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Abstract: 
Modern cars consist of a number of complex embedded and networked systems with 
steadily increasing requirements in terms of processing and communication resources. 
Novel automotive applications, such as automated driving, rise new needs and novel 
design challenges that cover a broad range of hardware/software engineering aspects. In 
this context, this paper provides an overview of the current technological challenges in on-
board and networked automotive systems. This paper encompasses both the state-of-the-
art design strategies and the upcoming hardware/software solutions for the next 
generation of automotive systems, with a special focus on embedded and networked 
technologies. In particular, this paper surveys current solutions and future trends on 
models and languages for automotive software development, on-board computational 
platforms, in-car network architectures and communication protocols, and novel design 
strategies for cybersecurity and functional safety. 
 

SECTION I. 

Introduction 
The size of embedded systems market is growing at a drastic pace. According to an 
estimate, it will be 258.72 billion USD by 2023 [1]. It is further estimated that automotive 
applications comprise more than 20% of this market. An embedded system consists of a 
hardware (HW), a processor, and peripherals, and the software (SW) that runs on the 
embedded processor [2]. In a modern car, the size of the embedded SW is in the order of 
millions of code lines. Many automotive embedded systems are real-time (RT) 
constrained, i.e., they must provide logically correct responses at correct times that are 
dictated by time-critical functionalities. Particularly, hard RT requirements apply to 
autonomous driving (AD) or autonomous machinery operation, according to a preplanned 
path/statement of work. Such functionalities are demanding in terms of both 
computational and environmental conditions. Challenging environmental 
requirements [3] have to be faced, such as temperature from −40 to 125 °C, mechanical 
and chemical stress and moisture resistance over 15-year lifetime, and electrostatic 
discharge protection of several kVs. 
The current electric/electronic (E/E) on-board automotive architectures, with up to 100 
dedicated electronic control units (ECUs), are no longer capable of answering the 
computing, communication, and memory requirements coming from innovations with 
increased needs of fail operational, functional safety (FuSa), cybersecurity, and RT 
behavior [4]–[7]. Such innovations include transition from internal combustion engines 
to full electric cars; introduction of advanced driver assistance systems (ADAS) and AD 
functions; increased level of on-board connectivity, mainly wired (e.g. FlexRay [8], 
CAN/CAN-FD [9], [10], and automotive Ethernet [11]); vehicle to everything (V2X) 
wireless connectivity for advanced services, such as fleet management, platooning, over-
the-air SW updates; and stringent constraints in terms of FuSa and cyber security. 



Rather than just increasing the number of basic ECUs, using 32-b microcontrollers 
(MCUs), new on-board E/E-architectures will exploit embedded high-performance 
computing (eHPC) platforms. Computational power in the order of tera operations per 
second (TOPS), see Fig. 1, is needed to implement RT perception and AD tasks in modern 
vehicles, particularly for high automation (Level 4, L4), in which the system can perform 
the driving task without human intervention, and full automation (Level 5, L5), in which 
the system takes over all the aspects of driving full time. As shown in Fig. 2, the automotive 
eHPC should sustain in RT with the following functions. 

 

Fig. 1. 

Computation needs versus AD/ADAS functions [4]. 

 

Fig. 2. 



Autonomous platform at functional level. 

1. Observation: building a model of the surrounding environment, where inputs are 
the direct observations produced by sensors [12] (cameras, radars, sonars, and 
lidars) or V2X wireless data, and the output is a geometrical and topological 
representation of the environment. 

2. Perception: localization of the car, i.e., estimating its path, position, and 
orientation within a map, by fusion of global (satellite communication) and relative 
(gyro and accelerometer inertial sensors) data, detection of all static (landmarks, 
road, and traffic signs) and moving (vehicles, pedestrian) obstacles, and 
classification depending on how well they match up with a library of predetermined 
shape and motion descriptors. 

3. Planning and decision: moving the car, which requires route planning and 
trajectory control, used to direct the car to its destination, while avoiding obstacles 
and following traffic rules. 

All the above-mentioned phases will benefit from artificial intelligence (AI) techniques, 
which are widely addressed in the recent literature [13]–[21]. Online map data are 
required to provide long-range planning information, such as lane end, speed limits, 
construction sites, and other changing road conditions. All these operations have to be 
repeated in a time scale below 10 ms with stringent low-latency requirements. Perception 
results from fusion of all surround sensing and online map data into a single surround 
model. For data fusion, a grid-based approach may be used to determine the occupancy 
probability (Bayesian approach) of a cell, or the belief function (Dempster–Shafer 
approach), by evaluating the current sensor reading and the history from past cycle [22]. 
Grid occupancy is calculated from processed sensor data, with explicit modeling of 
uncertainties. Grid cells can bear additional information, such as moving object speed, 
which can be used to predict likely behavior. 

In this new scenario, RT computational capabilities in the range of TOPS are required, as 
shown in Fig. 1. This also involves the connectivity through high-bandwidth time-sensitive 
networks of both general-purpose eHPC and number-crunching accelerators. In addition, 
high data storage capability in nonvolatile robust memories is required. As foreseen by 
Intel [4], from an average of 1.5 GB of traffic data per Internet user today, we will move 
toward 4000 GB of data generated per day by an AD car including technical data, personal 
data, crowd-sourced data, and societal data. 

A. Paper Contribution 

The aim of this paper is to provide an overview of the current technological challenges in 
on-board and networked automotive systems, reviewing the state-of-the-art design 
strategies and also pointing to the upcoming solutions. Unlike other surveys that focus on 
one specific challenge, e.g., in-vehicle communications [23]–[28], this paper aims to 
provide a full picture of cutting-edge topics in the addressed context. For this reason, this 
paper uniformly addresses core topics for on-board and networked automotive systems, 
which are as follows. 

1. Models, languages, standards, and methodologies for automotive SW 
development. 



2. High-performance on-board computation platforms. 

3. On-board network architectures, protocols, and standards. 

4. Design strategies for on-board cybersecurity. 

5. Functional safety. 

B. Paper Outline 

The rest of this paper is organized as follows. Section II addresses the recent 
advancements in models, languages, architectures, and standards for automotive SW 
development. Section III discusses the automotive eHPC platforms. New trends and 
solutions for RT in-vehicle communications are presented in Section IV. Cybersecurity 
issues related to in-vehicle networking and possible countermeasures are analyzed 
in Section V, whereas design strategies for on-board functional safety are dealt with 
in Section VI. Finally, conclusions are drawn in Section VII. 

SECTION II. 

Automotive SW Development 
Automotive industry has undergone a drastic shift from mechanic-intensive applications 
to SW-intensive applications in the last couple of decades [29]. According 
to Broy et al. [30], more than 80% of innovation in cars come from computer-controlled 
functionalities. The increasing demand for such functionalities and data-intensive 
applications in modern cars has led to the increasing size and complexity of automotive 
SW. According to an estimate in 2014, the amount of SW in a regular four-door car 
increased ten times in eight years reaching the size of approximately 1 GB [31]. Another 
estimate in 2009 predicted that a modern premium car shall contain nearly 100 million 
lines of code (MLoC) and was expected to reach 200–300 MLoC in the coming years. This 
estimate seems accurate, as Ford showcased their car containing 150 MLoC at the 
consumer electronics show (CES) in 2016 [32]. 

Model-based engineering (MBE) [33] and component-based SW engineering 
(CBSE) [34] have emerged as an attractive and cost-effective option to deal with the size 
and complexity of the SW. MBE uses models to describe functions, structures, and design 
artifacts throughout the SW development. CBSE allows to build large SW systems by 
reusing pre-existing SW components and their architectures. It is estimated that up to 
90% of automotive SWs can be reused from previous releases or other projects if MBE and 
CBSE are used [35]. There exist several modeling languages and component models in the 
automotive domain that employ the principles of MBE and CBSE for the SW 
development [36], [37]. 

EAST-ADL [38] is an Architecture Description Language for automotive embedded 
systems. It has developed and evolved based on several European projects and research 
works, such as provided in [39]–[42]. The EAST-ADL methodology allows to model the 
SW architecture at four abstraction levels. These levels, together with some of the models, 
languages, and tools that are used for the SW development at each level, are depicted 
in Fig. 3. At the top level, called vehicle level, end-to-end requirements on the automotive 
functionality are captured. At the analysis level, the requirements are refined and 



expressed formally. Moreover, several different analyses can be performed including the 
requirements consistency analysis and the functions analysis. The design level defines the 
SW architecture, HW architecture, and SW to HW allocation model by abstracting 
implementation details. The concrete implementation of the SW architecture is performed 
at the implementation level. The language supports the modeling of an automotive SW 
architecture only at the top three levels in Fig. 3. The methodology recommends to employ 
standard or proprietary architectures and component models at the implementation level, 
e.g., AUTOSAR [43] and Rubus component model (RCM) [44], [45]. EAST-ADL is also 
aligned with the FuSa standard for road vehicles, ISO26262 [46], [47]. There are several 
variants and specific implementations of the language that are currently used in the 
automotive industry, e.g., Systemweaver and its variants SE tool, Rubus-EAST, and 
Fraunhofer ESK [48], that are also shown in Fig. 3. A detailed comparison of these tools 
and models is discussed in [49] and [50]. 

 

Fig. 3. 

Abstraction levels considered during the automotive SW development. 

There are several middleware approaches and component models that are used for the 
development of automotive SW at the implementation level. For example, 
CORBA [51] and iLAND [52]. COMDES [53] and ProCOM [54] represent examples of 
component models from academia, whereas RCM and AUTOSAR are the examples of 
industrial component models. AUTOSAR is a worldwide development partnership of 



vehicle manufacturers, suppliers, and companies from the electronics and information 
and communications technology (ICT) industry [43]. AUTOSAR-based SW is widely used 
by all original equipment manufacturers (OEMs) in Europe and is gaining momentum in 
the USA, Japan, and Korea. The initial version of AUTOSAR did not account for modeling 
timing information, which is of utmost importance in vehicular safety-critical systems. 
The support for timing modeling in AUTOSAR is provided by the TADL [55] and 
TADL2 [56] languages. These languages were developed within two large EU initiatives, 
i.e., TIMMO and TIMMO2USE [57]. The AUTOSAR standard comprises a way to define 
the in-car network infrastructure and communication matrix, the necessary exchange 
formats as well as an operating system infrastructure for embedded ECUs (Classic 
Platform) and performance ECUs (Adaptive Platform). To support automotive 
requirements, the SW environment and development kits must provide these 
functionalities, see Fig. 4. 

 

Fig. 4. 

AD architecture with the AUTOSAR platform. 

Implementations of the AUTOSAR Classic Platform can be subject to safety certification 
according to the automotive safety integrity level (ASIL) A-D in the ISO26262 FuSa 
standard. Moreover, the requirements on the response times of runtime entities (tasks) in 
these implementations are often in the lower us range. The recent AUTOSAR Adaptive 
Platform defines a service-oriented middleware as well as system health monitoring for 
automotive performance ECUs, which can run on POSIX PSE51-compatible operating 
systems (e.g., Linux, QNX, and Integrity OS). A new standard interface is defined to access 
HW accelerator units, which is planned to be based on the widely accepted OpenCL 
standard. The Adaptive Platform is expected to become the automotive standard for 
performance and number-crunching ECUs. This is because the service-oriented network 
protocols are the same in both the Classic and the Adaptive Platforms. The interoperability 
between the two platforms is also supported. 
A common requirement for performance ECUs is the strict separation of specific SW 
domains. The introduction of hypervisor supports safety and security, so that in a mixed-
criticality environment, SW functions with different ASIL can be easily separated. 
Moreover, a hypervisor can separate small monitoring apps as well as complete specialized 
operating systems and driver stacks in virtual machines. This can enhance security and 



secure communication to back-end systems and Internet. To be compatible with a large 
range of existing SW packages, especially from the HPC domain, a Linux-based operating 
system environment will be chosen as basis for the performance ECU SW. Since the 
AUTOSAR Adaptive Platform is available on Linux, this opens the door to the world of 
Linux-based infrastructure SW. 

To develop SW for the eHCP platform, an SW development kit together with well-defined 
exchange formats has to be provided. AUTOSAR ARXML, as the industry-standard format 
for exchanging information about ECUs, ECU communication, integrated self-describing 
SW services, and SW-components, makes the system complexity manageable. In the 
future, the term “system” in automotive will be redefined from a single ECU up to complete 
cars, and even extended to fleets. 

Prototyping environments for AD development extend the automotive eHPC SW 
environment into a production environment for AD. Examples of such prototyping 
environments include robot operating system 2.0 from Open Source Robotics Foundation 
and EB robinos, which is an SW framework and architecture for highly automated driving 
based on open interfaces implementing the open robinos specifications. Optimized 
application libraries should be provided for use by the perception tasks, sensor fusion, and 
situative behavior analysis. Lidar sensor processing, which involves representation of data 
and segmentation into objects, requires efficient implementations of the Point Cloud 
Library and Fast Library for Approximate Nearest Neighbors. Camera processing implies 
a variety of computer visions that are prototyped with the OpenCV library and moved to 
the OpenVX programming environment to meet the performance requirements. Sensor 
fusion and other high-performance functions of computer vision are implemented in 
OpenCL when CUDA is not available. Dense linear algebra libraries, such as BLAS/BLIS 
and Eigen (C++ templated library), must be available and optimized, as they are required 
by machine learning algorithms and standard deep learning frameworks (e.g., Caffe and 
TensorFlow). 

SECTION III. 

High-Performance Computation Platforms 
Today's embedded automotive-qualified processors, with capabilities of hundreds of 
MOPS, see Fig. 1, cannot handle AD functions. There is a need for more powerful HW 
platforms, such as eHPC data fusion platform, see Fig. 5, which are designed by combining 
an automotive-certified RT MCU with general purpose HPC processors and accelerators. 
The latter are used to increase the power efficiency and to act as safe number crunchers 
with direct access (not shown in Fig. 5) to sensor data through Ethernet or low-voltage 
differential signaling (LVDS). A multi-Gb/s time sensitive networking (TSN) link should 
be used to connect the safe MCU supervisor, the accelerators, and the general-purpose 
HPC processors. This type of interaction will require reliable and secure communication 
channels, proper identity management, and assurance while providing adequate data and 
identity privacy. Next-generation AD systems require that the whole perception process 
be qualified at ASIL-D level according to the ISO 26262 automotive FuSa standard [47]. 
This can be achieved by performing redundant computations with possibly dissimilar 
implementation techniques on the “safe number crunchers.” These safe number crunchers 
are qualified at ASIL-B by implementing a range of safety mechanisms, such as error-
detection and error-correction codes (EDC/ECC) in memory, parity in caches, and cyclic 
redundancy check (CRC) in network-on-chip (NoC). The redundant results are then 
compared by the safe MCU qualified for ASIL-D, which monitors the computations and 
decides whether the results can be trusted. The eHPC platform will be connected to the 



car backbone with a runtime environment compliant with AUTOSAR. For the safe MCU, 
already available 32-b cores, such as Infineon Aurix or ST SPC5/Freescale MPC56, can be 
adopted. The ST SPC5 and Freescale MPC56 families are built in 40-nm technology on 32-
b PowerPC instruction set, with up to 4 cores (with dual lock-step approach), single 
instruction multiple data floating point unit, 8 MB of embedded flash, multichannel 12-b 
analog to digital converter, interfacing data rate up to 10 Mb/s with FlexRay, I2C, 
LIN [58], CAN, and SPI [59]. Similarly, the Infineon Aurix ranges from a 300-MHz triple-
core device with 720 millions of instructions per second (MIPS) and 8 MB of embedded 
flash down to an 80-MHz single core with 130 MIPS and 0.5-MB embedded flash. 

 

Fig. 5. 

Automotive eHPC platform. 

Instead, for the HPC units in Fig. 5, massively parallel platforms are appearing in the car 
market. Mass production of the Renesas R-Car H3 in 16-nm technology is expected in 
2018 [60]. R-Car H3 includes 9 ARM Cortex cores (8 64-b A57/A53 engines with L1/L2 
cache plus a 32-b R7 with L1 cache), offering 40k MIPS plus a PowerVR GX6650 graphics 
engine with 192 arithmetic logic unit (ALU) cores for three-dimensional graphics (more 
than 100 GLOPS and 4K video display/streaming) and dedicated video coprocessors 
(H.26x/MPEGx codec, distortion compensator, IMP-X5 image recognition). The R-Car 
H3 is ASIL-B and has a rich set of high-rate interfaces, such as Ethernet, USB, DVD/blue-
ray SATA, SD card, and audio/video I/O, besides I2C and CAN. The power consumption 
amounts to tens of watts. New actors are entering this application domain, such as Nvidia 
and Intel, to bring on-board TOPS capability and AI technologies with multichip 
automotive supercomputers. They have signed core partnerships with mass market car 
makers, Nvidia with Audi and Intel with BMW, to have on the roads AI cars by 2020. To 
this aim, a new European Processor Initiative for eHPC in AD has recently been 
started [61]. NVIDIA has recently presented the Xavier AI car's computer, which features 
30 TOPS capability for a power consumption of 30 W, thanks to eight ARM 64-b cores 
plus a 512-core Volta graphics processing unit (GPU), and a video processing unit 
supporting 8K video decode and encode and high dynamic range, as well as a computer 
vision accelerator. The Xavier AI is fabricated in 16-nm TSMC fin field-effect transistor 
(FinFET) technology with an estimated complexity of 7 billion transistors. The power 
consumption of such HPC platforms will be in the range from tens to hundreds of watts, 
e.g., from 30 W of Xavier chip to 500 W of the 320 TOPS Drive PX Pegasus board 



announced at GTC Europe 2017 [62]. Due to the high environmental temperature of 
under-the-hood car electronics, passive cooling systems are not enough. Hence, the design 
of low-cost/low-size active cooling systems for HPC ECUs is a new emerging challenge. 

Also Intel is developing several platforms for automated driving: a first multichip 
platform, so called Intel Go, has been made available using an Aurix ASIL-D 32-b MCU 
enhanced for computation capability by an ATOM C3000 core in 14-nm technology, and 
by Arria 10 field programmable gate array (FPGA) [3]. The FPGA accelerator includes an 
embedded dual-core 1.5-GHz ARM A9 core, more than 1 million logic elements (a 64-b 
six-LUT with four FFs at the output), and 1.7 million user flip-flops, and 64 MB of 
embedded memory. The Arria 10 family includes hardened single-precision IEEE 754 
floating point units, with an aggregate throughput of 1.3 TOPS. This platform supports 
driving automation L3, in which the system performs the driving task, but a human driver 
will intervene when requested. The next evolution of the platform, suitable for all AD 
levels, will combine one or more EyeQ5 [63] accelerators (by Mobileye, an Intel company) 
and one or more ATOM-based general-purpose processors (e.g., Denverton). The EyeQ5 
will enable processing of more than 16 multimegapixel cameras and other sensors. Its 
computational power targets 15 TOPS while drawing only 5–6 W in a typical application. 
It implements high performance NoC interconnect and multichannel low-power DDR 
interfaces, to support high-computational and data bandwidth requirements. Another 
Intel platform is announced that will use powerful Xeon processors and 2 multichip 
boards connected with a 16-port 10-GB Ethernet to sustain L4 and L5 AD levels, mainly 
targeting fleets. 

According to the scheme in Fig. 5, high-performance functions that need time 
predictability, such as perception functions in automated cars, need to be implemented on 
high-performance accelerators that also provide response time guarantees. Time-
predictability capabilities start with the core, then the local memory hierarchy, then the 
global interconnect, and finally external memory and I/O interfaces. In the Intel Go 
proposal, the accelerator role is managed through an Arria10 FPGA or EYEQ5 chip. As an 
alternative, the architecture extensions of the reduced instruction set computer (RISC-V) 
accelerator cores have already proven to be suitable for scalable computing capabilities 
with high power efficiency [64], including also machine-learning tasks [65]. RISC-V is 
developed according to an open HW-SW model, thus easing interoperability of eHPC 
solutions. 

The accelerator should ensure timing compositional property, which means that any 
global worst case execution time (WCET) is composed of local WCETs. This also implies 
that the WCET in a core experiencing resources conflicts, e.g., accesses to the memory 
hierarchy, is safely approximated by adding the resource interference times to the WCET 
on the core executing without interferences [66]. The timing compositional property 
requires in-order instruction pipeline and is compatible with caches, provided they have 
an LRU replacement policy. The basis for the RT accelerator architecture in Fig. 5 can be 
a very-long instruction word (VLIW) extension of the RISC-V ISA. VLIW execution, 
opposed to superscalar execution, is a core implementation technique that enables 
multiple instruction issues while being compatible with the timing compositional 
property. This VLIW extension approach ensures that any standard RISC-V binary will 
execute correctly, but in single-issue mode on such a VLIW core. A simple recompilation 
will enable to achieve multiple instruction issues on this core. In both the accelerator and 
the general-purpose HPC architecture in Fig. 5, an NoC interconnect is responsible for 
arbitrating access to shared resources, such as an I/O or a memory. One main issue when 
using multicore or many-core architectures for designing safety critical systems is to 



master the impact of contentions that can arise due to parallel requests for a shared 
resource, on the estimation of the WCET of tasks. Current approaches either rely on an 
HW approach, for instance time-division multiple access (TDMA), to ensure no 
contention can arise at runtime, or on SW approaches through the use of specific execution 
models, such as predictable execution model that explicitly separates data accesses from 
computation. The need to integrate functionalities with different level of criticalities on 
such multicore or many-core architectures has led to the design of mixed-criticality 
systems. Extension of these approaches to such mixed-criticality systems is currently 
based on a technique that drops noncritical tasks whenever a given threshold contention 
level has been reached. However, more flexible strategies are required at the interconnect 
level to maximize the utilization level of such multicore or many-core platforms. At the 
multicore level, the introduction of an HW contention manager to monitor the slack 
activity at the interconnect level will improve the system capability to allocate resources 
to noncritical tasks and adapt the scheduling of requests to shared resources, such that 
critical tasks still meet their deadline while the number of requests from noncritical tasks 
is maximized. At the many-core level, an NoC is used to interconnect cores or tiles. NoC is 
often designed for a given type of application and specific characteristics when targeting 
RT systems should be developed. Experimentally checking the behavior of an NoC in case 
of contention between flows is still an open topic. Designing a way to execute routers of an 
NoC in which a stream would systematically compete with other flows would facilitate the 
observation of contentions within an NoC. The HW mechanisms for regulating streams in 
contention could then be enriched to interface with the system SW, in order to dynamically 
adapt the control performed versus the target latency. 

The eHPC platform in Fig. 5 should be equipped with HW resources to sustain V2X 
connectivity needed for RT HD map download and infotainment, over-the-air diagnostic 
and SW update, sensor-data upload from the vehicle for machine learning. To this aim, 
two solutions can be adopted [5], [6]: IEEE 802.11p or Cellular-V2X. IEEE 802.11p uses 
10-MHz channels within the (5.85–5.925 GHz) band to achieve data rates of several Mb/s 
for V2X. IEEE 802.11p transceivers are already available on the market (e.g., STM-
Autotalks chipset) and, as discussed in [5], they can be implemented at low cost in mature 
and already automotive-qualified CMOS technologies. With 33 dBm of effective isotropic 
radiated power, a single-hop connectivity of 1 km can be achieved. Cellular-V2X 
connectivity can be achieved with multilayer multiple input multiple output (MIMO) 
transmission according to emerging 5G transceivers. Operating both in sub-6 GHz and 
28-GHz millimeter wave (mmW) bands, data rates of up to several Gb/s can be 
achieved [67]. However, high-end technology nodes are required to sustain mmW and 
massive MIMO 5G operations and the way to achieve low-latency guaranteed performance 
is still an open issue. A first 5G modem has been announced by Intel at CES 2017 [68], 
although its automotive qualification is still on-going and the 5G standardization is still 
not settled. 

SECTION IV. 

In-Vehicle Network Architectures 
Vehicles are becoming increasingly smart, connected, and part of the Internet. While new 
functionalities, such as natural speech recognition and cloud-based services, are 
developed, in-vehicle legacy systems have to be maintained and integrated with the new 
developments for the sake of cost effectiveness. As a consequence, traditional signal-based 
communication, mainly consisting of cyclic message broadcasts, such as in LIN, 
CAN/CAN-FD [69], [70], and FlexRay, has to coexist with service-based communication, 
made up of event-based message unicasts, such as the ones typical of IP-based networks 



(e.g., Ethernet and Wi-Fi) [71]. Scalable service-oriented middleware over IP allows the 
introduction of service-oriented transmission of information, in which a sender only 
transmits data when at least one receiver in the network needs this data, thus avoiding to 
load the network and all connected nodes with unnecessary traffic. 

Dynamic distribution of functions, virtualization of ECUs, and the network controlled by 
virtual machine and network hypervisor are in the roadmap of future automotive network 
architectures, which today are migrating from the current central-gateway structure to a 
domain-based architecture. The vehicle E/E-architecture of tomorrow will be therefore 
characterized by an automotive Ethernet backbone connecting different domains, isolated 
and protected by domain controllers [72]. The central Ethernet switch will be also 
connected to a smart antenna, being LTE/5G, WiFi/BLE, and V2X/DSRC, the most likely 
technologies. Following the development of the IEEE standards within the TSN Working 
Group, the vision for the automotive Ethernet backbone connecting different domains, 
each with its TSN control unit, provides for master MCUs integrating Ethernet PHYs and 
TSN switch functionalities with security modules and various protocol converters for local 
legacy serial networks. 

Ethernet switches implement separate collision domains and offer several features that 
can be used to increase security: VLANs, unicast filtering, multicast filtering, and access 
control lists. However, many state-of-the-art attacks from the information technology 
world can be applied to in-vehicle Ethernet, so special care must be taken and multiple 
levels of defense should be in place. For instance, performing deep packet inspection in 
the switches represents an efficient solution to avoid forwarding malicious packets to the 
host controller that would be therefore entrusted with security checks only on a second 
stage of inspection that would be required for specific frames only, e.g., those coming from 
the external of the vehicle. 

The automotive Ethernet backbone will likely be a TSN-enabled implementation of 802.3 
Ethernet. The recent standards 100BASE-T1 [73] and Gigabit PHY (IEEE 802.3bp-
2016) [74] already allow the use of a light unshielded twisted pair of copper wires for 
automotive usage. Also, a broad spectrum of bit rates are envisaged for automotive 
Ethernet nowadays, also including 10 Mb/s and 2.5, 5, and 10 Gb/s (for the backbone and 
for raw sensor data transmission). For Multi-Gig Automotive Ethernet PHY, various 
options from shielded cables to coax to optical fiber (for 10 Gb/s) are under consideration. 

The recent Layer 2 TSN standards are expected to be dominating the scene for AD. In fact, 
although current ADAS systems already require processing of high-resolution data 
originating from video cameras, radars, and lidars, self-driving cars require a significantly 
higher number of sensors, more network connections and better networking solutions for 
video links than the current technologies based on point-to-point connections, which will 
not be able to support the packet-based data transport needs of self-driving cars. 

A. Automotive Ethernet From AVB to TSN 

The IEEE 802.1 audio video bridging (AVB) is a set of technical standards that provides 
the specifications for time-synchronized low-latency streaming services through IEEE 
802.1Q [75] networks. The AVB documents include: the IEEE 802.1AS-2011 [76]—timing 
and synchronization for time-sensitive applications in bridged local area networks (whose 
revision is in progress as IEEE P802.1AS-Rev project), the IEEE 802.1Qav-2009, 
forwarding and queueing enhancements for time-sensitive streams, which specifies the 



credit-based shaper (CBS); and the IEEE 802.1Qat-2010 and Stream Reservation Protocol 
(SRP). The last two amendments have been rolled into the IEEE 802.1Q-2014 
standard [75]. Finally, the IEEE Std 802.1BA-2009 specifies a set of usage-specific profiles 
to help interoperability between networked devices using the AVB specifications. AVB 
introduces a number of new and important concepts to IEEE 802.1 networks to provide 
quality of service. The first is the support for priority, to distinguish between time-
sensitive flows and ordinary traffic and handle them differently. The second is bandwidth 
reservation, to set aside a certain amount of guaranteed bandwidth across a portion of the 
network for handling the high-priority traffic. Last but not least, AVB provides a set of 
protocols to manage the network time for supporting synchronized operations (i.e., A/V 
playback). For seven hops within the network, AVB guarantees a fixed upper bound for 
latency. In particular, two stream reservation (SR) classes are defined, i.e., Class A, which 
provides a maximum latency of 2 ms, and Class B, which provides a maximum latency of 
50 ms. With AVB, the IEEE has moved Ethernet into the RT applications domain. AVB is 
expected to replace (or is already gradually replacing) the Media Oriented Systems 
Transport (MOST) protocol [77] in the multimedia/infotainment domain, and the LVDS 
cables in camera-based ADAS. This paper [78] deals with the CBS of AVB and the use of 
priorities as defined in IEEE 802.1Q in automotive cases studies. The AVB suitability for 
automotive usage is addressed in [79] and [80]. In particular, Alderisi et al. [79] provide 
a comparative performance evaluation of AVB and TTEthernet, a well-known technology 
standardized by Society of Automotive Engineers as AS6802 [81], for ADAS, multimedia 
and infotainment traffic. The comparison was obtained through OMNeT++ simulations 
based on realistic traffic patterns on star-based networks under a high and varying 
workload. Results show that both AVB and TTEthernet meet the requirements of ADAS 
and multimedia flows. The two technologies complement each other, as TTEthernet allows 
for completely deterministic transmission and offline verification of time-triggered 
messages for safety-critical applications while AVB allows for online SR, thus fitting 
entertainment applications with varying bandwidth demand. The problem of routing AVB 
streams to minimize their worst-case end-to-end delay is addressed in [82], which 
proposes an effective solution, based on a search-space reduction technique and a greedy 
randomized adaptive search procedure based heuristic. 

Despite its advantages, AVB does not provide support for scheduled traffic (ST), i.e., high-
priority small-size time-sensitive traffic (e.g., control traffic) that has to be transmitted 
according to a time schedule without interference from other traffic. In fact, as AVB 
provides only two RT traffic classes, a mutual interference problem raises if multiple time-
critical traffic flows in the same network are mapped on the same SR class, with 
nonnegligible effects on delay. In particular, if ST is handled in the same queue as large 
video frames mapped on the same SR class (e.g., Class A), it will experience very variable 
latency and high jitter. Moreover, SR class frames undergo the CBS algorithm, and 
shaping blocks frame transmission for a given class if the credit of the class is below zero. 
For this reason, a more effective way of handling ST in AVB networks was proposed 
in [83] and [84]. The new approach, called AVB_ST, adds a new, separate traffic class on 
top of the AVB SR Classes A and B, which is called ST class. ST frames are tagged with the 
highest priority TAG according to the IEEE 802.1Q standard, whereas SR Classes A and B 
take the second highest priority and the third highest priority, respectively. ST traffic is 
handled in a separate queue and does not undergo credit-based shaping, thus avoiding the 
undesirable effects of shaping on the flow latency. SR Classes A and B are handled by CBS, 
whereas best effort traffic by strict priority. Comparative performance assessments 
between standard AVB and AVB_ST in a realistic automotive scenario in [84] showed that 
the AVB_ST is able to support ST, offering low and predictable latency values without 
significantly affecting SR traffic. This is due to: the introduction of a separate class for ST 
combined with offset-based scheduling for ST flows; the temporal isolation provided by 



the time-aware shaper mechanism; and strict priority scheduling, that offers low and 
bounded latencies to ST even under a high SR traffic load. A response time analysis for 
multihop AVB ST networks that is also applicable to multihop AVB networks is presented 
in [85]. The analysis uses a bandwidth overreservation concept and overcomes the 
limitations of previous analysis approaches for AVB networks [86], [87], which, in most 
of the cases, do not lead to a schedulable result due to the tight bandwidth allocation 
imposed by the AVB standard. AVB_ST is similar to the IEEE 802.1 Qbv-2015 
standard [88], with differences in the way that the ST window is sized and for the rate at 
which the increase of one of the CBS parameters (i.e., the Idleslope) for the SR classes is 
determined. 

B. Time-Sensitive Networking 

The TSN standard family provides precise time synchronization, deterministic 
communications, ultralow latency, zero congestion loss, reliability, and fault tolerance. 
These properties are foundational for the next generation of AD vehicles. TSN offers other 
notable advantages. One is the ability to support both RT and best effort traffic over the 
same network in a flexible way. Changes in the time-critical flows can be accommodated 
without the need for offline reconfigurations and the best effort traffic can use any 
bandwidth left over by TSN flows. In addition, TSN offers fast startup, thanks to 
preconfigured values for timing and bandwidth reservation, and faster firmware updates 
time than other protocols (e.g., CAN), thanks to the higher data rate. Table I summarizes 
the TSN standards published so far and some of the ongoing projects that are relevant to 
automotive applications. A brief description of each of them is provided in the following. 

TABLE I TSN Standard Overview 

Timing and synchronization for time-sensitive applications 

 

 



The IEEE 802.1AS-Rev [89] improves redundancy, allowing for configuring multiple 
grandmaster clocks and multiple synchronization spanning trees. 

Frame preemption 

The IEEE 802.1Qbu-2016 [90] amendment enables a bridge port to suspend the ongoing 
transmission of a preemptable frame to allow one or more express (time critical) frames 
to be transmitted before transmission of the preemptable frame is resumed. This standard 
works in combination with the IEEE 802.3br-2016 amendment, which allows critical data 
packets to break up into smaller fragments the noncritical packets in transit over a single 
physical link. 

ST 

The IEEE 802.1Qbv-2015 [88] amendment defines policies that enable a bridge or an end 
station to schedule transmission from each queue based on a known timescale, thanks to 
a transmission gate associated with each queue on a port. When the transmission gate is 
open, the queued frames are selected for transmission, whereas when the gate is closed, 
the queued frames are blocked. An ordered list of gate operations (gate control list) is 
associated with each port and is cyclically repeated. Building the gate control list is a 
scheduling problem. As the Qbv standard is quite novel, there is still not much work on 
this specific topic. The work in [91] and [92] proposes a formal description of scheduling 
constraints for building the gate control list and the adoption of satisfiability modulo 
theories solvers for the synthesis of communication schedules for Qbv. 

Path control and reservation 

The IEEE 802.1Qca-2015 amendment [93] provides for explicit path control, bandwidth 
reservation, and data flow redundancy (protection and restoration). 

Frame replication and elimination for reliability 

The IEEE 802.1CB-2017 [94] standard provides for identification and replication of 
frames, redundant transmission, identification, and elimination of duplicate frames. 

SRP enhancements and performance improvements 

The IEEE P802.1Qcc project [95] provides support for more SR streams, configurable SR 
classes and streams, Layer 3 streaming, deterministic SR convergence, and a user network 
interface for routing and reservations. 

Cyclic queuing and forwarding 

The IEEE 802.1Qch-2017 [96] amendment specifies a transmission selection algorithm 
that allows deterministic delays through a bridged network to be easily computed 
regardless of network topology, thus allowing for much simpler determination of network 
delays and reduced delivery jitter. Synchronized cyclic enqueuing and queue draining 
procedures enable bridges and end stations to synchronize their frame transmission to 
achieve zero congestion loss and deterministic latency. 

Per-stream filtering and policing 

The IEEE 802.1Qci-2017 [97] amendment specifies procedures for a bridge to perform 
frame counting, filtering, policing, and service class selection for a frame based on the 
particular data stream to which the frame belongs. Such policing and filtering functions 
allow the detection and mitigation of disruptive transmissions by other systems in a 



network, improving its robustness and security. When unexpected traffic is present, 
policing prevents the intruder from impairing the network. 

Asynchronous traffic shaping 

P802.1Qcr [98] specifies asynchronous traffic shaping mechanisms to achieve 
deterministic latency and zero congestion loss without using network topology 
information or relying on synchronous communication, thus allowing for higher link 
utilization. Relevant to this standard are the works given in [99], which introduces the 
urgency-based scheduler (UBS), and [100], which addresses the UBS synthesis when 
assigning queues and priority levels to hard RT data flows. 

SECTION V. 

Cybersecurity Issues and Countermeasures for In-Vehicle Networking 
  

Since this survey addresses on-board embedded and networked automotive systems, this 
section is focused on cybersecurity issues and countermeasures for in-vehicle networks. 
Other cybersecurity aspects, such as those related to cars external connectivity, cloud-
based traffic, and fleet managements, just to name a few, are out of scope of this paper. 

Secure by design, in-vehicle networking should ensure several properties, such as data 
integrity, confidentiality, authentication, and availability. However, several security 
vulnerabilities [101]–[108] characterize current in-vehicle networking technologies, using 
CAN and/or CAN-FD as a backbone, and a plethora of other interconnecting technologies 
for specific subsystems (e.g., LIN for local interconnection of low data rate nodes, MOST 
for infotainment with USB and Bluetooth user interfaces, and FlexRay for latency-critical 
functions). 

The net-spanning data exchange via various gateway devices potentially allows access to 
any vehicular bus from every other existing bus system. In principle, each LIN, CAN, or 
MOST controller is able to send messages to any other existing car controller [109], [110]. 
Without particular preventive measures, a single compromised bus system endangers the 
whole vehicle communication network. Whereas attacks on LIN or multimedia networks 
may result in the failure of power windows or navigation SW, successful attacks on CAN 
or FlexRay networks may result in malfunctioning of some important driving assistance 
functions, which leads to serious impairments of driving safety [111], [112]. 

While the use of CRC ensures data integrity, the broadcast nature of CAN/CAN-FD or 
FlexRay is a risk in terms of confidentiality, as an attacked ECU can monitor all data 
passing on the bus. Moreover, since new ECUs can be added in a plug-and-play way 
(assigning them a new identifier) without modifying the already installed ECUs, and since 
the data link layer does not provide any signature mechanism, there is a high risk of 
authentication vulnerability. Similarly, the multimaster feature with an arbitration based 
on identifier priority poses risks in terms of availability. For example a hacker can attack 
a bus and behave as a new ECU, reading all data on the bus and generating false packets. 
Using a high priority identifier, the malicious ECU can win the arbitration and then 
continuously send invalid messages thus making a jamming attack. Even though these 
invalid frames will be discarded by the receiving controllers, the attack makes the bus 
unavailable to other ECUs connected to the bus. Denial of service attacks may affect the 



backbone bus or the local bus. In the first case, they will lead to system failure, whereas in 
the second case, they will lead to functional failure. The malicious ECU, after reading a 
message from the bus, can also impersonate another ECU for replay attacks, with a 
potential for harmful consequences for the vehicle occupant. 

Due to the lack of signature mechanisms for authenticity and transmission encryption, it 
is easy for an attacker to emulate a protocol-compliant behavior. As a consequence, 
controllers are not able to verify whether an incoming message comes from an authorized 
or unauthorized and/or malicious sender. Controllers just check rules, such as bit stuffing, 
CRC, and data length code consistency, which may be enough for data integrity, but not 
for cybersecurity. Moreover, utilizing the CAN mechanisms for automatic fault 
localization, malicious CAN frames can determine the disconnection of every single 
controller by posting several well-directed error flags. Similar to the CAN automatic fault 
localization, the bus guardian in FlexRay can be utilized for the well-directed deactivation 
of any controller by appropriate faked error messages. Attacks on the common time base, 
which would make the FlexRay network completely inoperative, are also feasible by 
posting proper malicious SYNC messages on the bus. Moreover, the introduction of well-
directed sleep frames deactivates the corresponding power-saving capable FlexRay 
controllers. 

As possible countermeasures, the following techniques are foreseen and are likely to 
appear in the new generation of car connectivity devices. 

1. To cluster the subnetworks and related subsystems in security islands, separated 
by gateways with embedded cybersecurity functionalities, so that an attack on a 
nonsafety related bus, such as LIN or MOST, cannot propagate to the safety-related 
functions connected to Flexray or CAN [103]. This approach will also be applied to 
the future architectures based on automotive Ethernet [113]. 

2. To embed cybersecurity HW accelerators in new automotive computing units to 
sustain message encryption in RT. This is the reason why in the literature new 
digital macrocells are appearing, which are implemented in RT security 
techniques, such as the Advanced Encryption Standard, with different cipher 
modes, used in symmetric cryptography [114] or more complex algorithms, such as 
the Elliptic Curve Digital Signature Algorithm, for asymmetric 
cryptography [115], [116]. The use of HW-based coprocessors is required by 
stringent latency and energy-efficiency requirements that are not achievable with 
SW-based implementations. 

3. To embed signature mechanisms for controller authentication in new automotive 
computing units. Authentication of all senders is needed to ensure that only valid 
controllers are able to communicate on automotive bus 
systems [103], [115], [117], [118]. All unauthorized messages may then be 
processed separately or immediately discarded. Every controller therefore needs a 
certificate to authenticate itself against the gateway as a valid sender. For example, 
as proposed to [103], a certificate may consist of the controller identifier ID, the 
public key, and the authorizations of the respective controller. The gateway, in turn, 
should securely hold a list of public keys of all accredited OEMs for the considered 
vehicle. Each controller certificate is digitally signed by the OEM with the relevant 
secret key. The gateway again uses the corresponding public key of the OEM to 



verify the validity of the controller certificate. If the authentication process 
succeeds, the relevant controller is added to the gateways list of valid controllers. 

4. To cluster the ECUs in different trustable classes depending on how easily they can 
be attacked. For example, in [119], a security framework for vehicular systems, 
called VeCure, is proposed, which can fundamentally solve the message 
authentication issue of the CAN bus. Each node that sends a CAN packet needs to 
also send the message authentication code packet (8 B). The ECUs are split into 
two categories, namely the low-trust and the high-trust groups. ECUs that have 
external interfaces, e.g., OBD-II or telematics, are put in the low-trust group. The 
high-trust group ECUs share a secret symmetric key to authenticate each incoming 
and outgoing message. 

5. To implement intrusion detection mechanisms based on the physical or packet 
layer features, for example, a clock-based intrusion detection system at physical 
layer is proposed in [105]. Similarly, an in-vehicle network traffic monitoring 
technique is proposed in [120] to detect the increased transmission rates of 
manipulated message streams. 

6. To implement gateway firewalls, for example, as proposed in [103], if the vehicular 
controllers are capable of implementing digital signatures, the firewall rules are 
based on the authorizations given in the certificates of every controller. Therefore, 
only the authorized controllers are able to send valid messages to the high safety-
critical in-vehicle bus systems. If the vehicular controllers do not have the abilities 
to use digital signatures, the firewall can be established only on the authorizations 
of each subnet. However, controllers of less restricted networks, such as LIN or 
MOST, should generally be prevented from sending messages to the high safety-
relevant bus systems as CAN or FlexRay. Simplified firewalllike functionalities can 
be also implemented in each end node and not only in the gateways, with the so-
called digital data diode [121]. The idea is to interpose a digital unit between the 
CAN controller and the CAN transceiver to detect and block unauthorized access. 
When a frame is detected as malicious, the digital unit corrupts the CRC sequence 
modifying the CRC-field bits. Therefore, the transmission and reception of a frame 
that is targeted as malicious generates an error condition that is detected by all the 
nodes in the CAN network (i.e., each node that has received the corrupted 
malicious frame transmits an error frame). Furthermore, the digital unit conceals 
the corruption operation from the sender of the malicious frame. As a result, the 
sender cannot detect the CRC sequence corruption. Hence, the sender will not 
attempt to retransmit the malicious frame. 

SECTION VI. 

Functional and Responsibility Safety 
  The new world of SW-defined autonomous things brings both technical challenges and 
liability concerns [122]. Particularly, AD vehicles are composed of electronic platforms 
with many sensing inputs and many complex processing elements (see Fig. 2), which 
involves millions of SW lines of code. As a consequence, HW and SW may go wrong and 
this may cause hazards if no countermeasures are taken. On top of HW and SW failures, 
cars operate in a very complex environment with many variants, e.g., AD cars share the 
road with human-driven vehicles. Last but not least, the increase in connectivity through 
V2X opens possibility for security attacks. Consequently, several potential issues and 



requirements need to be considered by the automotive manufacturers. One such 
requirement is FuSA, which is mainly concerned with making the safe from HW failures 
and SW bugs. 

A. FuSa in the Context of the ISO26262 Standard 

The first edition of the ISO26262 safety standard consisted of nine normative parts and a 
guideline as the tenth part. The second edition of the standard, to be published within 
2018, will consist of ten normative parts and two guidelines, one (the part 11) is specific to 
the application of ISO26262 to semiconductor components. The goal of the standard is to 
provide an automotive safety lifecycle (management, development, production, operation, 
service, and decommissioning) and support tailoring of the necessary activities during the 
lifecycle. The standard also covers the functional safety aspects of the entire development 
process (requirements specification, design, implementation, integration, verification, 
validation, and configuration). Moreover, the standard provides requirements for 
validation and confirmation measures to ensure that an acceptable level of safety is 
achieved. The standard covers both systematic and random failures. The systematic 
failure (either in HW or SW) is related in a deterministic way to a certain cause that can 
only be eliminated by changing the design, manufacturing process, operational 
procedures, documentation, or other relevant factors. Whereas, the random HW failure is 
one that can unpredictably occur during the lifetime of an HW element and that follows a 
probability distribution. 

The standard provides an automotive-specific risk-based approach for determining risk 
classes (ASIL), where “D” and “A” represent the highest and lowest safety integrity levels, 
respectively. Note that ASIL is as a classification for the overall system, but the safety 
requirements specified to the HW and SW elements, in general, inherit the same level. For 
example, today SW-defined cockpit systems require ASIL-B (trending to ASIL-C) while 
ADAS and AD require ASIL-D. To give an idea of the implications, in terms of HW random 
failures, ASIL-D means that 99% of the faults potentially violating the safety goal shall be 
either detected or safely managed and that the overall system shall have a probability of 
residual (i.e., unmanaged) HW random failures less than 10 FIT (10 faults in one billion 
hours of operation). An important concept of ISO26262 is the safety mechanism, which is 
a technical solution implemented to detect and mitigate (tolerate, control, or avoid) 
failures in order to achieve/maintain the intended functionality or a safe state in the case 
of a failure without an unreasonable level of risk. The second edition of the standard 
emphasizes not only on fail-safe systems but also on fault-tolerant systems. Here, the goal 
is to guarantee the normal (or reduced) operation after a fault has occurred. 

Despite FuSa is measured at system level, there are specific requirements for 
semiconductors. The second edition of ISO26262 will include a new part (part 11) with 
more than 150 pages of guidelines for digital and analog macrocells, FPGAs, and sensor 
circuits. Herein, some of the most important topics and challenges are as follows. 



 

Fig. 6. 

(a) Link between fault, error, and failure. (b) Dependent failures. 

1. How to consider safety aspects of semiconductor components? The aspects of 
interest include in-context versus safety element out of context and definition of 
the assumption of use (AoU). The AoU refers to the usage modes or 
countermeasures that the system maker has to consider if using the safety-related 
semiconductor component. 

2. How to define the level of details of the safety analysis as a function of the safety 
concept, the stage of the analysis, and the safety mechanisms used? 

3. How to determine the correlation between fault, error, and failures? The 
relationship among the fault, error, and failures is depicted in Fig. 6(a). This 
challenge is also concerned with the definition of fault models, failure modes, and 
distribution of failure rate across failure modes. In order to address this challenge, 
guidelines are required to derive a consistent set of failure modes and consider new 
fault models (e.g., multiple stuck-at) caused by modern technologies. 

4. How to handle all kinds of macrocell (hard or soft) with or without embedded 
safety mechanisms embedded? This challenge also extends to legacy macrocells. 

5. How to determine base failure rate for both permanent and transient 
faults? Another challenge in this regard is to deal with nonconstant failure rates 
and advanced packaging. 

6. How to perform fault injection? The scope of this challenge spans over different 
abstraction levels that support evaluation of the HW architectural metrics, pre-
silicon verification of safety requirements, and detection of faults and control their 
effects. 

7. How to identify dependent failure initiators [DFI, see Fig. 6(b)]? A related 
challenge is how to perform the dependent failure analysis. 



8. How to define and apply fault models, failure modes, safety mechanisms, and 
avoidance of systematic failures, with respect to ISO26262, for HW 
platforms? The platforms include digital and analog components, memories, 
programmable logic devices (PLDs)/FPGAs, sensors/micro electro mechanical 
systems (MEMS), multicores, and modern system on chip (SoCs). The SoCs used 
in the automotive domain include a combination of the following HW and SW 
features. 

1. EDC/ECC for memories, including caches and registers. 

2. Built-in self-test for arrays and logic, which are operated both at key-on/off 
and at periodic intervals. 

3. Safety mechanisms for on-chip interconnects, including coherent fabrics 
(e.g., information redundancy, data/address codes, firewalls, and 
timeouts). 

4. Different redundancy types for processing cores (see Fig. 7). 

5. End-to-end safety protocols for peripherals. These protocols are 
combinations of CRC, time stamp, and frame counter. 

6. SW test libraries to address permanent failures in the logic not covered by 
other safety mechanisms. 

7. Dedicated HW cores for fault handling (e.g., Safety island). 

 

Fig. 7. 

Different redundant architecture solutions. 



B. Responsibility-Sensitive Safety 

The most recent trend in FuSA is responsibility-sensitive safety (RSS). Introduced by 
Shalev-Shwartz et al.  [123], the RSS model formalizes the common sense of human 
judgment under a comprehensive set of road situations. It sets clear definitions for what 
it means to drive safely versus to drive recklessly. With human drivers, the interpretation 
of responsibility for collisions and other incidents is fluid. Today, in the case of an 
accident, the blame is determined based on imperfect information and other factors 
interpreted afterward. With machines, the definitions can be formal and mathematical. 
Machines have highly accurate information about the environment around them; they 
always know their reaction time and braking power, and are never distracted or impaired. 
We do not need to interpret machines’ actions after the fact. Instead, we can program them 
to follow a determined pattern—as long as we have the means to formalize that pattern. 
At its core, the RSS model is designed to formalize and contextualize today's driving 
dilemmas, such as notions of safe distance and safe gaps when merging and cutting in, 
which agent cuts in, and thus assumes responsibility to maintain a safe distance. 
Moreover, this model allows to specify the right of way, define safe driving with limited 
sensing (e.g., when road users are hidden behind buildings or parked cars and might 
suddenly appear), and more. Clearly, human judgment includes avoiding accidents and 
not merely avoiding blame. The RSS model attempts to build a formal foundation that sets 
all aspects of human judgment in the context of driving with the goal of setting a formal 
“seal of safety” for autonomous cars. More details on the RSS model can be found in [123]. 

SECTION VII. 

Conclusion 
  This paper analyzed recent technological challenges and HW/SW solutions for on-board 
embedded and networked automotive systems. In this context, this paper mainly focused 
on automotive SW, advanced execution platforms, on-board network communications, 
on-board cybersecurity, and functional safety with respect to SW and HW. This paper 
identified the need for new E/E architectures, exploiting eHPC and number-crunching 
accelerators, supervised by a safe and secure MCU, to meet the computation and memory 
requirements in the order of TOPS and TB, respectively, for perception and fusion tasks. 
Besides HW, also the automotive SW complexity has drastically increased in the recent 
years. Model- and component-based SW development techniques have proven helpful and 
cost effective in managing the size and complexity of automotive SW, which is often in the 
range of several tens to hundreds MLoC. The SW complexity is expected to grow further 
in time. Hence, there is a strong need to develop efficient models and languages for the 
automotive SW development. Moreover, the existing standard technologies for the SW 
development (e.g., AUTOSAR) need to adapt according to the evolution in the car 
industry, with respect to advanced computer-controlled functionality, AD, ADAS, and 
V2X. There is also a strong need to support interoperability and automation among the 
state-of-the-art and state-of-the-practice languages, models, and tools that are used for 
the automotive SW development at various abstraction levels. In-car communications 
require new network architectures. Ethernet, with a broad choice of data rates, and the 
TSN standards will be key enablers for upcoming automotive scenarios, including AD. 
Current in-vehicle networks suffer from several vulnerabilities in terms of confidentiality, 
authentication, and availability. While some possible countermeasures have been already 
found, vehicular communications (V2X) and automated driving are fostering the steady 
rise of novel challenging vehicular cybersecurity issues. In addition to security, other open 
research topics that deserve investigation include traffic planning response-time analysis 
of TSN networks, and the use of Ethernet for 5G mobile fronthaul. 
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