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Abstract

The traditional approach to biomarker discovery for any pathology has been through hypoth-

esis-based research one candidate at a time. The objective of this study was to develop an

agnostic approach for the simultaneous screening of plasma for consistent molecular differ-

ences between a group of individuals exhibiting a pathology and a group of healthy individu-

als. To achieve this, we focused on developing a predictive tool based on plasma for the

amount of brain amyloid-β deposition as observed in PET scans. The accumulation of brain

amyloid-β (Aβ) plaques is a key risk factor for the development of Alzheimer’s disease. A

contrast was established between cognitively normal individuals above the age of 70 that

differed for the amount of brain amyloid-β observed in PET scans (INSIGHT study group).

Positive selection was performed against a pool of plasma from individuals with high brain

amyloid and negative selection against a pool of plasma from individuals with low brain amy-

loid This enriched, selected library was then applied to plasma samples from 11 individuals

with high levels of brain amyloid and 11 individuals with low levels of brain Aβ accumulation.

Each of these individually selected libraries was then characterized by next generation

sequencing, and the relative frequency of 10,000 aptamer sequences that were observed in

each selection was screened for ability to explain variation in brain amyloid using sparse

partial least squares discriminant analysis. From this analysis a subset of 44 aptamers was

defined, and the individual aptamers were synthesized. This subset was applied to plasma

samples from 70 cognitively normal individuals all above the age of 70 that differed for brain

amyloid deposition. 54 individuals were used as a training set, and 15 as a test set. Three of

the 15 individuals in the test set were mis-classified resulting in an overall accuracy of 80%

with 86% sensitivity and 75% specificity. The aptamers included in the subset serve directly

as biomarkers, thus we have named them Aptamarkers. There are two potential applica-

tions of these results: extending the predictive capacity of these aptamers across a broader
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range of individuals, and/or using the individual aptamers to identify targets through covari-

ance analysis and reverse omics approaches. We are currently expanding applications of

the Aptamarker platform to other diseases and target matrices.

Introduction

Improvement in disease diagnostics is key to developing effective treatments for a variety of

pathologies. Identification of biological markers specific to a stage and/or type of pathology is

crucial to developing effective treatments. Diseases such as Crohn’s disease, pancreatic cancer,

lupus, nonalcoholic steatohepatitis (NASH), and Alzheimer’s disease are all in need of greater

understanding of disease pathology and biomarker identification.

In Alzheimer’s disease, the over-accumulation of brain amyloid-β (Aβ) is one of the earliest

pathomechanistic alterations characterizing the complexity of AD [1, 2]. In some cases, brain

Aβ accumulation may begin to occur twenty to thirty years prior to the onset of symptoms [3].

It is possible to directly observe increased brain Aβ deposition through positron emission

tomography (PET) scans, or through analysis of Aβ peptides measured in cerebrospinal fluid

(CSF). These analyses are expensive, time-consuming, and invasive, constraining broad-scale

application on cognitively normal individuals for clinical trial consideration. However, detect-

ing accumulation of Aβ when it begins to occur gives rise to a potentially more effective thera-

peutic intervention.

Recent successful achievements with the analysis of Aβ peptide ratios in blood are encour-

aging as less expensive and minimally invasive means of detecting AD-related pathophysiolog-

ical dynamics in the preclinical stages of the disease [4–7].

With this in mind, we set out to develop a biomarker-based diagnostic method to screen

for molecular differences between cognitively normal individuals above the age of 70 with

varying levels of amyloid-β brain deposition based on phenotypic contrasts. Using deep data

work to agnostically enable the identification of blood-based biomarkers specific to AD pathol-

ogy, we apply aptamer library selection, Next Generation Sequencing (NGS), and an analysis

of aptamer frequency across individuals to develop an Aptamarker [8] approach to amyloid-β
brain deposition prediction.

It would seem that nature chose proteins as the means of enabling antigen detection

through antibodies rather than oligonucleotides because the diversity of side chains within

twenty amino acids provides higher levels of information potential than the diversity of nucle-

otides within four nucleotides. With traditional aptamer selection this constraint is overcome

through the use of a naïve library of 1E15 random sequences, which is larger than the predicted

naïve library of antibodies present in humans (1E6 to 1E7) [9]. The immune system compen-

sates for the small size of the initial random library by refining antibodies that bind to novel

antigens through a rapid mutation process. Conceptually though the initial naïve aptamer

library is analogous to the antibody repertoire that resides within each individual. The capacity

exists to recognize all antigens with high affinity and specificity with the sequences that are

present in this library. The key to unlocking this potential is to establish a contrast such that

only those aptamers that bind to molecular differences across individuals that are affected by a

pathology from those that are not affected by such a pathology. This reduces the problem from

identifying all aptamers that bind to everything in plasma, to identifying all aptamers that bind

to molecules that are enriched in blood as a function of a pathology.

A primary challenge with aptamer selection is parsing aptamer sequences that bind to a tar-

get molecule from those that do not. In traditional SELEX approaches, this is achieved by
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immobilizing the target and washing away aptamer sequences that do not bind. However, tar-

get immobilization compromises the capacity of selection, as the act of complexing a target

molecule to a support structure can result in a shape or complex that would not exist outside

of the immobilization system. We invented FRELEX (Patent no: US 10,415,034 B2) to enable

the partitioning of bound aptamers from unbound aptamers in a way that does not rely on tar-

get immobilization, allowing us to select aptamers against all of the complexes found among

the molecular constituents of plasma in their native state. In this study, we are able to screen

for aptamers that optimally bind to biomarkers in plasma that are enriched in amyloid-β brain

deposition biomarkers as they would naturally appear in vivo without a need to immobilize

these targets first.

Using these approaches we have developed the concept of the Aptamaker, wherein aptamer

binding within a system–in this case, pooled serum from individuals with brain amyloid-β
deposition–can act directly as biomarkers themselves. The relative frequency of the Aptamar-

ker is a surrogate for the relative frequency of the biomarker it binds to.

This study represents the first application of the Aptamarker platform to the examination

of human blood samples and development of a potentially effective screening and diagnostic

tool for AD that can replace the expensive and invasive PET scan/CSF analysis.

Materials and methods

Preparation of DNA library and primers

The ssDNA library for selection was composed of a 40-mer random region flanked by two

constant regions for primer hybridization 5’ AACTACATGGTATGTGGTGAACT (N40)

GACGTACAATGTACCCTATAGTG 3’ (TriLink Biotechnologies, San Diego, CA, USA). Prim-

ers used for amplification were purchased from Integrated DNA Technologies.

The INSIGHT-preAD study group

We designed a large-scale mono-centric research program using a cohort of Subjective Mem-

ory Complainers (SMC) recruited from the “INveStIGation of AlzHeimer’s PredicTors in Sub-

jective Memory Complainers” (INSIGHT-preAD) study, a French academic university-based

cohort which is part of the Alzheimer Precision Medicine Initiative (APMI) and its Cohort

Program (APMI-CP) [10–13]. Participants were enrolled at the Institute of Memory and Alz-

heimer’s disease (Institut de la Mémoire et de la Maladie d’Alzheimer, IM2A) at the Pitié-Salpê-
trière University Hospital in Paris, France. The main objective of the INSIGHT-preAD study

is to explore the earliest preclinical stages of AD through intermediate to later stages until pro-

gression to conversion to first cognitive symptoms, using comprehensive clinical parameters

and biomarkers associated with cognitive decline. Written informed consent was provided by

all participants. The study was approved by the by the INSIGHT-preAD Scientific Committee

in October 2017 as Project 48 by the INSIGHT-preAD Scientific Committee. Members of this

committee at that time were, Bruno Dubois, Hovagim Bakardjian, Habib Benali, Olivier Col-

liot, Marie-Odile Habert, Harald Hampel, Foudil Lamari, Fanny Mochel, Marie-Claude Potier,

Michel Thiebaut de Schotten). This approval process was conducted in accord with the Hel-

sinki Declaration of 1975.

The INSIGHT-preAD study includes 318 cognitively and physically normal Caucasian

individuals, recruited from the community in the wider Paris area, aged 70 to 85, with SMC.

Aβ-PET investigation was performed at the baseline visit, as a mandatory inclusion criterion.

Thus, all individuals enrolled into the study have SMC and are stratified as either positive or

negative for cerebral Aβ deposition. At the point of the study inclusion, comprehensive base-

line data were collected, namely demographic and clinical data, and APOE genotype.
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Exclusion criteria were: a history of neurological or psychiatric diseases, including depressive

disorders. The study was conducted in accordance with the tenets of the Declaration of Hel-

sinki of 1975 and approved by the local Institutional Review Board at the participating center.

All participants or their representatives gave written informed consent for use of their clinical

data for research purposes.

PET data acquisition and processing

All Florbetapir-PET scans are acquired in a single session on a Philips Gemini GXL CT-PET

scanner 50 (± 5) minutes after injection of approximately 370 MBq (333–407 MBq) of Florbe-

tapir. PET acquisition consists of 3 x 5 minutes frames, a 128 x 128 acquisition matrix and a

voxel size of 2 x 2 x 2 mm3. Images are then reconstructed using iterative line-of-response

row-action maximum likelihood algorithm (LOR-RAMLA) (10 iterations), with a smooth

post-reconstruction filter. All corrections (attenuation, scatter, and random coincidence) are

integrated in the reconstruction. Lastly, frames are realigned, averaged and quality-checked by

the CATI team. CATI is a French neuroimaging platform funded by the French Plan Alzhei-

mer (available at http://cati-neuroimaging.com).

Reconstructed PET images are analyzed with a pipeline developed by CATI, according to a

method previously described. The mean activity in the pons and whole cerebellum regions was

used as reference for individual voxel normalization in the partial volume effect corrected

images. Standard uptake value ratios (SUVR) were calculated for each of 12 cortical regions of

interest (cingulum posterior right and left, cingulum anterior right and left, frontal superior

right and left, parietal inferior right and left, precuneus right and left, temporal mid right and

left), as well as the global average SUVR. For Aβ-PET data from the CATI pipeline the thresh-

old identified to categorize our cohort in Aβ-PET positive or Aβ-PET negative was 0.7918 [14,

15].

The characteristics of the 70 individuals included in this study are provided in the table

below (Table 1).

Pre-treatment of plasma for enriched library development

Depletion on plasma used for aptamer library selection was performed with the Albumin/IgG

Removal Kit (Pierce) according to the manufacturer’s recommendations. Aliquots (10 μL) of

each of the pooled samples were placed in spin columns containing 80 μL of gel slurry. Each

column was capped, vortexed, and incubated for 30 minutes at room temperature on an

orbital shaker. The column was then centrifuged at 1,000 × g for 2 minutes, and the filtrate was

retained and aliquoted for subset analysis.

Table 1. Characteristics of 70 SMC individuals analyzed in this study.

Negative Positive

Amyloid status 31 39

Average age 77.4 ± 3.1 77.4 ± 3.7

Sex 16F 21F

APO ε status

E2/E3 5 1

E3/E3 22 20

E3/E4 3 16

E4/E4 1 2

https://doi.org/10.1371/journal.pone.0243902.t001
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Aptamer library selection on plasma

NeoNeuro SAS (France) was kindly permitted to use the FRELEX selection platform (Patent

no: US 10,415,034 B2) for this study by NeoVentures Biotechnology Inc. (Canada) For the

selection of aptamer libraries. FRELEX requires the preparation of an immobilization field

consisting of a gold chip coated with thiolated random 8 base pair DNA oligonucleotides. The

8-mer thiolated random oligonucleotides were dissolved in 50 μL of phosphate buffer saline

(PBS) (8.0 mM Na2PO4, 1.4 mM KH2PO4, 136 mM NaCl, 2.7 mM KCl, pH 7.4) at a concen-

tration of 10 μM. This solution was incubated at room temperature (RT) for 1 hour on gold

surface chip, dimensions 7 x 10 x 0.3 mm (Xantec, Germany). The chip was then air-dried and

50 μL of a solution containing thiol terminated polyethylene glycol (SH-PEG) molecules and

incubated for 30 min at RT with gentle shaking. This step blocks any remaining gold surface

that is not covered with 8mers. SH-PEG was subsequently added a second time for 16 hours.

After that, the SH-PEG solution was removed from the chip and the functionalized gold chip

surface was washed with de-ionised water and air-dried.

In the first step of FRELEX employed in this study, 1016 sequences from the random apta-

mer library described previously were snap cooled by heating the library to 95˚C for 10 min

followed by immediate immersion in ice bath. These single stranded (ss) DNA sequences were

incubated with the functionalized immobilization field (gold chip with 8mers) in 50 μL of

Selection Buffer (20 mM Tris, 120 mM NaCl, 5 mM MgCl2, 5 mM KCl, pH 7.5) for 30 min at

RT. The remaining solution was removed and discarded. This removes sequences that have

too much secondary structure to enable binding to the 8mers on the surface. The immobiliza-

tion field was washed twice with 50 μL of 10X TE buffer and the remaining bound oligonucleo-

tides were eluted and recovered with two incubations of 15 min each 1 mL of Selection Buffer

at 95˚C. These elutions were pooled and purified using the GeneJET PCR Purification Kit

(Thermo Fisher Scientific, Germany) as described by the manufacturer and eluted with 25 μL

of de-ionised water.

This aptamer library selected for capacity to bind to 8mers was then used for positive selec-

tion with a pool of plasma from six individuals that exhibited high levels of Aβ brain lesions

(> 0.79 SUVR) in a total volume of 50 μL 1X Selection Buffer. This solution was incubated for

15 min then incubated with the immobilization field for 15 minutes at RT. The remaining

solution was recovered carefully and stored in a fresh tube. The immobilization field was

washed twice with 50 μL of 1X selection buffer with each wash being collected and pooled with

the solution removed in the first step. This solution contains sequences that did not bind to the

immobilization field, presumably because they are bound to some moieties within the plasma

instead. This pooled solution was purified as described for the phase I step, eluted in 400 μL

and subjected to PCR amplification for an appropriate number of cycles to create a clear band

of approximately 5 ng of amplified DNA.

After the first round of selection, PCR was used to amplify the selected ssDNA into double

stranded DNA (dsDNA) for an appropriate number of cycles to create a clear band of approxi-

mately 5 ng of amplified DNA. For the PCR amplification the 3’ primer was extended beyond

homology with the library (in the 3’ direction) with the addition of a sequence corresponding

to a T7 RNA polymerase promoter. The amplified dsDNA was used as a template for in vitro

transcription to obtain an antisense RNA library. This antisense RNA library was treated with

DNase I and purified with RNeasy MinElute cleanup (Qiagen). It was then used as the tem-

plate in a reverse transcription reaction with reverse transcriptase to obtain sense strand

cDNA. The resulting cDNA-RNA mixture was treated with RNase H according to manufac-

turer instructions. The sense strand cDNA was purified and used as a library for the next

round of selection.
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From the second to the 10th selection round, selection was performed in the same manner

with the exception that a pool of plasma was prepared from six individuals from the

INSIGHT-preAD study group that exhibited Aβ brain lesions at a lower SUVr than the thresh-

old of 0.79 as defined by the INSIGHT-preAD study group. Aliquots of this healthy plasma

pool was added in the negative selection phase (phase I of FRELEX), where we select for apta-

mers that exhibit the capacity to bind to the immobilization field. This process was maintained

from selection round 2 to selection round 10.

Characterization of a subset of meaningful aptamers

After ten rounds of selection, aliquots of the enriched library were applied for a single round

of positive selection against individual plasma samples of 22 SMC individuals (11 SMC-A

+ and 11 SMC-A–). These plasma samples were not depleted for albumin or IgG. Each of

these 22 selected libraries of aptamers was characterized by NGS analysis. The relative frequen-

cies of the top 10,000 sequences in terms of copy number were correlated with Aβ brain lesion

status using sparse partial least squares–discriminant analysis (sPLS-DA). Based on this analy-

sis a subset of 44 aptamers was defined as sufficient to obtain sensitivity and specificity of 1.0

on the 22 individuals with PLS-DA analysis and cross validation.

Application of subset of aptamers in a predictive test

The 44 aptamers identified as meaningful from NGS analysis were divided into three subsets

of 13, 10 and 23 aptamers each with two aptamers being in common between the first two sub-

sets. Specific primers targeted for the 3’ end of the random region were defined for each apta-

mer. These primers were validated for their capacity to specifically amplify the targeted

aptamer in the presence of the other aptamers in the subset. All subsets were applied in a single

round of FRELEX against non-depleted plasma from 70 SMC individuals from the INSIGHT-

preAD cohort. The first two subsets were characterized by qPCR analysis on an Mx3000P ther-

mocycler (Stratagene, AH Diagnostics, Aarhus, Denmark) with 10X Sybr green master mix

according to the manufacturer’s instructions (Bio-Rad). 20 μL reactions included 5 μL of tem-

plate from selection and 250 nM PCR primers. PCR was performed as follows: 95˚C for 2 min;

30 cycles [95˚C for 10 s; 62˚C for 15 s; 72˚C for 30 s]. The last subset was characterized on a

BioRad CFC instrument in an identical manner except that reactions were performed for 35

cycles instead of 30.

Cq values were calculated on the basis of the derivative of each amplification cycle exceed-

ing six standard deviations of the average derivative from PCR cycles 3 to 10. PCR efficiency

was calculated by determining the slope of the increase in fluorescence from the Cq value to

the Cq value characterized as nearest to the maximum derivative across cycles. Cq values from

the BioRad instrument were calculated by the internal BioRad software.

Data analysis

All statistical analyses were performed using the R software program (version 3.4.4) [16]. To

assess the predictive ability of the Cq values, we conducted a sparse partial least squares dis-

criminant analysis (sPLS-DA) [15] as implemented in sPLS-DA function of the R package

mixOmics22. The use of sPLS-DA is motivated by its dimension reduction effectiveness

through the construction of a small set of orthogonal components (latent variables) summariz-

ing the manifest Cq values. All of the Aptamarker values and the ratios between them are con-

sidered variables. We only computed the ratios in one direction. This still means however that

the number of variables far exceeds the number of samples analyzed and as such increases the

risk of spurious relationships between variables and variance for Aβ brain deposition. The
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sparse component of this package enables us to reduce the number of variables and dimen-

sions in which variance is considered to mitigate this problem.

A predictive model was built based on a random sample of 54 individuals from the 70 indi-

viduals analyzed. One individual sample was excluded from the analysis as an outlier. This left

an additional 15 individual samples as a test set. For data analysis, ratios of all Cq values from

the 54 samples were determined and added to the Cq values alone as a combined dataset. This

data set was normalized to zero mean and standard deviation of unity for each Cq value or Cq

value ratio. This normalized matrix was then used as explanatory variables in sPLS-DA to

account for the Aβ brain lesion status, categorized as negative “neg” or positive “pos” based on

a SUVr threshold of 0.79.

In addition, a cross-validation analysis was performed with sPLS-DA with a manual k-folds

analysis. Alternative sets of 54 training samples and 15 test samples were chosen 5 times. An

sPLS-DA model was created with each of the iterations of the training set and applied to the

test set. We allowed the sPLS-DA to normalize the training set to mean = 0 and standard devia-

tion = - 1. We used the mean and the standard deviation from these training sets to apply the

same normalization to the test sets. The predicted values for the test set were evaluated for

whether they predicted low or high amyloid by subtracting the mean of the negative samples

in the training set from the observed value, and dividing by the standard deviation of the nega-

tive samples in the training set, and likewise for the positive samples in the training set. The

value that was the closest to zero arising from this evaluation was used to establish the low or

high amyloid prediction.

The overall number of samples was too small for us to evaluate the effect of genotype or sex

on the model. A difficulty with sPLS-DA model fitting is that when the model is unbalanced in

the sense that one class of individuals outweighs the other class considerably, the model tends

to favour the more dominant class at the expense of predicting the less dominant class appro-

priately. With partitions for either sex or ApoE genotype the model failed because of unbal-

anced training sets. Both sex and genotype will be considered fully in our current work with a

larger data set.

Results

The sPLS-DA analysis of the 54 training samples resulted in the retention of 961 variables, all

explaining variance in one principle component. The loading values of these 961 variables were dis-

tributed as shown in Fig 1. The majority of the loading values had values that deviated from 0 by

less than 0.01. The distribution of the training samples based on a SUVR threshold of 0.79 is shown

in Fig 2. The average predicted model result for the low brain Aβ deposition (SUVR< 0.79) was

-4.76 while the average for high brain Aβ deposition (SUVR> 0.79) was +3.53.

We applied this mathematical model to the Aptamarker results obtained with 15 samples

that were not part of the initial training set with the following confusion matrix result.

Aptamarker negative Aptamarker positive

Pet scan negative 6 2

Pet scan positive 1 6

This results in a sensitivity of 85%, a specificity of 75% and an overall accuracy of 80%. The

distribution of the individual 15 test samples based on their predicted values is provided in Fig

3. The ROC curve for these 15 samples is provided in Fig 4. The ROC curve is provided here as

a reference, it is clear that it is difficult to obtain robust results and hence high area under the

curve (AUC) values with a test set of only 15 samples as variation in the threshold leads rapidly

to skewing of sample designation distribution. In either direction, the proportion of negative

or positive samples changes more rapidly than would be the case with more samples.
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We determined that by including only those variables that exhibited loading values greater

than 0.04 or less than -0.04 this confusion matrix was maintained. This reduces the number of

variables necessary within the prediction to 245. The inclusion of an individual Aptamarker in

a ratio value varied from a minimum of three ratios to a maximum of 37.

The average result from the cross-validation analysis was 70% for sensitivity, 59% for speci-

ficity and 65% for accuracy. These values demonstrate that the model as it stands is not suffi-

ciently robust for commercial development. There is a need to improve this model through

analysis of more samples.

Fig 1. Frequency distribution of loading values. Frequency distribution of loading for 2116 retained variables on 54

sample training set.

https://doi.org/10.1371/journal.pone.0243902.g001

Fig 2. Distribution of values. Distribution of values assigned to 54 training samples based on mathematical model of

Aptamarkers.

https://doi.org/10.1371/journal.pone.0243902.g002
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Discussion

By training our enriched aptamer library against a random sample of 54 individuals from the

original INSIGHT-preAD group pool, and applying it to the remaining relevant 15 individu-

als, we observed a predictive accuracy of 80%, with 86% sensitivity, and 75% specificity for

brain amyloid deposition. The cross-validation exercise resulted in lower predictive accuracy

(65%), lower sensitivity (70%) and lower specificity (59%). These values demonstrate that the

Fig 3. Distribution of values assigned. Distribution of values assigned to 15 test samples based on mathematical

model of Aptamarkers.

https://doi.org/10.1371/journal.pone.0243902.g003

Fig 4. ROC curve. ROC curve for 15 test samples based on Aptamarker predictions.

https://doi.org/10.1371/journal.pone.0243902.g004
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interpretation of the Aptamarker patterns across the individuals can be used to explain a por-

tion of the variation for brain amyloid deposition on the basis of aptamer binding to biomark-

ers in plasma. We have designated the overall process as the Aptamarkers platform.

To further these results, we are looking to integrate this approach with the results obtained

using traditional core pathophysiological biomarkers for AD diagnosis across the same sam-

ples: low CSF Aβ1–42 concentrations and elevated CSF total tau (t-tau) or hyperphosphorylated

tau (p-tau) concentrations or positivity to Aβ-PET (i.e., high retention of Aβ radiotracer). This

will demonstrate whether the variance in the trait that we are explaining using the Aptamar-

kers platform is identical or whether this strategy represents an added value to the variance

obtained by the established core biomarkers.

The concept of using aptamer frequency following a single round of selection as a charac-

terization of the concentration of the targets that aptamers bind to and the subsequent use of

aptamers directly as biomarkers is an entirely new concept. The investigation reported herein

resulted in a predictive capacity that is similar to that achieved in plasma with Aβ peptide

ratios. This is sufficiently encouraging for us to expand this research with increased sample

quantities.

Additionally, we are developing mathematical models to assess the efficacy of the aptamer

library selection and to further refine the way aptamers are chosen for the third step in the

Aptamarker platform.

The evaluation of the second step of the platform–characterization of candidate aptamers

through a single round of selection and NGS analysis–is prone to an over-fitting error, given

that the number of variables (sequence frequency of aptamers) far outnumbers the number of

samples. Different aptamers are chosen as meaningful arising from this step depending on the

iteration of the model building software (different random seeds). We are also working on the

development of a rigorous process that will enable the identification of meaningful sequences

from this data set that recur most frequently. We are building a statistical model to support

this aspect of the analysis.

In terms of developing a comprehensive diagnostic tool for AD, as well as other diseases, on

an individual level, the Aptamarkers platform approach hold promise. The Aptamarkers plat-

form allows the unbiased assessment of differences in plasma samples independent from the

type of the biological molecule [17]. As such, this platform is assessing differences across all

possible existing epitopes, a dimension we refer to as “epitopiome”.

The Aptamarkers platform can be represented as a trade for increased depth of analysis

(rapid development and characterization of many more potential biomarkers) in exchange for

a loss of information regarding the biological nature of the biomarkers. From a diagnostic

viewpoint, the nature of the specific biomarker and/or its potential role in the pathophysiology

of the disease is not necessary. It is only required to demonstrate that the biomarker provides a

statistically relevant diagnosis of the disease. It is entirely feasible to use the Aptamarkers plat-

form as a tool to discover the molecular entities that they bind to by immobilizing each known

Aptamarker sequence in an affinity column and passing plasma through it. Given the broad

spectrum of potential targets, including proteins, peptides, oligonucleotides, metabolites, and

combinations of these molecules, this use of aptamers to discover the identity of the actual bio-

markers is not trivial.

A key concern regarding the application of this platform the subject of measurement is

unknown in that we do not know what the aptamers are binding to. This concern can be

addressed in several ways:

1. The existing relationship between a biomarker and a disease state does not need to be

known in order to be useful. The advent of genomic analysis has led to the correlation of

PLOS ONE Aptamarker prediction of brain amyloid-β status in individuals at risk for Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0243902 January 4, 2021 10 / 14

https://doi.org/10.1371/journal.pone.0243902


genetic variation in proteins of unknown function with the propensity to develop a disease.

These correlations are necessarily included in predictive models.

2. The most important concern for a clinician is to correctly diagnose a disease state. Knowl-

edge that a biomarker may be related to a pathophysiological basis for such a state may be

of scientific comfort but in practical terms in terms of prescribing treatments is not as

important as the statistical correlation between diagnosis, treatment choice and treatment

outcome.

3. There are biomarkers that are routinely used in healthcare where the association with the

disease is either unknown or tentative at best. For example, with Alzheimer’s disease the

using Apo E genetic status as a predictor for the potential to develop the disease. Pathophys-

iological hypotheses to support the strong statistical correlation are currently being built

and tested, but this was driven by the statistical correlation, not the evident relationship

with the pathology.

4. It is possible to use the Aptamarkers that we discover to identify what they bind to. The pri-

mary difficulty in this approach is the technical constraints involved in identifying com-

plexes between metabolites and mis-folded or non-trypsin-digested peptides, not the ability

to use aptamers to pull out specifically bound molecules. We postulate that a more effective

approach to identifying binding will be through covariance analysis in association with

hypothesis.

The identification of Aptamarkers is not trivial, however their application once identified is

straightforward. The process only involves a single positive FRELEX selection on a gold chip,

followed by characterization with the Aptamarkers platform through qPCR analysis. This is

simple to perform, does not require expensive equipment, and the results are highly reliable

(CV< 5%). The platform as it has been developed could be automated and scaled, making it a

potentially valuable diagnostic resource.

Conclusions

Considerable development work is required before commercialization of this approach can be

considered. We consider the predictive capacity demonstrated herein for this test as encourag-

ing for analysis of a larger number of samples, further refinement and improvement of the

test. The significant correlation between Aβ deposition across the twelve samples predicted

correctly was also encouraging given that all training of mathematical models was based on

binary separation of low and high amyloid. The observation of such a significant relationship

to actual Aβ deposition levels was unexpected and is encouraging in terms of the Aptamarkers

describing aspects of the pathophysiology of the disease.

The Aptamarker platform is intriguing because of the agnostic nature of the aptamer selec-

tion. This approach allows screening of all possible molecules in blood, proteins, metabolites,

non-coding RNA and complexes formed among these molecules for possible relationship to

the pathophysiology or pathophysiologies underlying not only an early risk factor for Alzhei-

mer’s disease such Aβ brain deposition, but the pathophysiology of any disease. Efforts are cur-

rently underway within our laboratory to extend this application beyond Alzheimer’s disease

into other types of diseases.
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Marion Houot, Aurélie Kas, Foudil Lamari, Marcel Levy, Simone Lista, Christiane Metzinger,

Fanny Mochel, Francis Nyasse, Catherine Poisson, Marie-Claude Potier, Marie Revillon,

Antonio Santos, Katia Santos Andrade, Marine Sole, Mohmed Surtee, Michel Thiebaut de

Schotten, Andrea Vergallo, Nadjia Younsi.

Contributors to the Alzheimer Precision Medicine Initiative–Working

Group (APMI–WG)

Mohammad Afshar (France), Lisi Flores Aguilar (Canada), Leyla Akman-Anderson (USA),
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