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Abstract Given a family of polynomial-like maps of large topological degree, we
relate the presence ofMisiurewicz parameters to a growth condition for the volume of
the iterates of the critical set. This generalizes to higher dimensions the well-known
equivalence between stability and normality of the critical orbits in dimension one.
We also introduce a notion of holomorphic motion of asymptotically all repelling
cycles and prove its equivalence with other notions of stability. Our results allow us to
generalize the theory of stability and bifurcation developed by Berteloot, Dupont and
the author for the family of all endomorphisms of Pk of a given degree to any arbitrary
family of endomorphisms of Pk or polynomial-like maps of large topological degree.

Mathematics Subject Classification 32H50 · 32U40 · 37F45 · 37F50 · 37H15

1 Introduction and results

The goal of this paper is to study the dynamical stability within arbitrary families
of polynomial-like maps of large topological degree and endomorphisms of Pk . We
aim to generalize to this setting the theory developed in [5] for the family of all
endomorphisms of Pk of a given degree. This requires a quite different approach
with respect to that situation. In particular, our main result relates bifurcations in such
families to the growth of the volume of the critical set under iteration. This generalizes
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the one-dimensional equivalence between dynamical stability and normality of the
critical orbits.

The study of dynamical stability within families of holomorphic dynamical systems
fλ goes back to the 80s,whenLyubich [22] andMañé-Sad-Sullivan [23] independently
set the foundations of the study of holomorphic families of rational maps in dimension
one. They proved that various natural definitions of stability (like the holomorphic
motion of the repelling cycles, or of the Julia set, or the Hausdorff continuity of the
latter) are actually equivalent and that the stable behaviour occurs on an open and
dense subset of the parameter space.

In 2000, De Marco [10,11] proved a formula relating the Lyapunov function L( fλ)
of a rational map to the critical dynamics of the family. It turns out that the canonical
closed and positive (1,1)-current ddcλL on the parameter space is exactly supported
on the bifurcation locus (the observation that the bifurcation measure for the family
z2 + c is equal to the harmonic measure for the Mandelbrot set is due to N. Sibony,
see [27]). This allowed for the start of a measure-theoretic study of bifurcations.

In recent years, there has been growing interest in trying to generalize the theory
by Lyubich, Mañé-Sad-Sullivan and De Marco to higher dimensions. The works by
Berger, Dujardin and Lyubich [2,16] are dedicated to the stability of Hénon maps,
while the work [5] is concerned with the family of all endomorphisms of Pk of a given
degree. This is the higher-dimensional analogue of rational maps, and the bifurcation
locus in this setting turns out to coincidewith the support of ddcL , as in dimension one.
The generalization to this setting of De Marco’s formula due to Bassanelli-Berteloot
[1] and the existence of potentials for the measures of maximal entropy are crucial
in this study. The main goal of this paper is to generalize the results of [5] to the
setting of polynomial like maps of large topological degree, and at the same time to
extend that theory to an arbitrary family of endomorphisms of Pk . We basically have
to face two difficulties. The first concerns the relation between global and critical
stabilities and is related to the absence of potentials. This will be overcome by a more
geometric approach, with the additional value of giving a more quantitative insight on
bifurcations. The second deals with the bifurcations of repelling cycles and is related
to the absence of an algebraic structure for the families we consider. As a consequence
of our approach, we will also be able to establish an extended version of the theory of
[5] to arbitrary families of endomorphisms of Pk , a question left widely open in that
paper.

Polynomial-like maps are proper holomorphic maps f : U → V , where U �
V ⊂ C

k and V is convex. They must be thought of as a generalization of the
endomorphisms of Pk (their lifts give rise to polynomial-like maps). The dynamical
study of polynomial-like maps in arbitrary dimension was undertaken by Dinh-Sibony
[12]. They proved that such systems admit a canonically defined measure of maxi-
mal entropy. Moreover, if we restrict to polynomial-like maps of large topological
degree (those for which, roughly speaking, the topological degree dominates the other
dynamical degrees, see Definition 2.7) this equilibrium measure enjoys much of the
properties of its counterpart for endomorphisms of Pk , but still does not admit any
potential.

In order to state the main results of this paper we need to give some preliminary
definitions. The first one, introduced in [5] for endomorphisms of Pk , concerns Misi-
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urewicz parameters. These are the higher-dimensional analogue of the rational maps
with a critical point non-persistently landing on a repelling cycle and are the key to
understanding the interplay between bifurcation and critical dynamics.

Definition 1.1 Let fλ : Uλ → Vλ be a holomorphic family of polynomial-like maps
and let C f be the critical set of the map f (λ, z) = (λ, fλ(z)). A point λ0 of the
parameter space M is called a Misiurewicz parameter if there exist a neighbourhood
Nλ0 ⊂ M of λ0 and a holomorphic map σ : Nλ0 → C

k such that:

1. for every λ ∈ Nλ0 , σ(λ) is a repelling periodic point;
2. σ(λ0) is in the Julia set Jλ0 of fλ0 ;
3. there exists an n0 such that (λ0, σ (λ0)) belongs to some component of f n0(C f );
4. σ(Nλ0) is not contained in a component of f n0(C f ) satisfying 3.

Here the Julia set is the support of the equilibrium measure, see Definition 2.4.
Our main result is the following (see Definition 2.6 for the definition of the Lyapunov
function L) .

Theorem A Let fλ be a holomorphic family of polynomial-like maps of large topo-
logical degree. Assume that λ0 is a Misiurewicz parameter. Then, λ0 ∈ Supp ddcL.

This statement in the case of Pk [5] relies on the generalization of De Marco’s for-
mula and the existence of a potential for the equilibrium measures. Here, we develop
a different and more geometric approach. The next proposition is the technical coun-
terpart of Theorem A. The dynamical degree d∗

k−1 of a polynomial-like map will be
introduced in Definition 2.2. It is strictly smaller than dt .

Proposition A’ Let f (λ, z) = (λ, fλ(z)) be a holomorphic family of polynomial-like
maps of large topological degree dt . Let Λ be an open and relatively compact subset
of the parameter space. Let d∗

k−1 := supλ∈Λ d∗
k−1( fλ) < dt . Then

∥
∥ddcL

∥
∥

Λ
�= 0 ⇔ lim sup

n→∞
1

n
log
∥
∥
(

f n
)

∗ C f
∥
∥

Λ×Ck > log d∗
k−1

⇔ lim sup
n→∞

1

n
log
∥
∥
(

f n
)

∗ C f
∥
∥

Λ×Ck = dt .

Moreover, if the family admits a Misiurewicz parameter then

lim sup
n→∞

1

n
log
∥
∥
(

f n
)

∗ C f
∥
∥

Λ×Ck > log d∗
k−1.

Here
∥
∥( f n)∗ C f

∥
∥

Λ×Ck denotes the mass (as a positive closed current in the prod-

uct space Λ × C
k) of the integration current (with multiplicity) on the hypersurface

f n(C f ), which is equivalent to its volume.
The proof of the first assertion is based on the theory of slicing of currents and more

precisely on the use of equilibrium currents (see [14]), which was initiated by Pham
[26]. To prove the second assertion, we exploit the mixing property of the equilibrium
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measure and construct a cylinder T0 in the product space with more than cn smaller
tubes Tn,i , contained in it, sent biholomorphically to T0 by f n . We can arrange the
local picture in such away that the component of the postcritical hypersurface f n0(C f )

meeting the repelling cycle must cross all the Tn,i ’s. By applying f n , the intersections
between f n0(C f ) and the small tubes Tn,i are all sent to analytic subsets of T0, whose
volume is thus uniformly bounded from below.

Both statements in Proposition A’ have an interest in their own. In particular, the
first estimate can be seen as a generalization of the fact that, in dimension one, the
bifurcation locus coincides with the non-normality locus of some critical orbit. The
underlying geometry in the proof of the second statement may also lead to estimates
for the Hausdorff dimension of the bifurcation loci (see [4]).

In the second part of the paper we exploit Theorem A to generalize the theory
developed in [5] to the setting of polynomial-like maps of large topological degree
and to arbitrary families of endomorphisms of Pk . As we shall see, the main task
left is to establish an analogous result in our setting of the equivalence between the
holomorphic motion of the repelling cycles and the holomorphic motion of the Julia
sets. To this aim, consider the set

J := {γ : M → C
k : γ is holomorphic and γ (λ) ∈ Jλ for every λ ∈ M}.

The family ( fλ)λ naturally induces an action F on J , by (F · γ ) (λ) := fλ (γ (λ)).
We denote by Γγ the graph of the element γ ∈ J in the product space. The following
is the analogue of holomorphic motion of Julia sets in this setting (see [5]).

Definition 1.2 An equilibrium lamination is an F-invariant subset L of J such that

1. Γγ ∩ Γγ ′ = ∅ for every distinct γ, γ ′ ∈ L;
2. μλ ({γ (λ), γ ∈ L}) = 1 for every λ ∈ M , where μλ is the equilibrium measure

of fλ;
3. Γγ does not meet the grand orbit of the critical set of f for every γ ∈ L;
4. the map F : L → L is dk to 1.

We also introduce a weak notion of holomorphic motion for the repelling cycles in
the Julia set, the repelling J -cycles. Recall that in higher dimensions repelling points
may be outside the Julia set ([18,21]).

Definition 1.3 Let fλ : Uλ → Vλ be a holomorphic family of polynomial-like maps
of large topological degree with parameter space M . We say that asymptotically all
J -cycles move holomorphically on M if there exists a subset P = ∪nPn ⊂ J such
that

1. CardPn = dn + o(dn);
2. every γ ∈ Pn is n-periodic; and
3. for every M ′ � M , asymptotically every element of P is repelling, i.e.,

Card
{

γ ∈ Pn : γ (λ) is repelling for every λ ∈ M ′}

CardPn
→ 1.

The following result, giving the desired equivalence, is established in Sect. 4.3.
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Theorem B Let fλ be any holomorphic family of polynomial-like maps of large
topological degree dt ≥ 2, or of endomorphisms of Pk . There exists an equilibrium
lamination if and only if asymptotically all J -cycles move holomorphically.

The proof of an analogous statement (giving the holomorphicmotion of all repelling
J -cycles) on P

k ([5]) needs some assumptions on the family to avoid possible phe-
nomena of non-linearizability. We explicitly remark that the proof that we present,
although it gives a slightly weaker result, has the added value that can be applied to
every family. It therefore provides a satisfactory extension of the theory of [5] to arbi-
trary holomorphic families of endomorphisms of Pk . Our strategy is a generalization
to the space of holomorphic graphs of a method due to Briend-Duval [8]. In their
situation, they could recover the equidistribution of the repelling periodic points with
respect to the equilibrum measure from the fact that all Lyapunov exponenents are
strictly positive. We first generalize this idea to a self map of a compact metric space
with good expansion properties, and then apply it in our setting.

In view of Theorems A and B we can characterize stability for polynomial-like
maps of large topological degree as follows.

Theorem C Let fλ be a holomorphic family of polynomial-like maps of large topo-
logical degree dt ≥ 2. Assume that the parameter space is simply connected. Then the
following are equivalent:

A.1 asymptotically all J -cycles move holomorphically;
A.2 there exists an equilibrium lamination for f ;
A.3 the Lyapunov function is pluriharmonic;
A.4 there are no Misiurewicz parameters.

The implication A.3⇒ A.4 is obtained from Theorem A and the implication A.2⇒
A.1 is given by Theorem B. For the other implications, the strategy is essentially the
same as the one for Pk ; minor work is needed to adapt the proofs to the current setting.
We shall thus just focus on the differences, referring the reader to [6] for the omitted
details.

To conclude, let us mention two known differences with respect to the dimension
one. Even for families of endomorphisms of Pk , the conditions in Theorem C are in
general not equivalent to the Hausdorff continuity of the Julia sets (see [7]). Moreover,
these conditions do not define a dense subset of the parameter space (see [7,15,29]).

2 Families of polynomial-like maps

Unless otherwise stated, all the results presented here are due to Dinh-Sibony (see
[12,14]).

2.1 Polynomial-like maps

The starting definition is the following.

Definition 2.1 A polynomial-like map is a proper holomorphic map g : U → V ,
where U � V are open subsets of Ck and V is convex.
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A polynomial-like map is in particular a (branched) holomorphic covering fromU
to V , of a certain degree dt (the topological degree of g). We shall always assume that
dt ≥ 2. The filled Julia set K is the subset ofU given by K :=⋂n≥0 g

−n (U ) .Notice
that g−1(K ) = K = g(K ) and thus (K , g) is a well-defined dynamical system. Lifts
of endomorphisms of Pk are polynomial-like maps. Moreover, polynomial-like maps
are stable under small perturbations of the map.

For a polynomial-likemap g, the knowledge of the topological degree is not enough
to predict the volume growth of analytic subsets. We are thus lead to consider more
general degrees than the topological one. In the following definition, we denote by ω

the standard Kähler form on C
k . Moreover, recall that the mass of a positive (p, p)-

current T on a Borel set X is given by ‖T ‖X = ∫X T ∧ ωk−p.

Definition 2.2 Given a polynomial-like map g : U → V , the ∗-dynamical degree of
order p, for 0 ≤ p ≤ k, of g is given by

d∗
p(g) := lim sup

n→∞
sup
S

∥
∥
(

gn
)

∗ (S)
∥
∥1/n
W

where W � V is a neighbourhood of K and the sup is taken over all positive closed
(k − p, k − p)-currents of mass less than or equal to 1 on a fixed neighbourhood
W ′ � V of K .

It is quite straighforward to check that this definition does not depend on the partic-
ular neighbourhoodsW andW ′ chosen for the computations. Moreover, the following

hold: d∗
0 = 1, d∗

k = dt , d∗
p(g

m) =
(

d∗
p(g)

)m
and a relation d∗

p < dt is preserved by

small perturbations.

Theorem 2.3 Let g : U → V be a polynomial-like map and ν be a probability mea-
sure supported on V which is defined by an L1 form. Then d−n

t (gn)∗ ν converge to a
probability measure μ which does not depend on ν. Moreover, for any psh function φ

on a neighbourhood of K the sequence d−n
t (gn)∗ φ converge to 〈μ, φ〉 ∈ {−∞} ∪R.

The measure μ is ergodic, mixing and satisfies g∗μ = dtμ.

The convergence of d−n
t (gn)∗ φ in Theorem 2.3 is in L p

loc for every 1 ≤ p < ∞ if
〈μ, φ〉 is finite. Otherwise, if 〈μ, φ〉 = −∞ the convergence is uniform on compact
subsets.

Definition 2.4 Themeasureμ given byTheorem2.3 is called the equilibriummeasure
of g. The support of μ is the Julia set of g, denoted with Jg .

The assumption on ν to be defined by an L1 form can be relaxed to just asking that ν
does not charge pluripolar sets. The following Theorem ensures that μ itself does not
charge the critical set of g. Notice that μ may charge proper analytic subsets. This is
a difference with respect to the case of endomorphisms of Pk .

Theorem 2.5 Let f : U → V be a polynomial-like map of degree dt . Then〈

μ, log
∣
∣Jacg

∣
∣
〉 ≥ 1

2 log dt .
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A consequence of Theorem 2.5 (by Parry Theorem [25]) is that the equilibrium
measure has entropy at least log dt . It is thus a measure of maximal entropy (see [14]).
Another important consequence is the existence, by Oseledets Theorem [24] of the
Lyapunov exponents χi (g) of a polynomial-like map with respect to the equilibrium
measure μ.

Definition 2.6 The Lyapunov function L(g) is the sum

L(g) =
∑

χi (g).

By Oseledets and Birkhoff Theorems, it follows that L(g) = 〈μ, log |Jac|〉. By
Theorem 2.5, we thus have L(g) ≥ 1

2 log dt for every polynomial-like map g.

2.2 Maps of large topological degree

Recall that the ∗-dynamical degrees were defined in Definition 2.2.

Definition 2.7 A polynomial-like map is of large topological degree if d∗
k−1 < dt .

Notice that holomorphic endomorphisms ofPk (and thus their polynomial-like lifts)
satify the above estimate. Morever, a small perturbation of a polynomial-like map of
large topological degree still satisfy this property.

The equilibrium measure of a polynomial-like map of large topological degree
integrates psh functions, and thus in particular does not charge pluripolar sets (see
[14, Theorem 2.33]).

We end this section recalling two equidistribution properties [12,14] of the equi-
librium measure of a polynomial-like map of large topological degree.

Theorem 2.8 Let g : U → V be a polynomial-like map of large topological degree
dt ≥ 2.

1. Let Rn denote the set of repelling n-periodic points in the Julia set J . Then

1

dnt

∑

a∈Rn

δa → μ.

2. There exists a proper analytic set E (possibly empty) contained in the postcritical
set of g such that

d−n
t

(

gn
)∗

δa = 1

dnt

∑

gn(b)=a

δb → μ

if and only if a does not belong to the orbit of E .

An important consequence of the proof of (the second part of) Theorem 2.8 is
that all Lyapunov exponents of a polynomial-like map of large topological degree are
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bounded below by 1
2 log

dt
d∗
k−1

> 0. This property will play a very important role in

the proof of Theorem A. It is also crucial to establish the existence of an equilibrium
lamination from the motion of the repelling points, see [5,6].

2.3 Holomorphic families

We now come to the main object of our study.

Definition 2.9 Let M be a complex manifold and U � V be connected open subsets
of M × C

k . Denote by πM the standard projection πM : M × C
k → M . Suppose

that for every λ ∈ M , the two sets Uλ := U ∩ π−1(λ) and Vλ := V ∩ π−1(λ) satisfy
∅ �= Uλ � Vλ � C

k , that Uλ is connected and that Vλ is convex. Moreover, assume
that Uλ and Vλ depend continuously on λ (in the sense of Hausdorff). A holomorphic
family of polynomial-like maps is a proper holomorphic map f : U → V fibered over
M , i.e., of the form

f : U → V
(λ, z) �→(λ, fλ(z)).

From the definition, f has a well defined topological degree, that we shall always
denote with dt and assume to be greater than 1. In particular, each fλ : Uλ → Vλ is a
polynomial-like map, of degree dt . We shall denote by μλ, Jλ and Kλ the equilibrium
measure, the Julia set and the filled Julia set of fλ, while C f , Jac f and C f will be the
critical set, the determinant of the (complex) jacobian matrix of f and the integration
current ddc log

∣
∣Jac f

∣
∣. We may drop the subscript f if no confusion arises.

It is immediate to see that the filled Julia set Kλ varies upper semicontinuously
with λ for the Hausdoff topology. This allows us, when dealing with local problems
to assume that Vλ does not depend on λ, i.e., that V = M × V , with V an open,
convex and relatively compact subset of Ck . On the other hand, the Julia set is lower
semicontinuous in λ for a family of maps of large topological degree ([14]).

We now recall the construction, due to Pham [26], of an equilibrium current for a
family of polynomial-like maps. This is based on the following Theorem. We recall
that a horizontal current on a product space M × V is a current whose support is
contained in M × L , where L is some compact subset of V . We refer to [17] (see also
[14,20,28]) for the basics on slicing.

Theorem 2.10 (Dinh-Sibony [13], Pham [26]) Let M and V two complex manifolds,
of dimension m and k. Let R be a horizontal positive closed (k, k)-current and ψ a
psh function on M × V . Then

1. the slice 〈R, π, λ〉 ofR at λ with respect to the projection π : M ×V → M exists
for every λ ∈ M, and its mass is independent from λ;

2. the function gψ,R(λ) := 〈R, π, λ〉 (ψ(λ, ·)) is psh or identically −∞.

If 〈R, π, λ0〉 (ψ(λ0, ·)) > −∞ for some λ0 ∈ M, then

3. the product ψR is well defined;
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4. for every Ω continuous form of maximal degree compactly supported on M we
have

∫

M
〈R, π, λ〉(ψ)Ω(λ) = 〈R ∧ π∗(Ω),ψ〉. (2.1)

In particular, the pushforward π∗(ψR) is well defined and coincides with the psh
function gψ,R.

Consider now a family of polynomial-like maps f : U → V = M × V . Let θ be a
smooth probability measure compactly supported in V and consider the (positive and
closed) smooth (k, k)-currents on M × V defined by induction as

{

S0 = π∗
V (θ)

Sn := 1
dt
f ∗Sn−1 = 1

dnt
( f n)∗S0.

(2.2)

The Sn’ are in particular horizontal positive closed (k, k)-currents on M × V , whose
slice mass is equal to 1.Moreover, since by definition we have 〈S0, π, λ〉 = θ for every
λ ∈ M , we have that 〈Sn, π, λ〉 = 1

dnt

(

f nλ
)∗

θ . In particular, since every fλ : Uλ → V
is a polynomial-like map, for every λ ∈ M we have 〈Sn, π, λ〉 → μλ. The following
Theorem ensures that the limits of the sequence Sn have slices equal to μλ.

Theorem 2.11 (Pham) Let f : U → V be a holomorphic family of polynomial-like
maps. Up to a subsequence, the forms Sn defined by (2.2) converge to a positive closed
(k, k)-current E on V , supported on ∪λ {λ} × Kλ, such that for every λ ∈ M the slice
〈E, π, λ〉 exists and is equal to μλ.

Definition 2.12 An equilibrium current for f is a positive closed current E on V ,
supported on ∪λ {λ} × Kλ, such that 〈E, π, λ〉 = μλ for every λ ∈ M .

Given an equilibrium current E for f , the product log |Jac| ·E (and so also the inter-
section E ∧C f = ddc(log |Jac| · E)) is thus well defined (by Theorems 2.10 and 2.5).
Moreover, the distribution π∗ (log |Jac| · E) is represented by the (plurisubharmonic)
function λ �→ 〈μλ, log |Jac(λ, ·)|〉. Notice that, while the product log |Jac| · E a priori
depends on the particular equilibrium current E , the pushforward by π is independent
from the particular choice (by (2.1)). By Oseledets and Birkhoff theorems the function
λ �→ 〈μλ, log |Jac(λ, ·)|〉 coincides with the Lyapunov function L(λ), i.e., the sum of
the Lyapunov exponents of fλ with respect to μλ (see Definition 2.6). The following
definition is then well posed.

Definition 2.13 Let f : U → V be a holomorphic family of polynomial-like maps.
The bifurcation current of f is the positive closed (1, 1)-current on M given by

Tbi f := ddcL(λ) = π∗
(

C f ∧ E) , (2.3)

where E is any equilibrium current for f .
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We conclude with two results concerning the approximation of the current uE for
u psh, that we shall need in Sect. 3. The first is due to Dinh and Sibony and is a crucial
step in the proof of the Holder continuity of the Lyapunov function (see [14, Theorem
2.34] for the result at a fixed parameter λ, and [14, Theorem 2.49] for the uniformity
in λ).

Lemma 2.14 (Dinh-Sibony) Let f : U → V = M × V be a holomorphic family of
polynomial-like maps of large topological degree. Let θ be a smooth positive measure
compactly supported on V and u be a psh function on M × V such that the family of
the restrictions u(λ, ·) is bounded on some common neighbourhood of the filled Julia
sets Kλ. Then, for every λ0 ∈ M there exist a neighbourhood λ0 ∈ M0 � M and a
constant α < 1 such that

∥
∥
〈

d−n
t

(

f nλ
)∗

θ, u(λ, ·)〉− 〈μλ, u(λ, ·)〉∥∥M0,∞ < αn .

Lemma 2.15 Let f : U → V = M × V be a holomorphic family of polynomial-like
maps, with dim M = m. Let E be an equilibrium current and Sn be a sequence of
smooth forms as in (2.2). Then for every smooth (m − 1,m − 1)-form Ω compactly
supported on M we have

〈

C f ∧ Sn, π
∗(Ω)

〉→ 〈

C f ∧ E, π∗(Ω)
〉

.

Notice that the convergence holds without the need of taking the subsequence
(recall that the right hand side is independent from the subsequence used to compute
E). Moreover, we do not need to restrict M to get the statement since Ω is compactly
supported. This also follows from the compactness of horizontal positive closed cur-
rents with bounded slice mass, see [13].

Proof It is enough to prove that, for every u psh such that there exists λ0 ∈ M such that
〈

μλ0 , u(λ0, ·)
〉

> −∞, for every continuous formΩ ofmaximal degree and compactly
supported on M , we have

〈

uSn, π
∗(Ω)

〉→ 〈

uE, π∗(Ω)
〉

, (2.4)

where the right hand side is well defined by Theorem 2.10. Notice that the assumption
〈

μλ0 , u(λ0, ·)
〉

> −∞ at some λ0 is automatic if the family is of large topological
degree, see [14, Theorem 2.33], and is always satisfied when u(λ, ·) = log |Jac(λ, ·)|
(which is the function needed for the statement).

We can suppose that Ω is a positive volume form, since we can decompose it in
its positive and negative parts Ω = Ω+ − Ω− and prove the statement for Ω+ and
Ω− separately. Moreover, by means of a partition of unity on M , we can also assume
that E is horizontal. By Theorem 2.10, the product uE is well defined and the identity
(2.1) holds with both R = E or Sn and ψ = u. So, it suffices to check that

∫

M
〈Sn, π, λ〉(u)Ω(λ) →

∫

M
〈E, π, λ〉(u)Ω(λ). (2.5)
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The assertion then follows since the slices of E , and thus also the right hand side, are
independent from the particular equilibrium current chosen.

Set φn(λ) := 〈Sn, π, λ〉 (u(λ, ·)) and φ(λ) := 〈E, π, λ〉 (u(λ, ·)) = 〈μλ, u(λ, ·)〉.
By Theorem 2.10, the φn’s and φ are psh functions on M . Moreover, at λ fixed, we
have (recalling the definition (2.2) of the Sn’s and the fact that d−n

t
(

f nλ
)

∗ u(λ, ·) →
〈μλ, u(λ, ·)〉 since u(λ, ·) is psh, see Theorem 2.3)

φn(λ) = 〈Sn, π, λ〉 u(λ, ·) =
〈
1

dnt

(

f nλ
)∗

(θ), u(λ, ·)
〉

=
〈

θ,
1

dnt

(

f nλ
)

∗ u(λ, ·)
〉

→ 〈θ, 〈μλ, u(λ, ·)〉〉 = 〈μλ, u(λ, ·)〉 = φ(λ).

Since u is upper semicontinuous (and thus locally bounded) all the φn’s are bounded
from above. This, together with the fact that they converge pointwise to φ, gives that
the convergence φn → φ happens in L1

loc, and the assertion is proved. ��

3 Misiurewicz parameters belong to Supp ddcL

In this section we prove Proposition A’ (and Theorem A). The idea will be to relate
the mass of ddcL on a given open set Λ of the parameter space with the growth of
the mass of the currents f n∗ [C] on the vertical set V ∩ π−1

M (Λ). Then, we will show
how the presence of a Misiurewicz parameter allows us to get the desired estimate for
the growth of the critical volume, permitting to conclude. We shall need the following
lemma, whose proof is a simple adaptation of the one of [14, Proposition 2.7].

Lemma 3.1 Let f : U → V be a holomorphic family of polynomial-like maps. Let
δ > d∗

p( fλ0). There exists a constant C such that, for λ sufficiently close to λ0, we have
∥
∥
(

f nλ
)

∗ (S)
∥
∥
Uλ

≤ Cδn for every n ∈ N and every closed positive (k− p, k− p)-current
S of mass less than or equal to 1 on Uλ.

The following Theorem (which implies the first part of Proposition A’) gives the
relation between the mass of ddcL and the growth of the mass of ( f n)∗ C f . We
recall that C f = ddc log

∣
∣Jac f

∣
∣ is the integration on the critical set of f , counting the

multiplicity. We set UΛ := U ∩ (Λ × C
k
)

and VΛ := V ∩ (Λ × C
k
)

.

Theorem 3.2 Let f : U → V be a holomorphic family of polynomial-like maps. Set
d∗
k−1 := supλ∈M d∗

k−1( fλ), and assume that d
∗
k−1 is finite. Let δ be greater than d

∗
k−1.

Then for any open subset Λ � M there exist positive constants c′
1, c1 and c2 such

that, for every n ∈ N,

c′
1

∥
∥ddcL

∥
∥

Λ
dnt ≤ ∥∥( f n)∗ C f

∥
∥UΛ

≤ c1
∥
∥ddcL

∥
∥

Λ
dnt + c2δ

n .

In particular, if

lim sup
n→∞

1

n
log
∥
∥
(

f n
)

∗ C f
∥
∥UΛ

> log d∗
k−1,

then Λ intersects the bifurcation locus.
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Notice that ( f n)∗ C f actually denotes the current on UΛ which is the pushforward
by the proper map f n : f −n(UΛ) → UΛ of the current C f on f −n(UΛ).

Proof The problem is local. We can thus assume that V = M×V , where V is convex.
Moreover, there exists some open convex set Ũ such that Uλ � Ũ � V for every
λ ∈ M .

Let us denote by ωV and ωM the standard Kähler forms on C
k and C

m . By abuse
of notation, we denote by ωV + ωM the Kähler form π∗

VωV + π∗
MωM on the product

space M × V . Since both ωk+1
V and ωm+1

M are zero, by the definition of mass we have

∥
∥
(

f n
)

∗ C f
∥
∥UΛ

=
∫

UΛ

(

f n
)

∗ C f ∧ (ωV + ωM )k+m−1

=
(
k + m − 1

k

)∫

UΛ

(

f n
)

∗ C f ∧ ωk
V ∧ ωm−1

M

+
(
k + m − 1

k − 1

)∫

UΛ

(

f n
)

∗ C f ∧ ωk−1
V ∧ ωm

M .

We shall bound the two integrals from above by means of ‖ddcL‖Λ dnt + δn and δn ,
respectively, and from below with ‖ddcL‖Λ dnt and 0. Let us start with the first one.
Let ρ be a positive smooth function, compactly supported on V , equal to a constant
cρ on Ũ and such that the integral of ρ is equal to 1. Notice in particular that ρ/cρ is
equal to 1 on Ũ and has total mass 1/cρ . Then

∫

UΛ

(

f n
)

∗ C f ∧ ωk
V ∧ ωm−1

M ≤ 1

cρ

∫

VΛ

(

f n
)

∗ C f ∧
(

π∗
V ρ · ωk

V

)

∧ ωm−1
M .

Consider the smooth (k, k)-forms Sn := ( f n)∗
dnt

(

π∗
V ρ · ωk

V

)

. ByTheorem2.11, every
subsequence of (Sn)n has a further subsequence converging to an equilibrium current
E ′ (possibly depending on the subsequence). Let Sni be such a subsequence. ByDefini-
tion 2.13, we have ddcL = π∗(C f ∧E ′) for any possible limit E ′. Since f ∗ωM = ωM ,
we then have

d−ni
t

∫

VΛ

(

f ni
)

∗ C f ∧
(

π∗
V ρ · ωk

V

)

∧ ωm−1
M =

∫

f −ni (VΛ)

C f ∧ Sni ∧ ωm−1
M

→
∫

VΛ

C f ∧ E ′ ∧ ωm−1
M = ∥∥ddcL∥∥

Λ
,

where the convergence follows from Lemma 2.15 (by means of a partition of unity
on Λ). Since the limit is independent from the subsequence, the convergence above
happens without the need of extraction In particular, if ‖ddcL‖ �= 0 we have

∫

VΛ

(

f n
)

∗ C f ∧
(

π∗
V ρ · ωk

V

)

∧ ωm−1
M ≤ c̃1

∥
∥ddcL

∥
∥

Λ
dnt
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for some positive constant c̃1 and the desired bound from above follows. The bound
from below is completely analogous, by means of a function ρ equal to 1 on a
neighbourhood of ∪λ{λ} × Kλ. To conclude the estimate of this term we just need
to prove that if ‖ddcL‖ = 0 then the integral above is bounded by (a constant
times) δn for some δ < dt . This is a consequence of Lemma 2.14. Indeed, setting
Ln(λ) := ∫

log
∣
∣Jac fλ

∣
∣
(

f nλ
)∗ (

ρ · ωk
V

)

and recalling that L(λ) = ∫

log
∣
∣Jac fλ

∣
∣μλ,

it follows from Lemma 2.14 that
∣
∣d−n

t Ln(λ) − L(λ)
∣
∣∞ < αn for n � 1 and some

α < 1. So,

d−n
t

∫

VΛ

(

f n
)

∗ C f ∧
(

π∗
V ρ · ωk

V

)

∧ ωm−1
M = ∥∥ddcd−n

t Ln
∥
∥ = ∥∥ddc(d−n

t Ln − L)
∥
∥

=
∫

ddc(d−n
t Ln − L) ∧ ωm−1

M

and the estimate follows by using a cut off function and an integration by parts.
Let us then estimate the second integral. We claim that

∫

Λ×Ũ

(

f n
)

∗ C f ∧ ωk−1
V ∧ ωm

M =
∫

Λ

∥
∥
(

f nλ
)

∗ C fλ

∥
∥
Ũ

ωm
M . (3.1)

where C fλ is the integration current (with multiplicity) on the critical set of fλ. The
assertion then follows since, by Lemma 3.1, the right hand side in (3.1) is bounded by
c̃2δn , for some positive c̃2.

Let us thus prove (3.1). By [28, p. 124] and [17, Theorem 4.3.2(7)], the slice
〈

( f n)∗ C f , π, λ
〉

of ( f n)∗ C f exists for almost every λ ∈ Λ and is given by

〈(

f n
)

∗ C f , π, λ
〉 = ( f nλ

)

∗
〈

C f , π, λ
〉 = ( f nλ

)

∗ C fλ .

Since ωk−1
V is smooth, this implies that the slice of ( f n)∗ C f ∧ωk−1

V exists for almost
every λ and is equal to the measure

((

f nλ
)

∗ C fλ

)∧ωk−1
V . The claim then follows from

[17, Theorem 4.3.2] by integrating a partition of unity. ��

Nowwe aim to bound from below a subsequence of
(∥
∥( f n)∗ C f

∥
∥UΛ

)

n
in presence

of a Misiurewicz parameter. The main tool to achieve this goal is given by the next
proposition.

Proposition 3.3 Let f : U → V = D×V be a holomorphic family of polynomial-like
maps of large topological degree dt . Fix a ball B � V such that B ∩ J ( f0) �= ∅ and
let δ be such that 0 < δ < dt . There exists a ball A0 ⊂ B, an N > 0 and an η > 0
such that f N admits at least δN inverse branches defined on the cylinder Dη × A0,
with image contained in Dη × A0.

In the proof of the above proposition we shall first need to construct a ball A ⊂
B with the required number of inverse branches for f0. This is done by means of
the following general lemma. Fix any polynomial-like map g : U → V of large
topological degree. Given any A ⊂ V , n ∈ N and ρ > 0, denote by Cn(A, ρ) the set
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Cn(A, ρ) :=
{

h

∣
∣
∣
∣

h is an inverse branch of gn defined on Ā
and such that h( Ā) ⊂ A and Lip h| Ā ≤ ρ

}

. (3.2)

The following result, which is just a local version of [5, Proposition 3.8], is essentially
due to Briend-Duval (see [8]).

Lemma 3.4 Let g be a polynomial-like map of large topological degree dt . Let B be
a ball intersecting J and ρ a positive number. There exists a ball A contained in B
and an α > 0 such that #Cn(A, ρ) ≥ αdnt , for every n sufficently large.

Proof (Proof of Proposition 3.3) Let A ⊂ B be a ball given by an application of
Lemma 3.4 to the map f0, with ρ = 1/4. There thus exists an α such that, for every
sufficiently large n, the setCn(A, 1/4) defined as in (3.2) has at leastαdnt elements. Fix
N sufficiently large such that δN < αdN

t . Denote by hi the elements of CN (A, 1/4)
and by Ai the images Ai := hi (A) ⊂ A. By definition of inverse branches, the Ai ’s
are all disjoint and f N0 induces a biholomorphism from every Ai to A.

Take as A0 any open ball relatively compact in A and such that∪i Āi � A0. Such an
A0 exists since ∪i Āi � A. In particular, on A0 the hi ’s are well defined, with images
(compactly) contained in the Ai ’s. By continuity, for η small enough we have that
these inverse branches for f N0 extend to inverse branches for f N on Dη × A0, with
images contained in Dη × A0 (see [6] for details). This concludes the proof. ��

We can now prove the second part of Proposition A’.

Proof (Proof of Proposition A’, second part) We prove that the existence of a Misi-
urewicz parameter implies that the mass of ( f n)∗ C f is asymptotically larger than d̃n

(up to considering a subsequence), for some d̃ > d∗
k−1.

Before starting proving the assertion, wemake a few simplifications to the problem.
Let σ(λ) denote the repelling periodic point intersecting (but not being contained in)
some component of f n0(C) at λ = λ0 and such that σ(0) ∈ J0.

– We can suppose that M = D = D1 and that λ0 = 0 (hereD = D1 denotes the unit
disc). Doing this, we actually prove a stronger statement, i.e., that ddcL �= 0 on
every complex disc passing through λ0 such that σ(λ) is not contained in f n0λ (C)

for every λ is the selected disc. Moreover, we shall assume that V = D × V .
– Without loss of generality, we can assume that σ(λ) stays repelling for every

λ ∈ D. Up to considering an iterate of f , we can suppose that σ(λ) is a repelling
fixed point. Indeed, we can replace n0 with n0 + r , for some 0 ≤ r < n(σ ), where
n(σ ) is the period of σ , to ensure that now the new n0 is a multiple of n(σ ).

– Using a local biholomorphism (change of coordinates), we can suppose that σ(λ)

is a constant in V , and we can assume that this constant is 0.
– After possibly further rescaling, we can assume that f n0(C) intersects {z = 0}
only at λ = 0.

– We denote by B a small ball in V centred at 0.

Fix a δ such that d∗
k−1 < δ < dt . Proposition 3.3 gives the existence of a ball

A0 ⊂ B and an η such that the cylinder T0 := Dη × A0 admits at least δN inverse
branches hi for f N , with images contained in T0.We explicitely notice that the images
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of T0 under these inverse branchesmust be disjoint. Up to rescalingwe can still assume
that η = 1.

The cylinder T0 is naturally foliated by the “horizontal” holomorphic graphs Γξz ’s,
where ξz(λ) ≡ z, for z ∈ A0. By construction, T0 has at least δNn inverse branches
for f Nn , with images contained in T0. We denote these preimages by Tn,i , and we
explicitely notice that every Tn,i is biholomorphic to T0, by themap f Nn . In particular,
f Nn induces a foliation on every Tn,i , given by the preimages of the Γξz ’s by f Nn .
The following elementary lemma shows that (up to shrinking B) some component

C̃ of f n0(C) intersects the graph of every holomorphic map γ : D → B, and in
particular every element of the induced foliation on Tn,i . This is a consequence of the
fact that f n0(C) ∩ {z = 0} = (0, 0).

Lemma 3.5 Denote by G the set of holomorphic maps γ : D → B. Up to shrinking
B, at least one irreducible component C̃ of f n0(C) passing through (0, 0) intersects
the graph of every element of G.

Let C̃ be given by Lemma 3.5. In particular, C̃ intersects every element of the
induced foliations on the Tn,i ’s. Let Bn,i denote the intersection Tn,i ∩ C̃ and set
Dn,i := f Nn(Bn,i ) ⊂ T0. The Dn,i ’s are non-empty analytic subsets of T0 (since
f Nn : Tn,i → T0 is a biholomorphism).Moreover, the graphs of the ξz’s intersect every
Dn,i , since their preimages in Tn,i intersect every Bn,i . In particular, the projection of
every Dn,i on V is equal to A0.

Let us finally estimate the mass of
(

f n0+Nn
)

∗ [C] on UD. First of all, notice that

( f n0)∗ C f ≥ f n0∗ [C] ≥ [ f n0(C)] ≥ [C̃] as positive currents on UD. This implies that

∥
∥
∥ f Nn+n0∗ C f

∥
∥
∥UD

≥
∥
∥
∥ f Nn∗

[

f n0(C)
]
∥
∥
∥UD

≥
∥
∥
∥ f Nn∗

[

C̃
]∥
∥
∥UD

≥
∥
∥
∥ f Nn∗

[

C̃
]∥
∥
∥
T0

.

Now, since f Nn gives a biholomorphism from every Tn,i to T0 and all the Tn,i ’s are
disjoint, we have

∥
∥
∥ f Nn∗

[

C̃
]∥
∥
∥
T0

≥
∥
∥
∥
∥
∥
f Nn∗

(
∑

i

[

Bn,i
]

)∥
∥
∥
∥
∥
T0

=
∑

i

∥
∥
∥ f Nn∗

[

Bn,i
]
∥
∥
∥ =

∑

i

∥
∥[Dn,i ]

∥
∥ .

By Wirtinger formula, for every n and i the volume of Dn,i is larger than the volume
of its projection A0 on V . Since by construction the last sum has at least δNn terms,
we have

∥
∥
∥ f n0+Nn∗ C f

∥
∥
∥UD

≥ volume(A0) · δNn > volume(A0) · (d∗
k−1

)Nn

and the assertion follows. ��
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4 Dynamical stability of polynomial-like maps

4.1 Equilibrium webs

We introduce here a notion of holomorphic motion for the equilibrium measures of a
family of polynomial-like maps. Consider the space of holomorphic maps

O
(

M,Ck,V
)

:=
{

γ ∈ O
(

M,Ck
)

: ∀λ ∈ M, γ (λ) ∈ Vλ

}

endowed with the topology of local uniform convergence and its subset

O
(

M,Ck,U
)

:=
{

γ ∈ O
(

M,Ck
)

: ∀λ ∈ M, γ (λ) ∈ Uλ

}

.

ByMontel Theorem,O(M,Ck,U) is relatively compact inO(M,Ck,V). The map f
induces an action F from O(M,Ck,U) to O(M,Ck,V) given by

(F · γ ) (λ) = fλ (γ (λ)) .

We now restrict ouselves to the subset J of O(M,Ck,U) given by

J := {γ ∈ O(M,Ck,U) : γ (λ) ∈ Jλ for every λ ∈ M}.

This is an F-invariant compact metric space with respect to the topology of local
uniform convergence. Thus, F induces a well-defined dynamical system on it.

Nothing prevents the set J to be actually empty, but we have the following lemma
(see [6]) which is a consequence of the lower semicontinuity of the Julia set (see [14]).

Lemma 4.1 Let f : U → V be a holomorphic family of polynomial-like maps of
large topological degree and ρ ∈ O(M,Ck,U) such that ρ(λ) is n-periodic for every
λ ∈ M. Then, the set

Jρ := {λ ∈ M : ρ(λ) is n-periodic, repelling and belongs to Jλ}

is open.

Notice that a repelling cycle ρ(λ) can leave the Julia set (i.e., the set Jρ is not
necessarily closed). An example of this phenomenon is given in [6].

We denote by pλ : J → P
k the evaluation map γ �→ γ (λ). The map

F : O(M,Ck,U) → O(M,Ck,V) is proper. This follows from Montel Theorem
since, for any λ, pλ is continuous and fλ : Uλ → Vλ is proper. This means in par-
ticular that F induces a well defined notion of pushforward from the measures on
O(M,Ck,U) to those on O(M,Ck,V).

Definition 4.2 Let f : U → V be a holomorphic family of polynomial-like maps.
An equilibrium web is a probability measureM on J such that:
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1. F∗M = M, and
2. (pλ)∗ M = μλ for every λ ∈ M .

The equilibrium measures μλ move holomorphically (over M) if f admits an equilib-
rium web.

Given an equilibrium web M, we can see the triple (J ,F ,M) as an invariant
dynamical system. Moreover, we can associate to M the (k, k)-current on U given
by WM := ∫ [Γγ ]dM(γ ), where [Γγ ] denotes the integration current on the graph
Γγ ⊂ U of the map γ ∈ J . It is not difficult to check that WM is an equilibrium
current for the family.

The next lemma gives some elementary properties of the support of any equilibrium
web. The proof is the same as in the case of endomorphisms of Pk (see [5, Lemma
2.5]) and is thus omitted.

Lemma 4.3 Let f : U → V be a holomorphic family of polynomial-like maps of
degree dt ≥ 2. Assume that f admits an equilibrium web M. Then

1. for every (λ0, z0) ∈ M × Jλ0 there exists an element γ ∈ SuppM such that
z0 = γ (λ), and

2. for every (λ0, z0) ∈ M × Jλ0 such that z0 is n-periodic and repelling for fλ0 there
exists a unique γ ∈ SuppM such that z0 = γ (λ0) and γ (λ) is n-periodic for fλ
for every λ ∈ M. Moreover, γ (λ0) �= γ ′(λ0) for every γ ′ ∈ SuppM different
from γ .

The following theorem allows us to construct equilibrium webs starting from par-
ticular elements inO(M,Ck,U). The proof is analogous to the one on Pk (see [5]) and
is based on Theorem 2.8. We refer to [6] for the details in this setting. We just notice
that the assumption on the parameter space to be simply connected in the second point
is needed to ensure the existence of the preimages.

Theorem 4.4 Let f : U → V be a holomorphic family of polynomial-like maps of
large topological degree dt ≥ 2.

1. Assume that the repelling J -cycles of f asymptotically move holomorphically over
the parameter space M and let

(

ρn, j
)

1≤ j≤Nn
be the elements of J given by the

motions of these cycles. Then, the equilibrium measures move holomorphically

and any limit of
(

1
dnt

∑Nn
j=1 δρn, j

)

n
is a equilibrium web.

2. Assume that the parameter space M is simply connected and that there exists
γ ∈ O(M,Ck,U) whose graph Γγ does not intersect the post-critical set
of f . Then, the equilibrium measures move holomorphically and any limit of
(
1
n

∑n
l=1

1
dlt

∑

F lσ=γ δσ

)

n
is an equilibrium web.

4.2 A preliminary characterization of stability

The following Theorem shows the equivalence of the conditions A.3 and A.4 in The-
orem C.
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Theorem 4.5 Let f : U → V be a holomorphic family of polynomial-like maps of
large topological degree dt ≥ 2. Then the following are equivalent:

I.1 for every λ0 ∈ M there exists a neighbourhood M0 � M where the measures μλ

move holomorphically and f admits an equilibrium web M = limn Mn such
that the graph of any γ ∈ ∪n SuppMn avoids the critical set of f ;

I.2 the function L is pluriharmonic on M;
I.3 there are no Misiurewicz parameters in M;
I.4 for every λ0 ∈ M there exists a neighbourhood M0 � M and a holomorphic map

γ ∈ O (M0,C
k,U) whose graph does not intersect the postcritical set of f .

Theorem 4.4 readily proves that I.4 imples I.1, while Theorem A gives the impli-
cation I.2 ⇒ I.3. The strategy for the two implications I.1 ⇒ I.2 and I.3 ⇒ I.4 follows
the same lines of the one on Pk . In particular, for the first one the only small difference
is how to get an estimate (Hölder in ε) for the μ-measure of an ε-neighbourhood of
an analytic set. In the case of endomorphisms of Pk , this follows from the Hölder
continuity of the potential of the Green current. Here we can exploit the fact that, for
every psh function u, the function e|u| is integrable with respect to the equilibrium
measure of a polynomial-like map of large topological degree ([14, Theorem 2.34]).
We refer to [6] for a complete proof.

For what concerns the last missing implication the proof can be reduced, (as in the
case of endomorphisms of Pk), by means of Hurwitz Theorem, to the proof of the
existence (Theorem 4.6) of a hyperbolic set satisfying certain properties (see [6]).

Theorem 4.6 Let f : U → V be a holomorphic family of polynomial-like maps of
large topological degree dt . Then there exists an integer N, a compact hyperbolic set
E0 ⊂ Jλ0 for f Nλ0 and a continuous holomorphic motion h : Br × E0 → C

k (defined
on some small ball Br of radius r and centered at λ0) such that:

1. the repelling periodic points of f Nλ0 are dense in E0 and E0 is not contained in the

postcritical set of f Nλ0 ;
2. hλ(E0) ∈ Jλ for every λ ∈ Br ;
3. if z is periodic repelling for f Nλ0 then hλ(z) is periodic and repelling for f Nλ .

To prove Theorem 4.6 onPk , one needs to ensure that a hyperbolic set of sufficiently
large entropy cannot be contained in the postcritical set and must, on the other hand,
be contained in the Julia set. In our setting, the analogue of the first propery is given
by Lemma 4.8 below, which is a direct consequence of Lemma 4.7, combined with a
relative version of the Variational principle.

Lemma 4.7 Let f : U → V be a polynomial like map of topological degree dt . Let
K be the filled Julia set, X an analytic subset of V of dimension p, and δn be such
that

∥
∥ f n∗ [X ]∥∥U ≤ δn. Then

ht ( f, K ∩ X) ≤ lim sup
n→∞

1

n
log δn ≤ d∗

p.
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This lemma is proved by following the strategy used by Gromov [19] to estimate
the topological entropy of endomorphisms of Pk , and adapted by Dinh and Sibony
[12,14] to the polynomial-like setting. Since only minor modifications are needed, we
refer to [6] for a complete proof.

Lemma 4.8 Let g be a polynomial-like map of large topological degree. Let ν be
an ergodic invariant probability measure for g whose metric entropy hν satisfies
hν > log d∗

p. Then, ν gives no mass to analytic subsets of dimension ≤ p.

The second problem (i.e., ensuring that the hyperbolic set stays inside the Julia set)
will be adressed by means of the following lemma.

Lemma 4.9 (see also [15], Lemma 2.3) Let f : U → V be a holomorphic fam-
ily of polynomial-like maps with parameter space M. Let E0 be a hyperbolic set
for fλ0 contained in Jλ0 , such that repelling periodic points are dense in E0 and
∥
∥(d fλ)−1

∥
∥

−1
> K > 3 on a neighbourhood of (E0)τ in the product space. Let h be

a continuous holomorphic motion of E0 as a hyperbolic set on some ball B ⊂ M,
preserving the repelling cycles. Then hλ (E0) is contained in Jλ, for λ sufficiently close
to λ0.

Proof We denote by γz the motion of a point z ∈ E0 as part of the given holomorphic
motion of the hyperbolic set.

First of all, notice that repelling points must be dense in Eλ for every λ, by the
continuity of the motion and the fact that they are preserved by it. Moreover, by
Lemma 4.1, every repelling cycle stays in Jλ for λ in a neighbourhood of λ0. It is thus
enough to ensure that this neighbourhood can be taken uniform for all the cycles.

Since
∥
∥
∥d f −1

λ

∥
∥
∥

−1
> 3 on a neighbourhood (E0)τ of E0 in the product space, we

can restrict ourselves to λ ∈ B(λ0, τ ) and so assume that
∥
∥
∥d f −1

λ

∥
∥
∥

−1
> 3 on a τ -

neighbourhood of every z ∈ Eλ, for every λ. Moreover, since the set of motions
γz of points in E0 is compact (by continuity), by shrinking τ we can assume that
γz(λ) ∈ B(z, τ/10) for every z ∈ E0 and λ. Finally, by the lower semicontinuity of
the Julia set ([14]), up to shrinking again the parameter space we can assume that
Jλ0 ⊂ (Jλ)τ/10 for every λ. These two assumptions imply that, for every λ and every
z ∈ Eλ, there exists at least a point of Jλ in the ball B(z, τ/2). Consider now any
n-periodic repelling point p0 in Eλ for fλ, and let {pi } = { f iλ(p0)

}

be its cycle (and
thus with p0 = pn). Fix a point z0 ∈ Jλ ∩ B(p0, τ ). By hyperbolicity (and since
without loss of generality we can assume that τ ≤ (1 + supBτ

‖ fλ‖C2
)−1), every ball

B(pi , τ ) has an inverse branch for fλ defined on it, with image strictly contained in
the ball B(pi−1, τ ) and strictly contracting. This implies that there exists an inverse
branch g0 for f nλ of B(p0, τ ), strictly contracting and with image strictly contained
in B(p0, τ ) (and containing p0). So, a sequence of inverse images of z0 for fλ must
converge to p0, and so p0 ∈ Jλ. The assertion is proved. ��
Proof (Proof of Theorem 4.6) First of all, we need the hyperbolic set E0. By
Lemma 3.4, we can take a closed ball A, a constant 0 < ρ < 1 and a sufficiently
large N such that the cardinality N ′ of CN (A, ρ) (see (3.2)) satisfies N ′ ≥ (

d∗
k−1

)N
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(since by assumption d∗
k−1 < dt ).We then consider the set E0 given by the intersection

E0 = ∩k≥0Ek , where Ek is given by

Ek :=
{

gi1 ◦ · · · ◦ gik (A) : (i1, . . . , ik) ∈ {1, . . . , N ′}k}

where the gi ’s are the elements of CN (A, ρ). The set E0 is then hyperbolic, and
contained in J0 (since A ∩ J �= ∅, every point in E0 is accumulated by points in the
Julia set). Moreover, repelling cycles (for f N0 ) are dense in E0.

Let � : {1, . . . , N ′}N∗
and fix a point z ∈ E0. Notice that the map ω : � → E0

given byω(i1, i2, . . . ) = limk→∞ gi1 ◦· · ·◦gik (z) satisfies the relation f N ◦ω = ω◦s,
where s denotes the left shift (i1, . . . , ik, . . . )

s�→ (i2, . . . , ik+1, . . . ). We can thus
pushforward with ω the uniform product measure on �. Since this is an s-invariant
ergodic measure, its pushforward ν is an f N -invariant ergodic measure on E0 ⊂ J0.
The metric entropy of ν thus satisfies hν ≥ log N ′ ≥ log

(

d∗
k−1

)N , and this implies (by
Lemma 4.8) that ν gives no mass to analytic subsets. In particular, E0 is not contained
in the postcritical set of f0.

We need to prove the points 2 and 3 in the theorem. It is a classical result (see [5,
Appendix A.1]) that E0 admits a continuous holomorphic motion that preserves the
repelling cycles, and thus 3 follows. The second point then follows from Lemma 4.9
(and the density of the repelling cycles in E0). ��

Once we have established the existence of a hyperbolic set as in Theorem 4.6, the
proof of the implication I.3 ⇒ I.4 is the same as on P

k (see [5,6]).

4.3 Holomorphic motions

The following Theorem 4.11 implies Theorem B, and thus the equivalence between
the conditions A.1 and A.2 in Theorem C. We need the following definition.

Definition 4.10 An equilibrium web M is acritical ifM(Js) = 0, where

Js :=
⎧

⎨

⎩
γ ∈ J : Γγ ∩

⎛

⎝
⋃

m,n≥0

f −m ( f n
(

C f
))

⎞

⎠ �= ∅
⎫

⎬

⎭
.

Theorem 4.11 Let f : U → V be a holomorphic family of polynomial-like maps of
large topological degree dt ≥ 2. Assume that the parameter space is simply connected.
Then the following are equivalent:

II.1 asymptotically all J -cycles move holomorphically;
II.2 there exists an acritical equilibrium web M;
II.3 there exists an equilibrium lamination for f .

Moreover, if the previous conditions hold, the system admits a unique equilibriumweb,
which is ergodic and mixing.
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Aswementioned in the introduction, we shall only show how to recover the asymp-
totic holomorphic motion of the repelling cycles from the two conditions II.3 and II.2.
Indeed, the construction of an equilibrium lamination starting from an acritical web is
literally the same as in the case of Pk . The crucial point in that proof is establishing the
following backward contraction property (Proposition 4.12) (which is actually used
in both the implications II.2⇒II.3⇒II.1). We set X := J \ Js (notice that this is a
full measure subset for an acritical web) and let

(X̂ , F̂ ,M̂)

be the natural extension
(see [9]) of the system (X ,F ,M), i.e., the set of the histories of elements of X

γ̂ := (. . . , γ− j , γ− j+1, . . . , γ−1, γ0, γ1, . . .),

where F(γ− j ) = γ− j+1. The map F lifts to a bijection F̂ given by

F̂(γ̂ ) := (. . .F(γ− j ),F(γ− j+1) . . .)

and thus correspond to the shift operator. M̂ is the only measure on X̂ such that
(π j )�

(M̂) = M for any projection π j : X̂ → X̂ given by π j (γ̂ ) = γ j . When M is
ergodic (or mixing), the same is true for M̂.

Given γ ∈ X , denote by fγ the injective map which is induced by f on some
neighbourhood of the graph Γγ and by f −1

γ the inverse branch of fγ , which is defined

on some neighbourhood of ΓF(γ ). Given γ̂ ∈ X̂ and n ∈ Nwe thus define the iterated
inverse branch f −n

γ̂ of f along γ̂ and of depth n by

f −n
γ̂ := f −1

γ−n
◦ · · · ◦ f −1

γ−2
◦ f −1

γ−1
.

Given η > 0, we shall denote by TM0(γ0, η) the tubular neighbourhood

TM0(γ0, η) := {(λ, z) ∈ M0 × C
k : d(z, γ0(λ)) < η}.

Proposition 4.12 Let f : U → V be a holomorphic family of polynomial-like maps
over M of large topological degree d ≥ 2 which admits an acritical and ergodic
equilibrium web M. Then (up to an iterate) there exist a Borel subset Ŷ ⊂ X̂ such
that M̂(Ŷ) = 1, a measurable function η̂ : Ŷ →]0, 1] and a constant A > 0 which
satisfy the following properties.

For every γ̂ ∈ Ŷ and every n ∈ N the iterated inverse branch f −n
γ̂ is defined on

the tubular neighbourhood TU0(γ0, η̂p(γ̂ )) of Γγ0 ∩ (U0 × C
k) and

f −n
γ̂

(

TU0(γ0, η̂p(γ̂ ))
) ⊂ TU0(γ−n, e

−nA).

Moreover, the map f −n
γ̂ is Lipschitz with Lip f −n

γ̂ ≤ l̂ p(γ̂ )e−nA where l̂ p(γ̂ ) ≥ 1 is

a function on Ŷ .

Notice that this is essentially a local statement on the parameter space. The assump-
tion on the family to be of large topological degree is crucial here to ensure that all
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Lyapunov exponents are positive. Once Proposition 4.12 is established, the implica-
tion II.2⇒ II.3 follows by an application of Poincaré recurrence theorem. Moreover,
the uniqueness of the equilibrium web and its mixing behaviour also easily follow.

The fact that either the asymptotic motion of the repelling cycles or the existence
of an equilibrium lamination implies the existence of an ergodic acritical web is again
proved in same exact way than on P

k .

Proposition 4.13 Let f : U → V be a holomorphic family of polynomial-like maps
of large topological degree dt ≥ 2. Assume that one of the following holds:

1. asymptotically all repelling J -cycles move holomorphically, or
2. there exists a holomorphic map γ ∈ O(M,Ck,V) such that Γγ does not intersect

the postcritical set of f .

Then f admits an ergodic acritical equilibrium web.

The important points in the proof are the following: the equilibriummeasure cannot
charge the postcritical set (Theorem 2.5) and we can build an equilibrium web (by
means of Theorem 4.4) satisfying the assumptions of Theorem 4.5(I.1) (which implies
that the family has no Misiurewicz parameters).

We are thus left to prove that the two (equivalent) conditions II.3 and II.2 imply the
asymptotic motion of the repelling points. We stress that, in order to do this, we do
not need to make any further assumption on the family we are considering. We start
noticing that just the existence of any equilibrium web implies the existence of a set
P ⊂ J satisfying all the properties required by Definition 1.3 but the last one. This is
an immediate consequence of Lemma 4.3.

Lemma 4.14 Let f be a holomorphic family of polynomial-like maps of large topo-
logicald degree dt . Assume that there exists an equilibrium webM for f . Then there
exists a subset P = ∪nPn ⊂ J such that

1. CardPn = dnt + o(dnt );
2. every element in Pn is n-periodic;
3. we have

∑

γ∈Pn
δγ → M′, where M′ is a (possibly different) equilibrium web.

Notice that, if the equilibriumwebM in the statement is acritical, by the uniqueness
recalled above we have M = M′.

Proof Let us fix λ0 in the parameter space. Since fλ0 has large topological degree,
Theorem 2.8 gives dnt + o(dnt ) repelling periodic points for fλ0 contained in the Julia
set Jλ0 . By Lemma 4.3(2), for every such point p of period n there exists an element
γp ∈ J such that γp(λ0) = p and Fn(γp) = γp. This gives the first two assertions
of the statement. The last one follows by Theorem 4.4. ��

In order to recover the asymptoticmotion of the repelling cycles as inDefinition 1.3,
we thus just need to prove that, on any M ′ � M , asymptotically all γp ∈ Pn given
by Lemma 4.14 are repelling. This will be done by means of the following general
lemma, which allows us to recover the existence of repelling points for a dynamical
system from the information about backward contraction of balls along negative orbits.
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This can be seen as a generalization of a classical strategy [8] (see also [3]). We keep
the notations introduced before Proposition 4.12 regarding the natural extension of a
dynamical system and the inverse branches along negative orbits.

Lemma 4.15 Let F : K → K be a continuous map from a compact metric space K
to itself. Assume that, for every n, the number of periodic repelling points of period
dividing n is less than dn + o(dn) for some integer d ≥ 2. Let ν be a probability
measure on K which is invariant, mixing and of constant Jacobian d for F .

Suppose that there exists an F-invariant subset L ⊂ K such that ν(L) = 1 and
F : L → L is a covering of degree d. Assume moreover that the natural extension
(L̂, F̂ , ν̂

)

of the induced system (L,F , ν) satisfies the following properties.

(P1) For every x̂ ∈ L̂ the inverse branch F−n
x̂ is defined and Lipschitz on the open

ball B(x0, η(̂x)) with Lip
(F−n

x̂

) ≤ l (̂x)e−nL , for some positive measurable
functions η and l and some positive constant L.

(P2) ∀x0 ∈ L,∀N , for every closed subset C of B(x0,
1
N ) the preimages F−n

x̂ (C)

with η(̂x) > 1
N (well defined by P1) are sent bijectively to C by Fn. For n large

enough, they are disjoint.

Then,

1

dn
∑

p∈Rn

δp → ν

where Rn is the set of all repelling periodic points of period (dividing) n.

By repelling periodic point here we mean the following: a point x0 such that, for
some n, Fn(x0) = x0 and there exists a local inverse branch H for Fn sending x0 to
x0 and such that LipHx0 < 1.

Proof We let σ̃ be any limit value of the sequence σn := 1
dn
∑

p∈Rn
δp. Remark that

σ̃ (K) ≤ lim sup
n→∞

σn(K) ≤ lim
n→∞

dn + o(dn)

dn
= 1. (4.1)

For every N ∈ N, let L̂N ⊂ L̂ be defined as

L̂N =
{

x̂ : η(̂x) >
1

N
and l (̂x) ≤ N

}

and set ν̂N := 1L̂N
ν̂ and νN = (π0)∗ ν̂N . We also set LN := π0

(L̂N
)

. We are going
to prove that

σ̃ (A) ≥ νN (A) for every borelian A, ∀N ∈ N. (4.2)

As by hypothesis νN (A) → ν(A) as N → ∞, the assertion will then follow from
(4.1) and (4.2). So we turn to prove (4.2). In order to do this, it suffices to prove the
following:
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∀N ∈ N, ∀̂a ∈ L̂N , for every closed subset C of B

(

a0,
1

2N

)

: σ̃ (C) ≥ νN (C).

(4.3)

Indeed, given any Borelian subset A ⊂ K, since K is compact we can find a parti-
tion of A ∩ LN into finite borelian sets Ai , each of which contained in an open ball
B
(

ai0,
1
3N

)

, with âi ∈ LN . The assertion thus follows from (4.3) since, for every Ai ,
the values σ̃ (Ai ) and νN (Ai ) are the suprema of the respective measures on closed
subsets of Ai (which by construction are contained in B(ai0,

1
2N )).

In the following we thus fix a closed subset C ⊂ B(a0,
1
2N ). We shall denote by

Cδ the closed δ-neighbourhood of C (inK). Take some δ such that δ < 1
2N and notice

that, since â ∈ L̂N , we have Cδ ⊂ B(a0,
1
N ) ⊂ B(a0, η(̂a)). Then, according to the

property (1) of the natural extension
(L̂, F̂ , ν̂

)

, we can define the set:

R̂δ
n = {x̂ ∈ Ĉδ ∩ L̂N : x0 = a0 and F−n

x̂ (Cδ) ∩ C �= ∅} .

Let us denote by Sδ
n the set of preimages of Cδ of the form F−n

x̂ (Cδ) with x̂ ∈ R̂δ
n ,

by the property (2) of
(L̂, F̂ , ν̂

)

, the elements of Sδ
n are mutually disjoint for n ≥ ñ0

(and of course Card Sδ
n ≤ dn). We claim that Card Sδ

n satisfies the following two
estimates:

1. 1
dn Card Sδ

n ≤ σn(Cδ), for n ≥ n0 ≥ ñ0, where n0 depends only on C and δ;
2. 1

dn Card Sδ
n ν(Cδ) ≥ ν̂

(F̂−n
(

Ĉδ ∩ L̂N
) ∩ Ĉ

)

.

Before proving the estimates (1) and (2), let us show how (4.3) follows from
them. Combining (1) and (2) we get ν̂

(F̂−n
(

Ĉδ ∩ L̂N
) ∩ Ĉ

) ≤ ν(Cδ)σn(Cδ) and,
since ν̂ is mixing, letting n → ∞ on a subsequence such that σni → σ̃ we find
ν̂
(

Ĉδ ∩ L̂N
)

ν̂
(

Ĉ
) ≤ ν(Cδ)σ̃ (Cδ). Since the left hand side is equal to νN (Cδ) ν (C)

(and C is closed), (4.3) follows letting δ → 0.

We are thus left to proving the inequalities (1) and (2) above. We shall see that the
first one follows from theLipschitz estimate onF−n

x̂ , while the second is a consequence
of the fact that ν is of constant Jacobian (i.e., for every borelian set A ⊂ K on which
F is injective we have dν(A) = ν(F(A))).

Let us start with (1). We have to find an integer n0 such that, for n ≥ n0, the
neighbourhood Cδ contains al least Card Sδ

n repelling periodic points for F . Take
any x̂ ∈ R̂δ

n . Since R̂δ
n ⊂ L̂N , one has η(̂x) ≥ 1

N and l (̂x) ≤ N . This means that
F−n
x̂ is well defined on Cδ ⊂ B(a0,

1
N ) and that Diam F−n

x̂ (Cδ) ≤ 1
N LipF−n

x̂ ≤
1
N Ne−nL = e−nL . Let us now take n0 such that 3e−n0L < δ. Since, by definition of
R̂δ
n , we have that F−n

x̂ (Cδ) intersects C and C ⊂ Cδ , it follows that F−n
x̂ (Cδ) ⊂ Cδ

for every x̂ ∈ R̂δ
n , with n ≥ n0. So, since Cδ is itself a compact metric space and

F−n
x̂ is stricly contracting on it (the condition 3e−n0L < δ < 1

2N also implies that
LipF−n

x̂ < 1 for n ≥ n0), we find a (unique) fixed point for it in Cδ . Since the
elements of Sδ

n are disjoint, we have found at least Card Sδ
n periodic points (whose
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period divides n) for F in Cδ , which must be repelling by the Lipschitz estimate of
the local inverse, and so (1) is proved.

For the second inequality, we have

ν̂
(F̂−n (Ĉδ ∩ L̂N

) ∩ Ĉ
) ≤ ν

(

π
(F̂−n (Ĉδ ∩ L̂N

) ∩ Ĉ
))

≤ ν

⎛

⎝
⋃

x̂∈R̂δ
n

(F−n
x̂ (Cδ)

) ∩ C

⎞

⎠ ≤ ν

⎛

⎝
⋃

x̂∈R̂δ
n

(F−n
x̂ (Cδ)

)

⎞

⎠

=
∑

F−n
x̂ (Cδ)∈Sδ

n

ν
(F−n

x̂ (Cδ)
) =

∑

F−n
x̂ (Cδ)∈Sδ

n

1

dn
ν(Cδ) = 1

dn
(

Card Sδ
n

)

ν(Cδ)

where the second equality follows from the fact that ν is of constant Jacobian. ��
We can now show how conditions II.2 and II.3 (which we recall are equivalent)

imply condition II.1 in Theorem 4.11. Recall that this also proves Theorem B.

Theorem 4.16 Let f : U → V be a holomorphic family of polynomial-like maps,
of degree dt ≥ 2. Assume that there exist an acritical equilibrium web M and an
equilibrum lamination L for f . Then, there exists a subset P = ∪nPn ⊂ J , such that

1. CardPn = dn + o(dn);
2. every γ ∈ Pn is n-periodic; and
3. ∀M ′ � M, asymptotically every element of P is repelling:

Card{γ ∈ Pn : γ (λ) is repelling for every λ ∈ M ′}
CardPn

→ 1.

Moreover,
∑

Pn
δγ → M.

The need to restrict to compact subsets of M is due to the fact that the construction
of the equilibrium lamination is essentially local (see Proposition 4.12). Thus, the
assumptions of Lemma 4.15 are satisfied on relatively compact subsets of M .

Proof We consider the set P = ∪nPn ⊂ J given by Lemma 4.14. We just need to
prove the third assertion. We thus fix M ′ � M and consider the compact metric space
O(M ′, Ū ,Ck). By Proposition 4.12 and the implication II.1⇒II.3 of Theorem 4.11 all
the assumptions of Lemma 4.15 are satisfied by the system (O(M ′, Ū ,Ck),F ,M),
with L any equilibrium lamination for the system. The assumption (P2) is verified
since this is true at any fixed parameter. The statement follows from the following two
assertions:

1. for every repelling periodic γ ∈ Rn given by Lemma 4.15, the point γ (λ) is
repelling for every λ ∈ M ′; and

2. asymptotically all elements of Rn coincide with elements of Pn .

Thefirst point is a consequence of theLipschitz estimate of the local inverse ofFn at the
points of Rn (since the Lipschitz constant of F−n dominates the Lipschitz constant
of f −n

λ , for every λ), the second of the fact that both Pn and Rn have cardinality
dnt + o(dnt ) and, at every λ, the number of n-periodic points is dnt . ��
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4.4 Proof of Theorem C

In this section we show that the conditions stated in the Theorems 4.5 and 4.11 are all
equivalent. This completes the proof of Theorem C.

Theorem 4.17 Let f : U → V be a holomorphic family of polynomial-like maps
of large topological degree dt ≥ 2. Assume that the parameter space is simply con-
nected. Then conditions I.1– I.4 of Theorem 4.5 and II.1–II.3 of Theorem 4.11 are all
equivalent.

It is immediate to see, by the definition of an equilibrium lamination, that condition
II.3 (the existence of a lamination) implies condition I.4 (existence of a graph avoiding
the postcritical set), since any element in the lamination satisfies the desired property.
Viceversa, by Proposition 4.13, we see that condition I.4 directly implies a local
version of Theorem 4.5. Using the uniqueness of the equilibrium lamination, we can
nevertheless recover that the conditions inTheorem4.5 imply the ones inTheorem4.11
on all the parameter space. This is done in the following proposition.

Proposition 4.18 Let f : U → V be a holomorphic family of polynomial-like maps
of large topological degree dt ≥ 2. Assume that the parameter space M is simply con-
nected and that every point λ0 ∈ M has a neighbourhood where the system admits an
equilibrium lamination. Then f admits an equilibrium lamination on all the parameter
space.

In particular, if condition I.4 holds, the assumptions of Proposition 4.18 are satis-
fied (by Proposition 4.13 and Theorem 4.11) and thus condition II.3 holds, too. This
complete the proof of Theorem 4.17.

Proof Consider a countable cover {Bn} by open balls of the parameter space M ,
with the property that on every Bn the system admits an equilibrium lamination Ln .
In particular, on every Bn the restricted system admits an acritical web. Consider
two intersecting balls B1 and B2. By the uniqueness of the equilibrium web on the
intersection (which is simply connected), both the corresponding webs induce the
same one on B1 ∩ B2. By analytic continuation, and up to removing a zero-measure
(for the web on the intersection) subset of graphs from the laminationsL1 andL2 (and
all their images and preimages, which are always of measure zero), we obtain a set of
holomorphic graphs, defined on all of B1 ∪ B2, that satisfy all the properties required
in Definition 1.2, thus giving an equilibrium lamination there. The assertion follows
repeating the argument, since the cover is countable and M is simply connected (and
thus we do not have holonomy problems when glueing the laminations). ��
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