12 10 9 8 7 6 4
5 13 11 10 9 8 7 5
6 14 12 11 10 9 8 6
8 16 14 13 12 11 10 8

Lx Ly 15 14 13 12 10 8 0
0 15 14 13 12 10 8 0
1 16 15 14 13 11 9 1
2 17 16 15 14 12 10 2
3 18 17 16 15 13 11 3
5 20 19 18 17 15 13 5
6 21 20 19 18 16 14 6
7 22 21 20 19 17 15 7

Decoding-free Two-Input Arithmetic for Low-Precision Real Numbers 7

Once we obtained the Lx, Ly sets, the Lz
i,j elements can be obtained by computing the cross-sum between the

two sets, with all the sum between each pair of elements of Lx and Ly. Table 5 shows the result for multiplication
and addition. Due to symmetry properties of the two operations there are several duplicated values. The same holds
for division and subtraction operations in 6.

As said above, the set Lz can be found as: Lz = distinct{Lz
i,j}. Such set will have |Lz| entries, and therefore we

can represent it as a ordered set of values in the following way:

Lz = {Lz
1, ..., L

z
k, ..., L

z
|Lz|}

having indicated with Lz
k its k-th element and Lz

1 < Lz
2 < ... < Lz

|Lz|. Let us now introduce the vector w⃗, having
size equal to the cardinality of Lz. We will indicate it as w⃗ =

(
w1, ..., wk, ..., w|Lz|

)
. Each component of the vector

belongs to Ẑ. In particular, wk = ẑi,j , if i and j are such that Lz
i,j is equal to the k-th value in Lz.

Hereafter we show what we obtained for the Posit ⟨4, 0⟩ multiplication:

Ordered sets of real numbers

X = { 1
4 ,

1
2 ,

3
4 , 1,

3
2 , 2, 4}

Y ≡ X

Ẑ = { 1
4 ,

1
2 ,

3
4 , 1,

3
2 , 2, 4} (in general Ẑ ⊆ X, but in this case we obtained Ẑ ≡ X)

Ordered sets of natural numbers

Lx = {0, 2, 3, 4, 5, 6, 8}

Ly = {0, 2, 3, 4, 5, 6, 8}

Lz = {0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16}

Vector w⃗

w⃗ = (14 ,
1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

3
4 , 1,

3
2 , 2, 2, 4, 4, 4, 4)

The correspondence among the values of zi,j , ẑi,j , Lz
i,j , Lz

k and wk is shown in Table 7.

8 J. L. Gustafson, M. Cococcioni et al.

Table 7: Posit ⟨4, 0⟩ multiplication: correspondence among zi,j , ẑi,j , Lz
i,j , Lz

k and wk values. On the left we report
the first part, and on the right the second part (to save space).

zi,j ẑi,j Lz
i,j Lz

k wk

(= Lx
i + Ly

j)

1/16 1/4 0 0 1/4

1/8 1/4 2 2 1/4
1/8 1/4 2
3/16 1/4 3 3 1/4
3/16 1/4 3
1/4 1/4 4 4 1/4
1/4 1/4 4
1/4 1/4 4
3/8 1/4 5 5 1/4
3/8 1/4 5
3/8 1/4 5
3/8 1/4 5
1/2 1/2 6 6 1/2
1/2 1/2 6
1/2 1/2 6
1/2 1/2 6
9/16 1/2 6
3/4 3/4 7 7 3/4
3/4 3/4 7
3/4 3/4 7
3/4 3/4 7
1 1 8 8 1
1 1 8
1 1 8
1 1 8
1 1 8

9/8 1 8
9/8 1 8

zi,j ˆzi,j Lz
i,j Lz

k wk

(= Lx
i + Ly

j)

3/2 3/2 9 9 3/2
3/2 3/2 9
3/2 3/2 9
3/2 3/2 9
2 2 10 10 2
2 2 10
2 2 10
2 2 10

9/4 2 10
3 2 11 11 2
3 2 11
3 2 11
3 2 11
4 4 12 12 4
4 4 12
4 4 12
6 4 13 13 4
6 4 13
8 4 14 14 4
8 4 14
16 4 16 16 4

We also report some multiplications using 4-bit posit in Table 8 (we do not report all the combinations for the
sake of the space). Note that we are employing the standard rounding scheme for posit numbers, therefore values
that are not represented by the posit domain are rounded to the nearest value.

Decoding-free Two-Input Arithmetic for Low-Precision Real Numbers 9

Table 8: Example of multiplication for Posit ⟨4, 0⟩ using the Lx, Ly, Lz values, for some (xi, yj) pairs.
xi L

x
i yj Ly

j Lz
i,j zi,j ẑi,j

(= Lx
i + Ly

j) (= xi × yj)) (= cast(xi × yj)

1
2

2 1
4

0 2 1
8

1
4

1
2

2 1
2

2 4 1
4

1
4

1
2

2 3
4

3 5 3
8

1
4

1
2

2 3
2

5 7 3
4

3
4

1
2

2 2 6 8 1 1

1
2

2 4 8 10 2 2

Finally we report in Table 9 the Lz sets for the different operations and the associated w⃗ vectors for Posit ⟨4, 0⟩.

Table 9: Lz ordered sets and the associated w⃗ vectors for Posit⟨4, 0⟩ for the four arithmetic operations.
Op Lz set Associated w⃗ vector
× {0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16} (1

4
, 1
4
, 1
4
, 1
4
, 1
4
, 1
2
, 3
4
, 1, 3

2
, 2, 2, 4, 4, 4, 4)

+ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 22} (1
2
, 3
4
, 1, 1, 3

2
, 3
2
, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4)

/ {0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16} (1
4
, 1
4
, 1
4
, 1
4
, 1
4
, 1
2
, 3
4
, 1, 3

2
, 2, 2, 4, 4, 4, 4)

− {0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22} ({ 1
4

repeated 14 times}, 2, 1
2
, 2, 1, 2, 4, 4, 4)

As a final remark, observe how the function fz() described in Section 4 (in particular, in equation (2)), is easily
obtainable using the the values in the vector w⃗. Indeed, the fz : Lz 7−→ Ẑ we are looking for is the one-dimensional
lookup table having entries (Lz

k, wk). An example of such a lookup table is given by the last two columns of Table 7.

6.1 Quality metrics

When evaluating the results produced by the solver we want to have a baseline benchmark to compare our results.
Let us have a Posit⟨N,E⟩, if we think about a look-up table to accommodate the results of an operation, the
simplest approach we can have is a 2-dimensional look-up table indexed by the elements of the integer sets X∗,Z∗

that digitally encode the respective real values contained in the set X,Y . Each cell of the table has N bits for the
output while the address of the look-up table is just the concatenation of the integer representations, thus on 2 ·N
bits. Therefore the table has 22·N entries of N bits. Table 10 shows this naïve approach for a 4-bit posit with the
multiplication operation. As we said before, such table has 22·N = 28 = 256 entries with 4-bit wide cells, totalling
to 256 · 4 = 1024 bits. An optimized version of this table may operate just on the positive part of the domain,
reducing the number of entries to 22·(N−1) = 26 = 64 with 3-bit wide cells, totalling to 64 · 3 = 192 bits.

10 J. L. Gustafson, M. Cococcioni et al.

Table 10: Naïve look-up table for the multiplication for Posit ⟨4.0⟩.
Naïve Lz

i,j Posit encoding ẑi,j
(=Lx

i +Ly
j) of ẑi,j

row 1 00000000 0000 0
...

row 16 00001111 0000 0
row 17 00010000 0000 0

...
row 32 00011111 1111 −1/4
row 33 00100000 0000 0

...
row 48 00101111 1111 −1/4
row 49 00110000 0000 0

...
row 64 00111111 1111 −1/4
row 65 01000000 0000 0

...
row 80 01001111 1111 −1/4
row 81 01010000 0000 0

...
row 96 01011111 1111 −1/4
row 97 01100000 0000 0

...
row 113 01101111 1110 −1/2

...

...
row 240 11110000 0000 0

...
row 256 11111111 0001 1/4

When we obtain a solution to the problem of mapping we need to compare it at least against to the baseline
solution to see if it actually introduces an improvement. Such improvement can be in the number of entries of the
look-up(s) table(s), in the number of output bits or in the combination of the two factors. Moreover, we may also
consider that, for low-precision format, we can derive a combinatorial logic function that performs the fx, fy, fz

mappings.
Since we deal with a 4-bit format, it is worth to consider the gate count of a combinatorial solution to the

problem. Suppose that, instead of implementing the mapping with a look-up table, we implement the mapping
using a combinatorial logic function of the input bits. We can evaluate the cost of this solution in terms of number
of AND-OR gates (ignoring the cost of NOT gates, as usually done). Table 11 shows the gate cost for each operation
and the comparison with the naïve solution presented before as a baseline benchmark.

Table 11: Total gate count AND-OR for each operation for Posit⟨4, 0⟩.
Total gates Total gates Total gates Grand Grand total gates Gate

for Lx for Ly for Lz total gates of the naïve solution reduction
+ 10 10 11 31 138 4.4×
× 7 7 9 23 138 6×
− 8 5 5 18 138 7.6×
/ 7 7 9 23 138 6×

7 Conclusions

In this paper, we described a novel method for directly computing functions of two real numbers without decoding
using logic circuits; the real numbers are mapped to a specially chosen set of integer values. We demonstrated that
this mapping exists all the time and that we can implement any type of binary operation between real numbers
independent of encoding scheme. In particular, we applied this method to the 4-bit posit format, obtaining the
mapping for all the 4 algebraic operations. Finally, we compared the obtained solution to a baseline benchmark
in terms of number of look-up table entries and gates count. We showed how our approach can produce mapping
tables that are smaller than a traditional look-up table solution with logic functions that implement the mappings
having a lower AND-OR gate count when compared to the baseline solution.

Decoding-free Two-Input Arithmetic for Low-Precision Real Numbers 11

Acknowledgments

Work partially supported by H2020 projects EPI2 (grant no. 101036168, https://www.european-processor-initiative.
eu/ and TextaRossa (grant no. 956831, https://textarossa.eu/).

Appendix: How to build an initial feasible solution

An initial feasible solution (useful to speedup Matlab intlinprog function) can be constructed as shown below.
We will focus on the positive values in X, different both from NaR (notice that we are excluding the zero as well).
Let us call this set X . Let us indicate with x∗

i ∈ X the corresponding bistring (in the next we will refer to the
Posit ⟨4, 0⟩ case, as an example). Therefore, the bistrings will be the ones of Posit ⟨4, 0⟩ without its most significant
bit (see Table 1).

– Each xi ∈ X is mapped to the natural number Lx
i = x∗

i · 2n, n being the maximum number of bits needed for
representing the xi (in the case of Posit ⟨4, 0⟩, n = 3)

– Each yj ∈ Y is mapped to the natural number Ly
j = y∗j

Therefore, we obtain the Lx, Ly sets: Lx : {x∗
1 · 2n, . . . , x∗

|X| · 2
n} and Ly : {y∗1 , . . . , y∗|Y|}. Each Lz

i,j ∈ Lz is
obtained by the concatenation of the bit strings x∗

i , y
∗
j (or equivalently, as Lz

i,j = Lx
i + Ly

j , as shown in Table 12).

We now prove that this solution satisfies the constraint given in equation (1):

– Since there are no conflicting encodings of the real numbers in X and Y, we can guarantee that different real
numbers have different bit-strings that digitally encode them. Therefore, Lx

i ̸= Lx
j ,∀i ̸= j and Ly

p ̸= Ly
l ,∀k ̸= l.

– Since all the encodings in Lx, Ly are different from each other, also the concatenation of any pair Lx
i , L

y
j is

unique. Therefore, Lz
i,j ̸= Lz

k,q, if xi▽yj ̸= Xj▽Yq(with ▽ we indicate the generic operation for which we are
finding the mapping).

– Being the values Lz
i,j unique (no duplicates), we can easily obtain the ordered set Lz, by sorting them.

– the k-element vector w⃗ can be trivially obtained as cast(xi▽yj), when i · 2n + j = k.

An example of feasible solution for the multiplication of Posit ⟨4, 0⟩ numbers is reported in Table 12.

https://www.european-processor-initiative.eu/
https://www.european-processor-initiative.eu/
https://textarossa.eu/

12 J. L. Gustafson, M. Cococcioni et al.

Table 12: Example of a feasible solution for positive values of Posit ⟨4, 0⟩. Notice that Lx
i = x∗

i · 23 and Ly
j = y∗j .

xi x∗
i Lx

i yj y∗
j Ly

j Lz
i,j Lz

i,j Lz
k wk

(base 10) (base 2) (base 10) (base 2) (base 2) (base 10) (base 10)
1/4 1 001000 1/4 1 001 001001 9 9 1/4
1/4 1 001000 1/2 2 010 001010 10 10 1/4
1/4 1 001000 3/4 3 011 001011 11 11 1/4
1/4 1 001000 1 4 100 001100 12 12 1/4
1/4 1 001000 3/2 5 101 001101 13 13 1/4
1/4 1 001000 2 6 110 001110 14 14 1/2
1/4 1 001000 4 7 111 001111 15 15 1
1/2 2 010000 1/4 1 001 010001 17 17 1/4
1/2 2 010000 1/2 2 010 010010 18 18 1/4
1/2 2 010000 3/4 3 011 010011 19 19 1
1/2 2 010000 1 4 100 010100 20 20 1
1/2 2 010000 3/2 5 101 010101 21 21 3/4
1/2 2 010000 2 6 110 010110 22 22 1
1/2 2 010000 4 7 111 010111 23 23 2
3/4 3 011000 1/4 1 001 011001 25 25 1/4
3/4 3 011000 1/2 2 010 011010 26 26 1/4
3/4 3 011000 3/4 3 011 011011 27 27 1/2
3/4 3 011000 1 4 100 011100 28 28 3/4
3/4 3 011000 3/2 5 101 011101 29 29 1
3/4 3 011000 2 6 110 011110 30 30 3/2
3/4 3 011000 4 7 111 011111 31 31 2
1 4 100000 1/4 1 001 100001 33 33 1/4
1 4 100000 1/2 2 010 100010 34 34 1/2
1 4 100000 3/4 3 011 100011 35 35 3/4
1 4 100000 1 4 100 100100 36 36 1
1 4 100000 3/2 5 101 100101 37 37 3/2
1 4 100000 2 6 110 100110 38 38 2
1 4 100000 4 7 111 100111 39 39 4

3/2 5 101000 1/4 1 001 101001 41 41 1/4
3/2 5 101000 1/2 2 010 101010 42 42 3/4
3/2 5 101000 3/4 3 011 101011 43 43 1
3/2 5 101000 1 4 100 101100 44 44 3/2
3/2 5 101000 3/2 5 101 101101 45 45 2
3/2 5 101000 2 6 110 101110 46 46 2
3/2 5 101000 4 7 111 101111 47 47 4
2 6 110000 1/4 1 001 110001 49 49 1/2
2 6 110000 1/2 2 010 110010 50 50 1
2 6 110000 3/4 3 011 110011 51 51 3/2
2 6 110000 1 4 100 110100 52 52 2
2 6 110000 3/2 5 101 110101 53 53 2
2 6 110000 2 6 110 110110 54 54 4
2 6 110000 4 7 111 110111 55 55 4
4 7 111000 1/4 1 001 111001 57 57 1
4 7 111000 1/2 2 010 111010 58 58 2
4 7 111000 3/4 3 011 111011 59 59 2
4 7 111000 1 4 100 111100 60 60 4
4 7 111000 3/2 5 101 111101 61 61 4
4 7 111000 2 6 110 111110 62 62 4
4 7 111000 4 7 111 111111 63 63 4

References

1. M. Cococcioni, F. Rossi, E. Ruffaldi, and S. Saponara, “Small reals representations for deep learning at the edge: A
comparison,” in Next Generation Arithmetic, ser. Lecture Notes in Computer Science, J. Gustafson and V. Dimitrov,
Eds., vol. 13253. Springer International Publishing, 2022, pp. 117–133, https://doi.org/10.1007/978-3-031-09779-9_8.

2. J. L. Gustafson, The End of Error: Unum Computing. Chapman and Hall/CRC, 2015.

https://doi.org/10.1007/978-3-031-09779-9_8

Decoding-free Two-Input Arithmetic for Low-Precision Real Numbers 13

3. ——, “A radical approach to computation with real numbers,” Supercomputing Frontiers and Innovations, vol. 3, no. 2,
pp. 38–53, 2016.

4. J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its own game: Posit arithmetic,” Supercomputing Frontiers
and Innovations, vol. 4, no. 2, pp. 71–86, 2017.

5. J. Johnson, “Rethinking floating point for deep learning,” CoRR, vol. abs/1811.01721, 2018. [Online]. Available:
http://arxiv.org/abs/1811.01721

6. M. Conforti, G. Cornuéjols, and G. Zambelli, Integer Programming, ser. Graduate Texts in Mathematics. Springer
International Publishing, 2014.

http://arxiv.org/abs/1811.01721

	Decoding-free Two-Input Arithmetic for Low-Precision Real Numbers

