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Abstract: Symbiotic associations between bacteria and ciliate protists are rather common. In particular,
several cases were reported involving bacteria of the alphaproteobacterial lineage Rickettsiales, but
the diversity, features, and interactions in these associations are still poorly understood. In this work,
we characterized a novel ciliate protist strain originating from Brazil and its associated Rickettsiales
endosymbiont by means of live and ultrastructural observations, as well as molecular phylogeny.
Though with few morphological peculiarities, the ciliate was found to be phylogenetically affiliated
with Pseudokeronopsis erythrina, a euryhaline species, which is consistent with its origin from a lagoon
with significant spatial and seasonal salinity variations. The bacterial symbiont was assigned to
“Candidatus Trichorickettsia mobilis subsp. hyperinfectiva”, being the first documented case of a
Rickettsiales associated with urostylid ciliates. It resided in the host cytoplasm and bore flagella,
similarly to many, but not all, conspecifics in other host species. These findings highlight the ability
of “Candidatus Trichorickettsia” to infect multiple distinct host species and underline the importance
of further studies on this system, in particular on flagella and their regulation, from a functional and
also an evolutionary perspective, considering the phylogenetic proximity with the well-studied and
non-flagellated Rickettsia.

Keywords: Rickettsiales; rRNA-gene based phylogeny; flagella; symbiosis; intracellular bacteria;
ciliate protists; taxonomy; Hypotrichia; ultrastructure; FISH

1. Introduction

Protists and bacteria display a wide range of relationships, and may form complex
microbial communities, with variable levels of interaction and integration [1,2]. Such
associations may play important roles in the ecology and evolution of the involved bacte-
ria [3], as well as on their hosts. Indeed, as underlined in a recent work in which bacterial
endosymbionts were treated as taxonomic descriptors for a ciliate species of the genus
Euplotes, symbionts can deeply influence their hosts in many aspects, even in their resulting
morphology [4].

In general, protists harbour abundant and diverse bacterial endosymbionts (i.e., intra-
cellular bacteria), including several representatives of lineages that also encompass human
pathogens, such as Rickettsiales, Legionellales, and Chlamydiae [5–7]. Some protists are even
able to host, at least temporarily, human pathogenic bacteria such as Legionella [8,9], thus
potentially representing natural reservoirs. Those features have led several authors to infer
a role of protists as melting pots for the evolution of potentially pathogenic bacteria, able to
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invade multicellular eukaryotes, hence potentially acting as Trojan horses [10–12]. Several
studies provided relevant contributions in this sense, investigating the mechanisms and
dynamics of establishment of intracellular symbioses in protists such as ciliates [13–16].

In particular, multiple representatives of Rickettsiales are hosted by ciliate protists.
Among those, the cases of “Candidatus (Ca.) Trichorickettsia mobilis” and “Ca. Gigarick-
ettsia flagellata” are noteworthy. “Ca. Trichorickettsia” was found in association with
multiple strains of several ciliate species (Paramecium multimicronucleatum, P. nephridiatum,
P. calkinsi, Euplotes aediculatus) [17–19], while “Ca. Gigarickettsia” only in a single popula-
tion of Spirostomum minus [17]. These two symbiont species are sister groups, and, in turn,
together form the sister group of the lineage of Rickettsia and the recently described genus
“Ca. Tisiphia” [20]. Genus Rickettsia in particular includes many pathogens vectored by
hematophagous arthropods, causing various diseases in humans and other vertebrates,
such as endemic typhus, epidemic typhus, and Rocky Mountain spotted fever [21].

Until recently, as still reported in the description in Bergey’s Manual of Systematics of
Archaea and Bacteria [22], all Rickettsiales were considered devoid of flagella. However,
in the last decade, unexpectedly, several Rickettsiales were found to harbour flagella [23],
including “Ca. Trichorickettsia” and “Ca. Gigarickettsia” [17,19], or flagellar genes [20].
Flagella likely date back to the Rickettsiales ancestor [24,25], but their role in strictly obligate
intracellular symbionts, such as the vast majority of characterised Rickettsiales (though with
at least one significant exception [26]) or even Chlamydiae [6], still needs to be elucidated.
Multiple non-mutually exclusive functions have been hypothesised, either as actual motile
organelles [5,24,27], possibly during horizontal transmission, or as mediators of host-
symbiont interactions [23,24,28]

Among “flagellated” Rickettsiales, the case of “Ca. Trichorickettsia” and “Ca. Gigar-
ickettsia” is peculiar, as, to our best knowledge, they are the only Rickettsiales bacteria for
which flagellar-driven motility was actually observed [17]. Moreover, “Ca. Trichorickettsia
mobilis” presents intraspecific variability for the presence of flagella, which resulted up to
now quite consistent with genetic diversity [17,19].

In this work, we report the characterisation of a novel “Ca. Trichorickettsia” represen-
tative, discovered as endosymbiont of the hypotrich ciliate Pseudokeronopsis (Spirotrichea,
Urostylida). This finding provides further information for understanding the intraspe-
cific phenotypic variability of “Ca. Trickorickettsia” regarding host species specificity and
flagellar repertoire. Additionally, the ciliate host itself is noteworthy and, according to
morphological and molecular analyses, it likely represents a novel record of an euryha-
line [29] Pseudokeronopsis species, i.e., Pseudokeronopsis erythrina, though with few distinctive
morphological features, and is also the first member of urostylid ciliates recorded so far for
hosting a Rickettsiales bacterium.

2. Materials and Methods

Pseudokeronopsis sp. strain PSqRJ01 was isolated from a water sample collected in
Jacarepiá lagoon, located in Saquarema city, 107 km east from Rio de Janeiro, Brazil
(22◦54′53” S, 42◦25′43” W). The strain was maintained in the laboratory inside an incubator
at 19 ± 1 ◦C, with a 12 h light and a 12 h dark. It was fed as previously described [30]
on the diatom Phaeodactylum tricornutum, in turn propagated as a monoclonal culture at
5‰ salinity.

Cells of Pseudokeronopsis sp. PSqRJ01 were examined in vivo for their behaviour and
their morphological features under a stereomicroscope (WILD HEERBRUGG, Switzerland)
and a Leitz Orthoplan (Weitzlar, Germany) Differential Interference Contrast (DIC) micro-
scope equipped with a digital camera (Canon PowerShot S45), at a magnification of 10–50×
and 100–1250×, respectively.

Approximately 100 cells were fixed in 70% ethanol, and DNA extraction was per-
formed employing the NucleoSpinTM Plant II kit (Macherey-Nagel, Düren, Germany).

The 18S rRNA gene of Pseudokeronopsis sp. PSqRJ01 was amplified and sequenced with
universal eukaryotic primers (18S F9 Euk—[31]—18S R1513 Hypo—[32]), as previously
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described [19]. The internal transcribed spacer (ITS) was amplified with primers 18S
F919 [33] and RGD2 [34] as previously described [19].

Based on preliminary fluorescence microscopy observations, the 16S rRNA gene of the
bacterial symbiont of Pseudokeronopsis sp. PSqRJ01 was amplified with primers RickFla_F69
and Rick_R1455, as previously described [17], and sequenced with internal primers [35].

Pseudokeronopsis sp. PSqRJ01 cells were washed in sterile water prior to fixation
in 4% (v/v) formaldehyde (in PBS 1×) on microscope slides. The protocol by Manz
and co-authors [36] was followed for the subsequent hybridisation, using multiple com-
binations of probes with different specificities, in particular the probe EUB338 [37] (5′-
GCTGCCTCCCGTAGGAGT-3′), targeting over 90% of domain Bacteria, the ALF1b (5′-
CGTTCGYTCTGAGCCAG-3′) [36], targeting Alphaproteobacteria, and the “Candidatus Trich-
orickettsia”-specific probe TrichoRick_142 (5′-GTTTCCAAATGTTATTCCATAC-3′) [17].
Fixed cells were simultaneously investigated under UV-light after staining with DAPI dye.

Pseudokeronopsis sp. PSqRJ01 cells were fixed in 2.5% glutaraldehyde in 0.1 M cacody-
late buffer for 45 min, briefly rinsed in the same buffer, and post-fixed in 1.5% aqueous
osmium tetroxide in distilled water for 45 min at room temperature. Then, cells were
dehydrated and processed as elsewhere described [38]. Briefly, cells were embedded in
an Epon-araldite mixture and the obtained blocks sectioned with an RMC PowerTome X
ultra-microtome; sections were placed on copper grids and stained with uranyl acetate
and lead citrate. Samples were observed using a JEM-100SX-TEM and a JEM-F200 HR
FEG-TEM (both JEOL Ltd., Tokyo, Japan).

The 18S rRNA gene sequence of Pseudokeronopsis sp. PSqRJ01 was aligned with the
automatic aligner of the ARB software package version 5.5 [39] on the SSU ref NR99 SILVA
database [40], manually updated with latest released sequences.

For the phylogenetic analysis, 32 18S rDNA sequences belonging to representatives of
the genus Pseudokeronopsis (or closely related lineages) were selected for the ingroup, and
nine sequences belonging to other urostylids were selected for the outgroup, for a total of
41 sequences.

After manual editing to optimise base pairing in the predicted rRNA stem regions, the
alignment was trimmed at both ends to the length of the shortest sequence. The resulting
matrix contained 1675 nucleotides and was used for phylogenetic reconstructions.

The optimal substitution model was selected with jModelTest 2.1 [41] according to
the Akaike Information Criterion (AIC). The maximum likelihood (ML) tree was inferred
with PHYML version 2.4 [42] from the ARB package, performing 100 pseudo-replicates.
Bayesian inference (BI) tree was inferred with MrBayes 3.2 [43], using three runs, each with
one cold and three heated Monte Carlo Markov chains, iterating for 1,000,000 generations
with a burn-in of 25%.

For the phylogenetic analysis of the endosymbiont, the 16S rRNA gene of this bac-
terium and closely related sequences retrieved from NCBI nucleotide were aligned with the
automatic aligner of the ARB software package to the SSU ref NR99 123 SILVA database,
and the alignment was manually refined to optimise base pairing in the predicted rRNA
structure. The final selection for the phylogeny included 32 total organisms, namely eight
“Ca. Trichorickettsia mobilis”, twenty other representatives of family Rickettsiaceae, and,
as outgroup, four other members of the order Rickettsiales. The alignment of selected
sequences was trimmed at both ends to the length of the shortest sequence and keeping all
internal positions, resulting in 1360 nucleotide columns. The best substitution model was
selected with jModeltest according to the AIC. ML and BI inference (BI) phylogenies were
then estimated, respectively, with PHYML, with 1000 pseudo-replicates, and MrBayes, with
three runs of three heated and one cold chain iterating for 1,000,000, applying a burn-in of
25%. Identity values within “Ca. Trichorickettsia” and “Ca. Gigarickettsia” were calculated
with the same full matrix as phylogeny, and with a modified matrix excluding their typical
gene insert [17,19] (1095 total nucleotide sites).
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3. Results
3.1. Characterization and Identification of the Host

Pseudokeronopsis sp. PSqRJ01 cells (Figure 1) were 140–240 × 17–37 µm in vivo (mean
value: 203 × 23 µm, measured on more than 20 undeformed individuals). A buccal field
occupied one third to one fourth of the cell length (Figure 1A). Cells appeared dorsoven-
trally flattened, elliptical in shape and elongated, with rounded ends, the posterior one
sometimes larger than the anterior one; cell body was quite flexible (Figure 1A). A single
contractile vacuole was present in the posterior half of the cell (Figure 1A). Numerous
spherical pigment granules (coloured in red blood to brick red to brownish; diameter:
~1.7 µm) were present in the cortex (Figure 1). They were especially, but not exclusively,
distributed around the different cell ciliature components (i.e., each ciliary unit of adoral
zone membranelles, cirri, and dorsal kineties) (Figure 1B–D). Additionally, numerous ellip-
soidal colourless granules (~1.5–1.8 × 0.9 µm), were observed densely distributed beneath
the cortex and in the cytoplasm (Figure 1C,D). Cells spent most of the time crawling on
the substrate
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Figure 1. DIC images of Pseudokeronopsis cfr. erythrina PSqRJ01 in vivo. (A) A whole cell. The buccal 
field (BF) occupies between a third and a fourth of the cell length. A single contractile vacuole (CV) 
is present in the posterior half of the cell; (B) a lateral view just below the BF level, between the 
ventral (on the left) and the dorsal (on the right) cell side: pigment granules (PG) are generally 
associated with each component (i.e., ciliary unit) of the cell ciliature; (C) the anterior cell region. 
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also visible; (D) many PG are also distributed randomly throughout the cell cortical region. Bars 
stand for 10 µm. 

Figure 1. DIC images of Pseudokeronopsis cfr. erythrina PSqRJ01 in vivo. (A) A whole cell. The buccal
field (BF) occupies between a third and a fourth of the cell length. A single contractile vacuole (CV) is
present in the posterior half of the cell; (B) a lateral view just below the BF level, between the ventral
(on the left) and the dorsal (on the right) cell side: pigment granules (PG) are generally associated
with each component (i.e., ciliary unit) of the cell ciliature; (C) the anterior cell region. Both PG
and ellipsoidal colourless granules (CG) are present. Two macronuclear beads (Ma) are also visible;
(D) many PG are also distributed randomly throughout the cell cortical region. Bars stand for 10 µm.

Transmission electron microscopy showed additional features (Figure 2), such as:
1. the structure of the macronuclei (size: ~4 × 2 µm), which showed irregular chromatin
bodies and large nucleoli (diameter: ~0.75 µm) (Figure 2A); 2. ovoidal mitochondria
(length: ~1–1.5 µm), (Figure 2A,B), sometimes associated with ribosomes (Figure 2B) (likely
belonging to the rough endoplasmic reticulum cisternae); 3. medium to large lipid droplets
(diameter: ~1.0–2.0 µm) and numerous bodies of polysaccharide reserve (Figure 2A–C);
4. several sparse, endosymbiotic bacteria exhibiting a common single morphotype (see
below for details), encircled by a white halo and embedded in the host’s cytoplasm (i.e., not
enclosed in any symbiosomal vacuole) (Figure 2).
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Figure 2. TEM images of Pseudokeronopsis cfr. erythrina PSqRJ01 and its bacterial endosymbionts “Ca.
Trichorickettsia mobilis”. (A) In the cytoplasm, a macronucleus (Ma) with a large nucleolus (Nu),
several ovoidal mitochondria (Mt) and polysaccharide reserves (PR), and endosymbionts (E) are
visible; (B) Mt sometimes are associated with ribosomes likely belonging to the rough endoplasmic
reticulum (RER) cisternae; (C) lipid reserves (LR) often correspond to medium to large-sized droplets.
Three endosymbiotic bacteria in the neighbourhood of two LR. They are encircled by a white halo
and embedded in the host’s cytoplasm; (D) two cross-sectioned endosymbiotic bacteria showing
their two-membrane cell wall; (E) bacteria are rod shaped, and include areas with variable electron
density, electron-lucid granules (arrows), and filaments (DNA); (F) sometimes bacteria show flagella
(F) distributed all around the cell. Bars stand for 0.5 µm.

The combined partial 18S rRNA gene, ITS and partial 28S rRNA gene of Pseudokeronop-
sis sp. PSqRJ01 were 2842 bp in length. The highest identity (~99.8%, three mismatches and
no gaps over 1732 aligned positions) was found with an 18S rRNA gene sequence labelled
as Pseudokeronopsis erythrina strain TL-1 (KX459375.1), while, considering the full available
18S-ITS-28S sequence, the best hit was Pseudokeronopsis rubra INHC29 (HQ228548.1 overall
identity 97.7% with 59 mismatches and 6 gaps, while the corresponding identity in the 18S
was 99.5%, with 8 mismatches and no gaps).
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Phylogenetic analyses showed coherent topologies between ML and BI trees (Figure 3).
The relationships among the Pseudokeronopsis species were not fully resolved by the present
analysis, considering the relatively poor support for some nodes. Nevertheless, Pseu-
dokeronopsis sp. PSqRJ01 resulted within the monophyletic P. erythrina clade with high
support (92 ML|0.99 BI), and closely related to P. rubra and P. flava.
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Figure 3. Maximum likelihood tree of the genus Pseudokeronopsis based on 18S rDNA sequences.
The phylogenetic position of Pseudokeronopsis cfr. erythrina PSqRJ01 is shown. Numbers associated
with nodes represent posterior probability from Bayesian inference (BI) and bootstrap value from
maximum likelihood (ML) analyses, respectively (only values of BI ≥ 0.80 and ML ≥ 70% are shown).
Black dots represent the highest statistical support (BI = 1.00 and ML = 100); white dots indicate
non-significant statistical support (BI < 0.80 and ML < 70%). The sequence obtained in the present
work is in bold.

To sum up, the results of the morphological investigation on both in vivo and TEM
processed specimens, showing that most of our specimen’s features matched with those of
P. erythrina as originally described by [44] (see Discussion below), and the findings of the
molecular analyses support each other. Thus, from now on we will refer to PSqRJ01 strain
as Pseudokeronopsis cfr. erythrina PSqRJ01.
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3.2. Characterization of the Bacterial Symbiont

Fluorescence in situ hybridisation experiments revealed the presence of several cells
of an alphaproteobacterial endosymbiont in the cytoplasm of Pseudokeronopsis cfr. erythrina
PSqRJ01 (Supplementary Figure S1).

The obtained bacterial 16S rRNA gene sequence was 1527 bp long with a 100% iden-
tity with “Ca. Trichorickettsia mobilis subsp. hyperinfectiva” endosymbiont of P. calkinsi
strain CyL 8-33 (MF039744.1). Phylogenetic analyses fully confirmed the assignment of the
PSqRJ01’s symbiont to “Ca. Trichorickettsia mobilis subsp. hyperinfectiva” (1.00 BI|99 ML.
Figure 4). Moreover, phyletic relationships between “Ca. Trichorickettsia mobilis” sub-
species, i.e., in particular “Ca. Trichorickettsia mobilis subsp. mobilis” and “Ca. Tri-
chorickettsia mobilis subsp. hyperinfectiva” as sister groups (0.96 BI/93 ML), as well
as within Rickettsiaceae in general, were consistent with other 16S rRNA gene-based and
phylogenomic studies [19,45–49].
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analyses, respectively (only values of BI ≥ 0.80 and ML ≥ 70% are shown). Black dots represent the
highest statistical support (BI = 1.00 and ML = 100); white dots indicate non-significant statistical
support (BI < 0.80 and ML < 70%). The sequence obtained in the present work is in bold.

In terms of sequence identity, the 16S rRNA genes of “Ca. Trichorickettsia mobilis”
were highly homogeneous within each subspecies, with 100% identities both in the “full
sequence” and the “no insert matrix” (Tables 1 and 2). On the other side, most of the
observed divergence between subspecies is concentrated in the insert regions (Table 1),
which is putatively non-functional, as identities not considering the insert are all rather
high (≥99.5%) (Table 2), consistent with previous studies [17,19], and with the species
threshold of 98.65–98.7% [50].
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Table 1. Percent identity values of the 16S rRNA genes of “Ca. Trichorickettsia” on the “full-sequence”
matrix (1360 nucleotide positions). The newly characterized sequence of the endosymbiont of
Pseudokeronopsis cfr. erythrina PSqRJ01 is highlighted in bold. Full identity values are highlighted
in bold.

Organism 1. 2. 3. 4. 5. 6. 7. 8.

1. “Ca. Trichorickettsia mobilis subsp. mobilis”—Paramecium
multimicronucleatum PS23 HG315612 100 100 100 97.7 97.7 97.6 98.4 98.4

2. “Ca. Trichorickettsia mobilis subsp. mobilis”—Paramecium
multimicronucleatum Pm HG315610 100 100 97.7 97.7 97.6 98.4 98.4

3. “Ca. Trichorickettsia mobilis subsp. mobilis”—Paramecium
multimicronucleatum LSA HG315611 100 97.7 97.7 97.6 98.4 98.4

4. “Ca. Trichorickettsia mobilis subsp. hyperinfectiva”—Paramecium
calkinsi CyL 8-33 MF039744 100 100 100 97.3 97.3

5. “Ca. Trichorickettsia mobilis subsp.
hyperinfectiva”—Pseudokeronopsis erythrina PSqRJ01 100 100 97.3 97.3

6. “Ca. Trichorickettsia mobilis subsp. hyperinfectiva”—Paramecium
multimicronucleatum US_Bl 16I1 MK598854 100 97.2 97.2

7. “Ca. Trichorickettsia mobilis subsp. extranuclearis”—Paramecium
nephridiatum PAR13 HG315614 100 100

8. “Ca. Trichorickettsia mobilis subsp. extranuclearis”—Euplotes
aediculatus In HG315609 100

Table 2. Percent identity values of the 16S rRNA genes of “Ca. Trichorickettsia” on the “no insert”
matrix (i.e., excluding the typical insert present in these bacterial endosymbionts: 1095 nucleotide
positions). The newly characterized sequence of the endosymbiont of Pseudokeronopsis cfr. erythrina
PSqRJ01 is highlighted in bold. Full identity values are highlighted in bold.

Organism 1. 2. 3. 4. 5. 6. 7. 8.

1. “Ca. Trichorickettsia mobilis subsp. mobilis”—Paramecium
multimicronucleatum PS23 HG315612 100 100 100 99.5 99.5 99.5 99.7 99.7

2. “Ca. Trichorickettsia mobilis subsp. mobilis”—Paramecium
multimicronucleatum Pm HG315610 100 100 99.5 99.5 99.5 99.7 99.7

3. “Ca. Trichorickettsia mobilis subsp. mobilis”—Paramecium
multimicronucleatum LSA HG315611 100 99.5 99.5 99.5 99.7 99.7

4. “Ca. Trichorickettsia mobilis subsp. hyperinfectiva”—Paramecium
calkinsi CyL 8-33 MF039744 100 100 100 99.5 99.5

5. “Ca. Trichorickettsia mobilis subsp.
hyperinfectiva”—Pseudokeronopsis erythrina PSqRJ01 100 100 99.5 99.5

6. “Ca. Trichorickettsia mobilis subsp. hyperinfectiva”—Paramecium
multimicronucleatum US_Bl 16I1 MK598854 100 99.5 99.5

7. “Ca. Trichorickettsia mobilis subsp. extranuclearis”—Paramecium
nephridiatum PAR13 HG315614 100 100

8. “Ca. Trichorickettsia mobilis subsp. extranuclearis”—Euplotes
aediculatus In HG315609 100

Unfortunately, after some initial experiments, Pseudokeronopsis cfr. erythrina PSqRJ01
was lost and FISH experiments with more specific probes could no longer be performed.
However, TEM investigations disclosed that 1, the endosymbionts exhibited a common
morphology, uniform between them, including a two-membrane cell wall typical of Gram-
negative bacteria (Figure 2) and a rod-shaped silhouette (size: ~2.0× 0.4 µm) with generally
rounded ends (Figure 2B,E,F); 2, bacterial cytoplasm was not homogeneous, i.e., it included
areas with variable electron density, electron-lucid granules (one to three in number per
bacterium) (diameter: ~0.5–0.7 µm), and filaments (DNA) (Figure 2B,E,F); 3, on several
occasions thin flagella (diameter: ∼12–15 nm; length∼60–90 nm) were visible (Figure 2E,F),
often distributed all around the bacterial cell (Figure 2F). Thus, the appearance of the
cytoplasmic bacterial endosymbionts of PSqRJ01 was consistent with previous reports of
“Ca. Trichorickettsia mobilis” [17–19,38,51].
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4. Discussion

In this work, we characterised by a multidisciplinary approach (in vivo and ul-
trastructural observations, molecular phylogeny) a strain of the ciliate protist Pseu-
dokeronopsis, isolated from a sample coming from Brazil, and its associated Rickettsiales
bacterial symbiont, affiliated to “Ca. Trichorickettsia”. While reports of Rickettsiales
(including “Ca. Trichorickettsia) in association with ciliates and other protists are rather
common [5,26,45,47,49,52–55], to our best knowledge, this represents the first record
of a host belonging to the genus Pseudokeronopsis, and, in general, to urostylid ciliates.
It also represents the first record of a “Ca. Trichorickettsia” from South America. The
characterisation of the host and of the symbiont will be discussed below separately, in a
comparison with known relative organisms.

For what concerns the host taxonomy, it is well known that species attribution in
the genus Pseudokeronopsis is difficult, due to a high interspecific morphological similar-
ity [44,56–60]. Indeed, as evidenced in Figure 3, several sequences attributed to different
species do not form monophyletic clades, suggesting a possible misidentification of few
isolates (or the use of slightly different identification criteria by different researchers). More-
over, within the genus Pseudokeronopsis 18S rDNA sequences are poorly informative in
resolving phylogenetic relationships, due to extremely low distances. Nevertheless, in
the case of the herein characterised Pseudokeronopsis sp. PSqRJ01, 18S rRNA gene data
clearly indicated a strongly supported affiliation to the P. erythrina clade. Unfortunately,
due to an incomplete reference database, we could not use the obtained ITS and 28S rRNA
gene sequences for species identification and for an improved phylogenetic resolution
within the genus. Nevertheless, our data may offer such a possibility in future studies,
being the ITS more and more used for species delimitation in ciliates, e.g., [61–65]. As for
the morphological analyses, they were overall supportive for a relatedness to P. erythrina
(Chen et al., 2011). Only the following two differences with the original description of
P. erythrina [44] were noticed: 1, colourless granules were found to be densely distributed
in the PSqRJ01 cytoplasm (likely not coincident with the blood cell-shaped granules found
in other species of the genus; see [57,58]), while they are absent in P. erythrina; 2, a single
contractile vacuole was observed, as opposed to, generally, two in P. erythrina. Taking
all the above together and considering that a careful taxonomic revision of genus Pseu-
dokeronopsis would be beyond the aims of the present study, we opted to conservatively
refer to the novel strain as to Pseudokeronopsis cfr. erythrina PSqRJ01. Pseudokeronopsis
erythrina is considered a euryhaline species [29], having been retrieved from both brackish
and freshwater environments in China and Italy, respectively [29,44]. Interestingly, the
finding of Pseudokeronopsis cfr. erythrina PSqRJ01 in the Saquarema lagoon, which shows
significant spatial and seasonal variations in salinity [66], can be seen as consistent with
previous observations on the autoecology of P. erythrina.

For what concerns the presence of intracellular bacterial symbionts in Pseudokeronop-
sis cfr. erythrina PSqRJ01, molecular analyses clearly indicate the presence of “Ca. Tri-
chorickettsia mobilis”. Specifically, the symbiont is affiliated with full support to “Ca.
Trichorickettsia mobilis subsp. hyperinfectiva” (1.00 BI|99 ML). Such finding expands
the known host range for this bacterium. Indeed, “Ca. Trichorickettsia mobilis subsp.
hyperinfectiva” was up to now retrieved in natural association only with members of genus
Paramecium [19,38], similarly to, in general, most representatives of the other subspecies
of “Ca. Trichorickettsia mobilis” as well [17]. Therefore, it is implied that this bacterium
displays the ability to shift horizontally between different host species in natural conditions,
suggesting a certain flexibility in terms of host preference. This is consistent with general
inferences on other Rickettsiales species, e.g., “Ca. Megaira polyxenophila” [20,47,52], and,
interestingly, also with previous laboratory experiments on another “Ca. Trichorickettsia
mobilis subsp. hyperinfectiva”, naturally hosted by Paramecium multimicronucleatum, and
able to invade, at least transiently, a metazoan host (the planarian Dugesia japonica) [38].On
the other hand, interestingly, the association of “Ca. Trichorickettsia mobilis” with the
ciliate P. multimicronucleatum was reported to be quite stable in laboratory conditions,
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even in the case of antibiotic/antimicrobial treatments [18,51]. The unfortunate loss of
the host strain Pseudokeronopsis cfr. erythrina PSqRJ01 did not allow us to perform further
investigations that could rule out the presence of additional, phylogenetically distinct,
intracellular bacteria. Nevertheless, combined together, multiple available evidence, in
particular the preliminary FISH experiments with alphaproteobacterial probes (Supple-
mentary Figure S1) and the uniform morphology and ultrastructure (Figure 3), consistent
with multiple previous studies on “Ca. Trichorickettsia” [17–19,38,51], indicate that such
possibility is unlikely.

Similarly to several other “Ca. Trichorickettsia” [17–19,38,51], the PSqRJ01 symbiont
was often found to bear flagella (Figure 2). The presence/absence pattern of flagella within
“Ca. Trichorickettsia mobilis” is peculiar, so far with all specimens of “Ca. Trichorickettsia
mobilis subsp. mobilis” and “Ca. Trichorickettsia mobilis subsp. hyperinfectiva” (including
the herein characterised symbiont) being flagellated, while those of “Ca. Trichorickettsia
mobilis subsp. extranuclearis” are non-flagellated [17–19,38,51]. There might be also a
potential variability in flagellar abundance (both in terms of proportion of flagellated cells,
and of number of flagella per cell), with the current specimen possibly poorer than others,
even within the same subspecies [19,38]. However, this variation might be only apparent,
considering that different methods can have differential sensitivity (e.g., in the current
study negative stain was not employed) and that we did not perform a quantitative analysis
of the flagellar abundance.

In any case, we underline that the precise function(s) of flagella in “Ca. Trichorick-
ettsia mobilis” and in Rickettsiales in general still need(s) to be elucidated. Despite being
absent in several long-time studied representatives (e.g., Rickettsia, Orientia, Anaplasma,
Ehrlichia, Wolbachia), it has become evident that flagella [17,23,47] or at least flagellar
genes [24,27,46,67,68] are present in many Rickettsiales. They are now considered an an-
cestral trait [24–26,69], independently lost in many extant lineages, possibly concurrently
with the adaptation to terrestrial hosts. Indeed, it has been speculated that flagella-driven
motility could be important in particular in aquatic environments, for possible intermedi-
ate “free-living” phases during horizontal transfer between different hosts [27]. Anyhow,
motility might be also involved in as-yet-unexplored stages of the life cycle of “terrestrial”
Rickettsiales in vertebrate hosts [24]. Alternative roles have been proposed for flagella in
Rickettsiales [23], in particular as a potential secretion system [24,28]. Indeed, they share a
common type III secretion system component with the injectisome [70], which is important
in many bacteria for delivering effectors mediating the interaction with host cells. Thus, the
flagellum may actually add up to the already known repertoire of apparatuses for deliver-
ing effectors to the hosts in Rickettsiales [71]. It has also been proposed that the flagellum
could be directly mediating the interaction with host cells in the Rickettsiales bacterium “Ca.
Midichloria” [28], with potential analogies with other Alphaproteobacteria [72].

In this context of elucidating the role of flagella in Rickettsiales, the case of “Ca. Tri-
chorickettsia mobilis” is highly interesting for several reasons. First, to our knowledge, its
flagellated members are the only ones for which actual motility due to flagella has been
observed among Rickettsiales. Second, the fact that flagella were observed only in certain
strains and subspecies (see references [19,38] and present study) is quite a relevant aspect
that still needs to be elucidated, namely whether this is due to the presence/absence of
the respective genetic repertoire, or by other causes. For example, it could be speculated
that a contingent expression could be triggered only in some conditions, possibly related to
host species and host subcellular compartment. In this regard, it is worth noting that the
observed presence of flagella seems to correlate more with the bacterial phylogeny, rather
than with other features, which might be considered in favour of a genetic explanation.
However, any conclusions on this point are clearly premature, and further targeted studies,
including in particular genome sequencing, would be necessary to address it. Last but not
least, the interest in studying flagella in “Ca. Trichorickettsia mobilis” resides in its phylo-
genetic proximity with Rickettsia [17], which includes some of the most medically relevant,
and thus deeply studied, Rickettsiales [71,73,74]. Investigations on “Ca. Trichorickettsia
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mobilis”, especially but not exclusively focused on flagella, may provide relevant insights
on the evolutionary origin of Rickettsia, in particular for what concerns the adaptation to
terrestrial metazoan hosts, such as arthropods and vertebrates.

In sum, due to the features exposed above, in our view, “Ca. Trichorickettsia mobilis”
may represent an ideal system to study flagella and their regulation in Rickettsiales, from
a functional and evolutionary perspective. Thus, we call for further investigations on
this bacterium and its interaction with host organisms, including host species-dependent
variability, and with a special focus on the role of flagella.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d14121032/s1, Figure S1: Fluorescence in situ hybridisation
pictures of Pseudokeronopsis cfr. erythrina PSqRJ01.
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