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A B S T R A C T

In this paper, a possible extension of Griffith’s fracture theory to describe fatigue-induced
crack propagation is proposed. To this end, an energy-based model is presented, taking
Griffith’s model as the point of departure and employing the concept of state-dependent
fracture toughness. Therein, fatigue degradation is achieved through a suitable history variable
endowed with a functional form that is able to consider crucial aspects of fatigue, including the
crack-tip singularity, the identification of fatigue-inducing loading conditions, and mean load
effects. Simple paradigmatic examples indicate that the model provides a unified description
of different fatigue responses and unveils peculiar regimes in the crack propagation process,
always preserving the link to classical fracture mechanics. In this context, analytical results
establish a clear relation between Griffith’s fracture theory and Paris’ law. The proposed
modeling framework paves the way for future developments in modern fracture mechanics, e.g.,
to derive a novel generation of variational fatigue phase-field fracture models suitably rooted
in a Griffith-based theory.

. Introduction

Fatigue refers to a failure process due to the application of repeated loads, which individually would be too small to cause
he direct failure of the material itself. As a consequence of such repeated loadings (cyclic or not), various complex interacting
henomena occur at the micro-scale, having almost all in common the weakening and degradation of the material properties at the
acro-scale. Such microscopic phenomena consist, for instance, of plastic slip systems and the coalescence of micro-voids [1–3]. As

he fatigue process advances, these microdefects, which are ruled by the stochastic micro-structural arrangement of the material and
herefore are random in nature, evolve into microcracks. The resulting microcracks eventually coalesce and lead to the formation
f a fatigue (macro-)crack, whose size allows one to neglect the aleatory nature of the material microstructure. This macro-crack
ay then propagate, first in a stable way, and finally unstably leading to failure.

Fatigue failure is an extremely, if not the most, dangerous phenomenon in structural mechanics, since it often occurs without
orewarning resulting in devastating events. Precisely, it is responsible for up to 90% of all mechanical failures and involves the
ajority of materials [4]. Moreover, in real situations, the identification of the fatigue degradation state of a material is very difficult

f not impossible. Therefore, fatigue failure prediction still represents an open challenge for modeling and simulation at the cutting
dge of mechanics.

Fracture mechanics is nowadays a consolidated theory within the realm of continuum mechanics that has been developed starting
rom the pioneering work of Griffith [5], where the key concepts of energy release rate and fracture toughness were established. A
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Nomenclature

Acronyms

FDZ fatigue degradation zone
FR fast crack propagation regime
HCF high-cycle fatigue
KPZ K-dominance zone
LEFM linear elastic fracture mechanics
PR Paris’ (stable) crack propagation regime
SR slow crack propagation regime

Standard mechanical symbols

(𝜌, 𝜗) crack tip polar coordinates
 dissipation potential
𝜓 elastic energy density
 total potential energy
𝜈 Poisson’s ratio
𝜎 far field stress
𝒙 generic position vector
𝐸 Young’s modulus
𝑡 time-evolution parameter

Fracture related symbols

𝛬̄ K-dominance degree limit
𝛤 crack path domain (𝛤 = 𝛤 ∪ 𝛤 and 𝛤 ∩ 𝛤 = ∅)
𝛤 sound part of the crack path
𝛤 current open crack
𝐺c fracture toughness
𝒙̂ crack position vector map
𝐾Ic mode-I critical stress intensity factor
𝛬𝜓 energy based K-dominance degree
𝛬𝜎 stress based K-dominance degree
𝑙 current crack length
𝑙0 initial crack length
𝑟 relative crack arc-length (𝑟 = 𝑠 − 𝑙)
𝑠 crack arc-length
𝒙𝑙 crack tip position vector
𝒓 relative crack tip position vector
𝐺 energy release rate
𝐾𝑖 mode-𝑖 stress intensity factor

Fatigue related symbols

f fatigue dissipation potential
𝜓̄ elastic energy based fatigue history variable
𝑑 fatigue degradation function
𝑓 fatigue function
𝜙 fatigue history variable
𝜙0 fatigue history variable at critical monotonic load
𝐺f fatigue fracture toughness
𝑘f fatigue degradation parameter
𝑘h fatigue threshold function parameter

remarkable variational extension of such a theory was proposed by Francfort and Marigo [6], where the quasistatic crack evolution
was revisited as an energy minimization problem and freed from the usual Griffith’s constraints, namely, the existence of a preexisting
crack and a well defined crack path. Along its merits, one cannot avoid mentioning the effective numerical phase-field approach [7]
2
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𝓁f fatigue length
𝓁k K-dominance length
𝐶 Paris’ (law) coefficient
ℎ fatigue threshold function
𝑚 Paris’ (law) exponent
𝑁 cycle number
𝑅 fatigue load ratio

built on the top on this variational framework by [8] which has made possible the simulation and prediction of very complex fracture
phenomena.

This work aims at contributing to the development of a new generation of phase-field models endowed with the capability of
escribing both fatigue crack initiation (e.g. Wöheler limits) and fatigue crack propagation (e.g. Paris’ law). In this regard, recent

and promising attempts have been made so far. These can be divided with respect to the modeling strategy adopted for taking
into account fatigue effects. Under the thermodynamical point of view, the first main difference is whether fatigue effects are
assumed increasing the damage/fracture driving force or reducing the damage/fracture resisting force. To the former class belong,
for instance, Refs. [9–11]. In these works, an additional energetic source is introduced, which depends on a dedicated fatigue variable
whose evolution is governed by a cyclic-number dependent law. Among the models that consider fatigue effects as a reduction
of the resisting force, different modeling strategies have been considered. In [12], in the context of a one-dimensional energetic
formulation framework [13], the fracture toughness is reduced by means of a history variable. Existence results of this model have
been investigated with a vanishing viscosity approach [14]. A three-dimensional extension of this model was provided in [15] and
an efficient numerical implementation in [16]. This model has been extended in [17–19] to consider plasticity effects, therefore
capturing ductile fatigue fracture phenomena, and in [20] in a multi-physics context for modeling fatigue cracking in lithium-ion
battery electrode particles. In [21–23], an additional fatigue damage variable has been introduced and its evolution law directly
prescribed, that is, not descending from the variational framework. Such an auxiliary variable reduces the fracture toughness by
means of a degradation function. Within the same approach, polymeric materials have been considered in a finite strains setting
in [24]. Other models, which cannot be categorized in the two above mentioned classes, directly modify or enrich the phase-field
evolution law. For instance, in [25], a phase-field viscosity fatigue effect is considered. In [26], fatigue effects have been taken
into account by degrading with respect to damage the stress appearing in the Ginzburg–Landau (G–L) equation. In [27,28], fatigue
is modeled as a continuous internal variable whose evolution equation is considered as a constitutive relation to be determined
in a thermodynamically consistent way. Similarly, [29] considers fatigue effects in elasto-plastic solids and in a non-isothermal
setting. Fatigue effects in a viscous-elastic material are considered in [30–32] by adding a phenomenological damage rate dependent
energetic term in the balance of mechanical energy.

Despite the interesting insights and results, none of the previously mentioned models has proven to own the required flexibility
and, at the same time, to be sufficiently simple in describing real material fatigue behaviors. The main reason, in our opinion, lies
in the fact that all these models have been derived directly from phase-field models and not as regularization of a Griffith’s type
fracture model able to describe fatigue effects. Therefore, in view of the above mentioned long term goal, the main aim of this work
is to establish a first link, in our opinion necessary, between Griffith’s fracture theory and Paris-like fatigue crack propagation laws
for the description of high-cycle fatigue (HCF) phenomena. To the authors’ knowledge, such a link has not been established yet.

In this regard, the proposed model will be shown, for instance, to be sufficiently flexible to describe several key features of
fatigue crack propagation, like the Paris’ law regime, the vertical asymptotic monotonic fracture limit, and mean stress effects. We
will also show how all these features, that we believe any model should be able to describe in a unified manner, can be easily tuned.

The key idea of the present model, inspired by Alessi et al. [12], is to no longer consider the fracture toughness as a material
parameter but rather as a material function. Specifically, the fracture toughness is assumed to decrease as an accumulated
fatigue variable, an energy-based measure in this work, increases. We will call the fatigue variable accumulation fatigue history
ariable. Moreover, a fatigue zone surrounding the crack tip is introduced in order to amplify the fatigue degradation effects.
he energy amplification in this region is motivated by the fact that in HCF problems, even involving ductile materials, inelastic
henomena strongly influencing the fatigue crack growth rate only occur around the crack tip. This modeling approach amounts to
phenomenological description of a multitude of microscopic material degradation mechanisms.

Due to the novelty of the model, the presentation is kept at its maximum level of simplicity, leaving deeper investigations and
efinements to future works. Therefore, only a two-dimensional problem is considered with a single evolving crack and mode-I
oading conditions. Nevertheless, many other problems can be immediately considered taking advantage of the results presented in
racture mechanics handbooks, as, for instance, in [33].

The remainder of the paper is structured as follows. Section 2 presents, step by step, the construction of the proposed fatigue
odel, starting from Griffith’s fracture governing equations. Key concepts such as the fatigue degradation zone, the fatigue
egradation function, and the fatigue history variable are here introduced. In Section 3, a simple illustrative example highlighting
he essential model features is presented. Therein, a closed-form link between the stationary fatigue crack propagation regime of
he model and Paris’ law is also established. Concluding remarks are finally drawn in Section 4 where future possible modeling
3
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Fig. 1. Abstract problem setup.

Notation. 𝑡□ = {□(𝜏) ∶ 𝜏 ∈ [0, 𝑡]} identifies a history variable, □̇ or (□)∙ defines the total derivative with respect to time 𝑡, and (□)+

is the positive part of □. Furthermore, we often name functions expressing the same physical quantity but depending on different
variables, of course linked to each other, with the same label, when no source of confusion occurs. Similarly, the difference between
a function and its value computed at a given state is not always made explicit.

2. From Griffith’s fracture theory to a brittle fracture fatigue model

A two-dimensional mechanical problem is considered, with a homogeneous isotropic linear elastic material and a single, possibly
non-straight, smooth crack. The crack path is arbitrary in the following abstract formulation, whereas in the forthcoming examples, a
predefined crack path will be assumed in order to obtain analytical results. Mode-I loading conditions are considered. The evolution
problem is assumed rate-independent and described by the time-evolution parameter 𝑡 with initial conditions set up at 𝑡 = 0.
The linear elastic fracture mechanics (LEFM) framework is assumed, with a fracture process zone well smaller than the K-dominance
zone (KDZ).

According to Fig. 1, the crack path 𝛤 is parametrized by its arc-length 𝑠, that is, 𝑠 ↦ 𝒙̂(𝑠). The actual crack tip is identified by
the crack length 𝑙 with 𝒙𝑙 = 𝒙̂(𝑙), while 𝑟 denotes the crack path arc-length with respect to the crack tip and 𝒙𝑟 = 𝒙̂(𝑙+ 𝑟) the related
position vector. The current crack is then denoted by 𝛤 while its complement, the still unbroken crack, by 𝛤 , such that 𝛤 = 𝛤 ∪ 𝛤 .

In this work, we also introduce the concept of fatigue degradation zone (FDZ), that is, the region where the fatigue degradation
process occurs. Often, as in [34], the FDZ is simply referred to as the region, formed within the plastic zone, in which the micro- or
macroplastic cyclic strain takes place and the initial damage of the material microstructure originates [35]. For the purposes of this
work, it is sufficient to consider the FDZ delimited by a circle centered at the crack tip and with radius denoted by 𝓁f. The fatigue
length 𝓁f can then be regarded as a material internal length. Other shapes for the FDZ can be considered, as the one in [36, Fig.
A.18] based on the elastic energy density field.

In the following sections, standard brittle and fatigue fracture mechanics results, respectively presented in Section 2.1 and
Section 2.2, are first summarized. This summary serves as motivation and sets the stage for the step-by-step construction of the
proposed fatigue model in Section 2.3. Specific expressions for the introduced fatigue material functions are proposed in Section 2.4.

2.1. Griffith’s theory of fracture

In the present setting, Griffith’s theory describing the evolution of a crack is based on the following conditions:

⎧

⎪

⎨

⎪

⎩

𝐺 ≤ 𝐺c, (a)
𝑙̇ ≥ 0, (b)
(𝐺 − 𝐺c) 𝑙̇ = 0, (c)

(1)

that must hold at any time 𝑡, with

𝐺 ∶= − 𝜕
𝜕𝑙

(2)

being the energy release rate, depending on the total potential energy  , sum of the total elastic potential energy and the work
of external actions, and 𝐺c the material fracture toughness [5,8]. Conditions (1) are also known as Griffith’s criterion. From a
thermodynamical viewpoint and interpreting the crack length as a global dissipating internal variable, the first condition (1a)
compares the crack length driving force 𝐺 to the resisting force 𝐺 . Instead, conditions (1b) and (1c) enforce the fulfillment of
4
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the Clausius–Duhem inequality (irreversibility condition) and energy balance, respectively. In the framework of generalized standard
materials (GSM) [37], the problem (1) reduces to the following condition:

− 𝜕
𝜕𝑙

∈ 𝜕
(

𝑙̇
)

(3)

at any time 𝑡, with


(

𝑙̇
)

∶=

{

𝐺c 𝑙̇, if 𝑙̇ ≥ 0,
+∞, if 𝑙̇ < 0,

(4)

being the (convex) dissipation potential satisfying (0) = 0. An extensive discussion on the link between the two formulations can
be found in [8, Sec. 2.1].

2.1.1. Stress intensity factors and the K-dominance zone
For two dimensional problems, the stress field near the crack tip of a linear elastic isotropic solid has a universal form independent

of applied loads and the geometry of the cracked body [38], namely,

𝜎𝑖𝑗 =
1

√

2𝜋𝜌

(

𝐾I𝑓
I
𝑖𝑗 (𝜗) +𝐾II𝑓

II
𝑖𝑗 (𝜗) +𝐾III𝑓

III
𝑖𝑗 (𝜗)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜎sing
𝑖𝑗

+ 𝑜
(

1∕
√

𝜌
)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝜎reg
𝑖𝑗

, (5)

where 𝜎sing
𝑖𝑗 and 𝜎reg

𝑖𝑗 are, respectively, the singular and regular parts of the corresponding stress component 𝜎𝑖𝑗 and (𝜌, 𝜗) are the
local polar coordinates centered at the crack tip with respect to the tangent direction to the crack path. Consequently, the elastic
energy density can also be approximated near the crack tip by its singular and regular parts:

𝜓 = 1
𝜌
𝜅𝜓 (𝜗)

⏟⏞⏟⏞⏟
𝜓sing

+ 𝑜 (1∕𝜌)
⏟⏟⏟
𝜓reg

. (6)

hese representations of the stress and elastic energy density fields continue to be locally valid in case of a two-dimensional crack
ront in a three-dimensional body, with the only difference that the stress intensity factors and 𝑘𝜓 also depend on the arc-length
arametrization of the crack front and provided that the crack front has no special singular points, as for instance a kink of the
rack front or a point where the crack front intersects a free surface. In such cases, the stress and the energy singularities are no
onger of type 𝜌−1∕2 and 𝜌−1, respectively [39, Sec. 4.2.3].

It is clear from (5) and (6) that singular parts become dominant in locations close to the crack tip. Indeed, in the KDZ, the
ear-tip stress field can be effectively described by the singular stress field or, equivalently, by the stress intensity factors.

For a mode-I fracture, the link between the energy release rate and the corresponding stress intensity factor yields

𝐺 = 𝑘G𝐾
2
I , (7)

with 𝑘G = 1∕𝐸 for plane-stress and 𝑘G = (1 − 𝜈2)∕𝐸 for plane-strain elasticity. The link for the other fracture modes, including mixed
ones, can be found in [38,40]. For mode-I fractures, (7) allows us to express Griffith’s fracture criterion (1a) with respect to the
stress intensity factor instead of the fracture toughness:

𝐾I ≤ 𝐾Ic, with 𝐾Ic ∶=
√

𝐺c∕𝑘G (8)

being the critical stress intensity factor.
The definition of the KDZ size is not unique and often depends on the specific problem. For instance, this region depends on

the crack path geometry, including the crack length, the fracture mode, and a tolerance parameter which fixes the K-dominance
degree. The K-dominance degree 𝛬 is defined as the ratio between a singular part and the sum of the singular and regular parts of
a component of the elastic solution. A value of 𝛬 close to unity means that the singular part of the elastic solution is dominant. On
he contrary, a value close to zero corresponds to a solution influenced only by the regular part.

Let us consider a mode-I fracture problem with a straight crack (𝜌 = 𝑟). Following the definition in [38, p. 66], we have that

𝛬𝜎 (𝑟) =
𝜎sing(𝑟)
𝜎(𝑟)

, (9)

with 𝜎sing(𝑟) = 𝐾I∕
√

2𝜋𝑟. The two stress values refer to the stress component 𝜎𝑟𝑟(𝑟, 𝜗 = 0). A similar definition in terms of the elastic
nergy density can be provided:

𝛬𝜓 (𝑟) =
𝜓sing(𝑟)
𝜓(𝑟)

. (10)

Then, once a limit value for the K-dominance degree has been set, say 𝛬̄, the K-dominance characteristic size 𝓁k, hereafter called
K-dominance length, is given by

𝓁 ∶ 𝛬(𝓁 ) = 𝛬̄, (11)
5
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Fig. 2. K-dominance (blue) and fatigue degradation (red) zones.

with 𝛬 equal to 𝛬𝜎 or 𝛬𝜓 .
So far, three important regions around the crack tip have been introduced, namely, the fracture process zone, the K-dominance

zone and the fatigue degradation zone. In this work and in agreement with the LEFM framework, both the K-dominance and the
fatigue degradation zones are assumed to contain the fracture process zones whereas both situations where the fatigue degradation
zone contains or is contained in the K-dominance zone will be considered (Fig. 2(a) and Fig. 2(b) respectively).

In special situations, (7) together with (1a) have been proven to be no longer valid, as for instance when the crack approaches
a rigid boundary [41,42]. In this case, the fracture criterion must also account for the regular part of the elastic solution. This is
usually accomplished by considering the fracture toughness not a pure material constant anymore. The eventuality of a non-constant
fracture toughness is discussed in the next section and paves the way for the forthcoming fatigue model.

2.1.2. Fracture toughness as a material function
This section highlights situations where the fracture toughness cannot be considered a material parameter anymore but rather

a material function. This will motivate and justify the introduction of a state-dependent fracture toughness, the key ingredient for
capturing fatigue effects in the proposed fatigue model. Specifically, we believe worth mentioning the following cases:

i. Fracture mode dependent fracture toughness. The fracture mode itself may also influence the fracture criterion. As observed
in [43], the fracture toughness for a mode-I crack may be significantly higher than the fracture toughness for a mode-II
crack. However, in rocks, the opposite situation may occur [44]. In general, one has 𝐺c = 𝐺c(fracture mode).

ii. Rate-dependent fracture toughness. Many materials, such as polymers, are much more brittle when the loading rate is increased,
exhibiting therefore a loading rate fracture toughness dependence [45, Sec. 5.2] and [46].

iii. Environment dependent fracture toughness. For instance, materials exposed to hydrogen may experience a very significant
reduction in fracture toughness. This feature has been incorporated in brittle and cohesive fracture models [47,48] and in
phase-field fracture models [49].

iv. Non-homogeneous materials. Non-homogeneous materials may exhibit a fracture toughness highly variable in space, that
is a fracture toughness dependent on the material point. This is the case, for instance, of functionally graded materials
(FGMs) [50,51].

v. Crack-length and geometry dependent fracture toughness. In some cases, the fracture toughness is not a material constant but
rather an increasing function with respect to the crack propagation length, namely, 𝐺c = 𝑅(𝑙) with 𝑅′(𝑙) ≥ 0. The function
𝑅(𝑙) is known as crack growth resistance curve and allows one to investigate stable crack propagation conditions. Usually, after
a relatively short crack extension, an asymptotic value is reached and the fracture toughness remains constant for further
crack advancements. The reasons for this toughening phenomenon are manifold. For instance, in metals, this is often due to
plastic dissipation, whereas in composite materials, it is due to the bridging effects of fibers in the wake of the crack tip [52].
Further details on this aspect can be found in [39, Sec. 4.8] and [53, Sec. 4.3]. Another reason to consider a non-constant
fracture toughness is due to nonlinear deformation because the fracture process zone may depend on the specimen geometry
and the distance from boundaries [54,55]. For instance, it is well known that 𝐺c is highly sensitive to the thickness of the
test specimen [41,42]. It is worth noting that, if the sample is not sufficiently thick or the crack size is not sufficiently large,
the definition of a crack length and geometry dependent fracture toughness may be arguable.

To summarize, the fracture toughness is often not a material constant. For the purposes of this work and to keep the analysis as
simple as possible, we will assume 𝐺c constant with respect to the aforementioned phenomena, but a function of a state-dependent
fatigue history variable. Before introducing the fatigue model, we shortly recall in the next section the experimental evidence and
key features of fatigue fracture together with Paris’ law.
6
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Fig. 3. Typical fatigue crack growth rate curve for a mode-I crack, cyclic loading, and constant mean value of the stress intensity factor, highlighting the three
different propagation regimes and Paris’ law.

2.2. Fatigue crack propagation and Paris’ law

The material processes involved in the propagation of fatigue cracks are numerous, complex, and covering many length
scales [1,2]. Nevertheless, at the macroscale, experiments highlight common features among many different materials. For cyclic
loadings, a typical fatigue crack resistance curve is represented in a log− log plot whose horizontal and vertical axes respectively refer
to the stress intensity factor range 𝛥𝐾 ∶= 𝐾+ −𝐾−, with 𝐾+ and 𝐾− being respectively the maximum and minimum stress intensity
factors experienced by the material in one cycle, and the crack propagation rate with respect to the load cycles, namely, d 𝑙

d𝑁 (Fig. 3).
It is worth remarking that a single curve usually refers to a given mean stress intensity factor value 𝐾̄ ∶= (𝐾+ + 𝐾−)∕2. In such
response curves, three different regimes can be usually distinguished, namely: (i) a slow crack growth regime or threshold regime
(SR), (ii) a stable fatigue crack propagation regime or Paris’ regime (PR), and (iii) the fast crack growth regime (FR).

The SR is usually characterized by an average crack growth increment per cycle smaller than a lattice spacing and the existence
of a lower threshold limit 𝛥𝐾th, below which cracks either remain dormant or grow at undetectable rates. In the SR, the fatigue crack
growth curve is highly non-linear with a steep increase of the crack propagation rate with respect to the stress intensity factor range.
The PR instead covers a wide spectrum of stress intensity factor ranges and is characterized by a linear trend. A linear relationship
to describe the stable propagation of a fatigue crack was first proposed by Paris and Erdogan [56] and is widely known as Paris’
law. The existence of a functional form, that is, the fact that the fatigue crack growth may depend on the stress intensity factor,
was already observed in [57]. For a mode-I fatigue crack problem, Paris’ law reads as follows:

d 𝑙
d𝑁

= 𝐶(𝛥𝐾)𝑚, (12)

with 𝐶 and 𝑚 being respectively the Paris’ (law) coefficient and the Paris’ (law) exponent, two material parameters characterizing
the linear behavior. The FR is observed when the maximum value of the stress intensity factor experienced by the material at the
crack tip approaches the critical stress intensity factor according to Griffith’s fracture law (8). Indeed, the maximal stress intensity
factor fixes an upper bound for the admissible stress intensity factor range during a load cycle.

Since the pioneering works of Paris, many improvements have been proposed to Paris’ law in order to overcome its limitations,
such as the inability to describe the initiation and the final abrupt propagation regimes or mean load effects. For instance, Forman
et al. [58] modified (12) to include the asymptotic stress intensity factor limit and the mean load effect as follows:

d 𝑙
d𝑁

=
𝐶(𝛥𝐾)𝑚

(1 − 𝑅)𝐾Ic − 𝛥𝐾
, (13)

with 𝑅 ∶= 𝐾−∕𝐾+ a load parameter, usually called fatigue stress ratio or fatigue load ratio. Since the mean value of the stress intensity
factor variation reads

𝐾̄ =
(1 + 𝑅)
(1 − 𝑅)

𝛥𝐾
2
, (14)

Forman’s modification of Paris’ law can be also written in terms of 𝐾̄ as
d 𝑙 = 𝐶

(

𝐾̄ + 𝛥𝐾∕2
)

𝛥𝐾𝑚−1. (15)
7
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a

a

It is worth noting that for Forman’s modification, the slope observed in the fatigue crack propagation plot (Fig. 3) is 𝑚 − 1 for a
fixed 𝐾̄ and 𝑚 for a fixed 𝑅. To also model the lower threshold, Priddle [59] proposed the following law:

d 𝑙
d𝑁

= 𝐶
(

𝛥𝐾 − 𝛥𝐾th

𝐾Ic −𝐾+

)𝑚
. (16)

The value of 𝛥𝐾th in this equation is supposed to be a function of 𝑅, for which different functions have been proposed in the literature,
e.g., by Klesnil and Lukáš [60]: 𝛥𝐾th = 𝐴 (1 − 𝑅)𝛾 , with 𝐴 and 𝛾 two additional material parameters. An up-to-date improvement of
(12) is represented by the widespread NASGRO equation [61,62], which reproduces many characteristic aspects of fatigue behavior,
such as the nucleation, propagation, and failure phases; the crack closure effect [63]; the presence of different cracking modes; and
the effect of the maximum load reached within the cycle [64], but at the cost of introducing up to 11 parameters [65]. Along these
lines, many similar relations exist in the literature, for instance, considering mixed-mode loading conditions [66,67].

From the above relations, one may notice an increasing complexity of the crack growth relation over the years but still
little progress with respect to an effective, predictive, and feasible application. Moreover, a rational and direct link of these
phenomenological relations with Griffith’s fracture evolution laws seems missing. The model presented in the following section
aims at proposing a possible way to establish such a link.

2.3. The construction of the fatigue model

This section is devoted to the rational construction of the proposed phenomenological fatigue model, which takes advantage,
as the models highlighted in Section 2.1.2, of considering the fracture toughness as a material function. Specifically, inspired by
works [12,15] concerning the fatigue modeling of brittle fracture with the phase-field approach, we model fatigue effects by letting
the fracture toughness decrease as a suitable fatigue history variable increases. In this regard, the modeling ingredients that we
consider are the following two:

• a fatigue history variable 𝜙;
• a fatigue degradation function 𝑑.

The fatigue history variable is a point-wise increasing quantity with respect to the repeated loading of the material and aims at
accounting for the material mileage. Instead, the fatigue degradation function is continuous decreasing with respect to the fatigue
history variable and is responsible of the fracture toughness degradation (mimicking the fatigue material degradation). Reasonable
minimal requirements for 𝜙 and 𝑑 are, respectively,

𝜙̇ ≥ 0 (17)

and

𝑑(𝜙) ≥ 0, d
d𝜙

(𝑑(𝜙)) ≤ 0, and 𝑑(𝜙0) = 1, (18)

with 𝜙0 corresponding to the value of the fatigue variable attained at the crack tip when 𝐺 = 𝐺c, with external loads applied
monotonically. Of course, non conventional materials, like self-healing materials [68], may demand even looser requirements. The
last requirement in (18) ensures that, in case of a monotonic load, the resulting fatigue model is able to recover Griffith’s fracture
theory.

The fatigue fracture toughness1 we then consider is given by

𝐺f(𝜙) ∶= 𝑑(𝜙)𝐺c, (19)

with 𝐺c being the canonical fracture toughness of a virgin material. In the GSM framework, this formulation corresponds to taking
a state dependent dissipation potential [69] such as

f
(

𝜙; 𝑙̇
)

∶= 𝑑(𝜙)
(

𝑙̇
)

, (20)

with 
(

𝑙̇
)

defined in (4). Both f
(

𝜙; 𝑙̇
)

and 
(

𝑙̇
)

are represented in Fig. 4.
At this point, we are able to present the abstract setting for the updated Griffith’s fracture theory, which will be shown to be

able to describe fatigue crack behaviors, namely:

⎧

⎪

⎨

⎪

⎩

𝐺 ≤ 𝐺f(𝜙), (a)
𝑙̇ ≥ 0, (b)
(

𝐺 − 𝐺f(𝜙)
)

𝑙̇ = 0, (c)
(21)

t any time 𝑡. With respect to GSM, problem (21) becomes

− 𝜕
𝜕𝑙

∈ 𝜕𝑙̇
(

𝜙; 𝑙̇
)

(22)

t any time 𝑡.
In the next section, specific constitutive choices for 𝜙 and 𝑑 are proposed and discussed.

1 In case of a non-prescribed crack path, the fatigue fracture toughness is also defined over the entire sound domain, that is, 𝐺 (𝒙, 𝑡) ∶= 𝑑(𝜙(𝒙, 𝑡))𝐺 .
8
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Fig. 4. Fracture (blue) and fatigue (red) dissipation potentials.

Fig. 5. Representation of the fatigue degradation function models: (a) the linear model and (b) the power-law model.

2.4. Some specific fatigue degradation functions and fatigue history variables

In this section, specific fatigue degradation functions and fatigue history variables are introduced and discussed. Most of them
will be analyzed and explored in the subsequent section (Section 3), where specific examples will be considered.

2.4.1. Fatigue degradation function
Starting from the works of [12,15], several different expressions for the fatigue (degradation) function have been proposed, such

as polynomial, rational, and logarithmic ones [24], all having in common the minimal requirements (18).
For the sake of simplicity, to enforce the last property in (18), we define the fatigue degradation function through an upper

bound as follows:

𝑑(𝜙) ∶=

{

1, if 𝜙 ≤ 𝜙0,
𝑓 (𝜙), if 𝜙 > 𝜙0,

(23)

with 𝑓 being an auxiliary function, hereafter simply labeled fatigue function. Clearly, continuity implies 𝑓 (𝜙0) = 1, with 𝜙0 being
the limit value of the fatigue history variable at critical monotonic load.

In this work, two simple expressions for 𝑓 , alternative to each other and satisfying conditions (18), are considered:

• linear model

𝑓l(𝜙) ∶= max
{

0, 1 + 𝑘f

(

1 −
𝜙
𝜙0

)}

; (24)

• power-law model

𝑓p(𝜙) ∶=
(

𝜙
𝜙0

)−𝑘f

; (25)

with 𝑘f > 0 being the fatigue degradation parameter. The division of 𝜙 by 𝜙0, appearing in (24) and in (25), will allow us to capture
the monotonic fracture limit. The corresponding fatigue degradation functions are represented in Fig. 5.

The resulting fatigue degradation function can be further modified by including a lower bound that mimics an endurance limit
effect. Nevertheless, in this framework, the correct modeling of the endurance limit is still an open issue since different approaches
are potentially possible for its description. For the purposes of this work and to keep the presentation as simple as possible, endurance
limits are not considered.
9
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2.4.2. Fatigue history variable
At each point and at any instant, the fatigue history variable aims at representing the amount of mechanical stimuli the material

oint has incrementally experienced during its entire life time. Since aging phenomena are here excluded, no fatigue degradation
hould in general be observed, and correspondingly no fatigue history variable evolution should occur, if the strain or the stress
ensor (the only mechanical quantities characterizing the state of a material point in Griffith’s fracture theory) does not change in
ime, neither with respect to its principal values nor with respect to its principal directions. In practice, as anticipated in Section 2.3
nd discussed in Section 2.5, several choices are possible for the definition of the fatigue history variable and more than one can
e considered. The introduction of more history variables seems natural, to not say necessary, in case of multi-axial and non-
roportional loading conditions [3]. In the present work, a single scalar fatigue history variable is considered, which we assume to
e based solely on the history of the internal potential energy density, namely,

𝜙 = 𝜙
(𝑡𝜓

)

=∶ 𝜓̄ . (26)

e do not claim (26) to be the best possible choice, but in this simplified context and for the purposes of this work, this history
ariable turns out to have all the required features to endow Griffith’s fracture model with the ability to describe typical fatigue
rack propagation behaviors.

To enter more in detail, the general functional structure we assume for the fatigue history variable reads

𝜓̄
(

𝑡,𝒙, 𝑡𝛤 , 𝑡𝜓
)

= ∫

𝑡

0
𝑔
(

𝒙, 𝛤 (𝜏), 𝜓(𝜏,𝒙), 𝜓̇(𝜏,𝒙)
)

d𝜏, (27)

efined at any material point 𝒙 ∈ 𝛺 ⧵ 𝛤 (𝑡).
In order to fulfill requirement (17), the scalar valued integrand is assumed always non-negative, 𝑔 ≥ 0, and therefore, 𝜓̄ is a

on-decreasing function. Moreover, 𝑔 is such that 𝜓̄ is rate-independent, that is, 𝑔 one-homogeneous with respect to 𝜓̇ . Therefore,
f 𝜓 is constant, 𝑔 = 0. The function 𝑔 then represents a kind of generalized fatigue internal variable rate and 𝜓̄ its accumulation.

According to the elastic solution discussed in Section 2.1.1 and to common experimental evidence, we ask the fatigue variable
o comply with the following requirements:

1. Deal with the singularity of 𝜓 at the crack tip;
2. Capture under which material loading conditions the fatigue degradation evolves, or, in other words, accumulation should

occur;
3. Take into account mean stress effects;
4. Describe the PR with arbitrary 𝑚.

More involved fatigue effects, as those deriving from considering more complex loading conditions, such as multi-axial loadings,
an be easily be embedded in this framework, for instance by considering additional fatigue variables based on energy splits.
evertheless, these additional features, although very important under a practical viewpoint, are not considered here for sake of
revity and their investigation is left to future works.

In the present setting (Fig. 1) where the crack path is prescribed, the set 𝛤 (𝑡) and the position of the crack tip 𝒙𝑙 can be directly
elated to the actual crack length 𝑙(𝑡) and the material points on the crack path identified by the crack arc-length 𝑠. Indeed, for
escribing the fatigue crack evolution, it is sufficient to evaluate the fatigue variable on the sound part of the crack 𝛤 , where the
atigue enhanced Griffith’s crack conditions (21) are enforced. Accordingly, (27) can be expressed as

𝜓̄
(

𝑡, 𝑠, 𝑡𝑙, 𝑡𝜓
)

= ∫

𝑡

0
𝑔(𝑟, 𝜓(𝜏, 𝑟), 𝜓̇(𝜏, 𝑟)) d𝜏, (28)

ith 𝑟 = 𝑠 − 𝑙(𝜏) and 𝜓(𝜏, 𝑟) = 𝜓(𝜏,𝒙𝑟). Eq. (28) is clearly valid only on 𝛤 (𝑡). In addition, it is worth noting that the expression (27)
s well defined on all material points of the sound domain. Consequently, it can be considered as a starting point for problems with
n unknown crack path.

Among the many, to not say endless, possible functional choices for 𝑔, we decide to consider one obtained as a composition
f simple functions, each of them aiming at modeling one of the specific 1 - 4 features listed above. This composition allows us to
nderstand step by step all the features of the model and the role of each material parameter. Specifically, the following functional
tructure is assumed:

𝑔(𝑟, 𝜓(𝜏, 𝑟), 𝜓̇(𝜏, 𝑟)) ∶= 𝑔4
(

𝜓∗( 𝑡𝜓̃)
)

⋅ 𝑔3
(

𝜓̃
)

⋅ 𝑔2
( ̇̃𝜓

)

, with 𝜓̃ ∶= 𝑔1(𝑟, 𝜓(𝜏, 𝑟)). (29)

Hereafter, the four functions 𝑔𝑖 of (29) are introduced and their roles highlighted. In particular, each function 𝑔𝑖 aims at capturing
he i⃝th feature listed above.

unction 𝑔1. The function 𝑔1 aims at dealing with the energy singularity at the crack tip. It formally introduces the FDZ highlighted
n Fig. 1, which is characterized by the fatigue length 𝓁f. Accordingly, we assume

𝑔1(𝑟, 𝜓) = ℎ(‖𝒓‖)
√

‖𝒓‖
√

𝜓, (30)

with 𝒓 ∶= 𝒙𝑟 − 𝒙𝑙. Under the mathematical point of view, the term
√

‖𝒓‖ smooths the energy singularity at the crack tip to a finite
value, whereas the function ℎ(‖𝒓‖) describes the decay of the smoothed energy with respect to the fatigue material internal length.
Specifically, in view of (6),

lim ‖𝒓(𝑟)‖𝜓(𝑡, 𝒓(𝑟)) = 𝑘 (< +∞). (31)
10
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Fig. 6. (a) linear and (b) exponential model for the fatigue threshold function.

Since 𝑘𝜓 ∝ 𝐾2
I , the square root in (30) will let appear the stress intensity factor with power one and not its square. Instead, the

function ℎ(𝜌𝑟), where 𝜌𝑟 ∶= ‖𝒓‖, is called fatigue threshold function and embeds the information of the fatigue degradation zone
through the fatigue length 𝓁f, tuning the decay shape of

√

‖𝒓‖
√

𝜓 from the crack tip. It is reasonable to assume ℎ(𝜌𝑟) continuous
and owning the following properties:

lim
𝑟→0

ℎ(𝜌𝑟) =
𝑘h
𝓁f

(<∞), ℎ′(𝜌𝑟) ≤ 0, lim
‖𝒓‖→+∞

ℎ(𝜌𝑟)
√

‖𝒓‖ < +∞, (32)

with 𝑘h being a material parameter. It is worth remarking that the manipulation performed on the elastic energy density is similar
to the averaging operation done in the strain energy density criterion (S-criterion) [70].

With these properties in mind, the resulting 𝜓̃ field will be referred to as the smoothed internal energy density or simply smoothed
energy. Clearly, in case of a straight crack, ‖𝒓‖ = 𝜌𝑟 = 𝑟. Instead, for a non-straight but smooth crack path, as it has been assumed,
lim𝑟→0 ‖𝒓(𝑟)‖∕𝑟 = 1. Hence, for a sufficiently small 𝑟, ‖𝒓(𝑟)‖ ∼ 𝑟.

In this work, two simple expressions for ℎ(𝜌𝑟), alternative to each other and satisfying conditions (32), are considered:

• linear model

ℎl(𝜌𝑟) =

⎧

⎪

⎨

⎪

⎩

𝑘h
𝓁f

(

1 −
𝜌𝑟
𝓁f

)

, if 0 ≤ 𝜌𝑟 ≤ 𝓁f,

0, if 𝜌𝑟 > 𝓁f;
(33)

• exponential model

ℎe(𝜌𝑟) =

⎧

⎪

⎨

⎪

⎩

𝑘h
𝓁f
, if 𝜌𝑟 = 0,

𝑘h
𝓁f

(

1 − 𝑒−2𝜌𝑟∕𝓁f
)

2𝜌𝑟∕𝓁f
, if 𝜌𝑟 > 0;

(34)

both of them continuous over [0,+∞). The material constant 𝑘h is directly proportional to the value of the smoothed energy at the
crack tip. A qualitative representation of the functions (33) and (34) is provided in Fig. 6.

As motivated in the introduction of this section, the physical reason for the introduction of the fatigue degradation zone, identified
by the fatigue length 𝓁f, relies on the fact that, regardless the actual material, a linear elastic behavior close to the crack tip is always
unrealistic. Nevertheless, for sake of easiness, we try to still rely on a linear-elastic framework and use the accumulation of an internal
potential energy density based variable as an indicator of fatigue degradation.

Let us briefly discuss now the main difference between the linear and exponential models adopted for ℎ:

• the linear model weights the internal potential energy density with the smoothed singularity up to a finite distance from the
crack tip. Therefore, for a distance greater than 𝓁f, no material degradation due to fatigue will occur.

• the exponential model weights the internal potential energy density up to an infinite distance from the crack tip. Therefore,
the material degrades in any point where a non vanishing energy variation will occur.

It is worth noticing that a model based on a fatigue threshold function like the exponential one, that is, a function that allows the
fatigue variable to evolve also in sound parts of the domain far away from the crack tip, could be the key for capturing fatigue
crack initiation, as described by the Wöhler curves [15].

Function 𝑔2. The function 𝑔2 aims at discriminating for which material loading conditions the fatigue variable should increase, that
is, the loading conditions for which fatigue material degradation occurs.

Since our subsequent analyses will be focused on simple loadings, that is, loadings for which the loading direction is kept fixed
during the entire evolution, we will only consider

𝑔 = □ + . (35)
11
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In case of non-proportional loading conditions, a more involved definition should be prescribed, since, for instance, the effect of the
reorientation of the principal strain/stress directions may become significant [3]. Another possible effect that can be modeled by 𝑔2
is the distinction between compressive and tensile states on the fatigue variable evolution. This will of course require explicitly
considering the stress state in the definition of the fatigue variable. To keep the presentation of the model as simple as possible, we
do not discuss this occurrence in the present work and restrict our examples to loadings inducing only tensile states.

Function 𝑔3. The function 𝑔3 aims at considering the effects of the mean load on the fatigue accumulation. We consider for 𝑔3 the
following power law:

𝑔3(𝜓̃) = 𝜓̃𝑝, (36)

with 𝑝 > 0. For 𝑝 = 0, no mean load effects will be observed.

Function 𝑔4. The function 𝑔4 aims at weighting the fatigue variable accumulation with respect to the amount of consecutive fatigue
loading. Several definitions of increasing complexity may be considered.

A first simple possibility to quantify the amount of consecutive fatigue loading is to introduce an auxiliary history variable 𝜓∗.
This can be effectively done once the following time dependent set has been introduced:

̌ (𝑡) ∶=
{

𝑡 ≤ 𝑡 for which ∃𝑡− < 𝑡 ∶ ∀𝜏 ∈
[

𝑡−, 𝑡
]

, ̇̃𝜓(𝜏) ≤ 0 and ∃𝜏∗ ∈
[

𝑡−, 𝑡
]

∶ ̇̃𝜓(𝜏∗) < 0
}

, (37)

epresenting the time intervals which correspond to unloadings. Then,

𝜓∗ ( 𝑡𝜓̃ , 𝑡
)

∶= ∫

𝑡

𝑡
̇̃𝜓(𝜏)d𝜏, with 𝑡 = max

{

{0} ∪ ̌ (𝑡)
}

. (38)

he quantity 𝑡 corresponds to the last time instant for which an unloading stage has occurred. Consequently, a feature of (38) is
hat as soon as unloading occurs, 𝜓∗ instantaneously vanishes. It is worth noting that this kind of reset of the variable occurs only
uring unloading and not if, during a loading stage, the load is kept constant for a while. Indeed, during a loading stage, if the load
s kept constant, 𝜓∗ also remains constant and continues to increase as soon as the load is increased again.

Clearly, many other definitions are possible, such as a progressive decrease to zero when the material is unloaded. The behavior
ust described can be obtained by considering

𝜓∗
𝑐
( 𝑡𝜓̃ ; 𝑡

)

∶=
(

𝜓⋆𝑐
( 𝑡𝜓̃ ; [𝑡, 𝑡]

))+, (39)

ith

𝑡 = max
{

{0} ∪ ̌𝑐 (𝑡)
}

, 𝜓⋆𝑐
(𝑡𝜓̃ ; [𝑡𝑖, 𝑡𝑗 ]

)

= ∫

𝑡𝑗

𝑡𝑖
𝑐
(

sign( ̇̃𝜓(𝜏))
) ̇̃𝜓(𝜏)d𝜏, (40)

nd

̌𝑐 (𝑡) ∶=
{

𝑡 for which 𝑡 ∈ ̌ (𝑡) and ∀𝑡∗(∈ ̌ (𝑡)) < 𝑡, 𝜓⋆𝑐
(

𝑡∗, 𝑡
)

< 0
}

. (41)

n (39), the function 𝑐(𝑥) is given by

𝑐(𝑥) ∶=

{

𝑐+, if 𝑥 = 1,
𝑐−, if 𝑥 = −1,

(42)

ith −𝑐− > 𝑐+ > 0.
A visual intuition of the behaviors of 𝜓∗ and 𝜓∗

𝑐 , together with the sets ̌ (𝑡) and ̌𝑐 (𝑡), are provided in Fig. 7(a) and Fig. 7(b),
espectively. The history variable 𝜓∗

𝑐 allows the fatigue history variable to partially increase during unloadings, resulting in a faster
atigue degradation. Also, in case of cyclic loadings with partial unloadings within one cycle, as after 𝑡𝑖+1 in Fig. 7, 𝜓∗

𝑐 will favor a
aster fatigue degradation with respect to 𝜓∗. Such a difference may have a significant impact when complex cyclic, multi-axial or
on-proportional loadings are considered. It is also worth remarking that crack closure effects could easily be included through a
light modification of these new auxiliary history variables.

Once the history variable (38) or (39) has been introduced, we define the consecutive fatigue loading function 𝑔4 as a power law,
imilar to (36):

𝑔4(𝜓∗) ∶= (𝜓∗)𝑞 . (43)

s we will show in Section 3, the exponent 𝑞 is directly linked to the Paris’ law exponent.
No constants are considered in front of 𝑔3 and 𝑔4 because they can be normalized and condensed into 𝑘h in (33)–(34). It is also

orth noting that for some common choices of 𝑔2 and 𝑔4, the effect of 𝑔2 on the fatigue history variable may be already expressed
y 𝑔4. Nevertheless, we decide to always keep well distinct the contribution of the two functions since they conceptually refer to
wo different features of the model.

Now that all functions have been explicitly introduced, it is easy to note that the definition of the fatigue variable is
ate-independent. Thus, the introduced fatigue model in insensitive to time-scaling.
12
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Fig. 7. Additional history variable for weighting consecutive loading: (a) without unloading contribution and (b) with unloading contribution.

2.5. Towards a variational fatigue phase-field fracture model

As discussed in Section 1, this work aims at providing a sound theoretical ground on top of which a new generation of phase-field
models able to describe fatigue fracture can be built. To this aim and without the presumption of providing an exhaustive survey,
we wish to highlight in this section existing phenomenological phase-field models that have adopted the concept of toughness
degradation for the description of fatigue crack propagation. Those that explicitly define a fatigue history variable and/or a fatigue
degradation function, and therefore conceptually fit the modeling framework presented in Section 2, are presented in Table 1.
Specifically, for each model, we report the following information: the work reference, the fatigue variable, the expressions for the
fatigue history variable and the fatigue degradation function, the main features, and the underlying material behavior besides fatigue
and fracture.

The concept of toughness degradation to model fatigue has also been adopted in [71]. In contrast with the models mentioned
in Table 1, in that work, the evolution law for the toughness degradation is directly prescribed through either the variable critical
energy model, acting on the homogeneous part of the phase-field dissipative term, or through the 𝛾-model acting on the entire phase-
field dissipative term. Other approaches to model fatigue effects within a gradient-damage framework, worth being mentioned,
are proposed by [10], where, similar to [31], an additional energetic term increasing the phase-field driving force is introduced;
13
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Fig. 8. Geometry and boundary conditions of the IPSC under mode-I loading.

by [72], where the evolution law for the damage variable accounting for fatigue effects is directly prescribed; or by [36], where the
volumetric elastic energy is chosen as a fatigue variable and an evolution law for the toughness degradation is directly prescribed
through an ordinary differential equation in terms of the load cycle number.

From this brief overview, it is clear that the development of fatigue phase-field models is at dawn and that many key issues still
need to be explored, such as, for instance, the effect of multi-axial loadings and computational efficiency. However, we focus here
on a more fundamental limitation: the absence of a link between fatigue-enhanced phase-field models and a Griffith-type fracture
theory. The lack of such a link renders these phase-field models not fully consistent with the original spirit of the variational approach
to fracture [8], since they do not descend from a rigorous variational regularization process. We thus envisage a new generation of
fatigue phase-field models that are rigorously derived from a suitable energy functional, with the dissipative behavior relying on a
fatigue fracture toughness and fatigue history variable of the type (19) and (26), respectively.

3. Illustrative examples

3.1. The mechanical problem

The mechanical problem we consider for highlighting key features and validating the outcomes of the fatigue model proposed
in Section 2 is the infinite plate with a symmetric crack (IPSC) subjected to mode-I loading. The reasons to consider such an example
are twofold. On one hand, this is one of the few problems for which the exact analytical solution is available. This will allow us,
for instance, to compare the fatigue effects of the exact solution with the fatigue effects emerging from the use of only the near-tip
K-stress solution. On the other hand, the expression of the stress intensity factor 𝐾I with respect to the geometric quantities involved
in the problem and the boundary conditions is particularly simple, allowing for compact analytical results.

It is worth it to immediately remark that, as will be clear from the forthcoming analyses, the adaption of the model to other
problems with a single fracture is straightforward. In this regard, a plethora of solutions of canonical fracture problems can be found
in [67].

3.1.1. Geometry, boundary conditions, energy release rate, and stress intensity factor
The geometry of the IPSC together with the associated mode-I loading boundary conditions are presented in Fig. 8, with the far

field stress 𝜎 being a time dependent quantity.
The crack-length dependent energy release rate at a given stress intensity factor is given, for mode-I loading, by (7), namely

𝐺 = 𝑘G𝐾
2
I = 𝑘G 𝜋 𝑙 𝜎

2, (44)

with 𝑘G = 1∕𝐸 for plane-stress and 𝑘G = (1−𝜈2)∕𝐸 for plane-strain. Eq. (44) is usually referred to as Irwin’s formula [76]. Accordingly,
the monotonic critical stress intensity factor is linked with the fracture toughness by

𝐾Ic =

√

𝐺c

𝑘G
. (45)

The exact stress solution and its associated near-tip approximation, together with their associated elastic energy density fields, are
reported in the Appendix.
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Table 1
Phase-field models based on the fracture toughness degradation concept for the description of fatigue cracks. 𝜅𝑖 and 𝑝 are material constants; 𝐻 is the He
phase-field free energy; 𝜓0 is the non-degraded phase-field free energy; 𝜓+ is the positive part of the elastic energy density according to the adopted en
free energy contributions; (𝜓+) is Miehe’s history variable [73]; 𝐼1 = tr (𝑪) is the first invariant of the Cauchy–Green strain tensor. (↑) innovative featu

References Fatigue variable 𝜉 Fatigue history
variable 𝜙(𝜉)

Fatigue degradation function 𝑑(𝜙) or 𝑓 (𝜙) Main key

[15] - Carrara et al. (2020) 𝜓+ 1
𝜅𝑝1 ∫

𝑡

0
𝐻(𝜉𝜉) 𝜉𝑝𝜉 d𝜏

with 𝑝 = 0∕1

{

1, if 𝜙 ≤ 𝜅2
(

2𝜅3∕(𝜙 + 𝜅3)
)2 , if 𝜙 > 𝜅2

, or

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if 𝜙 ≤ 𝜅2
(

1 − 𝜅4 log
(

𝜙∕𝜅2
))2 , if 𝜅2 < 𝜙 ≤ 𝜅210

1
𝜅3

0, if 𝜙 > 𝜅210
1
𝜅3

↑first pha
crack reg
↑unifying
Paris’ fat
◦ mean l
↓inability
↓internal

[74] - Hasan and
Baxevanis (2021)

(𝜓+) ∫

𝑡

0
𝐻(𝜓+ − 𝜅)

(

⟨𝜓+
⟩ − 𝜉

)

d𝜏 1
1 + 𝜅𝜙𝑝

↑fatigue
↑enduran
◦ low-cyc
↓no fatig
evolution
↓mesh si
↓internal

[24] - Yin et al. (2021) 𝜓+
0 ∫

𝑡

0
𝑔(𝛼)𝐻(𝜉)|𝜉|d𝜏

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if 𝜙 ≤ 𝜙cr
(

1 − 𝜅4 log
(

𝜙
𝜅2

))2

, if 𝜅2 < 𝜙 ≤ 𝜅210
1
𝜅3

0, if 𝜙 > 𝜅210
1
𝜅3

↑finite st
↑mesh si
crack rat
↑material
↓no Paris

[21] - Seiler et al. (2020) 𝐷 (a cycle wise
phenomenologically
computed variable)

(1 − 𝜅)(1 − 𝜙)𝑝 + 𝜅 ↑elasto-p
explicit e
↓no Paris
↓complex
↓internal

[17] - Ulloa et al. (2021) 𝜓+
el + 𝜓pl ∫

𝑡

0
𝐻(𝜉)𝜉 d𝜏 same as 𝑓2 of Carrara et al. [15] ↑first ela

fatigue ef
↑HCF and
↓no quan
↓internal
↓no Paris

[18] - Seleš et al. (2021) 𝜓el 0 −∫

𝑡

0
𝐻(−𝜉)𝜉 d𝜏

⎧

⎪

⎨

⎪

⎩

(

1 − 𝜙∕(𝜙 + 𝜅1)
)2 , for𝜙 ∈ [0,+∞], or

(

1 − 𝜙∕(𝜅1)
)2 , for𝜙 ∈ [0, 𝜅1], or

(

𝜅2 log(𝜅1∕𝜙)
)2 , for𝜙 ∈ [𝜅1 , 10

1
𝜅2 𝜅1]

↑HCF and
◦ fatigue
↓no Paris
↓internal
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Table 1 (continued).
References Fatigue variable 𝜉 Fatigue history

variable 𝜙(𝜉)
Fatigue degradation function 𝑑(𝜙) or 𝑓 (𝜙) Main key

[31] - Loew et al. (2020) 𝜓 ∫

𝑡

0
𝐻(𝐼1)𝐻(1 + 𝜅1𝑓𝜅 )𝜉 d𝜏

with 𝑓𝜅 = max(𝑝 − 𝜅2 , 0)

Fatigue effect modeled as an additional
phase-field driving force

↑first ela
effects
↑finite st
↑computa
↓many m

[75] - Simoes and
Martínez-Pañeda (2021)

𝜓 Same as [15] with
𝑝 = 0 and 𝑓 = 𝑓1

↑first mo
with fatig
↑monolit
computat
↓no fatig
previous

aBesides fatigue and fracture.
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Fig. 9. A simple tension–tension K-cyclic loading.

.1.2. Loading conditions
For the present example, only simple loadings, that is, loadings for which the loading direction is kept fixed during the entire

volution, are considered. In addition, we restrict simple loadings to those that will never induce compressive contact stresses along
he crack path and that are cyclic with constant amplitude.

Accordingly, the following quantities are usually considered to characterize a cyclic loading:

𝛥𝐾 = 𝐾+ −𝐾−, 𝐾̄ =
𝐾+ +𝐾−

2
, (46)

in terms of stress intensity factors, or

𝛥𝜎 = 𝜎+ − 𝜎−, 𝜎̄ =
𝜎+ + 𝜎−

2
, (47)

in terms of the far field stresses, together with fatigue load ratio

𝑅 =
𝜎−
𝜎+

=
𝐾−
𝐾+

. (48)

where □+ and □− are the maximum and minimum values attained by □ during a cycle.
Specifically, the class of loadings that we take into account are referred to as simple tension–tension cyclic loadings. For such a

class, two different loading conditions are considered:

• K-cyclic loading, for which the external load is continuously adapted in order to keep the stress intensity factor variation
constant, namely, 𝛥𝐾 = constant;

• 𝜎-cyclic loading, where the far field stress variation is kept constant, namely, 𝛥𝜎 = constant.

The simple tension–tension cyclic loading conditions are fulfilled with

0 ≤ 𝐾− < 𝐾+ and 0 ≤ 𝜎− < 𝜎+ (49)

or, equivalently, by assuming

0 ≤ 𝑅 < 1. (50)

Due to the rate-independent model behavior, only the sequence and intensity of peaks and valleys will determine the material
response, while the applied loading rate does not play a role. This fact allows us to consider linear interpolations between these
limit points. A typical loading diagram of a simple tension–tension K-cyclic loading is depicted in Fig. 9, where limit points and time
interval labels are also represented. The diagram for a simple tension–tension 𝜎-cyclic loading is exactly the same, provided that the
stress intensity factor label 𝐾 is replaced by the stress label 𝜎. Of course, regardless of the kind of load, an initial vanishing load
evel is always assumed.

.2. The fatigue crack propagation stages

The analysis conducted in this section aims at describing in detail the fatigue crack evolution of a virgin material subjected to
simple tension–tension 𝜎-cyclic load for a very simple model. Specifically, we consider here the linear threshold function (33),

o mean load and consecutive accumulation effects, that is, 𝑝 = 𝑞 = 0, the linear fatigue function (24), and 𝓁f ≪ 𝓁k, this condition
allowing us to consider only the K-stress solution. The response of such a simple model will already exhibit features common to
more involved models later considered. For instance, it turns out that the fatigue crack evolution consists of three peculiar stages,
namely:

• the initial accumulation stage;
17
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Fig. 10. Crack length evolution with respect to the number of cycles.

• the transient evolution stage;
• the stable propagation stage.

For the example presented in this section, the following parameters have been chosen: initial crack length 𝑙0 = 10; fatigue
length 𝓁f = 0.007𝑙0 (≈ 1∕10𝓁k), with 𝓁k computed according to (9) and (11) with 𝛬̄ = 95%; fracture toughness 𝐺c = 10; and all other
constants of unitary value, except for Poisson’s ratio (𝜈 = 0.25). Concerning the cyclic load, the far field stress is such that 𝜎− = 0
and 𝜎+ = 0.01𝜎0, with 𝜎0 ∶= 𝐾Ic∕

√

𝜋𝑙0 being the limit far field stress for a monotonic load. Consequently, we have 𝛥𝜎 = 0.01𝜎0 and
𝑅 = 0.

Let us briefly describe the simple numerical solution strategy adopted to derive the evolution. At any load peak, that is, at
any 𝑡𝑖, condition (21a) at 𝑟 = 0 is checked. If 𝐺 ≤ 𝐺f(𝜙), no crack propagation occurs, and the fatigue history variable is updated. If,
instead, 𝐺 > 𝐺f(𝜙), the current solution is not admissible and a crack evolution must have occurred. The crack length advancement
is then sought by enforcing 𝐺 = 𝐺f(𝜙) at the unknown crack tip location as a function of 𝑙 and the fatigue history variable updated
accordingly.

Fig. 10 and Fig. 11 report, respectively, the crack length and the crack rate evolutions with respect to the number of cycles,
whereas Fig. 12 highlights the evolution of the fatigue variable profile with respect to the crack length. Up to 𝑁 = 199, the crack
does not evolve since the evolution condition (21a) is not met as an equality. Nevertheless, during this stage, the fatigue variable
constantly increases at each cycle with a linear behavior, as evident from the red lines in Fig. 12. Accordingly, we call this stage initial
accumulation stage. At 𝑁 = 199, the fatigue fracture toughness has sufficiently diminished due to the fatigue variable accumulation,
such that, during this cycle, condition (21a) is met as an equality and the crack starts to propagate. This change in the response
is highlighted with a dark red point marker in the plots. After this limit, the crack starts to propagate at a slightly oscillating
rate, as clear from Fig. 11, until it stabilizes at approximately the state highlighted with a dark blue point marker (𝑙 ≈ 3𝓁f and
𝑁 ≈ 1493). During this period, the fatigue history variable profile progressively changes shape from linear to quadratic as the crack
length increases. A gradient color ranging from dark red to dark blue is used to emphasize this transition. Accordingly, this stage
is here called transient evolution stage. After this second limit point, a steady response is achieved, referred to as stable propagation
stage, where the fatigue crack propagation rate and the fatigue variable profiles stay approximately constant. Note that the crack
propagation rate slightly increases during the stable propagation stage due to the fact that both the stress intensity factor limits 𝐾±
and mean value 𝐾̄ increase as the crack evolves, even though the stress load limits are kept constant.

Nevertheless, plotting the fatigue crack propagation rate against the stress intensity factor variation, as done in Fig. 13, unveils
convergence towards a stabilized response. This behavior is a prelude for the results of the next section, that is, the closed form
relation between crack propagation rate and the stress intensity variation during stationary evolution (76), hereby represented with
a gray curve in the same plot.

It is worth noting that during the transient evolution stage, the crack propagates initially faster (dark red gradient part of the curve)
than during the stable propagation stage because the fatigue variable profile at the first limit point (dark red linear profile) is greater
than the profile at the second limit point (dark blue quadratic profile), that is, at incipient stable propagation. This means that the
material ahead of the crack tip degrades more before triggering fatigue crack propagation than during the steady propagation stage.

With this example, the main evolution features of the present fatigue model have been highlighted. In the forthcoming sections,
more details on the role of each material parameter will be provided.

3.3. The stationary fatigue crack propagation regime and link to Paris’ law

In this section, a stationary fatigue crack propagation regime is considered. Differently from the stable propagation stage
illustrated in the previous section, the stationary propagation corresponds to a constant crack propagation rate. This regime will
18
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Fig. 11. Crack propagation rate with respect to the number of cycles. The discontinuity at 𝑁 ≈ 540 is reflected by the slope discontinuity at 𝑙 = 𝓁f of the fatigue
history variable profile in Fig. 12.

Fig. 12. Fatigue history variable evolution, with profiles plotted every 20 cycles, and highlight of the three evolution stages. Before crack propagation is triggered,
the fatigue history variable profile is linear. Once the crack starts to propagate, the profile tends to a parabolic shape, constant during the stable propagation
stage. Each profile vanishes at distances greater than 𝓁f from the crack tip. The discontinuity in the slope profile at 𝑙 = 𝓁f is reflected by the discontinuity at
𝑁 ≈ 540 in the crack rate plot of Fig. 11.

Fig. 13. Crack propagation rate with respect to the stress intensity factor variation.
19
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Table 2
The distinguishing features of the fatigue models considered for the stationary fatigue crack propagation regime.

Model Fatigue functions Result type Features
𝑔3 𝑔4

1⃝ 1 1 analytical in closed form Paris’ law with exponent 1
2⃝ 𝜓̃ 1 analytical in closed form Paris’ law with exponent 1 and mean load effect
3⃝ 1

(

𝜓∗( 𝑡𝜓̃)
)𝑞 analytical/numerical Paris’ law with variable slope/exponent

allow us to derive, for instance, a rigorous link between the present model and Paris’ law, and to understand the role played by the
functions 𝑔3 and 𝑔4 in the fatigue crack evolution.

The IPSC setup is again considered under mode-I loading conditions. Differently from the previous section, simple tension–tension
-cyclic loadings are now assumed whilst the initial accumulation and the transient evolution stages are neglected. As in the previous
ection, we consider a linear threshold function, a linear fatigue function, and a FDZ significantly smaller than the KDZ, namely:

ℎ(𝑟) = ℎl(𝑟), (51a)

𝑓 (𝜙) = 𝑓l(𝜙), (51b)

𝓁f ≪ 𝓁k, (51c)

ut different expressions for the fatigue history variable (28). The resulting models investigated in this section are listed in Table 2.
he assumption (51a) renders the fatigue propagation independent of the far field elastic energy density. Accordingly, it is reasonable
o consider only the linear fatigue degradation function, namely, (51b), since the far field fatigue history variable vanishes. These
hoices will be crucial to derive simple closed form results for the stationary propagation stage. The assumption (51c) allows us to
onsider only the singular part of the elastic energy density (A.9).

.3.1. The stationary regime setting
The stationary regime is characterized by the following assumptions:

𝛥𝑙𝑖 = 𝛥𝑙, (52a)

𝛥𝐾𝑖 = 𝛥𝐾, (52b)

𝛥𝑙 ≪ 𝓁f, (52c)

𝓁f mod 𝛥𝑙 = 0 with
𝓁f
𝛥𝑙

= 𝑁f. (52d)

The index 𝑖 refers to the cycle number according to the notation of Fig. 9. Assumption (52a) represents the essential feature of the
stationary response, that is, a constant crack length advancement at each load cycle. The crack propagation rate with respect to the
load cycles can then be directly identified with the crack length increment, namely:

𝛥𝑙 ≈ d 𝑙
d𝑁

. (53)

Conditions (51c), (52b), (52c) and (52d) allow us to obtain the stationary response. Specifically, they lead to a fatigue variable
evolution which is crack length independent, with the shape of the elastic energy density field ahead of the crack tip always the
same within the KDZ. Indeed, the elastic energy density on the crack path at a peak load can be approximated by (A.9), that is, in
the local reference by

𝜓(𝑡, 𝑟) ≈ 𝑘𝜓
𝐾(𝑡)2

𝑟
, (54)

with 𝑘𝜓 = (1−𝜈)
2𝐸𝜋 (for plane-stress). Moreover, to guarantee a cycle-independent stress intensity factor variation (𝛥𝐾 = constant), the

ar field stress becomes a fracture length dependent quantity, namely,

𝜎(𝑙) = 𝐾∕
√

𝑙𝜋. (55)

Condition (52d), together with (51a), will allow us to take advantage of recursive expressions to derive the fatigue variable evolution
in closed form. This will be the computational key to easily derive the fatigue crack law for the description of the stationary
propagation regime.

3.3.2. Stationary evolution stages and fatigue variable
In this section, the fatigue variable (27) is first explicitly computed for all models considered in Table 2. Specifically, we derive

closed form expressions for 𝜓̄
𝑁
(𝑟 = 0), that is, the value of the fatigue history variable at cycle 𝑁 at the crack tip (𝑟 = 0), and for 𝜓̄0,

that is, the critical value of the fatigue history variable for monotonic loading. Before facing these computations, it is important to
understand the different stages of the stationary evolution within a single load cycle in relation to the elastic energy density profile.
Specifically, we identify the following cycle stages:
20
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Fig. 14. Paradigmatic evolutions of the smoothed energy 𝜓̃ , the crack length 𝑙, and the loading in terms of the stress intensity factor 𝐾 for 𝑁f = 4. The
evolution, loading and unloading stages are emphasized with different line styles. Of course, the evolution of 𝑙 is represented as a piecewise-linear function only
for illustration purposes.

• the loading stage, (𝑙̇ = 0 and ̇̄𝜓 ≠ 0);
• the crack growth stage (𝑙̇ ≠ 0);
• the unloading stage, (𝑙̇ = 0 and ̇̄𝜓 = 0).

The evolution of the smoothed energy 𝜓̃ , the crack length 𝑙, and the loading in terms of the stress intensity factor 𝐾 are highlighted
in Fig. 14 with respect to these stages for a time-interval of the stationary fatigue crack response. According to the assumptions (51)
and the expression of the elastic energy density (54), the smoothed energy reads

𝜓̃(𝑟) = 𝑔1(𝑟, 𝜓) = ℎl(𝑟)
√

𝑟
√

𝜓(𝑟) =

⎧

⎪

⎨

⎪

⎩

𝑘h
√

𝑘𝜓
𝓁f

(

1 − 𝑟
𝓁f

)

𝐾, if 0 ≤ 𝑟 ≤ 𝓁f,

0, if 𝑟 > 𝓁f,
(56)

corresponding to a linear function, starting form the crack tip, decreasing to zero as 𝑟 → 𝓁f and proportional to the stress intensity
factor. Hereafter, the evolution of the fatigue variable for each model considered in Table 2 is derived, based on the evolution of
the smoothed energy 𝜓̃ defined in (56) and depicted in Fig. 14.

Model 1⃝. For this model, the fatigue history variable is defined as follows:

𝜓̄
𝑁
(𝑟) = ∫

𝑡𝑁

0

( ̇̃𝜓(𝜏, 𝑟)
)+d𝜏, (57)

where □
𝑁

denotes that the quantity □ has been computed up to the 𝑁th cycle, corresponding to the time instant 𝑡𝑁 . The positive
rate extracted by (□)+ ensures that accumulation occurs during loading stages only, that is, from 𝑡𝑖 only. Note that the fatigue
history variable can be seen as a sum of single contributions.
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Fig. 15. Fatigue variable profile evolution for model 1⃝ according to Fig. 14 and definition of the adopted notation.

In view of (56), the fatigue history variable increment is constant for each cycle and given by

𝛥𝜓̄ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑘h
√

𝑘𝜓
𝓁f

((

1 − 𝑟
𝓁f

)

𝐾+ −
(

1 − 𝑟 + 𝛥𝑙
𝓁f

)

𝐾−

)

, if 0 ≤ 𝑟 ≤ 𝓁f − 𝛥𝑙, (a)

𝑘h
√

𝑘𝜓
𝓁f

(

1 − 𝑟
𝓁f

)

𝐾+, if 𝓁f − 𝛥𝑙 < 𝑟 ≤ 𝓁f, (b)

0, if 𝑟 > 𝓁f . (c)

(58)

These single contributions are highlighted in Fig. 15. Specifically, (58a) corresponds to the blue region, as the result of the difference

of two extreme values, whereas (58b) corresponds to the red region where only the last upper energy profile contributes to 𝛥𝜓̄ . Due

to the adoption of the linear fatigue threshold function, no fatigue history variable increment occurs for 𝑟 ≥ 𝓁f.

Inferring the result in (58), that is, by considering all the contributions to the fatigue variable for each load cycle, and considering

he notation in Fig. 15, the fatigue variable associated to a crack propagated up to length 𝑙𝑁 corresponding to the 𝑁th cycle is given

y

𝜓̄
𝑁
(𝑟) = ∫

𝑡𝑁

0

( ̇̃𝜓(𝜏, 𝑟)
)+d𝜏

= ∫

𝑡𝑁

𝑡𝑁−𝑁f

( ̇̃𝜓(𝜏, 𝑟)
)+d𝜏

=
𝑁f
∑

𝑖=1
𝛥𝜓̄𝑖

=
𝑘h

√

𝑘𝜓
𝓁f

(𝑁f−1−𝑗
∑

𝑖=0

(

1 − 𝑟 + 𝑖 𝛥𝑙
𝓁f

)

𝐾+ −
𝑁f−1−𝑗
∑

𝑖=1

(

1 − 𝑟 + 𝑖 𝛥𝑙
𝓁f

)

𝐾−

)

,

(59)

ith 𝑗 =
⌊

𝑟
𝛥𝑙

⌋

, 𝛥𝜓̄𝑖 referring to a fatigue history variable increment (58) of a crack propagated up to 𝑙𝑖, and ∑𝑏
𝑖=𝑎□𝑖 = 0 if 𝑏 < 𝑎.

This fatigue history variable profile, represented by a red solid curve in Fig. 15, consists of a piecewise continuous linear function.

Since we are interested in the crack propagation conditions (21), it is important to evaluate the value of the fatigue variable at

the crack tip. Recalling the assumption (52c), the result (59), and noting that ∑𝑁 𝑖 = 1𝑁(𝑁 + 1), the fatigue history variable at
22
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the crack tip reads

𝜓̄𝑁 (0) =
𝑘h

√

𝑘𝜓
𝓁f

(

(

𝑁f − 1
)

(

1 − 𝛥𝑙
2𝓁f

𝑁f

)

𝛥𝐾 +𝐾+

)

=
𝑘h

√

𝑘𝜓
𝓁f

(

1
2

(

𝓁f
𝛥𝑙

− 1
)

𝛥𝐾 +𝐾+

)

≈
𝑘h

√

𝑘𝜓
𝓁f

(

1
2
𝓁f
𝛥𝑙
𝛥𝐾 + 𝐾̄

)

,

(60)

in terms of the variation and mean value of the stress intensity factor.
To establish the fatigue crack propagation law, the fatigue variable value 𝜓̄0 at the monotonic fracture limit must be evaluated.

In view of (45), we have

𝜓̄0 =
𝑘h

√

𝑘𝜓
𝓁f

√

𝐺c

𝑘G
. (61)

Expressions (60) and (61) will be employed in Section 3.3.3 to derive the fatigue crack propagation law in closed form.

odel 2⃝. For this model, the fatigue history variable is defined as follows:

𝜓̄
𝑁
(𝑟) = ∫

𝑡𝑁

0

(

𝜓̃(𝜏, 𝑟) ̇̃𝜓(𝜏, 𝑟)
)+d𝜏 = 1

2 ∫

𝑡𝑁

0

( d
d𝜏

(

𝜓̃(𝜏, 𝑟)2
)

)+
d𝜏. (62)

According to Table 2 and in view of (56), the fatigue history variable increment is also constant for each cycle in this model and
iven by

𝛥𝜓̄ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑘2h𝑘𝜓
2𝓁2

f

(

(

1 − 𝑟
𝓁f

)2
𝐾2

+ −
(

1 − 𝑟 + 𝛥𝑙
𝓁f

)2
𝐾2

−

)

, if 0 ≤ 𝑟 ≤ 𝓁f − 𝛥𝑙,

𝑘2h𝑘𝜓
2𝓁2

f

(

1 − 𝑟
𝓁f

)2
𝐾2

+, if 𝓁f − 𝛥𝑙 < 𝑟 ≤ 𝓁f,

0, if 𝑟 > 𝓁f.

(63)

Inferring the result in (63), that is, by considering all the contributions to the fatigue variable for each load cycle, and considering
again the notation in Fig. 15, the fatigue variable associated to a crack propagated up to length 𝑙𝑁 corresponding to the 𝑁th cycle
is given by

𝜓̄
𝑁
(𝑟) = 1

2 ∫

𝑡𝑁

0

( d
d𝜏

(

𝜓̃(𝜏, 𝑟)2
)

)+
d𝜏

= 1
2 ∫

𝑡𝑁

𝑡𝑁−𝑁f

( d
d𝜏

(

𝜓̃(𝜏, 𝑟)2
)

)+
d𝜏

=
𝑁f
∑

𝑖=1
𝛥𝜓̄𝑖

=
𝑘2h𝑘𝜓
2𝓁2

f

(𝑁f−1−𝑗
∑

𝑖=0

(

1 − 𝑟 + 𝑖 𝛥𝑙
𝓁f
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+ −
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)
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𝑘2h𝑘𝜓
2𝓁2

f

(𝑁f−1−𝑗
∑

𝑖=1

(

1 − 𝑟 + 𝑖 𝛥𝑙
𝓁f

)2
(

𝐾2
+ −𝐾2

−
)

+
(

1 − 𝑟
𝓁f

)2
𝐾2

+

)

.

(64)

Differently from model 1⃝, the fatigue history variable profile now consists of a piecewise continuous quadratic function.
Recalling that ∑𝑁

𝑖=1 𝑖 =
1
2𝑁(𝑁 + 1), ∑𝑁

𝑖=1 𝑖
2 = 1

6𝑁(𝑁 + 1)(2𝑁 + 1),
(

𝐾2
+ −𝐾2

−
)

= 2𝐾̄𝛥𝐾, and with similar considerations done in
(59), the fatigue variable at the crack tip reads

𝜓̄𝑁 (0) =
𝑘2h𝑘𝜓
2𝓁2

f

(

2𝐾̄𝛥𝐾
𝑁f−1
∑

𝑖=1

(

1 − 𝑖 𝛥𝑙
𝓁f

)2
+𝐾2

+

)

=
𝑘2h𝑘𝜓
2𝓁2

f

(

2𝐾̄𝛥𝐾
𝑁f−1
∑

𝑖=1

(

1 − 2𝛥𝑙
𝓁f
𝑖 + 𝛥𝑙2

𝓁2
f

𝑖2
)

+𝐾2
+

)

=
𝑘2h𝑘𝜓
2𝓁2

f

(

1
3
𝐾̄𝛥𝐾

(

𝑁f − 1
𝑁f

)

(

2𝑁f − 1
)

+𝐾2
+

)

,

(65)

in terms of the variation, mean value, and maximum value of the stress intensity factor. Due to the assumption (52c), that is, 𝑁f ≫ 1,

(

𝑁f − 1
)

(

2𝑁f − 1
)

≈ 2𝑁f. (66)
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As a consequence, (65) can be approximated as follows:

𝜓̄𝑁 (0) ≈
𝑘2h𝑘𝜓
2𝓁2

f

( 2
3
𝑁f𝐾̄𝛥𝐾 +𝐾2

+

)

=
𝑘2h𝑘𝜓
2𝓁2

f

(

2
3
𝓁f𝐾̄𝛥𝐾
𝛥𝑙

+𝐾2
+

)

. (67)

For the present model, the fatigue variable 𝜓̄0 at the monotonic fracture limit reads

𝜓̄0 =
𝑘2h𝑘𝜓
2𝓁2

f

𝐺c

𝑘G
. (68)

Expressions (67) and (68) will be employed in Section 3.3.3 to derive the fatigue crack propagation law in closed form.

odel 3⃝. For this last model, the fatigue history variable is defined as follows:

𝜓̄
𝑁
(𝑟) = ∫

𝑡𝑁

0

(

𝜓∗( 𝑡𝜓̃)
)𝑞 ( ̇̃𝜓

)+d𝜏. (69)

As done for the previous models, let us evaluate the fatigue variable increment for a generic load cycle. According to Table 2,
nd in view of (56), we have

𝛥𝜓̄ = ∫
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⎪

⎨

⎪

⎪
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(
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)

𝐾+ −
(

1 − 𝑟 + 𝛥𝑙
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)

𝐾−

)
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, if 0 ≤ 𝑟 ≤ 𝓁f − 𝛥𝑙,

1
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𝓁f

(
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𝓁f

)

𝐾+

)𝑞+1

, if 𝓁f − 𝛥𝑙 < 𝑟 ≤ 𝓁f,

0, if 𝑟 > 𝓁f.

(70)

The fatigue history variable then reads

𝜓̄
𝑁
(𝑟) = 1

𝑞 + 1

(

𝑘h
√

𝑘𝜓
𝓁f
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𝓁f

)
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𝓁f
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1 −
𝑟 + (𝑁f − 1)𝛥𝑙
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)

𝐾+
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)

. (71)

The fatigue variable at the crack tip reads

𝜓̄𝑁 (0) = 1
𝑞 + 1

(

𝑘h
√

𝑘𝜓
𝓁f

)𝑞+1 (𝑁f−2
∑

𝑖=0
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1 − 𝑖 𝛥𝑙
𝓁f
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𝓁f
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+
(

1
𝑁f

𝐾+

)𝑞+1
)

. (72)

Unfortunately, we have not found more compact expressions for Eqs. (71) and (72).
For the present model, the fatigue variable 𝜓̄0 at the monotonic fracture limit reads

𝜓̄0 =
(

1
𝑞 + 1

)

(

𝑘h
√

𝑘𝜓
𝓁f

√

𝐺c

𝑘G

)𝑞+1

. (73)

Expressions (72) and (73) will be employed in Section 3.3.3 to derive the fatigue crack propagation law.

.3.3. The fatigue crack propagation law
In this section, the fatigue crack propagation law of each model considered in Table 2 is derived and discussed based on the

atigue variable expressions derived in the previous section (Section 3.3.2).
The general strategy to derive the fatigue crack propagation law is to consider the end of a load cycle, where the crack evolution

onditions are met. Specifically, in view of (7), (19) and (21), we have

𝐺 = 𝐺f(𝜙(𝑙)) → 𝑘G𝐾
2
+ =

(

1 + 𝑘f

(

1 −
𝜓̄𝑁 (0)
𝜓̄0

))

𝐺c. (74)

Model 1⃝: Paris’ law with exponent 1. By injecting (60) and (61) into (74) we obtain

𝑘G𝐾
2
+ =

(

1 + 𝑘f

(

1 −

√

𝑘G

𝐺c

(

1
2
𝓁f
𝛥𝑙
𝛥𝐾 + 𝐾̄

)

))

𝐺c

= 𝐺 (1 + 𝑘 ) − 𝑘
√

𝑘 𝐺 𝐾̄ −
𝑘f𝓁f

√

𝑘G𝐺c 𝛥𝐾 ,

(75)
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Fig. 16. Representation of (76) for different values of 𝐾̄ ranging from 0.05 to 0.5 with a step of 0.05. The PR corresponds to Paris’ law with exponent 1 and
a weak depedence on 𝐾̄.

from which, in view of (53), the crack propagation rate as a function of the stress intensity factor variation is obtained:

d 𝑙
d𝑁

= 1
2

(

𝑘f𝓁f
√

𝑘G𝐺c

𝐺c(1 + 𝑘f) − 𝑘f
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𝑘G𝐺c𝐾̄ − 𝑘G𝐾2
+

)

𝛥𝐾

= 1
2

⎛

⎜

⎜

⎜

⎝

𝑘f𝓁f
√

𝑘G𝐺c
(

𝐺c − 𝑘G𝐾2
+
)

+ 𝑘f

(

𝐺c −
√

𝑘G𝐺c𝐾̄
)

⎞

⎟

⎟

⎟

⎠

𝛥𝐾.

(76)

The following remarks can be drawn form this expression:

• (76) does not depend on 𝑘h since the fatigue variable is normalized with respect to its monotonic value, but it does depend
on the fatigue length 𝓁f;

• (76) is very close to the expression of Paris’ law (12), namely:
d 𝑙
d𝑁

= 𝐶(𝐾+, 𝐾̄)𝛥𝐾, (77)

with Paris’ exponent 𝑚 = 1 and the Paris’ coefficient weakly depending on 𝐾+ and 𝐾̄;
• we observe two meaningful limit cases of (76):

– if 𝐾+∕𝐾Ic → 0 and in view of (7), 𝐶(𝐾+, 𝐾̄) → 𝐶, namely:

d 𝑙
d𝑁

= 𝐶 𝛥𝐾 with 𝐶 =

(

𝑘f𝓁f
√

𝑘G

2
(

1 + 𝑘f
)√

𝐺c

)

, (78)

which is Paris’ law (12) with exponent 𝑚 = 1.
– if 𝛥𝐾 → 𝐾Ic, implying that 𝐾+ → 𝐾Ic and 𝐾̄ → 𝐾Ic∕2, that is, the stress intensity approaches the maximum allowable

value, 𝐶(𝐾+, 𝐾̄) tends to a maximum but finite value and, therefore, the fatigue crack propagation rate tends to be
maximal.

These results suggest that this very simple model is already capable of describing both the Paris’ regime (PR) and, albeit less
accurately, the fast crack growth regime (FR).

The above mentioned results can be observed in Fig. 16, where the trend of the fatigue crack propagation law (76) is represented
for different values of the mean stress intensity factor. Here, the initial crack length has been chosen as 𝑙0 = 10, the fatigue length

= 0.007𝑙 (≈ 1∕10𝓁 ), and all other constants are of unitary value, except for Poisson’s ratio (𝜈 = 0.25).
25
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Fig. 17. Mean load effect as a function of 𝐾̄, ranging from 0.05 to 0.5 with a step of 0.05. The PR is described by Paris’ law with exponent 1 and a strong
dependence on 𝐾̄. Blue curves correspond to the model crack propagation curve (80) whereas red curves correspond to Forman’s Eq. (15), shifted upwards for
graphical reasons in order to avoid confusing overlaps.

Model 2⃝: Paris’ law with exponent 1 and mean load effect. By injecting (67) and (68) into (74) we obtain

𝑘G𝐾
2
+ =

(

1 + 𝑘f

(

1 −
𝑘G

𝐺c

(

2
3
𝓁f𝐾̄𝛥𝐾
𝛥𝑙

+𝐾2
+

)))

𝐺c

= 𝐺c(1 + 𝑘f) −
2
3
𝑘f𝑘G𝓁f𝐾̄

𝛥𝐾
𝛥𝑙

− 𝑘f𝑘G𝐾
2
+,

(79)

from which, in view of (53), the crack propagation rate as a function of the stress intensity factor variation is obtained:

d 𝑙
d𝑁

= 2
3

(

𝑘f𝑘G𝓁f𝐾̄
𝐺c(1 + 𝑘f) − 𝑘G(1 + 𝑘f)𝐾2

+

)

𝛥𝐾

= 2
3

(
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(1 + 𝑘f)(𝐺c − 𝑘G𝐾2

+)

)

𝛥𝐾.

(80)

The following remarks can be drawn form (80):

• as in (76), (80) does not depend on 𝑘h;
• (80) is again very close to the expression of Paris’ law (12), namely,

d 𝑙
d𝑁

= 𝐶(𝐾+, 𝐾̄)𝛥𝐾, (81)

with Paris’ coefficient 𝑚 = 1. Nevertheless, in this case, the Paris’ coefficient depends strongly on 𝐾̄ but weakly on 𝐾+. If
𝐾+∕𝐾Ic → 0, 𝐶 tends to become linear with respect to 𝐾̄, as highlighted by the following remark where limit cases are
discussed;

• we observe two meaningful limit cases of (80):

– if 𝐾+ ≪ 𝐾Ic and in view of (7), 𝐶(𝐾+, 𝐾̄) → 𝐶𝐾̄, namely:

d 𝑙
d𝑁

= 𝐶𝐾̄ 𝛥𝐾, with 𝐶 =
2𝑘f𝑘G𝓁f

3(1 + 𝑘f)𝐺c
, (82)

which corresponds to Paris’ law (12) with exponent 1 but a linear dependence on the mean value of the stress intensity
factor. Expression (82) is similar but not equal to (15). However, both appear to describe the same behavior;

– if 𝛥𝐾 → 𝐾Ic, implying that 𝐾+ → 𝐾Ic, that is, the stress intensity approaches the maximum allowable value, 𝐶(𝐾+, 𝐾̄) → ∞
and the fatigue crack propagation rate tends to infinity.

These results suggest that this very simple model is already capable of describing both the Paris’ regime (PR), the fast crack
26

growth regime (FR), and a linear dependence on the mean value of the stress intensity factor.
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𝓁

Fig. 18. Mean load effect as a function of 𝑅, ranging from 0 to 0.9 with a step of 0.1. The PR is described by Paris’ law with exponent 2 and a strong
dependence on 𝑅. Blue curves correspond to the model crack propagation curve (80) whereas red curves correspond to Forman’s Eq. (13), shifted upwards for
graphical reasons in order to avoid confusing overlaps.

The above mentioned results can be observed in Fig. 17 and Fig. 18, where the trend of the fatigue crack propagation law (80) is
presented for different values of mean stress intensity factor 𝐾̄ and the load parameter 𝑅, respectively. The same numerical values
of the previous examples have been adopted for the material constants. Surprisingly, the response exhibited by the model is very
similar to the empirical one suggested by Forman, i.e., Eq. (15).

Model 3⃝: Paris’ law with variable exponent/slope. For this model, it has been impossible to evaluate the summation (72) in a closed
form. Therefore, no analytical expression for the fatigue crack propagation law is provided. Nevertheless, the problem has been
faced numerically. Specifically, different crack propagation rates 𝛥𝑙 have been prescribed and the corresponding stress intensity
factor variations have been obtained by solving the non-linear problem (74). Different values for the exponent 𝑞 in (43) have been
considered and the outcomes are presented in Fig. 19.

What is immediately evident from these results is that the Paris’ exponent 𝑚 is linked to the exponent 𝑞 of (43) by the following
relation:

𝑚 ≈ 𝑞 + 1. (83)

This result can also be intuitively understood by looking closer to (72). Indeed, it is exactly 𝑞 + 1 that raises 𝛥𝐾 to power while the
summation yields a linear function of 𝓁f∕𝛥𝑙 in (74).

These results clearly highlight the role played by (43) and in particular by 𝜓∗ in being able to tune the slope of the fatigue crack
propagation curve in the Paris’ regime.

3.4. The case of a FDZ greater than the KDZ and linear/exponential threshold function comparison

In this section, the occurrence of a fatigue zone greater than the K-dominance zone is considered, for which knowledge of the
exact elastic solution of the problem turns out to be of fundamental importance. At the same time, the effects of adopting a linear
or exponential threshold function are compared.

Within a plane-stress setting, the IPSC setup is again considered under mode-I loading conditions. Differently from the previous
section, a simple tension–tension 𝜎-cyclic loading is now assumed, with 𝜎− = 0 and 𝜎+ = 0.01𝜎0, where 𝜎0 ∶= 𝐾Ic∕

√

𝜋𝑙0 corresponds
to the limit far field stress for a monotonic load. Consequently, 𝛥𝜎 = 0.01𝜎0 and 𝑅 = 0. In addition, the assumed initial crack length
and K-dominance length are 𝑙0 = 10 and 𝓁k = 0.07𝑙0, respectively, whereas different fatigue lengths were considered, specifically,

f ∈ {1, 5, 25}×𝓁k. All the analyses are done with model 1⃝ of Table 2. The remainder of the constitutive constants have been chosen
of unitary value, except for Poisson’s ratio (𝜈 = 0.25).

For the discussion of the subsequent results, it is preliminarily useful to highlight the elastic energy profiles of both the K-
solution (A.9) and the exact solution (A.8). These are represented in Fig. 20, normalized with respect to the value of the K-solution
evaluated at 𝑟 = 𝑙0, namely:

𝜓̂ =
𝐾2

I (1 − 𝜈) . (84)
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Fig. 19. Stable crack propagation laws for different values of 𝑞 ∈ {0, 1, 2, 3} corresponding respectively to Paris’ law exponents 𝑚 ∈ {1, 2, 3, 4}.

Fig. 20. Elastic energy profiles of the K-solution (A.9) and the exact solution (A.8).

Along the crack path, the elastic energy density of the K-solution is clearly underestimated far from the crack tip compared to
the elastic energy density of the exact solution, since the former tends to vanish whereas the latter tends to the far field stress value.
However, interestingly, the elastic energy is higher for the K-solution close to the crack tip. For the present example, this trend
inversion is approximately observed at 𝓁f = 5𝓁k.

The fatigue history variable profiles with respect to the load cycles are reported in Fig. 21 for different values of 𝓁f∕𝓁k and for
different threshold functions. The corresponding crack and crack rate evolutions with respect to the number of cycles are displayed
in Figs. 22 and 23 for both the linear and exponential threshold functions. Finally, the crack rate evolutions with respect to the
stress intensity factor variation and again for both threshold functions are highlighted in Figs. 24 and 25.

For 𝓁f∕𝓁k equal to 1 and 5, the fatigue history variable profiles are quite similar to each other for both the linear and exponential
threshold functions. Nevertheless, the transient evolution region is much wider with ℎl, approximately three times the fatigue length
in the present case, as also observed in Fig. 12, whereas with ℎ , the same region is only a fraction of 𝓁 . Clearly, by adopting
28
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Fig. 21. Fatigue history variable profiles plotted every 5 load cycles for different values of 𝓁f∕𝓁k and for different threshold functions: (a) linear and (b)
exponential. The transient evolution stage is only qualitatively identified.
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Fig. 22. Crack and crack rate evolutions with respect to the number of cycles for different values of 𝓁f∕𝓁k and for the linear threshold function ℎl.

Fig. 23. Crack and crack rate evolutions with respect to the number of cycles for different values of 𝓁f∕𝓁k and for the exponential threshold function ℎe.
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Fig. 24. Crack rate evolutions with respect to the stress intensity factor variation for different values of 𝓁f∕𝓁k and for the linear threshold function ℎl.

Fig. 25. Crack rate evolutions with respect to the stress intensity factor variation for different values of 𝓁f∕𝓁k and for the exponential threshold function ℎe.

the exponential threshold function, one can observe an increment of the fatigue history variable, and therefore a material fatigue
degradation, in the entire domain of analysis.

Concerning the crack and crack rate evolution with respect to the number of cycles, the K-solution and the exact solution provide
quite similar results with the linear threshold function and for all considered length ratios. This behavior is also confirmed by Fig. 24,
where the crack rate is plotted against the stress intensity factor variation. Instead, with the exponential threshold function, one
can notice a progressive increment of the crack propagation rate with respect to the length ratio by considering the exact solution
instead of the K-solution. This difference is quite noticeable in Fig. 23 but less in the curves represented in the bi-logarithmic scale in
Fig. 25. Summing up, we can conclude that if the linear threshold function is adopted, the difference in the fatigue crack propagation
behavior resulting from the K-solution and the exact solution is small whereas it is much larger if ℎe is considered. This is due to
the fact that ℎe accounts for energy contributions far from the crack tip, where the energetic contribution of the exact solution to
he fatigue history variable is relevant, while the contribution deriving from the K-solution is negligible (Fig. 20).

It is worth noticing from Fig. 25 that models based on the exponential threshold function seem to be able to better describe
he slow fatigue crack initiation, as occurring in SR, with respect to the linear threshold model. The reason lies in the fact that the
esulting fatigue history variable profile at incipient propagation, with respect to the profile in the PR, is smaller with ℎe but larger

with ℎl.

4. Conclusions

In this work, an extension of Griffith’s fracture theory to describe fatigue-induced fracture has been proposed. This task was
achieved by introducing a state-dependent fracture toughness, degraded in terms of a fatigue history variable. The proposed modeling
approach encompasses complex fatigue processes in a simple yet flexible form while preserving a direct link with classical fracture
mechanics. Specifically, a composition of constitutive functions was introduced to define an energy-based fatigue history variable.
Each of these functions considers one of the following mechanisms: (i) the crack tip singularity, (ii) the identification of fatigue-
inducing loading conditions, (iii) mean stress effects, and (iv) the effect of consecutive loading. This last aspect has been proven to
be the key for tuning Paris’ law exponent during stationary fatigue crack propagation.
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To address the capabilities of the model, a simple 2D benchmark example, for which the exact analytical solution is available
n the framework of linear elastic fracture mechanics, was studied in depth. The results of this study revealed different consecutive
rocesses involved in fatigue crack propagation, namely, an initial accumulation, a transient stage, and a stable propagation stage.
n addition, compact analytical results showed that already simple forms of the model recover the celebrated Paris’ law as well
orman’s extension to mean stress effects and the fast propagation stage. However, in the present model, the parameters are easily
uned and are directly related to Griffith’s fracture theory. To the authors’ knowledge, previous studies have not been able to provide
uch a link. Finally, the size of the fatigue zone relative to the K-dominance zone was addressed in the context of alternative forms
f the model. It was shown that far field effects, which may be taken into account by the model, may play a significant role in cases
here the fatigue degradation zone contains the K-dominance zone.

The developments presented in this first study allow us to envisage a new generation of numerical models to describe fatigue
rocesses in different materials. In particular, the phase-field fracture models with fatigue effects, presented in a persistently growing
ody of literature, share a common shortcoming: a missing link with a physical Griffith-based fracture theory. The present study
rovides a framework to overcome this shortcoming and may be taken as the point of departure to develop a consistent phase-field
odel for fatigue-induced fracture. Furthermore, it could be interesting to extend the model, exploiting its intrinsic flexibility, to

onsider non-proportional loading conditions [3], inelastic phenomena [17], undefined crack paths [77], mixed-fracture modes [78],
nd related numerical issues [79].
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Appendix. Mode-I fracture in an infinite two-dimensional domain

In this section, we recall the expressions for the stress and energy fields of an infinite plane with a symmetric crack (IPSC) of
length 2𝑙 subjected to a uniaxial stress 𝜎 at infinity. This setup is one of the most typical crack problems in fracture mechanics
for which the exact solution is available. Thus, in this case, it is possible to compare the exact solution with the near-tip K-stress
solution.

The problem is highlighted in Fig. A.26. According to the chosen reference system, the boundary conditions read
{

𝜎𝑥𝑦 = 𝜎𝑦𝑦 = 0 at |𝑥| ≤ 𝑙 and 𝑦 = 0,
𝜎𝑥𝑥 = 𝜎𝑥𝑦 = 0, 𝜎𝑦𝑦 = 𝜎 at 𝑥2 + 𝑦2 → ∞.

(A.1)

The solution follows from the Westergaard function method within the complex potential approach for plane elasticity (Kolosov
and Muskhelishvili formulas), as presented for instance in [38, Sec. 3]. The notation of this reference is adopted below.

Within this framework, the Westergaard function and constant for mode-I fracture read

𝑍I(𝑧) =
𝑧

√

𝑧2 − 𝑙2
𝜎 and 𝐴 = −𝜎

2
, (A.2)

with 𝑧 = 𝑟 𝑒𝑖𝜗 expressed in terms of polar coordinates in the complex plane. The constant 𝐴 is related to the uniform uniaxial stress
by the relation 𝜎𝑥𝑥 = 2𝐴. The associated stress component fields, as part of the exact solution, read

𝜎𝑥𝑥 = ℜ
(

𝑍I
)

− 𝑦
(

𝑍′
I
)

+ 𝐴
= 𝜎𝑟

√

𝑟1𝑟2

(

cos
(

𝜗 − 1
2𝜗1 −

1
2𝜗2

)

− 𝑙2

𝑟1𝑟2
sin 𝜗 sin

(

3
2

(

𝜗1 + 𝜗2
)

))

, (A.3a)

𝜎𝑦𝑦 = ℜ
(

𝑍I
)

+ 𝑦
(

𝑍′
I
)

= 𝜎𝑟
√

(

cos
(

𝜗 − 1𝜗 − 1𝜗
)

+ 𝑙2 sin 𝜗 sin
(

3 (𝜗 + 𝜗
)

))

, (A.3b)
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Fig. A.26. IPSC problem, reference system and variables.

𝜎𝑥𝑦 = −𝑦ℜ
(

𝑍′
I
)

= 𝜎𝑟
√

𝑟1𝑟2

(

𝑙2

𝑟1𝑟2
sin 𝜗 cos

(

3
2

(

𝜗1 + 𝜗2
)

))

, (A.3c)

with (𝑟1, 𝜗1) and (𝑟2, 𝜗2) clearly linked to (𝑟, 𝜗).
Instead, the near-tip solution or approximated solution with respect to the stress field reads

𝜎̃𝑥𝑥 =
𝐾𝐼

√

2𝜋𝑟
cos

(1
2
𝜗
(

1 − sin 1
2
𝜗 sin 3

2
𝜗
))

, (A.4a)

𝜎̃𝑦𝑦 =
𝐾𝐼

√

2𝜋𝑟
cos

(1
2
𝜗
(

1 + sin 1
2
𝜗 sin 3

2
𝜗
))

, (A.4b)

𝜎̃𝑥𝑦 =
𝐾𝐼

√

2𝜋𝑟
sin 1

2
𝜗 cos 1

2
𝜗 cos 3

2
𝜗, (A.4c)

with (𝑟, 𝜗) → (𝑟1, 𝜗1) and the mode-I stress intensity factor given by

𝐾I ∶= lim
𝑟→0

√

2𝜋𝑟 𝜎𝑦𝑦(𝜗 = 0) = 𝜎
√

𝑙𝜋. (A.5)

Eqs. (A.3) and (A.4) evaluated along the straight propagation crack path, that is, for 𝜗 = 𝜗1 = 𝜗2 = 0, 𝑟 = 𝑟1 + 𝑙, 𝑟2 = 𝑟1 + 2𝑙, and
𝑟1 → 𝑟, become

𝜎𝑥𝑥 =

(

1 + 𝑟
𝑙

)

√

𝜋𝑙
√

2 𝑟𝑙 +
(

𝑟
𝑙

)2
𝐾I − 𝜎, (A.6a)

𝜎𝑦𝑦 =

(

1 + 𝑟
𝑙

)

√

𝜋𝑙
√

2 𝑟𝑙 +
(

𝑟
𝑙

)2
𝐾I, (A.6b)

𝜎𝑥𝑦 = 0, (A.6c)

and

𝜎̃𝑥𝑥 = 1
√

2𝜋𝑟
𝐾I, (A.7a)

𝜎̃𝑦𝑦 =
1

√

2𝜋𝑟
𝐾I, (A.7b)

𝜎̃𝑥𝑦 = 0, (A.7c)

respectively. These are displayed in Fig. A.27. A first difference between (A.3) and (A.4) or between (A.6) and (A.7) is that the
exact solution explicitly depends on the actual crack extent whereas the approximated solution does not.
33



Engineering Fracture Mechanics 281 (2023) 109048R. Alessi and J. Ulloa

p

b

Fig. A.27. Stress profiles for the K-solution and the exact solution.

Accordingly, the exact elastic energy density takes, for a plane-stress problem, the following expression along the crack
ropagation path:

𝜓 =
2𝐾2

I (1 − 𝜈)(1 + 𝜆)
2 − 2

√

𝑙𝐾I
√

𝜋(1 − 𝜈)(1 + 𝜆)
√

𝜆(2 + 𝜆)𝜎 + 𝑙𝜋𝜆(2 + 𝜆)𝜎2

2𝑙𝐸𝜋𝜆(2 + 𝜆)
, (A.8)

with 𝜆 = 𝑟∕𝑙. In contrast, the elastic energy density relying only on the approximated solution, that is, the K-stress solution, is given
y

𝜓K(𝑟) =
𝐾2

I (1 − 𝜈)
2𝜋 𝐸 𝑟

. (A.9)

Plane-strain expressions can be obtained with the following straightforward substitutions: 𝐸 → 𝐸∕(1 − 𝜈2) and 𝜈 → 𝜈∕(1 − 𝜈).

References

[1] Suresh S. Fatigue of Materials. Cambridge University Press; 1998, p. 679.
[2] Schijve J. Fatigue of Structures and Materials. Springer; 2009.
[3] Skibicki D. Phenomena and Computational Models of Non-Proportional Loadings. Springer International Publishing; 2014, p. 126.
[4] Stephens RRI, Fatemi A, Stephens RRI, Fuchs HO. Metal Fatigue in Engineering. A Wiley-Interscience publication, John Wiley & Sons; 2000, http:

//dx.doi.org/10.1115/1.3225026.
[5] Griffith AA. The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 1921;A221:163–98, URL http://www.jstor.org/stable/91192.
[6] Francfort GA, Marigo J-J. Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 1998;46(8):1319–42. http://dx.doi.org/10.

1016/S0022-5096(98)00034-9, URL http://www.sciencedirect.com/science/article/B6TXB-3XDH3V4-2/2/6078bc5b38861a78a6b1044a60e0a4bb.
[7] Bourdin B, Francfort GA, Marigo J-J. Numerical experiments in revisited brittle fracture. J Mech Phys Solids 2000;48(4):797–826. http://dx.doi.org/10.

1016/S0022-5096(99)00028-9, URL http://linkinghub.elsevier.com/retrieve/pii/S0022509699000289.
[8] Bourdin B, Francfort GA, Marigo J-J. The Variational Approach to Fracture. J Elasticity 2008;91(1):5–148. http://dx.doi.org/10.1007/s10659-007-9107-3,

URL http://www.springerlink.com/content/31370771n83r2637.
[9] Schreiber C, Kuhn C, Müller R. On phase field modeling in the context of cyclic mechanical fatigue. Pamm 2019;19(1):2–3. http://dx.doi.org/10.1002/

pamm.201900104.
[10] Schreiber C, Kuhn C, Müller R, Zohdi T. A phase field modeling approach of cyclic fatigue crack growth. Int J Fract 2020;225(1):89–100. http:

//dx.doi.org/10.1007/s10704-020-00468-w.
[11] Yan S, Schreiber C, Müller R. An efficient implementation of a phase field model for fatigue crack growth. Int J Fract 2022. http://dx.doi.org/10.1007/

s10704-022-00628-0.
[12] Alessi R, Vidoli S, De Lorenzis L. A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case. Eng Fract Mech

2018;190:53–73. http://dx.doi.org/10.1016/j.engfracmech.2017.11.036.
[13] Alessi R. Energetic formulation for rate-independent processes: remarks on discontinuous evolutions with a simple example. Acta Mech

2016;227(10):2805–29. http://dx.doi.org/10.1007/s00707-016-1636-z, URL http://link.springer.com/article/10.1007/s00707-016-1636-z.
[14] Alessi R, Crismale V, Orlando G. Fatigue Effects in Elastic Materials with Variational Damage Models: A Vanishing Viscosity Approach. J Nonlinear Sci

2019;29(3). http://dx.doi.org/10.1007/s00332-018-9511-9.
[15] Carrara P, Ambati M, Alessi R, De Lorenzis L. A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach.

Comput Methods Appl Mech Engrg 2020;361:112731. http://dx.doi.org/10.1016/j.cma.2019.112731, URL http://www.sciencedirect.com/science/article/
pii/S0045782519306218.

[16] Titscher T, Unger JF. Efficient higher-order cycle jump integration of a continuum fatigue damage model. Int J Fatigue 2020;141(August):105863.
http://dx.doi.org/10.1016/j.ijfatigue.2020.105863.

[17] Ulloa J, Wambacq J, Alessi R, Degrande G, François S. Phase-field modeling of fatigue coupled to cyclic plasticity in an energetic formulation. Comput
Methods Appl Mech Engrg 2021;373:113473. http://dx.doi.org/10.1016/j.cma.2020.113473, arXiv:1910.10007.

[18] Seleš K, Aldakheel F, Tonković Z, Sorić J, Wriggers P. A general phase-field model for fatigue failure in brittle and ductile solids. Comput Mech
2021;67(5):1431–52. http://dx.doi.org/10.1007/s00466-021-01996-5.

[19] Yin B, Kaliske M. A ductile phase-field model based on degrading the fracture toughness: Theory and implementation at small strain. Comput Methods
Appl Mech Engrg 2020;366:113068. http://dx.doi.org/10.1016/j.cma.2020.113068.
34

http://refhub.elsevier.com/S0013-7944(23)00006-1/sb1
http://refhub.elsevier.com/S0013-7944(23)00006-1/sb2
http://refhub.elsevier.com/S0013-7944(23)00006-1/sb3
http://dx.doi.org/10.1115/1.3225026
http://dx.doi.org/10.1115/1.3225026
http://dx.doi.org/10.1115/1.3225026
http://www.jstor.org/stable/91192
http://dx.doi.org/10.1016/S0022-5096(98)00034-9
http://dx.doi.org/10.1016/S0022-5096(98)00034-9
http://dx.doi.org/10.1016/S0022-5096(98)00034-9
http://www.sciencedirect.com/science/article/B6TXB-3XDH3V4-2/2/6078bc5b38861a78a6b1044a60e0a4bb
http://dx.doi.org/10.1016/S0022-5096(99)00028-9
http://dx.doi.org/10.1016/S0022-5096(99)00028-9
http://dx.doi.org/10.1016/S0022-5096(99)00028-9
http://linkinghub.elsevier.com/retrieve/pii/S0022509699000289
http://dx.doi.org/10.1007/s10659-007-9107-3
http://www.springerlink.com/content/31370771n83r2637
http://dx.doi.org/10.1002/pamm.201900104
http://dx.doi.org/10.1002/pamm.201900104
http://dx.doi.org/10.1002/pamm.201900104
http://dx.doi.org/10.1007/s10704-020-00468-w
http://dx.doi.org/10.1007/s10704-020-00468-w
http://dx.doi.org/10.1007/s10704-020-00468-w
http://dx.doi.org/10.1007/s10704-022-00628-0
http://dx.doi.org/10.1007/s10704-022-00628-0
http://dx.doi.org/10.1007/s10704-022-00628-0
http://dx.doi.org/10.1016/j.engfracmech.2017.11.036
http://dx.doi.org/10.1007/s00707-016-1636-z
http://link.springer.com/article/10.1007/s00707-016-1636-z
http://dx.doi.org/10.1007/s00332-018-9511-9
http://dx.doi.org/10.1016/j.cma.2019.112731
http://www.sciencedirect.com/science/article/pii/S0045782519306218
http://www.sciencedirect.com/science/article/pii/S0045782519306218
http://www.sciencedirect.com/science/article/pii/S0045782519306218
http://dx.doi.org/10.1016/j.ijfatigue.2020.105863
http://dx.doi.org/10.1016/j.cma.2020.113473
http://arxiv.org/abs/1910.10007
http://dx.doi.org/10.1007/s00466-021-01996-5
http://dx.doi.org/10.1016/j.cma.2020.113068


Engineering Fracture Mechanics 281 (2023) 109048R. Alessi and J. Ulloa
[20] Ai W, Wu B, Martínez-Pañeda E. A coupled phase field formulation for modelling fatigue cracking in lithium-ion battery electrode particles. J Power
Sources 2022;544:231805. http://dx.doi.org/10.1016/j.jpowsour.2022.231805, URL https://linkinghub.elsevier.com/retrieve/pii/S0378775322007959.

[21] Seiler M, Linse T, Hantschke P, Kästner M. An efficient phase-field model for fatigue fracture in ductile materials. Eng Fract Mech 2020;224:106807.
http://dx.doi.org/10.1016/j.engfracmech.2019.106807, arXiv:1903.06465.

[22] Seiler M, Keller S, Kashaev N, Klusemann B, Kästner M. Phase-field modelling for fatigue crack growth under laser shock peening-induced residual stresses.
Arch Appl Mech 2021;91(8):3709–23. http://dx.doi.org/10.1007/s00419-021-01897-2.

[23] Schneider T, Müller D, Seiler M, Tobie T, Stahl K, Kästner M. Phase-field modeling of fatigue crack growth during tooth flank fracture in case-hardened
spur gears. Int J Fatigue 2022;163:107091. http://dx.doi.org/10.1016/j.ijfatigue.2022.107091, URL https://www.sciencedirect.com/science/article/pii/
S0142112322003516.

[24] Yin B, Khodor J, Kaliske M. Fracture and Fatigue Failure Simulation of Polymeric Material at Finite Deformation by the Phase-Field Method and the
Material Force Approach. Adv. Polym. Sci. 2021;286:347–76. http://dx.doi.org/10.1007/12_2020_63.

[25] Lo Y-S, Borden MJ, Ravi-Chandar K, Landis CM. A Phase-field Model for Fatigue Crack Growth. J Mech Phys Solids 2019;103684. http://dx.doi.org/10.
1016/j.jmps.2019.103684.

[26] Amendola G, Fabrizio M, Golden JM. Thermomechanics of damage and fatigue by a phase field model. J. Therm. Stresses 2016;39(5):487–99.
http://dx.doi.org/10.1080/01495739.2016.1152140, arXiv:1410.7042.

[27] Eleuteri M, Kopfová J, Krejčí P. A new phase field model for material fatigue in an oscillating elastoplastic beam. Discrete Contin Dyn Syst Ser A
2015;35(6):2465–95. http://dx.doi.org/10.3934/dcds.2015.35.2465.

[28] Boldrini JL, Barros de Moraes EA, Chiarelli LR, Fumes FG, Bittencourt ML. A non-isothermal thermodynamically consistent phase field framework for
structural damage and fatigue. Comput Methods Appl Mech Engrg 2016. http://dx.doi.org/10.1016/j.cma.2016.08.030.

[29] Haveroth GA, Vale MG, Bittencourt ML, Boldrini JL. A non-isothermal thermodynamically consistent phase field model for damage, fracture and fatigue
evolutions in elasto-plastic materials. Comput Methods Appl Mech Engrg 2020;364:112962. http://dx.doi.org/10.1016/j.cma.2020.112962.

[30] Loew PJ, Peters B, Beex LAA. Fatigue phase-field damage modeling of rubber. In: Constitutive Models for Rubber XI. 2019, p. 408–12. http://dx.doi.org/
10.1201/9780429324710-72.

[31] Loew PJ, Poh LH, Peters B, Beex LAA. Accelerating fatigue simulations of a phase-field damage model for rubber. Comput Methods Appl Mech Engrg
2020;370:113247. http://dx.doi.org/10.1016/j.cma.2020.113247.

[32] Loew PJ, Peters B, Beex LA. Fatigue phase-field damage modeling of rubber using viscous dissipation: Crack nucleation and propagation. Mech Mater
2020;142(December 2019):103282. http://dx.doi.org/10.1016/j.mechmat.2019.103282.

[33] Tada H, Paris PC, Irwin GR. the Stress Analysis of Cracks Handbook. 2000.
[34] Ostash OP, Panasyuk VV. Fatigue process zone at notches. Int J Fatigue 2001;23(7):627–36. http://dx.doi.org/10.1016/S0142-1123(01)00004-4.
[35] Ostash OP, Panasyuk VV, Kostyk EM. A phenomenological model of fatigue macrocrack initiation near stress concentrators. Fatigue Fract Eng Mater Struct

1999;22(2):161–72. http://dx.doi.org/10.1046/j.1460-2695.1999.00098.x, URL https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1460-2695.1999.00098.
x.

[36] Grossman-Ponemon BE, Mesgarnejad A, Karma A. Phase-field modeling of continuous fatigue via toughness degradation. Eng Fract Mech
2022;264(November 2021):108255. http://dx.doi.org/10.1016/j.engfracmech.2022.108255.

[37] Halphen B, Nguyen QS. Generalized Standard Materials. J.e Méc. 1975;14(1):39–63.
[38] Sun CT, Jin Z. Fracture Mechanics. Elsevier Science; 2012, URL https://books.google.it/books?id=LfqMaqVw-jMC.
[39] Gross D, Seelig T. Fracture Mechanics: With an Introduction to Micromechanics. Mechanical Engineering Series, Springer Berlin Heidelberg; 2006, URL

https://books.google.it/books?id=xuby9HLd8GAC.
[40] Almi S, Lucardesi I. Energy release rate and stress intensity factors in planar elasticity in presence of smooth cracks. Nonlinear Differ. Equ. Appl.

2018;25(5):1–28. http://dx.doi.org/10.1007/s00030-018-0536-4.
[41] Sun CT, Qian H. Brittle fracture beyond the stress intensity factor. J Mech Mater Struct 2009;4(4):743–53. http://dx.doi.org/10.2140/jomms.2009.4.743.
[42] Kumar B, Chitsiriphanit S, Sun CT. Significance of K-dominance zone size and nonsingular stress field in brittle fracture. Eng Fract Mech 2011;78(9):2042–51.

http://dx.doi.org/10.1016/j.engfracmech.2011.03.015.
[43] Pook LP. The effect of crack angle on fracture toughness. Eng Fract Mech 1971;3(3):205–18. http://dx.doi.org/10.1016/0013-7944(71)90032-4.
[44] Shen B, Stephansson O. Modification of the G-criterion for crack propagation subjected to compression. Eng Fract Mech 1994;47(2):177–89. http:

//dx.doi.org/10.1016/0013-7944(94)90219-4, URL https://linkinghub.elsevier.com/retrieve/pii/0013794494902194.
[45] Gent AN. Engineering with Rubber: How to Design Rubber Components. third ed.. Hanser Publishers, Carl Hanser Verlag GmbH & Co; 2012, http:

//dx.doi.org/10.5254/1.3538214, URL.
[46] Dammaß F, Kalina KA, Ambati M, Kästner M. Phase-field modelling and analysis of rate-dependent fracture phenomena at finite deformation. 2022, p.

1–22, arXiv:2206.03460.
[47] Jiang D, Carter EA. First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrit-

tlement of metals. Acta Mater 2004;52(16):4801–7. http://dx.doi.org/10.1016/j.actamat.2004.06.037, URL https://linkinghub.elsevier.com/retrieve/pii/
S1359645404003854.

[48] Wang Y, Gong J, Jiang W. A quantitative description on fracture toughness of steels in hydrogen gas. Int J Hydrogen Energy 2013;38(28):12503–8.
http://dx.doi.org/10.1016/j.ijhydene.2013.07.033.

[49] Martínez-Pañeda E, Golahmar A, Niordson CF. A phase field formulation for hydrogen assisted cracking. Comput Methods Appl Mech Engrg
2018;342:742–61. http://dx.doi.org/10.1016/j.cma.2018.07.021, arXiv:1808.03264.

[50] Hirshikesh, Natarajan S, Annabattula RK, Martínez-Pañeda E. Phase field modelling of crack propagation in functionally graded materials. Composites B
2019;169:239–48. http://dx.doi.org/10.1016/j.compositesb.2019.04.003, URL https://linkinghub.elsevier.com/retrieve/pii/S135983681930229X.

[51] Dsouza SM, Hirshikesh, Mathew TV, Singh IV, Natarajan S. A non-intrusive stochastic phase field method for crack propagation in functionally graded
materials. Acta Mech 2021;232(7):2555–74. http://dx.doi.org/10.1007/s00707-021-02956-z.

[52] Lancioni G, Alessi R. Modeling micro-cracking and failure in short fiber-reinforced composites. J Mech Phys Solids 2020;137:103854. http://dx.doi.org/
10.1016/j.jmps.2019.103854.

[53] Zehnder AT. Fracture Mechanics. Springer Verlag; 2012, http://dx.doi.org/10.1007/978-3-642-33968-4.
[54] Aliha MR, Ayatollahi MR. Geometry effects on fracture behaviour of polymethyl methacrylate. Mater Sci Eng A 2010;527(3):526–30. http://dx.doi.org/

10.1016/j.msea.2009.08.055.
[55] Tutluoglu L, Keles C. Effects of geometric factors on mode I fracture toughness for modified ring tests. Int J Rock Mech Min Sci 2012;51:149–61.

http://dx.doi.org/10.1016/j.ijrmms.2012.02.004.
[56] Paris P, Erdogan F. A critical analysis of crack propagation laws. J. Fluids Eng. Trans. ASME 1963;85(4):528–33. http://dx.doi.org/10.1115/1.3656900.
[57] Paris PC, Gomez MP, Anderson WEP. A Rational Analytic Theory of Fatigue. In: The Trend in Engineering, vol. 13. 1961, p. 9–14.
[58] Forman RG, Kearney VE, Engle RM. Numerical analysis of crack propagation in cyclic-loaded structures. J. Fluids Eng. Trans. ASME 1967;89(3):459–63.

http://dx.doi.org/10.1115/1.3609637.
[59] Priddle EK. High cycle fatigue crack propagation under random and constant amplitude loadings. Int J Press Vessels Pip 1976;4:89.
[60] Klesnil M, Lukáš P. Influence of strength and stress history on growth and stabilisation of fatigue cracks. Eng Fract Mech 1972;4(1):77–92. http:

//dx.doi.org/10.1016/0013-7944(72)90078-1.
35

http://dx.doi.org/10.1016/j.jpowsour.2022.231805
https://linkinghub.elsevier.com/retrieve/pii/S0378775322007959
http://dx.doi.org/10.1016/j.engfracmech.2019.106807
http://arxiv.org/abs/1903.06465
http://dx.doi.org/10.1007/s00419-021-01897-2
http://dx.doi.org/10.1016/j.ijfatigue.2022.107091
https://www.sciencedirect.com/science/article/pii/S0142112322003516
https://www.sciencedirect.com/science/article/pii/S0142112322003516
https://www.sciencedirect.com/science/article/pii/S0142112322003516
http://dx.doi.org/10.1007/12_2020_63
http://dx.doi.org/10.1016/j.jmps.2019.103684
http://dx.doi.org/10.1016/j.jmps.2019.103684
http://dx.doi.org/10.1016/j.jmps.2019.103684
http://dx.doi.org/10.1080/01495739.2016.1152140
http://arxiv.org/abs/1410.7042
http://dx.doi.org/10.3934/dcds.2015.35.2465
http://dx.doi.org/10.1016/j.cma.2016.08.030
http://dx.doi.org/10.1016/j.cma.2020.112962
http://dx.doi.org/10.1201/9780429324710-72
http://dx.doi.org/10.1201/9780429324710-72
http://dx.doi.org/10.1201/9780429324710-72
http://dx.doi.org/10.1016/j.cma.2020.113247
http://dx.doi.org/10.1016/j.mechmat.2019.103282
http://refhub.elsevier.com/S0013-7944(23)00006-1/sb33
http://dx.doi.org/10.1016/S0142-1123(01)00004-4
http://dx.doi.org/10.1046/j.1460-2695.1999.00098.x
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1460-2695.1999.00098.x
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1460-2695.1999.00098.x
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1460-2695.1999.00098.x
http://dx.doi.org/10.1016/j.engfracmech.2022.108255
http://refhub.elsevier.com/S0013-7944(23)00006-1/sb37
https://books.google.it/books?id=LfqMaqVw-jMC
https://books.google.it/books?id=xuby9HLd8GAC
http://dx.doi.org/10.1007/s00030-018-0536-4
http://dx.doi.org/10.2140/jomms.2009.4.743
http://dx.doi.org/10.1016/j.engfracmech.2011.03.015
http://dx.doi.org/10.1016/0013-7944(71)90032-4
http://dx.doi.org/10.1016/0013-7944(94)90219-4
http://dx.doi.org/10.1016/0013-7944(94)90219-4
http://dx.doi.org/10.1016/0013-7944(94)90219-4
https://linkinghub.elsevier.com/retrieve/pii/0013794494902194
http://dx.doi.org/10.5254/1.3538214
http://dx.doi.org/10.5254/1.3538214
http://dx.doi.org/10.5254/1.3538214
http://arxiv.org/abs/2206.03460
http://dx.doi.org/10.1016/j.actamat.2004.06.037
https://linkinghub.elsevier.com/retrieve/pii/S1359645404003854
https://linkinghub.elsevier.com/retrieve/pii/S1359645404003854
https://linkinghub.elsevier.com/retrieve/pii/S1359645404003854
http://dx.doi.org/10.1016/j.ijhydene.2013.07.033
http://dx.doi.org/10.1016/j.cma.2018.07.021
http://arxiv.org/abs/1808.03264
http://dx.doi.org/10.1016/j.compositesb.2019.04.003
https://linkinghub.elsevier.com/retrieve/pii/S135983681930229X
http://dx.doi.org/10.1007/s00707-021-02956-z
http://dx.doi.org/10.1016/j.jmps.2019.103854
http://dx.doi.org/10.1016/j.jmps.2019.103854
http://dx.doi.org/10.1016/j.jmps.2019.103854
http://dx.doi.org/10.1007/978-3-642-33968-4
http://dx.doi.org/10.1016/j.msea.2009.08.055
http://dx.doi.org/10.1016/j.msea.2009.08.055
http://dx.doi.org/10.1016/j.msea.2009.08.055
http://dx.doi.org/10.1016/j.ijrmms.2012.02.004
http://dx.doi.org/10.1115/1.3656900
http://refhub.elsevier.com/S0013-7944(23)00006-1/sb57
http://dx.doi.org/10.1115/1.3609637
http://refhub.elsevier.com/S0013-7944(23)00006-1/sb59
http://dx.doi.org/10.1016/0013-7944(72)90078-1
http://dx.doi.org/10.1016/0013-7944(72)90078-1
http://dx.doi.org/10.1016/0013-7944(72)90078-1


Engineering Fracture Mechanics 281 (2023) 109048R. Alessi and J. Ulloa
[61] Mettu S, Shivakumar V, Beek J, Yeh F, Williams L, Forman R, McMahon J, Newman I. NASGRO 3.0: A software for analyzing aging aircraft. Technical
Report, 1999, URL https://www.researchgate.net/publication/4687258_NASGRO_30_A_software_for_analyzing_aging_aircraft.

[62] Klysz S, Leski A. Good Practice for Fatigue Crack Growth Curves Description. Appl. Fracture Mech. 2012;(October). http://dx.doi.org/10.5772/52794.
[63] Elber W. Fatigue crack closure under cyclic tension. Eng Fract Mech 1970;2(1):37–44. http://dx.doi.org/10.1016/0013-7944(70)90028-7.
[64] Rabold F, Kuna M. Automated Finite Element Simulation of Fatigue Crack Growth in Three-dimensional Structures with the Software System ProCrack.

Procedia Mater. Sci. 2014;3:1099–104. http://dx.doi.org/10.1016/j.mspro.2014.06.179.
[65] Rabold F, Kuna M, Leibelt T. Procrack: A Software for Simulating Three-Dimensional Fatigue Crack Growth. In: Apel T, Steinbach O, editors. Advanced Finite

Element Methods and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013, p. 355–74. http://dx.doi.org/10.1007/978-3-642-30316-6_16.
[66] Qian J, Fatemi A. Mixed mode fatigue crack growth: A literature survey. Eng Fract Mech 1996;55(6):969–90. http://dx.doi.org/10.1016/S0013-

7944(96)00071-9.
[67] Gdoutos EE, Rodopoulos CA, Yates JR. Problems of Fracture Mechanics and Fatigue: A Solution Guide. 2003.
[68] Blaiszik BJ, Kramer SL, Olugebefola SC, Moore JS, Sottos NR, White SR. Self-healing polymers and composites. Annu Rev Mater Res 2010;40:179–211.

http://dx.doi.org/10.1146/annurev-matsci-070909-104532.
[69] Ulloa J, Alessi R, Wambacq J, Degrande G, François S. On the variational modeling of non-associative plasticity. Int J Solids Struct 2021;217–218.
[70] Sih GC. Strain-energy-density factor applied to mixed mode crack problems. Int J Fract 1974;10(3):305–21. http://dx.doi.org/10.1007/BF00035493, URL

http://link.springer.com/10.1007/BF00035493.
[71] Mesgarnejad A, Imanian A, Karma A. Phase-field models for fatigue crack growth. Theor Appl Fract Mech 2019;103(December 2018):102282. http:

//dx.doi.org/10.1016/j.tafmec.2019.102282.
[72] Köbler J, Magino N, Andrä H, Welschinger F, Müller R, Schneider M. A computational multi-scale model for the stiffness degradation of short-fiber

reinforced plastics subjected to fatigue loading. Comput Methods Appl Mech Engrg 2021;373:113522. http://dx.doi.org/10.1016/j.cma.2020.113522.
[73] Miehe C, Hofacker M, Welschinger FR. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator

splits. Comput Methods Appl Mech Engrg 2010;199(45–48):2765–78. http://dx.doi.org/10.1016/j.cma.2010.04.011, URL http://linkinghub.elsevier.com/
retrieve/pii/S0045782510001283.

[74] Hasan MM, Baxevanis T. A phase-field model for low-cycle fatigue of brittle materials. Int J Fatigue 2021;150(January):106297. http://dx.doi.org/10.
1016/j.ijfatigue.2021.106297.

[75] Simoes M, Martínez-Pañeda E. Phase field modelling of fracture and fatigue in Shape Memory Alloys. Comput Methods Appl Mech Engrg 2021;373:113504.
http://dx.doi.org/10.1016/j.cma.2020.113504, arXiv:2010.04390.

[76] Irwin GR. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. J Appl Mech 1957.
[77] Crismale V, Lazzaroni G. Quasistatic crack growth based on viscous approximation: a model with branching and kinking. NoDEA Nonlinear Differential

Equations Appl 2017;24(1):7. http://dx.doi.org/10.1007/s00030-016-0426-6, URL https://link.springer.com/10.1007/s00030-016-0426-6.
[78] De Lorenzis L, Maurini C. Nucleation under multi-axial loading in variational phase-field models of brittle fracture. Int J Fract 2021. http://dx.doi.org/

10.1007/s10704-021-00555-6, URL https://link.springer.com/10.1007/s10704-021-00555-6.
[79] Freddi F, Mingazzi L. Mesh refinement procedures for the phase field approach to brittle fracture. Comput Methods Appl Mech Engrg 2022;388:114214.

http://dx.doi.org/10.1016/j.cma.2021.114214, URL https://linkinghub.elsevier.com/retrieve/pii/S0045782521005454.
36

https://www.researchgate.net/publication/4687258_NASGRO_30_A_software_for_analyzing_aging_aircraft
http://dx.doi.org/10.5772/52794
http://dx.doi.org/10.1016/0013-7944(70)90028-7
http://dx.doi.org/10.1016/j.mspro.2014.06.179
http://dx.doi.org/10.1007/978-3-642-30316-6_16
http://dx.doi.org/10.1016/S0013-7944(96)00071-9
http://dx.doi.org/10.1016/S0013-7944(96)00071-9
http://dx.doi.org/10.1016/S0013-7944(96)00071-9
http://refhub.elsevier.com/S0013-7944(23)00006-1/sb67
http://dx.doi.org/10.1146/annurev-matsci-070909-104532
http://refhub.elsevier.com/S0013-7944(23)00006-1/sb69
http://dx.doi.org/10.1007/BF00035493
http://link.springer.com/10.1007/BF00035493
http://dx.doi.org/10.1016/j.tafmec.2019.102282
http://dx.doi.org/10.1016/j.tafmec.2019.102282
http://dx.doi.org/10.1016/j.tafmec.2019.102282
http://dx.doi.org/10.1016/j.cma.2020.113522
http://dx.doi.org/10.1016/j.cma.2010.04.011
http://linkinghub.elsevier.com/retrieve/pii/S0045782510001283
http://linkinghub.elsevier.com/retrieve/pii/S0045782510001283
http://linkinghub.elsevier.com/retrieve/pii/S0045782510001283
http://dx.doi.org/10.1016/j.ijfatigue.2021.106297
http://dx.doi.org/10.1016/j.ijfatigue.2021.106297
http://dx.doi.org/10.1016/j.ijfatigue.2021.106297
http://dx.doi.org/10.1016/j.cma.2020.113504
http://arxiv.org/abs/2010.04390
http://refhub.elsevier.com/S0013-7944(23)00006-1/sb76
http://dx.doi.org/10.1007/s00030-016-0426-6
https://link.springer.com/10.1007/s00030-016-0426-6
http://dx.doi.org/10.1007/s10704-021-00555-6
http://dx.doi.org/10.1007/s10704-021-00555-6
http://dx.doi.org/10.1007/s10704-021-00555-6
https://link.springer.com/10.1007/s10704-021-00555-6
http://dx.doi.org/10.1016/j.cma.2021.114214
https://linkinghub.elsevier.com/retrieve/pii/S0045782521005454

	Endowing Griffith's fracture theory with the ability to describe fatigue cracks
	Introduction
	From Griffith's fracture theory to a brittle fracture fatigue model
	Griffith's theory of fracture
	Stress intensity factors and the K-dominance zone
	Fracture toughness as a material function

	Fatigue crack propagation and Paris' law
	The construction of the fatigue model
	Some specific fatigue degradation functions and fatigue history variables
	Fatigue degradation function
	Fatigue history variable

	Towards a variational fatigue phase-field fracture model

	Illustrative examples
	The mechanical problem
	Geometry, boundary conditions, energy release rate, and stress intensity factor
	Loading conditions

	The fatigue crack propagation stages
	The stationary fatigue crack propagation regime and link to Paris' law
	The stationary regime setting
	Stationary evolution stages and fatigue variable
	The fatigue crack propagation law

	The case of a FDZ greater than the KDZ and linear/exponential threshold function comparison

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix. Mode-I fracture in an infinite two-dimensional domain
	References


