
Recent Advances and Trends in On-Board
Embedded and Networked Automotive Systems

Lucia Lo Bello; Riccardo Mariani; Saad Mubeen; Sergio Saponara

Abstract:
Modern cars consist of a number of complex embedded and networked systems with
steadily increasing requirements in terms of processing and communication resources.
Novel automotive applications, such as automated driving, rise new needs and novel
design challenges that cover a broad range of hardware/software engineering aspects. In
this context, this paper provides an overview of the current technological challenges in on-
board and networked automotive systems. This paper encompasses both the state-of-the-
art design strategies and the upcoming hardware/software solutions for the next
generation of automotive systems, with a special focus on embedded and networked
technologies. In particular, this paper surveys current solutions and future trends on
models and languages for automotive software development, on-board computational
platforms, in-car network architectures and communication protocols, and novel design
strategies for cybersecurity and functional safety.

SECTION I.

Introduction
The size of embedded systems market is growing at a drastic pace. According to an
estimate, it will be 258.72 billion USD by 2023 [1]. It is further estimated that automotive
applications comprise more than 20% of this market. An embedded system consists of a
hardware (HW), a processor, and peripherals, and the software (SW) that runs on the
embedded processor [2]. In a modern car, the size of the embedded SW is in the order of
millions of code lines. Many automotive embedded systems are real-time (RT)
constrained, i.e., they must provide logically correct responses at correct times that are
dictated by time-critical functionalities. Particularly, hard RT requirements apply to
autonomous driving (AD) or autonomous machinery operation, according to a preplanned
path/statement of work. Such functionalities are demanding in terms of both
computational and environmental conditions. Challenging environmental
requirements [3] have to be faced, such as temperature from −40 to 125 °C, mechanical
and chemical stress and moisture resistance over 15-year lifetime, and electrostatic
discharge protection of several kVs.
The current electric/electronic (E/E) on-board automotive architectures, with up to 100
dedicated electronic control units (ECUs), are no longer capable of answering the
computing, communication, and memory requirements coming from innovations with
increased needs of fail operational, functional safety (FuSa), cybersecurity, and RT
behavior [4]–[7]. Such innovations include transition from internal combustion engines
to full electric cars; introduction of advanced driver assistance systems (ADAS) and AD
functions; increased level of on-board connectivity, mainly wired (e.g. FlexRay [8],
CAN/CAN-FD [9], [10], and automotive Ethernet [11]); vehicle to everything (V2X)
wireless connectivity for advanced services, such as fleet management, platooning, over-
the-air SW updates; and stringent constraints in terms of FuSa and cyber security.

Rather than just increasing the number of basic ECUs, using 32-b microcontrollers
(MCUs), new on-board E/E-architectures will exploit embedded high-performance
computing (eHPC) platforms. Computational power in the order of tera operations per
second (TOPS), see Fig. 1, is needed to implement RT perception and AD tasks in modern
vehicles, particularly for high automation (Level 4, L4), in which the system can perform
the driving task without human intervention, and full automation (Level 5, L5), in which
the system takes over all the aspects of driving full time. As shown in Fig. 2, the automotive
eHPC should sustain in RT with the following functions.

Fig. 1.

Computation needs versus AD/ADAS functions [4].

Fig. 2.

Autonomous platform at functional level.

1. Observation: building a model of the surrounding environment, where inputs are
the direct observations produced by sensors [12] (cameras, radars, sonars, and
lidars) or V2X wireless data, and the output is a geometrical and topological
representation of the environment.

2. Perception: localization of the car, i.e., estimating its path, position, and
orientation within a map, by fusion of global (satellite communication) and relative
(gyro and accelerometer inertial sensors) data, detection of all static (landmarks,
road, and traffic signs) and moving (vehicles, pedestrian) obstacles, and
classification depending on how well they match up with a library of predetermined
shape and motion descriptors.

3. Planning and decision: moving the car, which requires route planning and
trajectory control, used to direct the car to its destination, while avoiding obstacles
and following traffic rules.

All the above-mentioned phases will benefit from artificial intelligence (AI) techniques,
which are widely addressed in the recent literature [13]–[21]. Online map data are
required to provide long-range planning information, such as lane end, speed limits,
construction sites, and other changing road conditions. All these operations have to be
repeated in a time scale below 10 ms with stringent low-latency requirements. Perception
results from fusion of all surround sensing and online map data into a single surround
model. For data fusion, a grid-based approach may be used to determine the occupancy
probability (Bayesian approach) of a cell, or the belief function (Dempster–Shafer
approach), by evaluating the current sensor reading and the history from past cycle [22].
Grid occupancy is calculated from processed sensor data, with explicit modeling of
uncertainties. Grid cells can bear additional information, such as moving object speed,
which can be used to predict likely behavior.

In this new scenario, RT computational capabilities in the range of TOPS are required, as
shown in Fig. 1. This also involves the connectivity through high-bandwidth time-sensitive
networks of both general-purpose eHPC and number-crunching accelerators. In addition,
high data storage capability in nonvolatile robust memories is required. As foreseen by
Intel [4], from an average of 1.5 GB of traffic data per Internet user today, we will move
toward 4000 GB of data generated per day by an AD car including technical data, personal
data, crowd-sourced data, and societal data.

A. Paper Contribution

The aim of this paper is to provide an overview of the current technological challenges in
on-board and networked automotive systems, reviewing the state-of-the-art design
strategies and also pointing to the upcoming solutions. Unlike other surveys that focus on
one specific challenge, e.g., in-vehicle communications [23]–[28], this paper aims to
provide a full picture of cutting-edge topics in the addressed context. For this reason, this
paper uniformly addresses core topics for on-board and networked automotive systems,
which are as follows.

1. Models, languages, standards, and methodologies for automotive SW
development.

2. High-performance on-board computation platforms.

3. On-board network architectures, protocols, and standards.

4. Design strategies for on-board cybersecurity.

5. Functional safety.

B. Paper Outline

The rest of this paper is organized as follows. Section II addresses the recent
advancements in models, languages, architectures, and standards for automotive SW
development. Section III discusses the automotive eHPC platforms. New trends and
solutions for RT in-vehicle communications are presented in Section IV. Cybersecurity
issues related to in-vehicle networking and possible countermeasures are analyzed
in Section V, whereas design strategies for on-board functional safety are dealt with
in Section VI. Finally, conclusions are drawn in Section VII.

SECTION II.

Automotive SW Development
Automotive industry has undergone a drastic shift from mechanic-intensive applications
to SW-intensive applications in the last couple of decades [29]. According
to Broy et al. [30], more than 80% of innovation in cars come from computer-controlled
functionalities. The increasing demand for such functionalities and data-intensive
applications in modern cars has led to the increasing size and complexity of automotive
SW. According to an estimate in 2014, the amount of SW in a regular four-door car
increased ten times in eight years reaching the size of approximately 1 GB [31]. Another
estimate in 2009 predicted that a modern premium car shall contain nearly 100 million
lines of code (MLoC) and was expected to reach 200–300 MLoC in the coming years. This
estimate seems accurate, as Ford showcased their car containing 150 MLoC at the
consumer electronics show (CES) in 2016 [32].

Model-based engineering (MBE) [33] and component-based SW engineering
(CBSE) [34] have emerged as an attractive and cost-effective option to deal with the size
and complexity of the SW. MBE uses models to describe functions, structures, and design
artifacts throughout the SW development. CBSE allows to build large SW systems by
reusing pre-existing SW components and their architectures. It is estimated that up to
90% of automotive SWs can be reused from previous releases or other projects if MBE and
CBSE are used [35]. There exist several modeling languages and component models in the
automotive domain that employ the principles of MBE and CBSE for the SW
development [36], [37].

EAST-ADL [38] is an Architecture Description Language for automotive embedded
systems. It has developed and evolved based on several European projects and research
works, such as provided in [39]–[42]. The EAST-ADL methodology allows to model the
SW architecture at four abstraction levels. These levels, together with some of the models,
languages, and tools that are used for the SW development at each level, are depicted
in Fig. 3. At the top level, called vehicle level, end-to-end requirements on the automotive
functionality are captured. At the analysis level, the requirements are refined and

expressed formally. Moreover, several different analyses can be performed including the
requirements consistency analysis and the functions analysis. The design level defines the
SW architecture, HW architecture, and SW to HW allocation model by abstracting
implementation details. The concrete implementation of the SW architecture is performed
at the implementation level. The language supports the modeling of an automotive SW
architecture only at the top three levels in Fig. 3. The methodology recommends to employ
standard or proprietary architectures and component models at the implementation level,
e.g., AUTOSAR [43] and Rubus component model (RCM) [44], [45]. EAST-ADL is also
aligned with the FuSa standard for road vehicles, ISO26262 [46], [47]. There are several
variants and specific implementations of the language that are currently used in the
automotive industry, e.g., Systemweaver and its variants SE tool, Rubus-EAST, and
Fraunhofer ESK [48], that are also shown in Fig. 3. A detailed comparison of these tools
and models is discussed in [49] and [50].

Fig. 3.

Abstraction levels considered during the automotive SW development.

There are several middleware approaches and component models that are used for the
development of automotive SW at the implementation level. For example,
CORBA [51] and iLAND [52]. COMDES [53] and ProCOM [54] represent examples of
component models from academia, whereas RCM and AUTOSAR are the examples of
industrial component models. AUTOSAR is a worldwide development partnership of

vehicle manufacturers, suppliers, and companies from the electronics and information
and communications technology (ICT) industry [43]. AUTOSAR-based SW is widely used
by all original equipment manufacturers (OEMs) in Europe and is gaining momentum in
the USA, Japan, and Korea. The initial version of AUTOSAR did not account for modeling
timing information, which is of utmost importance in vehicular safety-critical systems.
The support for timing modeling in AUTOSAR is provided by the TADL [55] and
TADL2 [56] languages. These languages were developed within two large EU initiatives,
i.e., TIMMO and TIMMO2USE [57]. The AUTOSAR standard comprises a way to define
the in-car network infrastructure and communication matrix, the necessary exchange
formats as well as an operating system infrastructure for embedded ECUs (Classic
Platform) and performance ECUs (Adaptive Platform). To support automotive
requirements, the SW environment and development kits must provide these
functionalities, see Fig. 4.

Fig. 4.

AD architecture with the AUTOSAR platform.

Implementations of the AUTOSAR Classic Platform can be subject to safety certification
according to the automotive safety integrity level (ASIL) A-D in the ISO26262 FuSa
standard. Moreover, the requirements on the response times of runtime entities (tasks) in
these implementations are often in the lower us range. The recent AUTOSAR Adaptive
Platform defines a service-oriented middleware as well as system health monitoring for
automotive performance ECUs, which can run on POSIX PSE51-compatible operating
systems (e.g., Linux, QNX, and Integrity OS). A new standard interface is defined to access
HW accelerator units, which is planned to be based on the widely accepted OpenCL
standard. The Adaptive Platform is expected to become the automotive standard for
performance and number-crunching ECUs. This is because the service-oriented network
protocols are the same in both the Classic and the Adaptive Platforms. The interoperability
between the two platforms is also supported.
A common requirement for performance ECUs is the strict separation of specific SW
domains. The introduction of hypervisor supports safety and security, so that in a mixed-
criticality environment, SW functions with different ASIL can be easily separated.
Moreover, a hypervisor can separate small monitoring apps as well as complete specialized
operating systems and driver stacks in virtual machines. This can enhance security and

secure communication to back-end systems and Internet. To be compatible with a large
range of existing SW packages, especially from the HPC domain, a Linux-based operating
system environment will be chosen as basis for the performance ECU SW. Since the
AUTOSAR Adaptive Platform is available on Linux, this opens the door to the world of
Linux-based infrastructure SW.

To develop SW for the eHCP platform, an SW development kit together with well-defined
exchange formats has to be provided. AUTOSAR ARXML, as the industry-standard format
for exchanging information about ECUs, ECU communication, integrated self-describing
SW services, and SW-components, makes the system complexity manageable. In the
future, the term “system” in automotive will be redefined from a single ECU up to complete
cars, and even extended to fleets.

Prototyping environments for AD development extend the automotive eHPC SW
environment into a production environment for AD. Examples of such prototyping
environments include robot operating system 2.0 from Open Source Robotics Foundation
and EB robinos, which is an SW framework and architecture for highly automated driving
based on open interfaces implementing the open robinos specifications. Optimized
application libraries should be provided for use by the perception tasks, sensor fusion, and
situative behavior analysis. Lidar sensor processing, which involves representation of data
and segmentation into objects, requires efficient implementations of the Point Cloud
Library and Fast Library for Approximate Nearest Neighbors. Camera processing implies
a variety of computer visions that are prototyped with the OpenCV library and moved to
the OpenVX programming environment to meet the performance requirements. Sensor
fusion and other high-performance functions of computer vision are implemented in
OpenCL when CUDA is not available. Dense linear algebra libraries, such as BLAS/BLIS
and Eigen (C++ templated library), must be available and optimized, as they are required
by machine learning algorithms and standard deep learning frameworks (e.g., Caffe and
TensorFlow).

SECTION III.

High-Performance Computation Platforms
Today's embedded automotive-qualified processors, with capabilities of hundreds of
MOPS, see Fig. 1, cannot handle AD functions. There is a need for more powerful HW
platforms, such as eHPC data fusion platform, see Fig. 5, which are designed by combining
an automotive-certified RT MCU with general purpose HPC processors and accelerators.
The latter are used to increase the power efficiency and to act as safe number crunchers
with direct access (not shown in Fig. 5) to sensor data through Ethernet or low-voltage
differential signaling (LVDS). A multi-Gb/s time sensitive networking (TSN) link should
be used to connect the safe MCU supervisor, the accelerators, and the general-purpose
HPC processors. This type of interaction will require reliable and secure communication
channels, proper identity management, and assurance while providing adequate data and
identity privacy. Next-generation AD systems require that the whole perception process
be qualified at ASIL-D level according to the ISO 26262 automotive FuSa standard [47].
This can be achieved by performing redundant computations with possibly dissimilar
implementation techniques on the “safe number crunchers.” These safe number crunchers
are qualified at ASIL-B by implementing a range of safety mechanisms, such as error-
detection and error-correction codes (EDC/ECC) in memory, parity in caches, and cyclic
redundancy check (CRC) in network-on-chip (NoC). The redundant results are then
compared by the safe MCU qualified for ASIL-D, which monitors the computations and
decides whether the results can be trusted. The eHPC platform will be connected to the

car backbone with a runtime environment compliant with AUTOSAR. For the safe MCU,
already available 32-b cores, such as Infineon Aurix or ST SPC5/Freescale MPC56, can be
adopted. The ST SPC5 and Freescale MPC56 families are built in 40-nm technology on 32-
b PowerPC instruction set, with up to 4 cores (with dual lock-step approach), single
instruction multiple data floating point unit, 8 MB of embedded flash, multichannel 12-b
analog to digital converter, interfacing data rate up to 10 Mb/s with FlexRay, I2C,
LIN [58], CAN, and SPI [59]. Similarly, the Infineon Aurix ranges from a 300-MHz triple-
core device with 720 millions of instructions per second (MIPS) and 8 MB of embedded
flash down to an 80-MHz single core with 130 MIPS and 0.5-MB embedded flash.

Fig. 5.

Automotive eHPC platform.

Instead, for the HPC units in Fig. 5, massively parallel platforms are appearing in the car
market. Mass production of the Renesas R-Car H3 in 16-nm technology is expected in
2018 [60]. R-Car H3 includes 9 ARM Cortex cores (8 64-b A57/A53 engines with L1/L2
cache plus a 32-b R7 with L1 cache), offering 40k MIPS plus a PowerVR GX6650 graphics
engine with 192 arithmetic logic unit (ALU) cores for three-dimensional graphics (more
than 100 GLOPS and 4K video display/streaming) and dedicated video coprocessors
(H.26x/MPEGx codec, distortion compensator, IMP-X5 image recognition). The R-Car
H3 is ASIL-B and has a rich set of high-rate interfaces, such as Ethernet, USB, DVD/blue-
ray SATA, SD card, and audio/video I/O, besides I2C and CAN. The power consumption
amounts to tens of watts. New actors are entering this application domain, such as Nvidia
and Intel, to bring on-board TOPS capability and AI technologies with multichip
automotive supercomputers. They have signed core partnerships with mass market car
makers, Nvidia with Audi and Intel with BMW, to have on the roads AI cars by 2020. To
this aim, a new European Processor Initiative for eHPC in AD has recently been
started [61]. NVIDIA has recently presented the Xavier AI car's computer, which features
30 TOPS capability for a power consumption of 30 W, thanks to eight ARM 64-b cores
plus a 512-core Volta graphics processing unit (GPU), and a video processing unit
supporting 8K video decode and encode and high dynamic range, as well as a computer
vision accelerator. The Xavier AI is fabricated in 16-nm TSMC fin field-effect transistor
(FinFET) technology with an estimated complexity of 7 billion transistors. The power
consumption of such HPC platforms will be in the range from tens to hundreds of watts,
e.g., from 30 W of Xavier chip to 500 W of the 320 TOPS Drive PX Pegasus board

announced at GTC Europe 2017 [62]. Due to the high environmental temperature of
under-the-hood car electronics, passive cooling systems are not enough. Hence, the design
of low-cost/low-size active cooling systems for HPC ECUs is a new emerging challenge.

Also Intel is developing several platforms for automated driving: a first multichip
platform, so called Intel Go, has been made available using an Aurix ASIL-D 32-b MCU
enhanced for computation capability by an ATOM C3000 core in 14-nm technology, and
by Arria 10 field programmable gate array (FPGA) [3]. The FPGA accelerator includes an
embedded dual-core 1.5-GHz ARM A9 core, more than 1 million logic elements (a 64-b
six-LUT with four FFs at the output), and 1.7 million user flip-flops, and 64 MB of
embedded memory. The Arria 10 family includes hardened single-precision IEEE 754
floating point units, with an aggregate throughput of 1.3 TOPS. This platform supports
driving automation L3, in which the system performs the driving task, but a human driver
will intervene when requested. The next evolution of the platform, suitable for all AD
levels, will combine one or more EyeQ5 [63] accelerators (by Mobileye, an Intel company)
and one or more ATOM-based general-purpose processors (e.g., Denverton). The EyeQ5
will enable processing of more than 16 multimegapixel cameras and other sensors. Its
computational power targets 15 TOPS while drawing only 5–6 W in a typical application.
It implements high performance NoC interconnect and multichannel low-power DDR
interfaces, to support high-computational and data bandwidth requirements. Another
Intel platform is announced that will use powerful Xeon processors and 2 multichip
boards connected with a 16-port 10-GB Ethernet to sustain L4 and L5 AD levels, mainly
targeting fleets.

According to the scheme in Fig. 5, high-performance functions that need time
predictability, such as perception functions in automated cars, need to be implemented on
high-performance accelerators that also provide response time guarantees. Time-
predictability capabilities start with the core, then the local memory hierarchy, then the
global interconnect, and finally external memory and I/O interfaces. In the Intel Go
proposal, the accelerator role is managed through an Arria10 FPGA or EYEQ5 chip. As an
alternative, the architecture extensions of the reduced instruction set computer (RISC-V)
accelerator cores have already proven to be suitable for scalable computing capabilities
with high power efficiency [64], including also machine-learning tasks [65]. RISC-V is
developed according to an open HW-SW model, thus easing interoperability of eHPC
solutions.

The accelerator should ensure timing compositional property, which means that any
global worst case execution time (WCET) is composed of local WCETs. This also implies
that the WCET in a core experiencing resources conflicts, e.g., accesses to the memory
hierarchy, is safely approximated by adding the resource interference times to the WCET
on the core executing without interferences [66]. The timing compositional property
requires in-order instruction pipeline and is compatible with caches, provided they have
an LRU replacement policy. The basis for the RT accelerator architecture in Fig. 5 can be
a very-long instruction word (VLIW) extension of the RISC-V ISA. VLIW execution,
opposed to superscalar execution, is a core implementation technique that enables
multiple instruction issues while being compatible with the timing compositional
property. This VLIW extension approach ensures that any standard RISC-V binary will
execute correctly, but in single-issue mode on such a VLIW core. A simple recompilation
will enable to achieve multiple instruction issues on this core. In both the accelerator and
the general-purpose HPC architecture in Fig. 5, an NoC interconnect is responsible for
arbitrating access to shared resources, such as an I/O or a memory. One main issue when
using multicore or many-core architectures for designing safety critical systems is to

master the impact of contentions that can arise due to parallel requests for a shared
resource, on the estimation of the WCET of tasks. Current approaches either rely on an
HW approach, for instance time-division multiple access (TDMA), to ensure no
contention can arise at runtime, or on SW approaches through the use of specific execution
models, such as predictable execution model that explicitly separates data accesses from
computation. The need to integrate functionalities with different level of criticalities on
such multicore or many-core architectures has led to the design of mixed-criticality
systems. Extension of these approaches to such mixed-criticality systems is currently
based on a technique that drops noncritical tasks whenever a given threshold contention
level has been reached. However, more flexible strategies are required at the interconnect
level to maximize the utilization level of such multicore or many-core platforms. At the
multicore level, the introduction of an HW contention manager to monitor the slack
activity at the interconnect level will improve the system capability to allocate resources
to noncritical tasks and adapt the scheduling of requests to shared resources, such that
critical tasks still meet their deadline while the number of requests from noncritical tasks
is maximized. At the many-core level, an NoC is used to interconnect cores or tiles. NoC is
often designed for a given type of application and specific characteristics when targeting
RT systems should be developed. Experimentally checking the behavior of an NoC in case
of contention between flows is still an open topic. Designing a way to execute routers of an
NoC in which a stream would systematically compete with other flows would facilitate the
observation of contentions within an NoC. The HW mechanisms for regulating streams in
contention could then be enriched to interface with the system SW, in order to dynamically
adapt the control performed versus the target latency.

The eHPC platform in Fig. 5 should be equipped with HW resources to sustain V2X
connectivity needed for RT HD map download and infotainment, over-the-air diagnostic
and SW update, sensor-data upload from the vehicle for machine learning. To this aim,
two solutions can be adopted [5], [6]: IEEE 802.11p or Cellular-V2X. IEEE 802.11p uses
10-MHz channels within the (5.85–5.925 GHz) band to achieve data rates of several Mb/s
for V2X. IEEE 802.11p transceivers are already available on the market (e.g., STM-
Autotalks chipset) and, as discussed in [5], they can be implemented at low cost in mature
and already automotive-qualified CMOS technologies. With 33 dBm of effective isotropic
radiated power, a single-hop connectivity of 1 km can be achieved. Cellular-V2X
connectivity can be achieved with multilayer multiple input multiple output (MIMO)
transmission according to emerging 5G transceivers. Operating both in sub-6 GHz and
28-GHz millimeter wave (mmW) bands, data rates of up to several Gb/s can be
achieved [67]. However, high-end technology nodes are required to sustain mmW and
massive MIMO 5G operations and the way to achieve low-latency guaranteed performance
is still an open issue. A first 5G modem has been announced by Intel at CES 2017 [68],
although its automotive qualification is still on-going and the 5G standardization is still
not settled.

SECTION IV.

In-Vehicle Network Architectures
Vehicles are becoming increasingly smart, connected, and part of the Internet. While new
functionalities, such as natural speech recognition and cloud-based services, are
developed, in-vehicle legacy systems have to be maintained and integrated with the new
developments for the sake of cost effectiveness. As a consequence, traditional signal-based
communication, mainly consisting of cyclic message broadcasts, such as in LIN,
CAN/CAN-FD [69], [70], and FlexRay, has to coexist with service-based communication,
made up of event-based message unicasts, such as the ones typical of IP-based networks

(e.g., Ethernet and Wi-Fi) [71]. Scalable service-oriented middleware over IP allows the
introduction of service-oriented transmission of information, in which a sender only
transmits data when at least one receiver in the network needs this data, thus avoiding to
load the network and all connected nodes with unnecessary traffic.

Dynamic distribution of functions, virtualization of ECUs, and the network controlled by
virtual machine and network hypervisor are in the roadmap of future automotive network
architectures, which today are migrating from the current central-gateway structure to a
domain-based architecture. The vehicle E/E-architecture of tomorrow will be therefore
characterized by an automotive Ethernet backbone connecting different domains, isolated
and protected by domain controllers [72]. The central Ethernet switch will be also
connected to a smart antenna, being LTE/5G, WiFi/BLE, and V2X/DSRC, the most likely
technologies. Following the development of the IEEE standards within the TSN Working
Group, the vision for the automotive Ethernet backbone connecting different domains,
each with its TSN control unit, provides for master MCUs integrating Ethernet PHYs and
TSN switch functionalities with security modules and various protocol converters for local
legacy serial networks.

Ethernet switches implement separate collision domains and offer several features that
can be used to increase security: VLANs, unicast filtering, multicast filtering, and access
control lists. However, many state-of-the-art attacks from the information technology
world can be applied to in-vehicle Ethernet, so special care must be taken and multiple
levels of defense should be in place. For instance, performing deep packet inspection in
the switches represents an efficient solution to avoid forwarding malicious packets to the
host controller that would be therefore entrusted with security checks only on a second
stage of inspection that would be required for specific frames only, e.g., those coming from
the external of the vehicle.

The automotive Ethernet backbone will likely be a TSN-enabled implementation of 802.3
Ethernet. The recent standards 100BASE-T1 [73] and Gigabit PHY (IEEE 802.3bp-
2016) [74] already allow the use of a light unshielded twisted pair of copper wires for
automotive usage. Also, a broad spectrum of bit rates are envisaged for automotive
Ethernet nowadays, also including 10 Mb/s and 2.5, 5, and 10 Gb/s (for the backbone and
for raw sensor data transmission). For Multi-Gig Automotive Ethernet PHY, various
options from shielded cables to coax to optical fiber (for 10 Gb/s) are under consideration.

The recent Layer 2 TSN standards are expected to be dominating the scene for AD. In fact,
although current ADAS systems already require processing of high-resolution data
originating from video cameras, radars, and lidars, self-driving cars require a significantly
higher number of sensors, more network connections and better networking solutions for
video links than the current technologies based on point-to-point connections, which will
not be able to support the packet-based data transport needs of self-driving cars.

A. Automotive Ethernet From AVB to TSN

The IEEE 802.1 audio video bridging (AVB) is a set of technical standards that provides
the specifications for time-synchronized low-latency streaming services through IEEE
802.1Q [75] networks. The AVB documents include: the IEEE 802.1AS-2011 [76]—timing
and synchronization for time-sensitive applications in bridged local area networks (whose
revision is in progress as IEEE P802.1AS-Rev project), the IEEE 802.1Qav-2009,
forwarding and queueing enhancements for time-sensitive streams, which specifies the

credit-based shaper (CBS); and the IEEE 802.1Qat-2010 and Stream Reservation Protocol
(SRP). The last two amendments have been rolled into the IEEE 802.1Q-2014
standard [75]. Finally, the IEEE Std 802.1BA-2009 specifies a set of usage-specific profiles
to help interoperability between networked devices using the AVB specifications. AVB
introduces a number of new and important concepts to IEEE 802.1 networks to provide
quality of service. The first is the support for priority, to distinguish between time-
sensitive flows and ordinary traffic and handle them differently. The second is bandwidth
reservation, to set aside a certain amount of guaranteed bandwidth across a portion of the
network for handling the high-priority traffic. Last but not least, AVB provides a set of
protocols to manage the network time for supporting synchronized operations (i.e., A/V
playback). For seven hops within the network, AVB guarantees a fixed upper bound for
latency. In particular, two stream reservation (SR) classes are defined, i.e., Class A, which
provides a maximum latency of 2 ms, and Class B, which provides a maximum latency of
50 ms. With AVB, the IEEE has moved Ethernet into the RT applications domain. AVB is
expected to replace (or is already gradually replacing) the Media Oriented Systems
Transport (MOST) protocol [77] in the multimedia/infotainment domain, and the LVDS
cables in camera-based ADAS. This paper [78] deals with the CBS of AVB and the use of
priorities as defined in IEEE 802.1Q in automotive cases studies. The AVB suitability for
automotive usage is addressed in [79] and [80]. In particular, Alderisi et al. [79] provide
a comparative performance evaluation of AVB and TTEthernet, a well-known technology
standardized by Society of Automotive Engineers as AS6802 [81], for ADAS, multimedia
and infotainment traffic. The comparison was obtained through OMNeT++ simulations
based on realistic traffic patterns on star-based networks under a high and varying
workload. Results show that both AVB and TTEthernet meet the requirements of ADAS
and multimedia flows. The two technologies complement each other, as TTEthernet allows
for completely deterministic transmission and offline verification of time-triggered
messages for safety-critical applications while AVB allows for online SR, thus fitting
entertainment applications with varying bandwidth demand. The problem of routing AVB
streams to minimize their worst-case end-to-end delay is addressed in [82], which
proposes an effective solution, based on a search-space reduction technique and a greedy
randomized adaptive search procedure based heuristic.

Despite its advantages, AVB does not provide support for scheduled traffic (ST), i.e., high-
priority small-size time-sensitive traffic (e.g., control traffic) that has to be transmitted
according to a time schedule without interference from other traffic. In fact, as AVB
provides only two RT traffic classes, a mutual interference problem raises if multiple time-
critical traffic flows in the same network are mapped on the same SR class, with
nonnegligible effects on delay. In particular, if ST is handled in the same queue as large
video frames mapped on the same SR class (e.g., Class A), it will experience very variable
latency and high jitter. Moreover, SR class frames undergo the CBS algorithm, and
shaping blocks frame transmission for a given class if the credit of the class is below zero.
For this reason, a more effective way of handling ST in AVB networks was proposed
in [83] and [84]. The new approach, called AVB_ST, adds a new, separate traffic class on
top of the AVB SR Classes A and B, which is called ST class. ST frames are tagged with the
highest priority TAG according to the IEEE 802.1Q standard, whereas SR Classes A and B
take the second highest priority and the third highest priority, respectively. ST traffic is
handled in a separate queue and does not undergo credit-based shaping, thus avoiding the
undesirable effects of shaping on the flow latency. SR Classes A and B are handled by CBS,
whereas best effort traffic by strict priority. Comparative performance assessments
between standard AVB and AVB_ST in a realistic automotive scenario in [84] showed that
the AVB_ST is able to support ST, offering low and predictable latency values without
significantly affecting SR traffic. This is due to: the introduction of a separate class for ST
combined with offset-based scheduling for ST flows; the temporal isolation provided by

the time-aware shaper mechanism; and strict priority scheduling, that offers low and
bounded latencies to ST even under a high SR traffic load. A response time analysis for
multihop AVB ST networks that is also applicable to multihop AVB networks is presented
in [85]. The analysis uses a bandwidth overreservation concept and overcomes the
limitations of previous analysis approaches for AVB networks [86], [87], which, in most
of the cases, do not lead to a schedulable result due to the tight bandwidth allocation
imposed by the AVB standard. AVB_ST is similar to the IEEE 802.1 Qbv-2015
standard [88], with differences in the way that the ST window is sized and for the rate at
which the increase of one of the CBS parameters (i.e., the Idleslope) for the SR classes is
determined.

B. Time-Sensitive Networking

The TSN standard family provides precise time synchronization, deterministic
communications, ultralow latency, zero congestion loss, reliability, and fault tolerance.
These properties are foundational for the next generation of AD vehicles. TSN offers other
notable advantages. One is the ability to support both RT and best effort traffic over the
same network in a flexible way. Changes in the time-critical flows can be accommodated
without the need for offline reconfigurations and the best effort traffic can use any
bandwidth left over by TSN flows. In addition, TSN offers fast startup, thanks to
preconfigured values for timing and bandwidth reservation, and faster firmware updates
time than other protocols (e.g., CAN), thanks to the higher data rate. Table I summarizes
the TSN standards published so far and some of the ongoing projects that are relevant to
automotive applications. A brief description of each of them is provided in the following.

TABLE I TSN Standard Overview

Timing and synchronization for time-sensitive applications

The IEEE 802.1AS-Rev [89] improves redundancy, allowing for configuring multiple
grandmaster clocks and multiple synchronization spanning trees.

Frame preemption

The IEEE 802.1Qbu-2016 [90] amendment enables a bridge port to suspend the ongoing
transmission of a preemptable frame to allow one or more express (time critical) frames
to be transmitted before transmission of the preemptable frame is resumed. This standard
works in combination with the IEEE 802.3br-2016 amendment, which allows critical data
packets to break up into smaller fragments the noncritical packets in transit over a single
physical link.

ST

The IEEE 802.1Qbv-2015 [88] amendment defines policies that enable a bridge or an end
station to schedule transmission from each queue based on a known timescale, thanks to
a transmission gate associated with each queue on a port. When the transmission gate is
open, the queued frames are selected for transmission, whereas when the gate is closed,
the queued frames are blocked. An ordered list of gate operations (gate control list) is
associated with each port and is cyclically repeated. Building the gate control list is a
scheduling problem. As the Qbv standard is quite novel, there is still not much work on
this specific topic. The work in [91] and [92] proposes a formal description of scheduling
constraints for building the gate control list and the adoption of satisfiability modulo
theories solvers for the synthesis of communication schedules for Qbv.

Path control and reservation

The IEEE 802.1Qca-2015 amendment [93] provides for explicit path control, bandwidth
reservation, and data flow redundancy (protection and restoration).

Frame replication and elimination for reliability

The IEEE 802.1CB-2017 [94] standard provides for identification and replication of
frames, redundant transmission, identification, and elimination of duplicate frames.

SRP enhancements and performance improvements

The IEEE P802.1Qcc project [95] provides support for more SR streams, configurable SR
classes and streams, Layer 3 streaming, deterministic SR convergence, and a user network
interface for routing and reservations.

Cyclic queuing and forwarding

The IEEE 802.1Qch-2017 [96] amendment specifies a transmission selection algorithm
that allows deterministic delays through a bridged network to be easily computed
regardless of network topology, thus allowing for much simpler determination of network
delays and reduced delivery jitter. Synchronized cyclic enqueuing and queue draining
procedures enable bridges and end stations to synchronize their frame transmission to
achieve zero congestion loss and deterministic latency.

Per-stream filtering and policing

The IEEE 802.1Qci-2017 [97] amendment specifies procedures for a bridge to perform
frame counting, filtering, policing, and service class selection for a frame based on the
particular data stream to which the frame belongs. Such policing and filtering functions
allow the detection and mitigation of disruptive transmissions by other systems in a

network, improving its robustness and security. When unexpected traffic is present,
policing prevents the intruder from impairing the network.

Asynchronous traffic shaping

P802.1Qcr [98] specifies asynchronous traffic shaping mechanisms to achieve
deterministic latency and zero congestion loss without using network topology
information or relying on synchronous communication, thus allowing for higher link
utilization. Relevant to this standard are the works given in [99], which introduces the
urgency-based scheduler (UBS), and [100], which addresses the UBS synthesis when
assigning queues and priority levels to hard RT data flows.

SECTION V.

Cybersecurity Issues and Countermeasures for In-Vehicle Networking

Since this survey addresses on-board embedded and networked automotive systems, this
section is focused on cybersecurity issues and countermeasures for in-vehicle networks.
Other cybersecurity aspects, such as those related to cars external connectivity, cloud-
based traffic, and fleet managements, just to name a few, are out of scope of this paper.

Secure by design, in-vehicle networking should ensure several properties, such as data
integrity, confidentiality, authentication, and availability. However, several security
vulnerabilities [101]–[108] characterize current in-vehicle networking technologies, using
CAN and/or CAN-FD as a backbone, and a plethora of other interconnecting technologies
for specific subsystems (e.g., LIN for local interconnection of low data rate nodes, MOST
for infotainment with USB and Bluetooth user interfaces, and FlexRay for latency-critical
functions).

The net-spanning data exchange via various gateway devices potentially allows access to
any vehicular bus from every other existing bus system. In principle, each LIN, CAN, or
MOST controller is able to send messages to any other existing car controller [109], [110].
Without particular preventive measures, a single compromised bus system endangers the
whole vehicle communication network. Whereas attacks on LIN or multimedia networks
may result in the failure of power windows or navigation SW, successful attacks on CAN
or FlexRay networks may result in malfunctioning of some important driving assistance
functions, which leads to serious impairments of driving safety [111], [112].

While the use of CRC ensures data integrity, the broadcast nature of CAN/CAN-FD or
FlexRay is a risk in terms of confidentiality, as an attacked ECU can monitor all data
passing on the bus. Moreover, since new ECUs can be added in a plug-and-play way
(assigning them a new identifier) without modifying the already installed ECUs, and since
the data link layer does not provide any signature mechanism, there is a high risk of
authentication vulnerability. Similarly, the multimaster feature with an arbitration based
on identifier priority poses risks in terms of availability. For example a hacker can attack
a bus and behave as a new ECU, reading all data on the bus and generating false packets.
Using a high priority identifier, the malicious ECU can win the arbitration and then
continuously send invalid messages thus making a jamming attack. Even though these
invalid frames will be discarded by the receiving controllers, the attack makes the bus
unavailable to other ECUs connected to the bus. Denial of service attacks may affect the

backbone bus or the local bus. In the first case, they will lead to system failure, whereas in
the second case, they will lead to functional failure. The malicious ECU, after reading a
message from the bus, can also impersonate another ECU for replay attacks, with a
potential for harmful consequences for the vehicle occupant.

Due to the lack of signature mechanisms for authenticity and transmission encryption, it
is easy for an attacker to emulate a protocol-compliant behavior. As a consequence,
controllers are not able to verify whether an incoming message comes from an authorized
or unauthorized and/or malicious sender. Controllers just check rules, such as bit stuffing,
CRC, and data length code consistency, which may be enough for data integrity, but not
for cybersecurity. Moreover, utilizing the CAN mechanisms for automatic fault
localization, malicious CAN frames can determine the disconnection of every single
controller by posting several well-directed error flags. Similar to the CAN automatic fault
localization, the bus guardian in FlexRay can be utilized for the well-directed deactivation
of any controller by appropriate faked error messages. Attacks on the common time base,
which would make the FlexRay network completely inoperative, are also feasible by
posting proper malicious SYNC messages on the bus. Moreover, the introduction of well-
directed sleep frames deactivates the corresponding power-saving capable FlexRay
controllers.

As possible countermeasures, the following techniques are foreseen and are likely to
appear in the new generation of car connectivity devices.

1. To cluster the subnetworks and related subsystems in security islands, separated
by gateways with embedded cybersecurity functionalities, so that an attack on a
nonsafety related bus, such as LIN or MOST, cannot propagate to the safety-related
functions connected to Flexray or CAN [103]. This approach will also be applied to
the future architectures based on automotive Ethernet [113].

2. To embed cybersecurity HW accelerators in new automotive computing units to
sustain message encryption in RT. This is the reason why in the literature new
digital macrocells are appearing, which are implemented in RT security
techniques, such as the Advanced Encryption Standard, with different cipher
modes, used in symmetric cryptography [114] or more complex algorithms, such as
the Elliptic Curve Digital Signature Algorithm, for asymmetric
cryptography [115], [116]. The use of HW-based coprocessors is required by
stringent latency and energy-efficiency requirements that are not achievable with
SW-based implementations.

3. To embed signature mechanisms for controller authentication in new automotive
computing units. Authentication of all senders is needed to ensure that only valid
controllers are able to communicate on automotive bus
systems [103], [115], [117], [118]. All unauthorized messages may then be
processed separately or immediately discarded. Every controller therefore needs a
certificate to authenticate itself against the gateway as a valid sender. For example,
as proposed to [103], a certificate may consist of the controller identifier ID, the
public key, and the authorizations of the respective controller. The gateway, in turn,
should securely hold a list of public keys of all accredited OEMs for the considered
vehicle. Each controller certificate is digitally signed by the OEM with the relevant
secret key. The gateway again uses the corresponding public key of the OEM to

verify the validity of the controller certificate. If the authentication process
succeeds, the relevant controller is added to the gateways list of valid controllers.

4. To cluster the ECUs in different trustable classes depending on how easily they can
be attacked. For example, in [119], a security framework for vehicular systems,
called VeCure, is proposed, which can fundamentally solve the message
authentication issue of the CAN bus. Each node that sends a CAN packet needs to
also send the message authentication code packet (8 B). The ECUs are split into
two categories, namely the low-trust and the high-trust groups. ECUs that have
external interfaces, e.g., OBD-II or telematics, are put in the low-trust group. The
high-trust group ECUs share a secret symmetric key to authenticate each incoming
and outgoing message.

5. To implement intrusion detection mechanisms based on the physical or packet
layer features, for example, a clock-based intrusion detection system at physical
layer is proposed in [105]. Similarly, an in-vehicle network traffic monitoring
technique is proposed in [120] to detect the increased transmission rates of
manipulated message streams.

6. To implement gateway firewalls, for example, as proposed in [103], if the vehicular
controllers are capable of implementing digital signatures, the firewall rules are
based on the authorizations given in the certificates of every controller. Therefore,
only the authorized controllers are able to send valid messages to the high safety-
critical in-vehicle bus systems. If the vehicular controllers do not have the abilities
to use digital signatures, the firewall can be established only on the authorizations
of each subnet. However, controllers of less restricted networks, such as LIN or
MOST, should generally be prevented from sending messages to the high safety-
relevant bus systems as CAN or FlexRay. Simplified firewalllike functionalities can
be also implemented in each end node and not only in the gateways, with the so-
called digital data diode [121]. The idea is to interpose a digital unit between the
CAN controller and the CAN transceiver to detect and block unauthorized access.
When a frame is detected as malicious, the digital unit corrupts the CRC sequence
modifying the CRC-field bits. Therefore, the transmission and reception of a frame
that is targeted as malicious generates an error condition that is detected by all the
nodes in the CAN network (i.e., each node that has received the corrupted
malicious frame transmits an error frame). Furthermore, the digital unit conceals
the corruption operation from the sender of the malicious frame. As a result, the
sender cannot detect the CRC sequence corruption. Hence, the sender will not
attempt to retransmit the malicious frame.

SECTION VI.

Functional and Responsibility Safety
 The new world of SW-defined autonomous things brings both technical challenges and
liability concerns [122]. Particularly, AD vehicles are composed of electronic platforms
with many sensing inputs and many complex processing elements (see Fig. 2), which
involves millions of SW lines of code. As a consequence, HW and SW may go wrong and
this may cause hazards if no countermeasures are taken. On top of HW and SW failures,
cars operate in a very complex environment with many variants, e.g., AD cars share the
road with human-driven vehicles. Last but not least, the increase in connectivity through
V2X opens possibility for security attacks. Consequently, several potential issues and

requirements need to be considered by the automotive manufacturers. One such
requirement is FuSA, which is mainly concerned with making the safe from HW failures
and SW bugs.

A. FuSa in the Context of the ISO26262 Standard

The first edition of the ISO26262 safety standard consisted of nine normative parts and a
guideline as the tenth part. The second edition of the standard, to be published within
2018, will consist of ten normative parts and two guidelines, one (the part 11) is specific to
the application of ISO26262 to semiconductor components. The goal of the standard is to
provide an automotive safety lifecycle (management, development, production, operation,
service, and decommissioning) and support tailoring of the necessary activities during the
lifecycle. The standard also covers the functional safety aspects of the entire development
process (requirements specification, design, implementation, integration, verification,
validation, and configuration). Moreover, the standard provides requirements for
validation and confirmation measures to ensure that an acceptable level of safety is
achieved. The standard covers both systematic and random failures. The systematic
failure (either in HW or SW) is related in a deterministic way to a certain cause that can
only be eliminated by changing the design, manufacturing process, operational
procedures, documentation, or other relevant factors. Whereas, the random HW failure is
one that can unpredictably occur during the lifetime of an HW element and that follows a
probability distribution.

The standard provides an automotive-specific risk-based approach for determining risk
classes (ASIL), where “D” and “A” represent the highest and lowest safety integrity levels,
respectively. Note that ASIL is as a classification for the overall system, but the safety
requirements specified to the HW and SW elements, in general, inherit the same level. For
example, today SW-defined cockpit systems require ASIL-B (trending to ASIL-C) while
ADAS and AD require ASIL-D. To give an idea of the implications, in terms of HW random
failures, ASIL-D means that 99% of the faults potentially violating the safety goal shall be
either detected or safely managed and that the overall system shall have a probability of
residual (i.e., unmanaged) HW random failures less than 10 FIT (10 faults in one billion
hours of operation). An important concept of ISO26262 is the safety mechanism, which is
a technical solution implemented to detect and mitigate (tolerate, control, or avoid)
failures in order to achieve/maintain the intended functionality or a safe state in the case
of a failure without an unreasonable level of risk. The second edition of the standard
emphasizes not only on fail-safe systems but also on fault-tolerant systems. Here, the goal
is to guarantee the normal (or reduced) operation after a fault has occurred.

Despite FuSa is measured at system level, there are specific requirements for
semiconductors. The second edition of ISO26262 will include a new part (part 11) with
more than 150 pages of guidelines for digital and analog macrocells, FPGAs, and sensor
circuits. Herein, some of the most important topics and challenges are as follows.

Fig. 6.

(a) Link between fault, error, and failure. (b) Dependent failures.

1. How to consider safety aspects of semiconductor components? The aspects of
interest include in-context versus safety element out of context and definition of
the assumption of use (AoU). The AoU refers to the usage modes or
countermeasures that the system maker has to consider if using the safety-related
semiconductor component.

2. How to define the level of details of the safety analysis as a function of the safety
concept, the stage of the analysis, and the safety mechanisms used?

3. How to determine the correlation between fault, error, and failures? The
relationship among the fault, error, and failures is depicted in Fig. 6(a). This
challenge is also concerned with the definition of fault models, failure modes, and
distribution of failure rate across failure modes. In order to address this challenge,
guidelines are required to derive a consistent set of failure modes and consider new
fault models (e.g., multiple stuck-at) caused by modern technologies.

4. How to handle all kinds of macrocell (hard or soft) with or without embedded
safety mechanisms embedded? This challenge also extends to legacy macrocells.

5. How to determine base failure rate for both permanent and transient
faults? Another challenge in this regard is to deal with nonconstant failure rates
and advanced packaging.

6. How to perform fault injection? The scope of this challenge spans over different
abstraction levels that support evaluation of the HW architectural metrics, pre-
silicon verification of safety requirements, and detection of faults and control their
effects.

7. How to identify dependent failure initiators [DFI, see Fig. 6(b)]? A related
challenge is how to perform the dependent failure analysis.

8. How to define and apply fault models, failure modes, safety mechanisms, and
avoidance of systematic failures, with respect to ISO26262, for HW
platforms? The platforms include digital and analog components, memories,
programmable logic devices (PLDs)/FPGAs, sensors/micro electro mechanical
systems (MEMS), multicores, and modern system on chip (SoCs). The SoCs used
in the automotive domain include a combination of the following HW and SW
features.

1. EDC/ECC for memories, including caches and registers.

2. Built-in self-test for arrays and logic, which are operated both at key-on/off
and at periodic intervals.

3. Safety mechanisms for on-chip interconnects, including coherent fabrics
(e.g., information redundancy, data/address codes, firewalls, and
timeouts).

4. Different redundancy types for processing cores (see Fig. 7).

5. End-to-end safety protocols for peripherals. These protocols are
combinations of CRC, time stamp, and frame counter.

6. SW test libraries to address permanent failures in the logic not covered by
other safety mechanisms.

7. Dedicated HW cores for fault handling (e.g., Safety island).

Fig. 7.

Different redundant architecture solutions.

B. Responsibility-Sensitive Safety

The most recent trend in FuSA is responsibility-sensitive safety (RSS). Introduced by
Shalev-Shwartz et al. [123], the RSS model formalizes the common sense of human
judgment under a comprehensive set of road situations. It sets clear definitions for what
it means to drive safely versus to drive recklessly. With human drivers, the interpretation
of responsibility for collisions and other incidents is fluid. Today, in the case of an
accident, the blame is determined based on imperfect information and other factors
interpreted afterward. With machines, the definitions can be formal and mathematical.
Machines have highly accurate information about the environment around them; they
always know their reaction time and braking power, and are never distracted or impaired.
We do not need to interpret machines’ actions after the fact. Instead, we can program them
to follow a determined pattern—as long as we have the means to formalize that pattern.
At its core, the RSS model is designed to formalize and contextualize today's driving
dilemmas, such as notions of safe distance and safe gaps when merging and cutting in,
which agent cuts in, and thus assumes responsibility to maintain a safe distance.
Moreover, this model allows to specify the right of way, define safe driving with limited
sensing (e.g., when road users are hidden behind buildings or parked cars and might
suddenly appear), and more. Clearly, human judgment includes avoiding accidents and
not merely avoiding blame. The RSS model attempts to build a formal foundation that sets
all aspects of human judgment in the context of driving with the goal of setting a formal
“seal of safety” for autonomous cars. More details on the RSS model can be found in [123].

SECTION VII.

Conclusion
 This paper analyzed recent technological challenges and HW/SW solutions for on-board
embedded and networked automotive systems. In this context, this paper mainly focused
on automotive SW, advanced execution platforms, on-board network communications,
on-board cybersecurity, and functional safety with respect to SW and HW. This paper
identified the need for new E/E architectures, exploiting eHPC and number-crunching
accelerators, supervised by a safe and secure MCU, to meet the computation and memory
requirements in the order of TOPS and TB, respectively, for perception and fusion tasks.
Besides HW, also the automotive SW complexity has drastically increased in the recent
years. Model- and component-based SW development techniques have proven helpful and
cost effective in managing the size and complexity of automotive SW, which is often in the
range of several tens to hundreds MLoC. The SW complexity is expected to grow further
in time. Hence, there is a strong need to develop efficient models and languages for the
automotive SW development. Moreover, the existing standard technologies for the SW
development (e.g., AUTOSAR) need to adapt according to the evolution in the car
industry, with respect to advanced computer-controlled functionality, AD, ADAS, and
V2X. There is also a strong need to support interoperability and automation among the
state-of-the-art and state-of-the-practice languages, models, and tools that are used for
the automotive SW development at various abstraction levels. In-car communications
require new network architectures. Ethernet, with a broad choice of data rates, and the
TSN standards will be key enablers for upcoming automotive scenarios, including AD.
Current in-vehicle networks suffer from several vulnerabilities in terms of confidentiality,
authentication, and availability. While some possible countermeasures have been already
found, vehicular communications (V2X) and automated driving are fostering the steady
rise of novel challenging vehicular cybersecurity issues. In addition to security, other open
research topics that deserve investigation include traffic planning response-time analysis
of TSN networks, and the use of Ethernet for 5G mobile fronthaul.

REFERENCES
1."Embedded system market size by application by product. Industry outlook report
regional analysis application development potential price trends competitive market
share & forecast 2016 to 2023", 2016.
2.F. Salewski and S. Kowalewski, "Hardware/software design considerations for
automotive embedded systems", IEEE Trans. Ind. Inform., vol. 4, no. 3, pp. 156-163,
Aug. 2008.
3.S. Saponara, G. Pasetti, F. Tinfena, P. Dabramo and L. Fanucci, "HV-CMOS design
and characterization of a smart rotor coil driver for automotive alternators", IEEE Trans.
Ind. Electron., vol. 60, no. 6, pp. 2309-2317, Jun. 2013.
4."Technology and computing requirements for self-driving cars", doc. no.
0514/RH/CMD/PDF, 2016.
5.S. Saponara, G. Ciarpi and B. Neri, "System-level modelling/analysis and LNA design
in low-cost automotive technology of a v2x wireless transceiver", Proc. 3rd IEEE Int.
Forum Res. Technol. Soc. Ind. Leveraging Better Tomorrow, pp. 1-5, Sep. 2017.
6.P. Guturu, "Explosive wireless consumer demand for network bandwidth-fifth
generation and beyond [future directions]", IEEE Consum. Electron. Mag., vol. 6, no. 2,
pp. 27-31, Apr. 2017.
7.S. Brunner, J. Roder, M. Kucera and T. Waas, "Automotive e/e-architecture
enhancements by usage of Ethernet TSN", Proc. IEEE 13th Workshop Intell. Solutions
Embedded Syst., pp. 9-13, Jun. 2017.
8.J. Dvorak and Z. Hanzalek, "Using two independent channels with gateway for
FlexRay static segment scheduling", IEEE Trans. Ind. Inform., vol. 12, no. 5, pp. 1887-
1895, Oct. 2016.
9."ISO 11898-1, Road Vehicles–Interchange of Digital Information–Controller Area
Network (CAN) for High-Speed Communication, ISO Standard-11898", Nov. 1993.
10.G. M. Zago and E. P. de Freitas, "A quantitative performance study on can and can
FD vehicular networks", IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4413-4422, May
2018.
11.B. Kraemer, "Automotive Ethernet", IEEE Commun. Mag., vol. 54, no. 12, pp. 4-4,
Dec. 2016.
Show Context View Article Full Text: PDF (131KB) Google Scholar
12.S. Saponara and B. Neri, "Radar sensor signal acquisition and multidimensional FFT
processing for surveillance applications in transport systems", IEEE Trans. Instrum.
Meas., vol. 66, no. 4, pp. 604-6125, Apr. 2017.
Show Context View Article Full Text: PDF (1424KB) Google Scholar
13.A. Lucas, M. Iliadis, R. Molina and A. K. Katsaggelos, "Using deep neural networks
for inverse problems in imaging: Beyond analytical methods", IEEE Signal Process.
Mag., vol. 35, no. 1, pp. 20-36, Jan. 2018.
View Article Full Text: PDF (1755KB) Google Scholar
14.M. Al-Qizwini, I. Barjasteh, H. Al-Qassab and H. Radha, "Deep learning algorithm for
autonomous driving using GoogLeNet", Proc. IEEE Intell. Veh. Symp., pp. 89-96, Jun.
2017.
View Article Full Text: PDF (533KB) Google Scholar
15.W. Shi, M. B. Alawieh, X. Li, H. Yu, N. Arechiga and N. Tomatsu, "Efficient statistical
validation of machine learning systems for autonomous driving", Proc. IEEE/ACM Int.
Conf. Comput.-Aided Des., pp. 1-8, Nov. 2016.
Access at ACM Google Scholar
16.C. Vallon, Z. Ercan, A. Carvalho and F. Borrelli, "A machine learning approach for
personalized autonomous lane change initiation and control", Proc. IEEE Intell. Veh.
Symp., pp. 1590-1595, 2017.
View Article Full Text: PDF (489KB) Google Scholar

17.N. Gallardo, N. Gamez, P. Rad and M. Jamshidi, "Autonomous decision making for a
driver-less car", Proc. 12th Syst. Syst. Eng. Conf., pp. 1-6, Jun. 2017.
View Article Full Text: PDF (1350KB) Google Scholar
18.C. Ilas, "Perception in autonomous ground vehicles", Proc. Int. Conf. Electron.
Comput. Artif. Intell., pp. 1-6, Jun. 2013.
View Article Full Text: PDF (287KB) Google Scholar
19.G. Prabhakar, B. Kailath, S. Natarajan and R. Kumar, "Obstacle detection and
classification using deep learning for tracking in high-speed autonomous driving", Proc.
IEEE Region 10 Symp., pp. 1-6, Jul. 2017.
View Article Full Text: PDF (861KB) Google Scholar
20.M. Giering, V. Venugopalan and K. Reddy, "Multi-modal sensor registration for
vehicle perception via deep neural networks", Proc. IEEE High Perform. Extreme
Comput. Conf., pp. 1-6, Sep. 2015.
View Article Full Text: PDF (3079KB) Google Scholar
21.C. Laugier and J. Chartre, "Intelligent perception and situation awareness for
automated vehicles", Proc. Conf. GTC Eur., pp. 1-22, 2016.

Show Context Google Scholar
22.G. Tanzmeister and D. Wollherr, "Evidential grid-based tracking and mapping", IEEE
Trans. Intell. Transp. Syst., vol. 18, no. 6, pp. 1454-1467, Jun. 2017.

Show Context Google Scholar
23.S. C. Talbot and S. Ren, "Comparision of fieldbus systems CAN TTCAN FlexRay and
lin in passenger vehicles", Proc. 29th IEEE Int. Conf. Distrib. Comput. Syst. Workshops,
pp. 26-31, 2009.
View Article Full Text: PDF (228KB) Google Scholar
24.U. Keskin, "In-vehicle communication networks: A literature survey", 2009.

 Google Scholar
25.S. Tuohy, M. Glavin, E. Jones, M. Trivedi and L. Kilmartin, "Next generation wired
intra-vehicle networks a review", Proc. IEEE Intell. Veh. Symp., pp. 777-782, Jun. 2013.
View Article Full Text: PDF (172KB) Google Scholar
26.N. Navet and F. Simonot-Lion, "In-vehicle communication networks A historical
perspective and review" in Industrial Communication Technology Handbook, Boca
Raton, FL, USA:CRC Press, vol. 96, 2013.

 Google Scholar
27.S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi and L. Kilmartin, "Intra-vehicle
networks: A review", IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 534-545, Apr.
2015.
View Article Full Text: PDF (376KB) Google Scholar
28.W. Zeng, M. A. S. Khalid and S. Chowdhury, "In-vehicle networks outlook:
Achievements and challenges", IEEE Commun. Surv. Tut., vol. 18, no. 3, pp. 1552-
1571, Jul.–Sep. 2016.
Show Context View Article Full Text: PDF (3850KB) Google Scholar
29.C. Ebert and J. Favaro, "Automotive software", IEEE Softw., vol. 34, no. 3, pp. 33-39,
Jun. 2017.
Show Context View Article Full Text: PDF (841KB) Google Scholar
30.M. Broy, I. Kruger, A. Pretschner and C. Salzmann, "Engineering automotive
software", Proc. IEEE, vol. 95, no. 2, pp. 356-373, Feb. 2007.
Show Context View Article Full Text: PDF (277KB) Google Scholar
31.J. Schroeder et al., "Predicting and evaluating software model growth in the
automotive industry", Proc. IEEE Int. Conf. Softw. Maintenance Evol., pp. 584-593, Sep.
2017.
Show Context View Article Full Text: PDF (671KB) Google Scholar

32.I. Baas, "A glimpse into the future of travel and its impact on marketing", Jan. 15
2016, [online] Available: http://www.thedrum.com/opinion/2016/01/11/glimpse-future-
travel-and-its-impact-marketing.

Show Context Google Scholar
33.T. A. Henzinger and J. Sifakis, "The embedded systems design challenge", Proc.
14th Int. Symp. Formal Methods, pp. 1-15, 2006.

Show Context CrossRef Google Scholar
34.I. Crnkovic and M. Larsson, Building Reliable Component-Based Software Systems,
Norwood, MA, USA:Artech House, 2002.

Show Context Google Scholar
35.P. Thorngren, "Keynote talk: Experiences from EAST-ADL Use" in , Gothenberg,
Sweden, Oct. 2013.

Show Context Google Scholar
36.I. Crnkovic, S. Sentilles, A. Vulgarakis and M. Chaudron, "A classification framework
for software component models", IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 593-615,
Sep. 2011.
Show Context View Article Full Text: PDF (1464KB) Google Scholar
37.K. Petersen et al., "Choosing component origins for software intensive systems: In-
house COTS OSS or outsourcing?—A case survey", IEEE Trans. Softw. Eng., vol. 44,
no. 3, pp. 237-261, Mar. 2018.
Show Context View Article Full Text: PDF (1133KB) Google Scholar
38."EAST-ADL Domain Model Specification V2.1.12", [online] Available: http://www.east-
adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf.

Show Context Google Scholar
39.P. Cuenot et al., "Managing complexity of automotive electronics using the EAST-
ADL", Proc. 12th IEEE Int. Conf. Eng. Complex Comput. Syst., pp. 353-358, Jul. 2007.
View Article Full Text: PDF (111KB) Google Scholar
40.D. Chen et al., "Integrated safety and architecture modeling for automotive
embedded systems", e&i Elektrotechnik und Informationstechnik, vol. 128, no. 6, pp.
196-202, Jun. 2011.

CrossRef Google Scholar
41.D. Chen, L. Feng, T. Qureshi, H. Lönn and F. Hagl, "An architectural approach to the
analysis verification and validation of software intensive embedded
systems", Computing, vol. 95, no. 8, pp. 649-688, 2013.

CrossRef Google Scholar
42.R. T. Kolagari et al., "Model-based analysis and engineering of automotive
architectures with EAST-ADL: Revisited", Int. J. Conceptual Struct. Smart Appl., vol. 3,
no. 2, pp. 25-70, 2015.

Show Context CrossRef Google Scholar
43.S. Fürst and M. Bechter, "AUTOSAR for connected and autonomous vehicles: The
AUTOSAR adaptive platform", Proc. 46th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw. Workshop, pp. 215-217, Jun. 2016.
Show Context View Article Full Text: PDF (295KB) Google Scholar
44.K. Hänninen, J. Maki-Turja, M. Nolin, M. Lindberg, J. Lundback and K. Lundback,
"The Rubus component model for resource constrained real-time systems", Proc. IEEE
Symp. Ind. Embedded Syst., pp. 177-183, 2008.

Show Context Google Scholar
45.S. Mubeen, H. Lawson, J. Lundbäck, M. Gålnander and K. L. Lundbäck,
"Provisioning of predictable embedded software in the vehicle industry: The Rubus

approach", Proc. IEEE/ACM 4th Int. Workshop Softw. Eng. Res. Ind. Pract., pp. 3-9,
May 2017.
Show Context View Article Full Text: PDF (1019KB) Google Scholar
46."Road Vehicles – Functional Safety, ISO 26262-1:2011", [online] Available:
http://www.iso.org/.

Show Context Google Scholar
47.G. Bahig and A. El-Kadi, "Formal verification of automotive design in compliance with
ISO 26262 design verification guidelines", IEEE Access, vol. 5, pp. 4505-4516, 2017.
Show Context View Article Full Text: PDF (7516KB) Google Scholar
48."Future vehicle software architectures", Jan. 15 2018, [online] Available:
https://www.esk.fraunhofer.de/en/research/projects/adaptives_bordnetz.htm l.

Show Context Google Scholar
49.S. Mubeen, J. Mäki-Turja and M. Sjödin, "Communications-oriented development of
component-based vehicular distributed real-time embedded systems", J. Syst. Arch., vol.
60, no. 2, pp. 207-220, 2014.

Show Context CrossRef Google Scholar
50.S. Mubeen, T. Nolte, M. Sjödin, J. Lundbäck and K.-L. Lundbäck, "Supporting timing
analysis of vehicular embedded systems through the refinement of timing
constraints", Softw. Syst. Model., Jan. 2017, [online] Available:
https://doi.org/10.1007/s10270-017-0579-8.

Show Context CrossRef Google Scholar
51.D. Schmidt and F. Kuhns, "An overview of the real-time CORBA
specification", Computer, vol. 33, no. 6, pp. 56-63, Jun. 2000.
Show Context View Article Full Text: PDF (265KB) Google Scholar
52.M. G. Valls, I. R. Lopez and L. F. Villar, "iLAND: An enhanced middleware for real-
time reconfiguration of service oriented distributed real-time systems", IEEE Trans. Ind.
Inform., vol. 9, no. 1, pp. 228-236, Feb. 2013.
Show Context View Article Full Text: PDF (799KB) Google Scholar
53.X. Ke, K. Sierszecki and C. Angelov, "COMDES-II: A Component-based framework
for generative development of distributed real-time control systems", Proc. 13th IEEE Int.
Conf. Embedded Real-Time Comput. Syst. Appl., pp. 199-208, Aug. 2007.
Show Context View Article Full Text: PDF (301KB) Google Scholar
54.S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson and I. Crnkovic, "A component model
for control-intensive distributed embedded systems", Proc. 11th Int. Symp. Compon.
Based Softw. Eng., pp. 310-317, 2008.

Show Context CrossRef Google Scholar
55.TADL: Timing Augmented Description Language, Oct. 2009.

Show Context Google Scholar
56.Timing Augmented Description Language (TADL2) Syntax Semantics, Aug. 2012.

Show Context Google Scholar
57."TIMMO-2-USE Project", [online] Available: https://itea3.org/project/timmo-2-use.html.

Show Context Google Scholar
58.Local Interconnect Network (LIN) Specification, [online] Available: www.lin-
subbus.org.

Show Context Google Scholar
59.F. Pieri, C. Zambelli, A. Nannini, P. Olivo and S. Saponara, "Is consumer electronics
redesigning our cars? Challenges of integrated technologies for sensing computing and
storage", IEEE Consum. Electron. Mag., vol. 7, no. 5, pp. 8-17, Sep. 2018.
Show Context View Article Full Text: PDF (2218KB) Google Scholar

60.R. Saussard, B. Bouzid, M. Vasiliu and R. Reynaud, "A robust methodology for
performance analysis on hybrid embedded multicore architectures", Proc. IEEE 10th Int.
Symp. Embedded Multicore/Many-Core Syst.-on-Chip, pp. 77-84, Sep. 2016.
Show Context View Article Full Text: PDF (644KB) Google Scholar
61.M. Valero, "European Processor Initiative & RISC-V", Proc. RISC-V Workshop, May
2018.

Show Context Google Scholar
62.J. Huang, "NVIDIA CEO Keynote", Proc. GPU Technol. Conf. Eur., Oct. 2017.

Show Context Google Scholar
63.Jan. 30 2018, [online] Available: https://newsroom.intel.com/wp-
content/uploads/sites/11/2018/01/intel-mobileye-ads-product-brief.pdf.

Show Context
64.M. Gautschi et al., "Near-threshold RISC-V core with DSP extensions for scalable
IOT endpoint devices", IEEE Trans. Very Large Scale Integr. Syst., vol. 25, no. 10, pp.
2700-2713, Oct. 2017.
Show Context View Article Full Text: PDF (2247KB) Google Scholar
65.E. Azarkhish, D. Rossi, I. Loi and L. Benini, "Neurostream: Scalable and energy
efficient deep learning with smart memory cubes", IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 2, pp. 420-434, Feb. 2018.
Show Context View Article Full Text: PDF (2756KB) Google Scholar
66.F. Cazorla, J. Abella, E. Mezzetti, C. Hernandez, T. Vardanega and G. Bernat,
"Reconciling time predictability and performance in future computing systems", IEEE
Des. Test, vol. 35, no. 2, pp. 48-56, Apr. 2017.
Show Context View Article Full Text: PDF (511KB) Google Scholar
67.S. Saponara, F. Giannetti, B. Neri and G. Anastasi, "Exploiting mm-wave
communications to boost the performance of industrial wireless networks", IEEE Trans.
Ind. Inform., vol. 13, no. 3, pp. 1460-1470, Jun. 2017.
Show Context View Article Full Text: PDF (748KB) Google Scholar
68.Y. Huo, X. Dong and W. Xu, "5G cellular user equipment: From theory to practical
hardware design", IEEE Access, vol. 5, pp. 13992-14010, 2017.
Show Context View Article Full Text: PDF (4370KB) Google Scholar
69."CAN with flexible data-rate (CAN FD)", White Paper Ver. 1.1., 2011.

Show Context Google Scholar
70.G. M. Zago and E. P. de Freitas, "A quantitative performance study on CAN and CAN
FD vehicular networks", IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 4413-4422, May
2018.
Show Context View Article Full Text: PDF (449KB) Google Scholar
71.S. Singer, "High performance compute architecture supporting revolutionary
requirements" in , San Jose, CA, USA, Nov. 2017.

Show Context Google Scholar
72.D. Reinhardt and M. Kucera, "Domain controlled architecture - A new approach for
large scale software integrated automotive systems", Proc. Int. Conf. Pervasive
Embedded Comput. Commun. Syst., pp. 221-226, Feb. 2013.

Show Context Google Scholar
73."IEEE Standard for Ethernet Amendment 1: Physical Layer Specifications and
Management Parameters for 100 Mb/s Operation over a Single Balanced Twisted Pair
Cable (100BASE-T1), IEEE Std 802.3bw-2015 (Amendment to IEEE Std 802.3-2015)",
Mar. 2016.

Show Context Google Scholar

74.IEEE Standard for Ethernet Amendment 4: Physical Layer Specifications and
Management Parameters for 1 Gb/s Operation over a Single Twisted-Pair Copper
Cable, Sep. 2016.

Show Context Google Scholar
75."IEEE Standard for Local and Metropolitan Area Networks, Bridges and Bridged
Networks, IEEE Std. 802.1Q", 2014.

Show Context Google Scholar
76."IEEE Standard for Local and Metropolitan Area Networks - Timing and
Synchronization for Time-Sensitive Applications in Bridged Local Area Networks, IEEE
Std 802.1AS-2011", Mar. 2011.

Show Context Google Scholar
77."MOST Specification Revision 3 Version 2", 2010, [online] Available:
http://www.mostcooperation.com/.

Show Context Google Scholar
78.J. Migge, J. Villanueva, N. Navet and M. Boyer, "Insights on the performance and
configuration of AVB and TSN in automotive networks", Proc. Embedded Real-Time
Softw. Syst., pp. 1-10, Jan. 2018.

Show Context Google Scholar
79.G. Alderisi, A. Caltabiano, G. Vasta, G. Iannizzotto, T. Steinbach and L. Lo Bello,
"Simulative assessments of IEEE 802.1 Ethernet AVB and time-triggered Ethernet for
advanced driver assistance systems and in-car infotainment", Proc. Veh. Netw. Conf.,
pp. 187-194, Nov. 2012.
Show Context View Article Full Text: PDF (329KB) Google Scholar
80.G. Alderisi, G. Iannizzotto and L. Lo Bello, "Towards 802.1 Ethernet AVB for
advanced driver assistance systems: A preliminary assessment", Proc. IEEE 17th Conf.
Emerg. Technol. Factory Automat., pp. 1-4, Sep. 2012.
Show Context View Article Full Text: PDF (436KB) Google Scholar
81.Time-Triggered Ethernet AS6802, Nov. 9 2016.

Show Context Google Scholar
82.S. M. Laursen, P. Pop and W. Steiner, "Routing optimization of AVB streams in TSN
networks", SIGBED Rev., vol. 13, no. 4, pp. 43-48, 2016.

Show Context Access at ACM Google Scholar
83.G. Alderisi, G. Patti and L. Lo Bello, "Introducing support for scheduled traffic over
IEEE audio video bridging networks", Proc. 18th IEEE Conf. Emerg. Technol. Factory
Automat., pp. 1-9, Sep. 2013.
Show Context View Article Full Text: PDF (453KB) Google Scholar
84.L. Lo Bello, "Novel trends in automotive networks: A perspective on Ethernet and the
IEEE Audio Video Bridging", Proc. 19th IEEE Int. Conf. Emerg. Technol. Factory
Automat., pp. 1-8, Sep. 2014.
Show Context View Article Full Text: PDF (384KB) Google Scholar
85.M. Ashjaei, G. Patti, M. Behnam, T. Nolte, G. Alderisi and L. Lo Bello, "Schedulability
analysis of Ethernet audio video bridging networks with scheduled traffic support", Real-
Time Syst., vol. 53, no. 4, pp. 526-577, Jul. 2017.

Show Context CrossRef Google Scholar
86.U. D. Bordoloi, A. Aminifar, P. Eles and Z. Peng, "Schedulability analysis of Ethernet
AVB switches", Proc. 20th IEEE Int. Conf. Embedded Real-Time Comput. Syst. Appl.,
pp. 1-10, Aug. 2014.
Show Context View Article Full Text: PDF (424KB) Google Scholar

87.J. Diemer, D. Thiele and R. Ernst, "Formal worst-case timing analysis of Ethernet
topologies with strict-priority and AVB switching", Proc. 7th IEEE Int. Symp. Ind.
Embedded Syst., pp. 1-10, Jun. 2012.
Show Context View Article Full Text: PDF (801KB) Google Scholar
88."IEEE Standard for Local and Metropolitan Area Networks – Bridges and Bridged
Networks - Amendment 25: Enhancements for Scheduled Traffic, IEEE Std 802.1Qbv-
2015 (Amendment to IEEE Std 802.1Q))", Mar. 2016.

Show Context Google Scholar
89.Official Project Website of 802.1AS-Rev – Timing and Synchronization for Time-
Sensitive Applications, 2016, [online] Available: https://1.ieee802.org/tsn/802-1as-rev/.

Show Context Google Scholar
90."IEEE Standard for Local and Metropolitan Area Networks – Bridges and Bridged
Networks – Amendment 26: Frame Preemption, IEEE Std 802.1Qbu-2016 (Amendment
to IEEE Std 802.1Q-2014)", Aug. 2016.

Show Context Google Scholar
91.S. S. Craciunas, R. Serna Oliver and W. Steiner, "Formal scheduling constraints for
time-sensitive networks", Sep. 2017, [online] Available: https://arxiv.org/abs/1712.02246.

Show Context CrossRef Google Scholar
92.W. Steiner, S. S. Craciunas and R. S. Oliver, "Traffic planning for time-sensitive
communication", IEEE Commun. Standards Mag., vol. 2, no. 2, pp. 42-47, Jun. 2018.
Show Context View Article Full Text: PDF (216KB) Google Scholar
93."IEEE Standard for Local and Metropolitan Area Networks – Bridges and Bridged
Networks - Amendment 24: Path Control and Reservation, IEEE Std 802.1Qca-2015
(Amendment to IEEE Std 802.1Q-2014)", Mar. 2016.

Show Context Google Scholar
94."IEEE Standard for Local and Metropolitan Area Networks–Frame Replication and
Elimination for Reliability, IEEE Std 802.1CB-2017", Oct. 2017.

Show Context Google Scholar
95.P802.1Qcc – Stream Reservation Protocol (SRP) Enhancements and Performance
Improvements, 2013, [online] Available: https://1.ieee802.org/tsn/802-1qcc/.

Show Context Google Scholar
96."IEEE Standard for Local and Metropolitan Area Networks–Bridges and Bridged
Networks–Amendment 29: Cyclic Queuing and Forwarding, IEEE 802.1Qch-2017
(Amendment to IEEE Std 802.1Q-2014)", Jun. 2017.

Show Context Google Scholar
97."IEEE Standard for Local and Metropolitan Area Networks–Bridges and Bridged
Networks–Amendment 28: Per-Stream Filtering and Policing, IEEE Std 802.1Qci-2017
(Amendment to IEEE Std 802.1Q-2014)", Sep. 2017.

Show Context Google Scholar
98.P802.1Qcr – Asynchronous Traffic Shaping, 2016, [online] Available:
https://1.ieee802.org/tsn/802-1qcr/.

Show Context Google Scholar
99.J. Specht and S. Samii, "Urgency-based scheduler for time-sensitive switched
Ethernet networks", Proc. 28th Euromicro Conf. Real-Time Syst., pp. 75-85, Jul. 2016.
Show Context View Article Full Text: PDF (910KB) Google Scholar
100.J. Specht and S. Samii, "Synthesis of queue and priority assignment for
asynchronous traffic shaping in switched Ethernet", Proc. IEEE Real-Time Syst. Symp.,
pp. 178-187, Dec. 2017.
Show Context View Article Full Text: PDF (889KB) Google Scholar

101.D. K. Nilsson, U. E. Larson, F. Picasso and E. Jonsson, "A first simulation of attacks
in the automotive network communications protocol flexray", Proc. Int. Workshop
Comput. Intell. Secur. Inf. Syst., pp. 84-91, 2009.

CrossRef Google Scholar
102.C. W. Lin and A. Sangiovanni-Vincentelli, "Cyber-security for the controller area
network (CAN) communication protocol", Proc. Int. Conf. Cyber Secur., pp. 1-7, Dec.
2012.
View Article Full Text: PDF (295KB) Google Scholar
103.M. Wolf, A. Weimerskirch and C. Paar, Secure In-Vehicle Communication, Berlin,
Germany:Springer, pp. 95-109, 2006.

Show Context Google Scholar
104.O. Avatefipour and H. Malik, "State-of-the-art survey on in-vehicle network
communication can-bus security and vulnerabilities", Int. J. Comput. Sci. Netw., vol. 6,
no. 6, pp. 720-727, Dec. 2017.

 Google Scholar
105.K.-T. Cho and K. G. Shin, "Fingerprinting electronic control units for vehicle intrusion
detection", Proc. 25th USENIX Secur. Symp., pp. 911-927, 2016.

Show Context Google Scholar
106.E. dos Santos, A. Simpson and D. Schoop, "A formal model to facilitate security
testing in modern automotive systems", Proc. Joint Workshop Handling IMPlicit EXplicit
Knowl. Formal Syst. Develop. Formal Model-Driven Techn. Develop. Trustworthy Syst.,
pp. 95-104, Nov. 2017.

CrossRef Google Scholar
107.T. Hoppe, S. Kiltz and J. Dittmann, "Security threats to automotive can networks–
practical examples and selected short-term countermeasures", Rel. Eng. Syst. Saf., vol.
96, no. 1, pp. 11-25, 2011.

CrossRef Google Scholar
108.M. Lukasiewycz, P. Mundhenk and S. Steinhorst, "Security-aware obfuscated
priority assignment for automotive can platforms", ACM Trans. Des. Automat. Electron.
Syst., vol. 21, no. 2, 2016.

Show Context Access at ACM Google Scholar
109.T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh and M. T. M.
Shalmani, "On the power of power analysis in the real world: A complete break of the
KeeLoq code hopping scheme" in Advances in Cryptology – CRYPTO 2008, Berlin,
Germany:Springer, pp. 203-220, 2008.

Show Context CrossRef Google Scholar
110.K. Koscher et al., "Experimental security analysis of a modern automobile", Proc.
IEEE Symp. Secur. Privacy, pp. 447-462, May 2010.
Show Context View Article Full Text: PDF (1771KB) Google Scholar
111.R. Currie, "Hacking the CAN bus: Basic manipulation of a modern automobile
through CAN bus reverse engineering", SANS Reading Room, Jun. 2017, [online]
Available: https://www.sans.org/reading-room/whitepapers/threats/paper/37825.

Show Context Google Scholar
112.F. Li, L. Wang and Y. Wu, "Research on CAN network security aspects and
intrusion detection design", Nov. 2017.

Show Context CrossRef Google Scholar
113.S. Shreejith et al., "VEGa: A high performance vehicular Ethernet gateway on hybrid
FPGA", IEEE Trans. Comput., vol. 66, no. 10, pp. 1790-1803, Oct. 2017.
Show Context View Article Full Text: PDF (1144KB) Google Scholar

114.B. Carnevale, L. Baldanzi, L. Pilato and L. Fanucci, "A flexible system-on-a-chip
implementation of the advanced encryption standard", Proc. 20th Int. Conf. Syst. Theory
Control Comput., pp. 156-161, Oct. 2016.
Show Context View Article Full Text: PDF (771KB) Google Scholar
115.C. Patsakis, K. Dellios and M. Bouroche, "Towards a distributed secure in-vehicle
communication architecture for modern vehicles", Comput. Secur., vol. 40, pp. 60-74,
2014.

Show Context CrossRef Google Scholar
116.A. Sghaier, M. Zeghid and M. Machhout, "Fast hardware implementation of ECDSA
signature scheme", Proc. Int. Symp. Signal Image Video Commun., pp. 343-348, Nov.
2016.
Show Context View Article Full Text: PDF (4410KB) Google Scholar
117.H. Ueda, R. Kurachi, H. Takada, T. Mizutani, M. Inoue and S. Horihata, "Security
authentication system for in-vehicle network" in SEI Tech. Rev. 81, Osaka, Japan, 2015.

Show Context Google Scholar
118.P. Mundhenk et al., "Security in automotive networks: Lightweight authentication
and authorization", Trans. Des. Automat. Electron. Syst., vol. 22, no. 2, pp. 25:1-25:27,
2017, [online] Available: http://doi.acm.org/10.1145/2960407.

Show Context Access at ACM Google Scholar
119.Q. Wang and S. Sawhney, "VeCure: A practical security framework to protect the
can bus of vehicles", Proc. Int. Conf. Internet Things, pp. 13-18, Oct. 2014.
Show Context View Article Full Text: PDF (870KB) Google Scholar
120.P. Waszecki, P. Mundhenk, S. Steinhorst, M. Lukasiewycz, R. Karri and S.
Chakraborty, "Automotive electrical and electronic architecture security via distributed in-
vehicle traffic monitoring", IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.
36, no. 11, pp. 1790-1803, Nov. 2017.
Show Context View Article Full Text: PDF (1422KB) Google Scholar
121.H. Okhravi, F. T. Sheldon and J. Haines, "Data diodes in support of trustworthy
cyber infrastructure and net-centric cyber decision support" in Optimization and Security
Challenges in Smart Power Grids., Berlin, Germany:Springer, pp. 203-216, 2013.

Show Context CrossRef Google Scholar
122.G. Xie, G. Zeng, Y. Liu, J. Zhou, R. Li and K. Li, "Fast functional safety verification
for distributed automotive applications during early design phase", IEEE Trans. Ind.
Electron., vol. 65, no. 5, pp. 4378-4391, May 2018.
Show Context View Article Full Text: PDF (1188KB) Google Scholar
123.S. Shalev-Shwartz, S. Shammah and A. Shashua, "On a formal model of safe and
scalable autonomous vehicles", Dec. 2017.

