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We investigate the relation between the realization of center symmetry and the dependence on the
topological parameter θ in SUðNÞ Yang-Mills theories, exploiting trace deformations as a tool to regulate
center symmetry breaking in a theory with a small compactified direction. We consider, in particular, SUð4Þ
gauge theory, which admits two possible independent deformations, and study, as a first step, its phase
diagram in the deformation plane for two values of the inverse compactified radius going up to
L−1 ∼ 500 MeV, comparing the predictions of the effective one-loop potential of the Polyakov loop
with lattice results. The θ-dependence of the various phases is then addressed, up to the fourth order in θ, by
numerical simulations; results are found to coincide, within statistical errors, with those of the standard
confined phase iff center symmetry is completely restored and independently of the particular way this
happens, i.e., either by local suppression of the Polyakov loop traces or by long range disorder.
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I. INTRODUCTION

Pure gauge theories, defined on a space-time with one or
more compactified directions, possess a symmetry under
global transformations, which can be classified as gauge
transformations respecting the periodicity but for a global
element of the center of the gauge group [e.g., ZN for
SUðNÞ gauge theories]; this is known as center symmetry.
Such symmetry regulates most of the phase structure of the
pure gauge theory, undergoing spontaneous symmetry
breaking for small enough compactification radii, and
the Polyakov loop (holonomy) around the compactified
direction is a proper order parameter for its realization.
When the compactified direction is the thermal Euclidean
direction, the transition is associated to deconfinement, and
the Polyakov loop is defined as

Pðx⃗Þ ¼ P exp

�
i
Z

L

0

A0ðx⃗; τÞdτ
�
; ð1Þ

its trace vanishes in the confined phase (hTrPi ¼ 0),
while it is different from zero for T > Tc, where Tc is

the deconfinement critical temperature [e.g., for SUðNÞ,
hTrPi ¼ αei2πn=N , with n ∈ f0; 1;…N − 1g and α > 0].
Yang-Mills theories are characterized by many other

nonperturbative properties, the relation to center symmetry
of which is still not clear. Among them, a significant role is
played by the dependence on the topological parameter θ,
which enters the (Euclidean) Lagrangian as follows,

Lθ ¼
1

4
Fa
μνðxÞFa

μνðxÞ − iθqðxÞ; ð2Þ
where qðxÞ is the topological charge defined by

qðxÞ ¼ g2

64π2
ϵμνρσFa

μνðxÞFa
ρσðxÞ: ð3Þ

A nonzero θ breaks CP symmetry explicitly, and a non-
trivial dependence on it is induced by gauge configurations
with nontrivial winding numberQ ¼ R

d4xqðxÞ populating
the path integral of the theory. The relevant information is
contained in the free energy density fðθÞ, which around
θ ¼ 0 can be usefully parametrized as a Taylor expansion
as follows [1],

fðθÞ ¼ fð0Þ þ 1

2
χθ2ð1þ b2θ2 þ b4θ4 þ � � �Þ; ð4Þ

where the topological susceptibility χ and the coefficients
b2n can be related to the cumulants of the topological
charge distribution at θ ¼ 0 by the relations

χ¼hQ2ic;θ¼0

V
; b2n ¼ð−1Þn 2hQ2nþ2ic;θ¼0

ð2nþ2Þ!hQ2ic;θ¼0

; ð5Þ

where V is the four-dimensional volume.
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General large-N arguments [2–4] predict that, in the low
temperature confined phase of the theory, the susceptibility
stays finite in the large-N limit, while the b2n are sup-
pressed by increasing powers of 1=N, as follows:

χ ¼ χ∞ þOðN−2Þ; b2j ¼ OðN−2jÞ: ð6Þ

Such predictions have been checked successfully both
for χ [5–8], with χ∞ turning out to be compatible with
the value predicted by the Witten-Veneziano solution to the
UAð1Þ problem [9,10], and for the fourth order coefficient
b2 [6,11–16].
On the other hand, at asymptotically large T, i.e., small

compactification radius, the theory becomes weakly
coupled, and one expects that instanton calculus can be
safely applied, leading to the validity of the dilute instanton
gas approximation (DIGA) [17,18]

fðθÞ − fð0Þ ≃ χðTÞð1 − cos θÞ
χðTÞ ≃ T4 exp½−8π2=g2ðTÞ� ∼ T−11

3
Nþ4; ð7Þ

which predicts that the topological susceptibility vanishes
exponentially fast with N, while the b2n coefficients stay
constant (for instance b2 ¼ −1=12), contrary to the large-N
low-T scaling. The asymptotically large temperature at
which DIGA should set in is not known a priori; moreover,
while the prediction for χðTÞ comes from a one-loop
computation, the ð1 − cos θÞ dependence expresses the fact
that instantons and anti-instantons can be treated as
independent, noninteracting objects, which is the essential
feature of DIGA, and this could be true far before
perturbative estimates become reliable.
In fact, various theoretical arguments [19–21] support

the idea that the change of regime should take place right
after Tc, and faster and faster as N increases. This scenario
is strongly supported by lattice computations; the topo-
logical susceptibility drops at Tc [7,22–26], and it does so
faster and faster as N increases, pointing to a vanishing of χ
right after Tc in the large-N limit [7,24]. The vanishing of χ
might not be enough to prove that DIGA sets in,1 so that a
stronger and definite evidence comes from studies of the
coefficient b2, proving that it reaches its DIGA value right
after Tc, and faster and faster as N increases [26,33].
As a consequence of the drastic change in the θ-

dependent part of the free energy around Tc, the critical
temperature itself is affected by the introduction of a
nonzero θ; in particular, Tc turns out to be a decreasing
function of θ [34–36].

The facts summarized above point to a strict relation
between the realization of center symmetry and the θ-
dependence of SUðNÞ Yang-Mills theories, which one
would like to investigate more closely. A powerful tool,
in this respect, is represented by trace deformed Yang-Mills
theories, which have been introduced in Ref. [37], although
already explored by lattice simulations in Ref. [38]. The
idea, which is inspired by the perturbative form of the
Polyakov loop effective action at high temperature [17], is
to introduce one or more (depending on the gauge group)
center-symmetric couplings to the Polyakov loop and its
powers, so as to inhibit the spontaneous breaking of center
symmetry even in the presence of an arbitrarily small
compactification radius. In this way, one can approach the
weak coupling regime, where semiclassical approaches are
available, while keeping center symmetry intact, so that the
relation with θ-dependence can be investigated more
systematically.2

Several works have already considered the use of trace
deformed theories and also possible alternatives, like the
introduction of adjoint fermions or the use of nonthermal
boundary conditions [39–59]. There are actually already
well definite semiclassical predictions regarding θ-depend-
ence in the center-symmetric phase [37,60–62], which come
essentially from the fact that in the limit of small compacti-
fication radius the deformed theory can be described in terms
of noninteracting objects with topological charge 1=N [a
sort of dilute fractional instanton gas approximation
(DFIGA)]. This leads one to predict fðθÞ − fð0Þ ∝ 1−
cosðθ=NÞ, hence for instance b2 ¼ −1=ð12N2Þ.While these
predictions are in agreementwith general large-N scaling for
the confined phase exposed above, they are not in quanti-
tative agreement with the lattice results for the confined
phase, which yield instead b2 ¼ −0.23ð3Þ=N2 [16]; in
addition, also the topological susceptibility itself is predicted
to show significant deviations, for large N and small
compactification radius [60], from the behavior shown in
the standard confined phase.
It is therefore quite remarkable that, instead, lattice results

obtained for SUð3Þ, which have been reported for the first
time in Ref. [63], show that one recovers exactly the same
θ-dependence as in the confined phase (i.e., the same value,
within errors, for both χ and b2) as soon as the trace
deformation is strong enough to inhibit the breaking of
center symmetry. The disagreement with semiclassical
predictions is not a surprise, since the values of the
compactification radius L explored in Ref. [63] go up to
L−1 ≡ T ≈ 500 MeV, while the condition for the validity of
the semiclassical approximation is T ≫ NΛ where Λ is the
nonperturbative scale of the theory, so that T ∼ 500 MeV is1There are various examples of quantum field theories

with nontrivial θ-dependence where χ is predicted to vanish in
some limit, while the b2n coefficients do not reach their DIGA
values, like CPN−1 models in two dimensions and in the large-N
limit [16,27–29] or QCD with dynamical fermions in the chiral
limit [30–32].

2Of course, this offers the possibility of investigating the
connection of center symmetry to many other nonperturbative
features of Yang-Mills theory, although in the present study, we
are exclusively concerned with θ-dependence.
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a scale where nonperturbative corrections can still be
important. What is a surprise, claiming for further inves-
tigations, is the fact that such nonperturbative corrections are
exactly the same as in the standard confined phase, leading
to the same θ-dependence also from a quantitative point
of view.
The purpose of the present study is to make progress

along this line of investigation, by extending the results of
Ref. [63] to larger SUðNÞ gauge groups, considering in
particular the case N ¼ 4. There are various reasons to
expect that the study of SUð4Þ may lead to new nontrivial
insights. Apart from the fact that the space of trace
deformations extends to two independent couplings, we
have that the possible breaking patterns of the center
symmetry group Z4 are more complex, including also a
partial Z4 → Z2 breaking which corresponds to a phase
differing from both the standard confined and the decon-
fined phase of the undeformed theory.
The way one can move across the different phases by

tuning the two deformation couplings can be predicted
based on the one-loop Polyakov loop effective potential.
However, as we will discuss, numerical simulations show
the presence of nontrivial corrections induced by fluctua-
tions, which lead to complete center symmetry restoration
also when this is not expected. Moreover, one has the
possibility of checking whether the θ-dependence of the
standard confined phase is achieved just for complete or
also after partial restoration of center symmetry.
The paper is organized as follows. In Sec. II, we review

the definition of SUðNÞ pure gauge theories in the presence
of trace deformations, our lattice implementations, and the
numerical strategies adopted to investigate θ-dependence.
In Sec. III, we first compare the predictions of one-loop
computations of the phase diagram with numerical results,
then discuss the θ-dependence observed for the various
phases. Finally, in Sec. IV, we draw our conclusions.

II. TECHNICAL AND NUMERICAL SETUP

To investigate the relation between center symmetry and
θ-dependence, we will use, as already anticipated in Sec. I,
trace deformed Yang-Mills theories. In order to inhibit the
spontaneous breaking of center symmetry when the theory
is defined on a manifold with a compactified dimension,
new terms (the trace deformations) are added to the
standard Yang-Mills action, which are directly related to
traces of powers of Polyakov loops along the compactified
direction.
The action of the trace deformed SUðNÞ Yang-Mills

theory is thus [37]

Sdef ¼ SYM þ
X
n⃗

XbN=2c

j¼1

hjjTrPjðn⃗Þj2; ð8Þ

where n⃗ denotes a generic point on a surface orthogonal to
the compactified direction, the hjs are new coupling

constants, Pðn⃗Þ is the Polyakov loop associated to the
compactified direction, and bc denotes the floor function.
The number of possible trace deformations is equal to the
number of independent, center-symmetric functions of
the Polyakov loop; in general, for N > 3, more than one
deformation could be needed, in order to prevent the
possibility of a partial breaking of the center symmetry,
with a nontrivial subgroup of ZN left unbroken.
In order to clarify this point, let us specialize to the case

N ¼ 4, which is the one that will be thoroughly inves-
tigated in the following, and it is the simplest case in which
a partial breaking of center symmetry can take place. For
N ¼ 4, the action in Eq. (8) reduces to

Sdef ¼ SYM þ h1
X
n⃗

jTrPðn⃗Þj2 þ h2
X
n⃗

jTrP2ðn⃗Þj2; ð9Þ

and complete restoration ofZ4 requires the vanishing of the
expectation values of the two traces, TrP and TrP2.
A priori, none of the two new terms in the action is
sufficient to guarantee complete center symmetry restora-
tion: for instance,M ¼ diagð1; 1;−1 − 1Þ has TrM ¼ 0 but
TrM2 ≠ 0, while M ¼ diagð1; 1; i;−iÞ has TrM2 ¼ 0 but
TrM ≠ 0. If hTrPi ¼ 0 and hTrP2i ≠ 0 (a possibility which
is forbidden if N ≤ 3), center symmetry is spontaneously
broken with the breaking pattern Z4 → Z2, which corre-
sponds to the fact that single quarks are confined but
couples of quarks are not.
It thus seems that the term jTrPðn⃗Þj2 in the action is

needed to force hTrPi ¼ 0 and the term jTrP2ðn⃗Þj2 is
needed to force hTrP2i ¼ 0, but one should also take into
account the following fact. Trace deformations are spatially
local quantities; i.e., they tend to suppress TrPðn⃗Þ and
TrP2ðn⃗Þ pointwise. However, the restoration of a global
symmetry can also be induced by disorder, since order
parameters are spatially averaged quantities, and this is
what actually happens in many well-known cases, just like
ordinary Yang-Mills theory (see, e.g., the discussion on the
adjoint Polyakov loop in Ref. [63]). This will be particu-
larly important in the following, when we present an
analysis of the predicted phase diagram of the deformed
SUð4Þ gauge theory based on the one-loop effective
potential of the Polyakov loop; this kind of analysis
assumes a spatially uniform Polyakov loop, hence neglects
the possibility of long-distance disorder. This is a possible
explanation of the fact that numerical results will show
sometimes deviations from the one-loop effective potential
prediction, so that, for instance, center symmetry can be
restored completely in some cases by adding just one trace.
The discretization of the action in Eq. (9) does not

present particular difficulties; for the Yang-Mills action
SYM, we adopt the standard Wilson action [64] (in the
following, β will denote the bare coupling β ¼ 6=g2), and
trace deformations can be rewritten straightforwardly in
terms of the lattice variables. The update of the links
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directed along spatial directions can be performed by using
heat bath and over-relaxation algorithms [65–67] imple-
mented à la Cabibbo-Marinari [68], while for the temporal
links (which do not enter linearly in the action), we have to
resort to a Metropolis update [69].
The procedure we used to assign an integer topological

charge valueQ to a given configuration is the following [6]:
first of all, we reduced the ultraviolet noise present in the
configuration by using cooling [70–74] (the numerical
equivalence of different smoothing algorithms was shown
in several studies; see Refs. [75–80]), and then we
computed on the smoothed configurations the quantity
Qni ¼

P
x qLðxÞ, where qLðxÞ is the discretization of the

topological charge density introduced in Refs. [81,82],

qLðxÞ ¼ −
1

29π2
X�4

μναβ¼�1

ϵ̃μναβTrðΠμνðxÞΠαβðxÞÞ: ð10Þ

In this expression, Πμν is the plaquette operator, and the
modified Levi-Civita tensor ϵ̃μναβ coincides with the stan-
dard one for positive indices, while its value for negative
indices is completely determined by ϵ̃μναβ ¼ −ϵ̃ð−μÞναβ and
complete antisymmetry. The integer value of the topologi-
cal charge Q is finally related to Qni by

Q ¼ roundðαQniÞ; ð11Þ

where “round” stands for the rounding to the closest integer
and the constant α was fixed in such a way as to make
hðQ − αQniÞ2i as small as possible (see Refs. [6,15] for
more details).
From the Monte Carlo history of Q, it is straightforward

to estimate the topological susceptibility by using Eq. (5).
This is a priori possible also for the coefficient b2;
however, this is known to not be the most efficient way
of extracting it; a b2 estimator with a more favorable signal-
to-noise ratio (especially for large volumes) can be obtained
by performing simulations at nonvanishing (imaginary,
to avoid the sign problem) values of the topological θ
angle [13,15,16].
In practice, if a θ-term of the form −θLqLðxÞ is added

to the lattice action, b2, χ, and the finite lattice renormal-
ization constant of qLðxÞ [83] can be extracted from the
cumulants of the topological charge distribution at θL ≠ 0.
This approach, although apparently more computationally
demanding than the standard one at θL ¼ 0, turns out in
fact to be much more efficient to obtain reliable estimates of
b2. For more details, we refer to Ref. [15], where the same
method used in the present study was adopted and
explained at length.
We finally note that, despite the advantages of the

imaginary-θ method, a determination of b2 is still signifi-
cantly more challenging than a determination of the
topological susceptibility. For this reason, in Sec. III B,

we will use the topological susceptibility when performing
a broad scan of the θ-dependence across the phase diagram,
while b2 will be measured only for some specific points.

III. RESULTS

The description of our numerical results is divided in two
steps. First, we will discuss the phase structure of the
deformed SUð4Þ gauge theory in the h1-h2 plane and for
values of the compactification radius (temperature) for
which center symmetry is broken at h1 ¼ h2 ¼ 0; we will
make use of predictions coming from the one-loop effective
potential and compare them with results from numerical
simulations. In the second part, the θ-dependence which is
found in the different phases will be presented and
discussed.

A. Phase diagram in the deformation space:
One-loop predictions confront numerical results

In the perturbative regime, the effective potential of a
translation invariant SUð4Þ configuration [with Pðn⃗Þ≡ P]
assumes the form [37]

V½P� ¼ EðPÞ þ h1jTrPj2 þ h2jTrP2j2; ð12Þ

where EðPÞ is the one-loop effective potential of the
standard Yang-Mills theory computed in Ref. [17]:

EðPÞ ¼
X∞
k¼1

1

k4
jTrPkj2: ð13Þ

Since Eq. (12) is an SUð4Þ invariant function, the effective
potential can be conveniently rewritten as a function of the
three independent eigenvalues of P.
Despite the apparent simplicity of Eq. (12), it is far from

trivial to obtain a closed analytical expression for the
position of its absolute minimum. It is nevertheless possible
to gain some analytical insight into the breaking of center
symmetry and the structure of the phase diagram of the
SUð4Þ deformed Yang-Mills theory. Every matrix M ∈
SUð4Þ satisfying TrM ¼ TrM2 ¼ 0 is equivalent to the
diagonal matrix with eigenvalues λk ¼ eiαk (k ¼ 0;…; 3),
with αk ¼ π

4
þ k π

2
. If we denote by R the region of the

ðh1; h2Þ plane corresponding to points for which fλkg is a
local minimum of Eq. (12), the parameter region in which
center symmetry is not broken is necessarily a subset ofR,
and Z4 is surely broken for all the values ðh1; h2Þ outside
R. The regionR can be analytically determined, and it can
be seen that

R ¼
�
h1 >

5

24

�
∩
�
h2 >

1

96

�
; ð14Þ

as shown in Fig. 1. In particular, as anticipated, we see that
a single deformation is not sufficient to ensure the absence
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of center symmetry breaking in the one-loop effective
action; the axes h1 ¼ 0 and h2 ¼ 0 lie outside R, and Z4

has to be broken there.
To test the effectiveness of the one-loop potential in

predicting the phase diagram, we also numerically inves-
tigate the phase diagram of the lattice deformed Yang-
Mills theory, using a 6 × 323 lattice and two values of
the lattice coupling larger than the critical value βc ≃ 10.79
(see Ref. [84]). More in detail, we considered β ¼ 11.15
(corresponding to an inverse compactification radius
T ≈ 393 MeV) and β ¼ 11.40 (T ≈ 482 MeV), then per-
formed a scan of the plane ðh1; h2Þ in the range ½0; 2� × ½0; 2�
with a step Δ ¼ 0.1, for a total of 441 simulation points for
each β value. The scale has been fixed using the determi-
nation of Ref. [84] [see in particular Eq. (35) therein] and
fixing the string tension to be σ ¼ ð440 MeVÞ2.
The phase diagram obtained from numerical simulations

performed at β ¼ 11.15 is shown in Fig. 2; in a small region
around the origin, Z4 is completely broken, while outside,
there is no breaking at all, apart from a region at large
values of h1, where Z4 breaks partially to Z2. The different
phases have been identified both by looking at histograms
of the time histories of TrP, TrP2 (see Figs. 3–5) and by
studying3 hjTrPji, hjTrP2ji (see Figs. 6 and 7), where

P≡ 1

V

X
n⃗

Pðn⃗Þ: ð15Þ

The picture that emerges is in striking contrast with the
expectations based on the one-loop effective potential: even
a single deformation is capable of completely stabilizing
center symmetry (0.2 < h1 ≲ 4 for h2 ¼ 0 or h2 > 1.1 for
h1 ¼ 0). This can be noticed by looking at Figs. 5 and 7.
Moving to the larger value of β that we have explored

(corresponding to a smaller compactification radius), one
may expect that predictions based on the one-loop effective
potential get more reliable. The phase diagram obtained for

FIG. 1. Graphical representation, in the plane ðh1; h2Þ, of the
region R corresponding to points for which λk ¼ eiαk
(k ¼ 0;…; 3), with αk ¼ π

4
þ k π

2
, is a local minimum of the

one-loop effective potential.

FIG. 2. Phase diagram obtained from simulations performed at
bare coupling β ¼ 11.15 on a 6 × 323 lattice, corresponding to an
inverse compactification radius L−1 ¼ T ≃ 393 MeV. Crosses
represent the simulation points where θ-dependence has been
explored (see Fig. 11).
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-0,05

-0,04
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-0,01

0

Im(TrP
2
)

Re(TrP
2
)

FIG. 3. An example of complete breaking of center symmetry
(Z4 → Id) at β ¼ 11.15. We report the Monte Carlo histories of
ReðTrPÞ, ImðTrPÞ, ReðTrP2Þ, ImðTrP2Þ for h1 ¼ 0.0, h2 ¼ 0.1.
Both ReðTrPÞ and ReðTrP2Þ are nonzero.

3Note that hTrPi and hTrP2i identically vanish on finite
lattices, apart from possible numerical issues related to ergodicity
breaking for large volumes.
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β ¼ 11.40 is shown in Fig. 8. We can see that indeed the
new partially broken phase becomes more manifest, so that
center symmetry is now broken along the whole h1 axis, as
predicted in terms of the one-loop potential; however,
along the h1 ¼ 0 axis, the discrepancy persists, with
center symmetry being protected just by the jTrP2ðn⃗Þj2
deformation.
Notice that in sketching Fig. 8 we have not made any

statement about the order of the various transition lines.
This is an issue that should be considered in future studies,
and by now, we can just make some general statements:
direct transitions from the completely broken phase to the
completely restored phase are expected to be first order, as
for the standard deconfining phase transition of SUð4Þ,
while transition from the partially restored phase should be
in the universality class of the three-dimensional Ising
model if they are second order; however, they can still be

first order, and this depends on the dynamics of the system
and should be checked by more extensive numerical
simulations.

0 500 1000 1500 2000 2500
MC Step

-0,03

-0,02

-0,01

0

0,01

0,02

0,03

Re(TrP)
Im(TrP)

0 500 1000 1500 2000 2500
MC Step

-6e-03

-4e-03

-2e-03

0e+00

2e-03

4e-03

6e-03
Re(TrP

2)
Im(TrP

2)

FIG. 4. An example of complete restoration of center symmetry
for β ¼ 11.15, h1 ¼ 0.0, and h2 ¼ 1.7. The Monte Carlo histories
of all quantities, ReðTrPÞ, ImðTrPÞ, ReðTrP2Þ, and ImðTrP2Þ,
fluctuate around their zero average values. It is interesting to
notice that the fluctuations of TrP are significantly larger than
those of TrP2; indeed, hPi should not be zero according to the
one-loop effective potential and vanishes because of long range
disorder.
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TrP
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h

1
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h
1
 = 4.0

h
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FIG. 5. The histogram of ReðTrP2Þ computed using a 6 × 323

lattice at bare coupling β ¼ 11.15 for three different values of h1
along the h2 ¼ 0 axis.
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FIG. 6. hjTrPji and hjTrP2ji computed using a 6 × 323 lattice at
bare coupling β ¼ 11.15 for different values of the deformation
parameters. Different datasets correspond to deformations of the
form (h1 ≠ 0, h2 ¼ 0), (h1 ¼ 0, h2 ≠ 0), and (h1 ¼ h2).

BONATI, CARDINALI, D’ELIA, and MAZZIOTTI PHYS. REV. D 101, 034508 (2020)

034508-6



To further investigate the origin of the inconsistencies
between the prediction of the one-loop effective potential
and the phase diagram observed in numerical simulations,
we studied the quantities

hjTrPlocj2i≡ 1

V

X
n⃗

hjTrPðn⃗Þj2i ð16Þ

hjTrP2
locj2i≡ 1

V

X
n⃗

hjTrP2ðn⃗Þj2i: ð17Þ

Since the squared modulus in this case is taken over local,
rather than spatially averaged, quantities, such observables

should be less sensitive to long range disorder and follow
more closely the prediction of the one-loop effective
potential.
Our results have been obtained by performing simula-

tions using three different setups for the deformation
parameters h1 and h2 in Eq. (9). The first two setups are
the ones in which only a single deformation is present, i.e.,
h1 ≠ 0 and h2 ¼ 0 or h1 ¼ 0 and h2 ≠ 0. The third setup is
the one in which both deformations are active and, for the
sake of the simplicity, we restricted to the “diagonal”
configuration h1 ¼ h2. We show in particular results
obtained for β ¼ 11.15 on the 6 × 323 lattice (which is
one of the two setups already discussed above), which are
reported in Figs. 9 and 10 and there compared to reference
values obtained on the same lattice and without any
deformation at β ¼ 10.50, which is deep into the confined
phase. The corresponding quantities, for which the squared

FIG. 8. Phase diagram obtained from simulations performed at
bare coupling β ¼ 11.40 on a 6 × 323 lattice, corresponding to an
inverse compactification radius L−1 ¼ T ≃ 482 MeV. Crosses
represent the simulation points where θ-dependence has been
explored (see Figs. 13 and 14).
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FIG. 9. Mean value of the local quantity hjTrPlocj2i. The black
line indicates the value of the undeformed theory for β ¼ 10.50.
The lattice used is 6 × 323, and the bare coupling β ¼ 11.15.
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FIG. 7. hjTrP2ji computed using a 6 × 323 lattice at bare
coupling β ¼ 11.15 for different values of h1 along the
h2 ¼ 0 axis.
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FIG. 10. Mean value of the local quantity hjTrP2
locj2i. The black

line indicates the value of the undeformed theory for β ¼ 10.50.
The lattice used is 6 × 323, and the bare coupling β ¼ 11.15.
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modulus is taken after the spatial average, have been
already shown in Fig. 6.
The general lesson we can learn by comparing the

different behaviors is the following. On one hand, it is
clear that the local quantities, hjTrPlocj2i and hjTrP2

locj2i,
are significantly more suppressed, with respect to their
values in the standard confined phase, when a direct
coupling to the relevant deformation is present (i.e.,
respectively, h1 ≠ 0 or h2 ≠ 0); this fact was already
noticed and discussed in Ref. [63], pointing to a different
kind (from a dynamical point of view) of center symmetry
restoration in the trace deformed theory, with respect to the
standard confined phase.
On the other hand, when no direct coupling to the

relevant deformation is present [i.e., along the (0; h) axis for
hjTrPlocji and along the (h; 0) axis for hjTrPlocj2i], the local
quantities are not significantly suppressed or remain almost
constant, in agreement with the predictions of the one-loop
effective potential, meaning that in this case the complete
restoration of center symmetry takes place because of long
range disorder. This is also appreciable from Fig. 4, where
the Monte Carlo histories of the spatially averaged quan-
tities are shown for the same β value and for a point along
the (0; h) axis where Z4 is completely restored; TrP, which
is not coupled to any deformation, averages to zero, but
with much larger fluctuations with respect to TrP2, and we
interpret this as a manifestation of the fact that TrP is
locally nonzero but fails to reach an ordered phase at large
scales.

B. θ-dependence of the various phases

We are now going to discuss the θ-dependence of the
different phases identified previously for the deformed
SUð4Þ theory. It is interesting, in particular, to ask whether
the different ways in which Z4 can be restored manifest
themselves also in a different θ-dependence or not. Let us
start from the case of the 6 × 323 lattice at bare coupling
β ¼ 11.15 (T ≈ 393 MeV), the phase diagram of which
was shown in Fig. 2. In Fig. 11, we report the behavior of
the topological susceptibility χ as a function of the
deformation parameters h1 and h2, for the three deforma-
tion setups introduced above. In order to have a direct
comparison with the T ¼ 0 result, we plot the ratio between
the topological susceptibility χ in the deformed theory and
the T ¼ 0 continuum value computed in ordinary Yang-
Mills theory in Ref. [16]. We are using here the fact,
explicitly verified in Ref. [63], that the lattice spacing can
be considered to be independent of the deformation for all
practical purposes. This will not be necessary in the
following when discussing results for b2, since b2 is
dimensionless.
For h1 ¼ h2 ¼ 0, the system at β ¼ 11.15 is in the

deconfined phase, so we expect the value of the topological
susceptibility χ to be tiny for small values of the deforma-
tion parameters. From data in Fig. 11, we see that this is

indeed the case for all the deformation setups studied.
Moreover, the topological susceptibility always reaches a
plateau for large deformations, at a valuewhich is consistent
with that of χ measured at T ¼ 0 in ordinary Yang-Mills
theory. This asymptotic value is, however, approached
differently in the different deformation setups: when using
h2 ¼ 0 or h1 ¼ h2, the plateau starts from h ≈ 0.2, while in
the setup with h1 ¼ 0, it starts from h ≈ 1.2. The reason for
this behavior is clear from the phase diagram shown in
Fig. 2: these values of the deformation parameters are the
ones that are needed to reach the Z4-symmetric phase when
moving along the axes or along the diagonal of the phase
diagram.
Using the same lattice setting, we computed also the

coefficient b2 related to the fourth power of θ in the
expansion of the free energy; see Eq. (4). As explained in
Sec. II, the estimation of b2 is computationally much more
demanding than that of χ; for this reason, we decided to
compute b2 just for three values of the deformations deep in
the plateau region, one for each of the three deformation
setups previously adopted (with h ¼ 1.5 in all the cases).
We computed b2 by means of the imaginary θ method
discussed in Sec. II, using seven values of θL in the range
[0, 12]. The outcome of this analysis is reported in Fig. 12:
also for b2, there is a nice agreement between the values
computed in the deformed theory in the Z4 restored phase
and the one obtained in the T ¼ 0 Yang-Mills case, for all
the deformation setups.
It is interesting to compare the results obtained for b2

with the values predicted by using two well-known
approximation schemes. The first one is the DIGA, which
is expected to be reliable in ordinary Yang-Mills theory for
a small value of the compactification radius. In this
approximation, the system is supposed to be well approxi-
mated by a gas of weakly interacting degrees of freedom
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FIG. 11. Ratio between the topological susceptibility χ com-
puted in the deformed theory and the one at T ¼ 0 computed in
Ref. [16] for different values of the deformation parameters h1
and h2. Results are obtained on the 6 × 323 lattice at bare
coupling β ¼ 11.15.
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(d.o.f.), carrying an unit of topological charge (�1), and the
coefficient b2 is predicted to be −1=12. The second
approximation scheme is the DFIGA, which is expected
to be valid in the center-symmetric phase of the deformed
theory for small values of the compactification length. In
this case, the d.o.f. are still expected to be weakly
interacting, but now they carry a fractional topological
charge, quantized in units of 1=N. In this scenario, the
predicted value is b2 ¼ −1=ð12N2Þ, i.e., b2 ¼ −1=192 for
SUð4Þ. Both these values are shown in Fig. 12, and they are
clearly not compatible with numerical data, indicating that
the compactification length used is still too large for the
interactions between the fractional d.o.f. to be negligible.
Let us now repeat the same analysis for the second value

of the bare coupling constant β studied in Sec. III A, i.e.,
β ¼ 11.40 (corresponding to T ≈ 482 MeV). The values of
the deformations used are 0 ≤ h1 ≤ 2 and 0 ≤ h2 ≤ 2.
Three different phases are present, see Fig. 8, and one
could expect that also the θ-dependence shows some signal
of the presence of the phase with Z4 broken to Z2.
From Fig. 13, where the results for the topological

susceptibility are reported, we see that this is indeed the
case; errors are larger than for β ¼ 11.15, but it is quite
clear that the values of χ approach χT¼0 only for two of the
three deformation setups adopted, namely the one in which
h1 ¼ 0 and the one in which h1 ¼ h2. By looking at the
phase diagram in Fig. 8, we see that these are the only two
setups in which the deformations induce a complete
restoration of the center symmetry and that the values of
the deformation at which the plateaux are reached are
consistent with the boundaries of the region with broken
center symmetry. In the remaining deformation setup, in
which h2 ¼ 0, center symmetry is not completely restored
by increasing the value of h1, and the system enters the
phase in which center symmetry is broken to its Z2

subgroup. While it is not clear why in this phase the

susceptibility seems to approach zero as we increase h1, it
is tempting to interpret the peak at h ≈ 0.3 (at which point
χ ≈ χT) as a proximity effect due to the closeness of the
completely restored phase in the phase diagram (see Fig. 8).
In order to investigate this hypothesis, we computed the
value of the topological susceptibility also using a different
setup, i.e., varying h1 and keeping h2 ¼ 0.25, because
from the phase diagram of Fig. 8, we see that in this setup
the system passes across all the symmetry breaking
patterns. Results are shown in Fig. 14. We can clearly
see that the case ðh1; h2 ¼ 0.25Þ is in between the diagonal
case and the one with only the h1 deformation; the values
of the deformation parameter at which the topological
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FIG. 14. Ratio between the topological susceptibility χ com-
puted in the deformed theory and at the one at the T ¼ 0
continuum from Ref. [16] for different values of the deformation
parameters h1 and h2. In particular, here we report the case in
which h1 varies and h2 is kept fixed at h2 ¼ 0.25. Results are
obtained on the 6 × 323 lattice at bare coupling β ¼ 11.40.
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FIG. 12. The coefficient b2 measured in the deformed theory on
the 6 × 323 lattice at β ¼ 11.15, for the different deformation
setups and h ¼ 1.5. The band denotes the T ¼ 0 continuum result
computed in Ref. [16], while the dashed lines indicate the DIGA
(−1=12) and the DFIGA predictions (−1=192).
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FIG. 13. Ratio between the topological susceptibility χ com-
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coupling β ¼ 11.40.
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susceptibility is compatible with the one at T ¼ 0 corre-
spond to the region in which center symmetry is completely
restored, and this can be appreciated when comparing with
the phase diagram shown in Fig. 8.
The presence of the partially broken phase is evident also

from the values of b2 computed at β ¼ 11.40, which are
shown in Fig. 15. The values of b2 in the phase with
completely restored center symmetry are again compatible
with the results obtained at T ¼ 0 in Ref. [16], while the
values corresponding to the deformation parameters
h1 ¼ 1.5, h2 ¼ 0 and h1 ¼ 3.0, h2 ¼ 0 are incompatible
with b2ðT ¼ 0Þ and lie in the middle between the DIGA
prediction −1=12 and the DFIGA one −1=192.
Altogether, lattice data indicate that the θ-dependence of

the deformed theory coincides with the one of ordinary
Yang-Mills theory at T ¼ 0 only when center symmetry is
completely recovered, and this happens independently of
the specific way the restoration takes place, i.e., either by
local suppression of TrP and TrP2 or by long range
disorder. Instead, in the phase in which center symmetry
is only partially restored, neither the topological suscep-
tibility nor b2 reaches a clear plateau as a function of the
deformation parameter, and they assume values somewhere
in between the deconfined and the confined cases.

IV. CONCLUSIONS

In this paper, we have investigated the relation between
center symmetry and θ-dependence in Yang-Mills theories,
exploiting trace deformations in order to control the
realization of center symmetry breaking in a theory with
a small compactified direction. Extending previous results
presented in Ref. [63] for the SUð3Þ pure gauge theory, we
have considered SUð4Þ, which is particularly interesting
since, apart from allowing a larger space of independent

trace deformations, it is also the first SUðNÞ gauge group
for which the center group admits various patterns of
symmetry breaking.
In a first step, we have investigated the phase diagram of

the theory in the deformation space and for various values
of the inverse compactified radius, reaching values up to
L−1 ∼ 500 MeV. We have considered predictions from the
one-loop effective potential of the Polyakov loop and
compared them to results of numerical lattice simulations,
in which the fate of center symmetry breaking has been
studied both by global (i.e., averaged over all directions
orthogonal to the compactified direction) and local quan-
tities. We have shown that center symmetry in the deformed
theory can be completely restored in a way which is
sometimes qualitatively different from that of the standard
confined phase, as evinced from the expectation value of
local quantities directly coupled to the deformations, and
sometimes in contrast with expectations from the one-loop
effective potential, since the restoration takes place through
long range disorder.
Despite this variety of possible restorations, our numeri-

cal results show that the θ-dependence of the deformed
theory matches, within statistical errors, that of the standard
confined phase in all cases in which center symmetry is
completely restored. On the contrary, a partial restoration
of center symmetry leads to a θ-dependence which is
different from both that of the confined phase and that
of the deconfined phase, interpolating in some way
between them.
The failure to reproduce predictions for the θ-dependence

coming from semiclassical computations (in particular those
equivalent to a sort of DFIGA) can be ascribed, as for the
SUð3Þ results reported in Ref. [63], to the fact that
our inverse compactifications radius is still not large. On
the other hand, the striking agreement with results from the
standard confined phase confirms and reinforces the evi-
dence, already shown for SUð3Þ, for a strict relation between
the fate of center symmetry and other relevant nonpertur-
bative features of Yang-Mills theories. This can beviewed as
a practical realization of the volume independence which is
expected to hold in the large-N limit as soon as no phase
transition is crossed.
Future studies could extend the present investigation in

various directions. Considering other relevant nonpertur-
bative properties, such as the spectrum of glueball masses,
is a first nontrivial goal that should be pursued. The
extension to large SUðNÞ gauge groups is of course another
interesting direction.
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