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1 Introduction

The dynamics of two wide classes of chiral SU(N) gauge theories — the so-called Bars-
Yankielowicz (BY) and generalized Georgi-Glashow (GG) models [1–6] — has been re-
examined recently [7–9], in the light of a gauged color-flavor locked ZN 1-form symmetry1

and of the stronger forms of ’t Hooft anomaly matching constraints following from that. In
particular, certain mixed anomalies involving a Z2 symmetry were found to imply, in a class
of theories with even N ,2 that chirally symmetric confining vacua in these models, where
the global symmetries in the infrared are saturated by the hypothetical massless composite
fermions were inconsistent. These massless “baryons” reproduce the conventional ’t Hooft
anomalies but do not match the mixed Z2 − [Z(1)

N ]2 anomaly.
Dynamical Higgs vacua, characterized by color-flavor locked bifermion condensates, are

instead found to be compatible with the indications coming from the tighter consistency
conditions involving the Z2 anomaly [7–9]. An independent argument [10], following from

1From now on, whenever there might be confusion, we will indicate a 1-form symmetry with the apex
notation, e.g. the ZN 1-form symmetry as Z(1)

N .
2More precisely, with even N and with an even number p of Dirac pairs of fermions in the fundamental

representation [7–9]. We call this class of models Type I in this note; others will be referred to as Type II.
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the requirement that the so-called strong anomalies be reproduced correctly in an effective
low-energy action in terms of the assumed set of infrared degrees of freedom, provides a
solid support for the dynamical Higgs scenario.

The arguments based on the mixed Z2 − [Z(1)
N ]2 anomalies have been put in question

in [11]. The problem boils down to the singular nature of the external “Z2 gauge field” A2,
introduced in [7–9] to construct the color-flavor 1-form ZN symmetry which is due to the
intersection3 SU(N) ∩ {Z2 × U(1)ψη}. The Z2 gauge field needs to wind∮

L
A2 = 2πm

2 , m ∈ Z , (1.1)

along a closed loop L, to parametrize the holonomy

ψ → −ψ , η → −η , (1.2)

and to give the color-flavor-locked 1-form ZN symmetry.4 Such a field contains necessarily a
singularity (i.e., a singular Z2 vortex) [7] somewhere inside the closed 2D space Σ2 bounded
by L.

The authors of [11] show that, by choosing instead a (regular, hence legitimate) “Z2
gauge field” A2 such that (cf. (1.1)) ∫

Σ2
dA2 = 2πZ , (1.3)

the flux carried by the ZN gauge field B
(2)
c becomes∫

Σ2
N B(2)

c = 4πk , k ∈ Z , (1.4)

twice those used in [7], and accordingly the anomalies found there would disappear. How-
ever, (1.3) means that such a background Z2 gauge field corresponds to the trivial holonomy

ψ → ψ , η → η , (1.5)

i.e., no transformation (an identity element of Z2).
To grasp correctly the main issue it is indeed necessary to distinguish the concepts of

the global 1-form ZN symmetry from the gauged version of it. The former, a color-flavor
locked ZN symmetry, is a generalization of the familiar center symmetry of pure SU(N)
Yang-Mills theory. This symmetry certainly exists in the ψη and other models studied
in [7–9], but in itself it does not lead to any consistency condition. It is another story if one
tries to gauge this 1-form ZN symmetry, by introducing the ZN gauge field B

(2)
c with a

proper ZN flux (cf. (1.4)) [12–14]∫
Σ2
N B(2)

c = 2πk , k ∈ Z . (1.6)

3For definiteness, here we consider the case of the “ψη model” studied in [7] and in [11], and adopt the
notation used there.

4We recall that an appropriate U(1)ψη holonomy [7] together with this Z2 transformation, lead to a ZN

transformation of the fermions fields, undoing their ZN ⊂ SU(N) gauge transformations. See section 2.1 for
a more detailed discussion.
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Such a gauging may encounter a topological obstruction (a ’t Hooft anomaly). If it does,
then there are new, nontrivial UV-IR matching conditions [15–35]. This is indeed what was
found in [7–9]. The question is whether the anomalies and their consequences discussed
there are to be trusted, in view of the fact that the argument made use of a singular external
(non-dynamical) A2 gauge field, (1.1).

The present work aims to clarify the sense of the anomalies found in [7–9]. We start
with the simplest BY model (“ψη” model) with an extra pair of fermions (q, q̃) in the
fundamental representation, which acts as a sort of regulator field. When a gauge-invariant,
complex scalar field coupled to them through a Yukawa potential term gets a nonvanishing
vacuum expectation value (VEV), v, the fermions q, q̃ get mass and decouple,5 below ∼ v.
Namely, this extended model (which we call the X-ray model) reduces, below the decoupling
mass scale v, to the previously considered ψη model.6

This work is organized as follows. In section 2 we introduce the extended model and
discuss its symmetries. Before taking into account the scalar VEV, the model is of type II:
conventional ’t Hooft anomaly matching discussion allows a chirally symmetric, confining
vacuum as well as a dynamical Higgs phase characterized by certain bifermion condensates.
The model reduces to the previously studied ψη model at mass scales below the scalar VEV,
v, where the extra fermions pair in a Dirac fermion, get massive and decouple. Section 3
is dedicated to the gauging of the color-flavor locked 1-form ZN symmetry and to the
calculation of the consequent mixed anomalies. The generalized anomaly found in the
X-ray model, which is free from the subtleties related to the singular A2 field [7], reduces
to the Z2 − [Z(1)

N ]2 anomaly [7], precisely for even N (i.e. type I) theories. In section 4 we
discuss a few subtle issues related to the decoupling of the fermions q, q̃. The summary and
conclusion are in section 5.

2 The model and the color-flavor-locked 1-form ZN (center) symmetry

We consider the ψη model, in which a Dirac pair of fermions in the fundamental repre-
sentation of SU(N)c, q and q̃, are added. In other words, we start with a generalized
Bars-Yankielowicz model, with Weyl fermions7

ψij , ηAi , ξi , (i, j = 1, 2, . . . , N ; A = 1, 2, , . . . , N + 5) , (2.1)

in the direct-sum representation

⊕ (N + 5)
¯

⊕ . (2.2)

The global symmetry of the model is

SU(N + 5) × U(1)ψη × U(1)ψξ , (2.3)
5Similarly the NGB, although massless, decouples as it cannot be coupled with the ψη model with a

relevant or marginal operator.
6Naturally, we take v such that v ≫ Λψη, where Λψη is the dynamical scale of the ψη model.
7This model was called {S, N, p} model (p = 1) in the classification of [8].
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SU(N)c SU(N + 4) U(1)ψη U(1)V U(1)0 Ũ(1)

ψ (·) N+4
2 0 1 N+4

2

η
¯

−N+2
2 0 −1 −N+2

2

q (·) 0 1 1 N+2
2

q̃
¯

(·) 0 −1 1 −N+2
2

ϕ (·) (·) 0 0 −2 0

Table 1. The fields and charges of the X-ray model with respect to the nonanomalous symmetries.
The last symmetry, Ũ(1), is not linearly independent, but it is particularly useful to define it for
our discussion.

where U(1)ψη and U(1)ψξ are two anomaly-free combinations of the chiral U(1) symmetries
associated with the fermions, ψ, η and χ.

We shall rename the fields as ηN+5 = q̃ and ξ = q below, so that the matter content is

ψij , ηAi , qi, q̃i , (i, j = 1, 2, . . . , N ; A = 1, 2, . . . , N + 4) . (2.4)

We furthermore add a color-singlet complex scalar ϕ coupled to the (q, q̃) pair as,

∆L = gY ϕ q q̃ + h.c. . (2.5)

The Yukawa coupling (2.5) breaks the global symmetry as

SU(N + 4) × U(1)ψη × U(1)0 × Ũ(1) , (2.6)

where the charges are given in table 1.
The Yukawa coupling breaks explicitly part of the global symmetry of the original

model, (2.1), (2.2). The implications of the conventional ’t Hooft anomaly-matching
conditions [36], with respect to the unbroken global symmetry, therefore remain the same as
in the original generalized Bars-Yankielowicz model, (2.1), (2.2). The model is of Type II:
’t Hooft anomaly matching allows both dynamical Higgs phase (with bifermion condensates)
and confining, chirally symmetric phase (with no condensate formation). See appendix A.

We assume that the potential for the ϕ field is such that it acquires a nonvanishing
VEV,

⟨ϕ⟩ = v ≫ Λψη . (2.7)

The system at mass scales µ below v

µ≪ ⟨ϕ⟩ (2.8)

reduces exactly to the ψη model, studied in [7–9], as the fermions q and q̃ get mass and
decouple. The global U(1)V and Ũ(1) symmetries remain unbroken, they reduce respectively
to the identity 1 and to U(1)ψη when the fermions q and q̃ decouple. The U(1)0 symmetry
is broken as

U(1)0 → Z2 , (2.9)

– 4 –
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where Z2 acts as
ψ → −ψ , η → −η . (2.10)

We refer to this model as the X-ray theory.
Clearly, besides the ψη model, the breaking of U(1)0 introduces also a massless NGB.

However, the NGB cannot couple to the ψη degrees of freedom through relevant or marginal
operators:8 in the limit Λ ≪ v, the NGB sector decouples.

As U(1)0 and Ũ(1) symmetries are free of (strong) anomalies, one may introduce
external regular gauge fields, A0 and Ã, respectively.

2.1 Color-flavor locked 1-form ZN symmetry

As the idea of color-flavor locked ZN 1-form symmetry is central below, let us briefly review
it. Let us consider an SU(N) gauge theory with a set of the massless matter Weyl fermions
{ψk}. In general, the color Z

(1)
N symmetry is broken by the fermions (unless the fermions

present are all in the adjoint representation of SU(N)). However the situation changes if
some global, nonanomalous U(1) symmetries, U(1)i, i = 1, 2, . . ., are present, such that
when U(1)i are gauged (in the usual sense, by the introduction of external gauge fields Aµi ),
the color ZN ⊂ SU(N) and the U(1)i transformations can compensate each other for the
fermions. This allows to define a global color-flavor locked Z

(1)
N symmetry.

The action of a Z
(1)
N generator on Wilsons loops that stretch along the non-contractible

loop L is

SU(N) : Pei
∮
L
a → e

2πi
N Pei

∮
L
a , U(1)i : ei

∮
L
Ai →

(
e

2πi
N
pi
)
ei
∮
L
Ai , (2.11)

where a ≡ aAµ t
A dxµ is the SU(N) gauge field, Ai is the U(1)i gauge field, and the integers

pi defines an embedding of ZN ↪→ U(1)i.
As, locally, (2.11) can be realized as a gauge transformation, it can fail to be a symmetry

only if it ruins the periodicity9 of the fermion fields. To check it, one should compute the
action of (2.11) on the ψk Wilson loop, i.e.

W [L]k =
(
Pei

∮
L
Rk(a)

)(
Πi e

i
∮
L
qki Ai

)
(2.12)

(here ψk transforms under SU(N) in the irrep Rk with N-arity Nk, and has charge qki under
U(1)i):

W [L]k → e
2πi
N

Nke
2πi
N

∑
i
qki piW [L]k (2.13)

If the action is trivial, i.e.

2πi
N

Nk + 2πi
N

∑
i

qki pi ∈ 2πZ for each ψk , (2.14)

the fermions periodicity conditions are preserved and (2.11) defines a new color-flavor locked
ZN 1-form symmetry.

8As v ≫ µ≫ Λ, the theory is perturbative, and we can trust this classical dimensional analysis.
9Or anti-periodicity, if L is along the thermal cycle.
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ψ η q q̃

ZN ⊂ SU(N) 4π
N −2π

N
2π
N −2π

N

Ũ(1) N+4
2 β −N+2

2 β N+2
2 β −N+2

2 β

U(1)0 γ −γ γ γ

Table 2. The choice β = 2π
N and γ = ±π reproduces indeed ZN .

As the ordinary Z
(1)
N center transformation, such a color-flavor combined Z

(1)
N center

symmetry is still just a global 1-form symmetry.
A more powerful idea is to introduce the gauging of this 1-form symmetry and studying

possible topological obstructions in doing so (generalized ’t Hooft’s anomalies) [15–35]. As
in the case of conventional gauging of 0-form symmetries, the idea of gauging is that of
identifying the field configurations connected by the given symmetry transformations, and of
eliminating the double counting in the sum over field configurations. However, as one is now
dealing with a 1-form symmetry, the associated gauge transformations are parametrized by
a 1-form Abelian gauge function10 λ = λµ(x)dxµ, see (3.8) below.

3 Gauging 1-form ZN symmetry: mixed anomalies

We consider now the gauging of the 1-form ZN symmetry in the X-ray model, that arises
because the subgroup (see table 2)

ZN = SU(N)c ∩ (Ũ(1) × U(1)0) (3.1)

acts trivially on any field of the theory.11 In other words, the symmetry group that acts
faithfully on the fundamental fields is

SU(N)c × Ũ(1) × U(1)0
ZN

, (3.2)

so to get all the ’t Hooft anomalies of the theory we should consider a gauge connection
of (3.2) rather than by the simple product principal bundle

SU(N) × Ũ(1) × U(1)0 . (3.3)

To gauge (3.3) it is enough to introduce the U(1) gauge connections C̃ and C0 in addition
to the dynamical color gauge SU(N) field, a. However, by doing so, one obtains only a
subset of all the possible gauge connections allowed by the gauging of (3.2): gauging (3.2)

10Here we remember the crucial aspect of higher form symmetries: they are all Abelian. This is the reason
why the color-flavor locked 1-form symmetries are possible.

11Also, as
U(1)ψη × U(1)V ⊃ Ũ(1) ; Qψη + N + 2

2 QV = Q̃

it is possible to gauge the 1-form ZN symmetry together with U(1)ψη, U(1)V and U(1)0. Here we choose to
proceed with gauging ZN lying in the intersection (3.1).

– 6 –
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one can allow C̃, C0 and a not to be proper gauge connection, individually, e.g. one can
allow fractional Dirac quantization for C̃ and C0.

A very convenient way to describe a generic gauge connection for (3.2) is by introducing
a pair of fields [15–35] (

B(2)
c , B(1)

c
)

(3.4)

where B(1)
c is a well-defined12 U(1) gauge connection, and B

(2)
c is a 2-form gauge field that

satisfies
NB(2)

c = dB(1)
c , (3.5)

thus ∫
Σ
B(2)

c = 2π
N

Z , (3.6)

for any 2-cycle Σ.
Then we embed a, C̃ and C0 into

ã = a+ 1
N
B(1)

c , A0 = C0 + 1
2B

(1)
c and Ã = C̃ − 1

N
B(1)

c , (3.7)

where ã is a U(N) connection, and A0 and Ã are well-defined U(1) connections.13 Doing
so, the ZN 1-form symmetry of the original group is embedded in a continuous 1-form
symmetry

B(2)
c → B(2)

c + dλc , B(1)
c → B(1)

c +Nλc ,

ã→ ã+ λc , Ã→ Ã− λc , A0 → A0 + N

2 λc (3.8)

parameterized by the U(1) gauge connection λc, which cancel any local degrees of freedom
introduced by B(1)

c .
Local physics is not affected by these global issues, so the fermionic Lagrangian (locally)

still reads

ψγµ
(
∂ + RS(a) + N + 4

2 C̃ + C0

)
µ
PLψ

+ ηγµ
(
∂ + RF∗(a) − N + 2

2 C̃ − C0

)
µ
PLη

+ qγµ
(
∂ + RF(a) + N + 2

2 C̃ + C0

)
µ
PLq

+ q̃γµ
(
∂ + RF∗(a) − N + 2

2 C̃ + C0

)
µ
PLq̃ . (3.9)

12With well-defined U(1) connection we mean that they satisfy the usual Dirac quantization condition.
13In this definition, there is an ambiguity, as we could have set A0 = C0 − 1

2B
(1)
c instead. The construction

would be equivalent, but, to describe the same background, we would need to add some integer flux for A0.
The same sign ambiguity is present also for the ψη model. We will comment on the consequences of this
sign choice on anomalies in footnote 16.

– 7 –
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However, as the faithful symmetry group is (3.2), we can express this Lagrangian in terms
of well-defined geometrical entities (well-defined gauge connection) as

ψγµ
(
∂ + RS

(
ãc −

1
N
B(1)

c

)
+ N + 4

2

(
Ã+ 1

N
B(1)

c

)
+
(
A0 −

1
2B

(1)
c

))
µ
PLψ

+ ηγµ
(
∂ −

(
ãc −

1
N
B(1)

c

)
− N + 2

2

(
Ã+ 1

N
B(1)

c

)
−
(
A0 −

1
2B

(1)
c

))
µ
PLη

+ qγµ
(
∂ +

(
ãc −

1
N
B(1)

c

)
+ N + 2

2

(
Ã+ 1

N
B(1)

c

)
+
(
A0 −

1
2B

(1)
c

))
µ
PLq

+ q̃γµ
(
∂ −

(
ãc −

1
N
B(1)

c

)
− N + 2

2

(
Ã+ 1

N
B(1)

c

)
+
(
A0 −

1
2B

(1)
c

))
µ
PLq̃ (3.10)

which is explicitly invariant under the 1-form symmetry (3.8). The effective field-strength
tensors acting on the fermions are accordingly:

RS(F (ã) −B(2)
c ) + N + 4

2 (dÃ+B(2)
c ) +

(
dA0 −

N

2 B
(2)
c

)
,

RF∗(F (ã) −B(2)
c ) − N + 2

2 (dÃ+B(2)
c ) −

(
dA0 −

N

2 B
(2)
c

)
,

RF(F (ã) −B(2)
c ) + N + 2

2 (dÃ+B(2)
c ) +

(
dA0 −

N

2 B
(2)
c

)
,

RF∗(F (ã) −B(2)
c ) − N + 2

2 (dÃ+B(2)
c ) +

(
dA0 −

N

2 B
(2)
c

)
. (3.11)

Note that by turning off the 1-form gauge fields
(
B

(2)
c = 0, B(1)

c = 0
)
, one goes back to the

standard SU(N) × Ũ(1) × U(1)0 gauge theory.

The anomalies are compactly expressed by a six-dimensional (6D) anomaly func-
tional [37, 38]

A6D =
∫

Σ6

2π
3!(2π)3

{
trc

(
RS(F̃c−B(2)

c )+N+4
2 (dÃ+B(2)

c )+dA0−
N

2 B
(2)
c

)3

+ trc,f

(
RF∗(F̃c−B(2)

c )−N+2
2 (dÃ+B(2)

c )−
(
dA0−

N

2 B
(2)
c

))3

+ trc

(
R(F̃c−B(2)

c )+N+2
2 (dÃ+B(2)

c )+
(
dA0−

N

2 B
(2)
c

))3

+ trc

(
RF∗(F̃c−B(2)

c )−N+2
2 (dÃ+B(2)

c )+
(
dA0−

N

2 B
(2)
c

))3
}
. (3.12)

– 8 –
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Expanding the 6D anomaly functional (3.12), one finds
2π

3!(2π)3

∫
Σ6

{
[(N + 4) − (N + 4) + 1 − 1] trc(F̃c −B(2)

c )3
}

+ 1
8π2

∫
Σ6

trc(F̃c −B(2)
c )2

{
(N + 2)

[
N + 4

2 (dÃ+B(2)
c ) + dA0 −

N

2 B
(2)
c

]

+(N + 4)
[
−N + 2

2 (dÃ+B(2)
c ) −

(
dA0 −

N

2 B
(2)
c

)]
+1 ·

[
N + 2

2 (dÃ+B(2)
c ) + dA0 −

N

2 B
(2)
c

]

+1 ·
[
−N + 2

2 (dÃ+B(2)
c ) +

(
dA0 −

N

2 B
(2)
c

)]}

+ 1
24π2

∫
Σ6

{
N(N + 1)

2

[
N + 4

2 (dÃ+B(2)
c ) + dA0 −

N

2 B
(2)
c

]3

+ (N + 4)N
[
−N + 2

2 (dÃ+B(2)
c ) −

(
dA0 −

N

2 B
(2)
c

)]3

+N

[
N + 2

2 (dÃ+B(2)
c ) +

(
dA0 −

N

2 B
(2)
c

)]3

+N

[
−N + 2

2 (dÃ+B(2)
c ) +

(
dA0 −

N

2 B
(2)
c

)]3
}
, (3.13)

by making use of the known formulas for the traces of quadratic and cubic forms in different
representations. Note that the terms proportional to trc(F̃c − B

(2)
c )3 and trc(F̃c − B

(2)
c )2

in (3.13) cancel completely as they should. Thus the anomalies are expressed by the last
four lines of (3.13) only:

A6D = 1
24π2

∫
Σ6

{
N(N + 1)

2

[
N + 4

2 (dÃ+B(2)
c ) + dA0 −

N

2 B
(2)
c

]3

+ (N + 4)N
[
−N + 2

2 (dÃ+B(2)
c ) −

(
dA0 −

N

2 B
(2)
c

)]3

+N

[
N + 2

2 (dÃ+B(2)
c ) +

(
dA0 −

N

2 B
(2)
c

)]3

+N

[
−N + 2

2 (dÃ+B(2)
c ) +

(
dA0 −

N

2 B
(2)
c

)]3
}
. (3.14)

Below we are going to extract the mixed anomalies, involving the U(1)0 or Ũ(1) gauge
fields, A0, Ã, together with the 1-form ZN gauge field, (B(2)

c , B
(1)
c ). To compute such

anomalies explicitly it is useful to take as our spacetime manifold the 4-torus, T 4 = T 2
1 ×T 2

2 ,
and ∫

T 2
1

B(2)
c = 2π

N
,

∫
T 2

2

B(2)
c = 2π

N
,

∫
T 4

(
B(2)
c

)
= 8π2

N2 . (3.15)

We recall again that if (B(2)
c , B

(1)
c ) is set to zero, the UV anomalies simply express the

conventional ’t Hooft anomaly triangles involving the U(1)0 × Ũ(1) background fields, and
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by construction those are matched by the assumed set of the massless baryons of a candidate
IR theory such as the one discussed in appendix B. What we shall exhibit below is only the
new, stronger anomalies introduced by the gauging of the 1-form ZN symmetry. As will
be discussed below (section 3.3) the consequence of these is that the confining, symmetric
vacuum with just one massless baryon and no other nontrivial sectors, is not consistent.

3.1 Ã−
[
B(2)

c
]2 anomaly

To calculate the anomaly in Ũ(1) caused by the introduction of the 1-form ZN gauge fields,
let us briefly recall the procedure for calculating the anomalies in 4D theory according to the
Stora-Zumino descent procedure [37–39], starting from the 6D anomaly functional, (3.14), in
our case.14 One collects the terms of the form,

(
B

(2)
c
)2
dÃ, integrate to get a 5D functional

of the form,
∝
∫

Σ5

(
B(2)

c
)2
Ã . (3.16)

Now the variation Ã→ Ã + δ Ã

δÃ = d δα (3.17)

yields, by anomaly inflow, the anomalous variation in the (boundary) 4D theory

δSδα = K̃

8π2

∫
Σ4

(
B(2)

c
)2
δα . (3.18)

By collecting terms we find

K̃ = −N
3(N + 3)

2 ̸= 0 . (3.19)

The Ũ(1) symmetry is broken (i.e., gets anomalous) by the generalized 1-form gauging of
the ZN .

3.2 A0 −
[
B(2)

c
]2 anomaly

An analogous calculation leads to the U(1)0 anomaly due to the 1-form gauging of the ZN

symmetry,
δSδα0 = K0

8π2

∫
Σ4

(
B(2)

c
)2
δα0 , K0 = N2(N + 3) . (3.20)

This appears to imply that the U(1)0 symmetry is also broken by the 1-form gauging of the
ZN symmetry.

However, the scalar VEV ⟨ϕ⟩ = v breaks spontaneously the U(1)0 symmetry to Z2. It
means that, in contrast to (3.18), (3.19), the variation (3.20) cannot be used to examine
the generalized UV-IR anomaly matching check. For that purpose, we can use only the
nonanomalous15 and unbroken symmetry operation, i.e., variations corresponding to a
nontrivial Z2 transformation δα0 = ±π. Taking into account the nontrivial ’t Hooft
flux (3.6), (3.15)),

1
8π2

∫
Σ4

(
B(2)

c
)2 = n

N2 , n ∈ Z , (3.21)

14As emphasized in [7] all the calculations can be done staying in 4D, à la Fujikawa. That approach will
give directly (3.18), for instance, from the functional Jacobian.

15In the sense of the standard strong anomaly.
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and the crucial coefficient of the anomaly, K0 = N2(N + 3), it is seen that the partition
function changes sign for even16 N . We reproduce exactly the Z2 anomaly found in [7].

3.2.1 Remarks

The anomalies found in section 3.1, section 3.2 represent the main result of the present work.
As in our earlier work [7–9], the nontrivial ’t Hooft ZN flux (1.6), (3.21), mean that

one is considering the 4D spacetime compactified in e.g., bi-torus, T 2 × T 2. See section 4
below for more remarks on Z2 vortices in such a spacetime, implied by (3.6).

3.3 Chirally symmetric vacuum versus dynamical Higgs phase

Now what is the implication of the mixed anomalies found in the X-ray model, (3.18), (3.21)
to the physics in the infrared, that is, the phase of the ψη model? We consider here two
particularly interesting dynamical possibilities, a confining, chirally symmetric vacuum and
a dynamical Higgs phase, which are both known to be compatible with the conventional ’t
Hooft anomaly-matching constraints.

If we assume that the infrared system was confining, chirally symmetric one, with no
bifermion condensates forming, then the conventional ’t Hooft anomalies would be matched
by a low-energy theory consisting just of a single color-singlet massless composite fermion,
the baryon B11 ∼ ψηη (see appendix B). Knowing its quantum numbers, we can construct
the infrared anomaly functional, following the same procedure used at the beginning of
this section. The answer is the expression (B.3), which does not contain the 1-form gauge
field B(2)

c : it reproduce neither of the mixed anomalies, (3.18) or (3.21). We must conclude
that such a vacuum, with just B11 ∼ ψηη and nothing else, cannot represent the correct IR
physics of the ψη model, as the X-ray model reduces to it in the infrared.

On the other hand, the dynamical Higgs phase (analyzed in appendix C) is characterized
by bifermion condensates

⟨ψijηBi ⟩ = cψη Λ3δjB ̸= 0 , j, B = 1, . . . , N . (3.22)

Under this assumption, both U(1)0 and Ũ(1) are broken by the condensate so, if
one requires the condensate (3.22) to be everywhere non-vanishing, then, as it is charged
under U(1)0 and Ũ(1), one cannot allow any non-vanishing B(2)

c fields. If, on the other way
around, one imposes a non-vanishing B(2)

c field, then ψijηBi cannot condense everywhere, and,
similarly with ϕ form the X-ray to the UV, there must be vortices where the condensate (3.22)
vanishes. We leave a more in-depth description of the matching in this case for subsequent
work, but, disregarding the details, the matching must work as one can arrive at the same

16By taking the equivalent definition of C0 in footnote 13, one obtains K0 = − 1
2N

2(N + 2)(N + 3), which
signals an Z2 anomaly only for N = 0 mod 4. Exactly the same happens in the ψη model. One might
wonder how is it possible that the two constructions lead to different anomalies. However, the puzzle is only
apparent, as the system has also a A0(dA0)2 anomaly, and, if one takes also it into account, the anomalous
phase under a ZF2 transformation depends only on the background and not on the sign convention chosen.
Moreover, the choice of the convention is totally irrelevant to discuss the ’t Hooft anomaly matching with
the confining phase, as the [Z2]3 anomaly is matched for every N .
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phase perturbatively, by substituting the composite operator ψijηBi by a fundamental scalar
field with the same quantum number of it and a suitable potential.

This can be understood as a consistent way in which the infrared dynamics reflects the
impossibility (an anomaly), (3.18), of gauging the color-flavor locked 1-form symmetry, (3.4),
found in the UV theory.17

4 Reduction to the ψη model, Z2 vortex and the fermion zeromodes

In order to make the argument of the present work water-tight, let us discuss here a subtle
question associated with the reduction of the X-ray theory to the ψη model in the infrared.
The basic statement is that nonvanishing VEV ⟨ϕ⟩ gives mass to the extra Dirac pair of
fermions, q, q̃, and that the system indeed reduces in the infrared to the ψη model (the
simplest BY model), studied in [7–9].

The point is that the generalized, mixed anomalies (3.18) and (3.21), occur in the
background of the external Ũ(1) and U(1)0 gauge fields with fluxes, (3.6). In the case
of the Ũ(1) gauge field Ã this does not present a problem. On the other hand, U(1)0 is
spontaneously broken to a Z2 by the ϕ VEV, see table 1. This means that the relevant
background fields (A0, ϕ) correspond to a (regular) Z2 vortex configuration. Again this
does not present any issue in itself: there is nothing wrong in considering such a particular
(and convenient) background and asking if the gauging of the color-flavor-locked 1-form
ZN symmetry encounters a topological obstruction (a ’t Hooft anomaly). This is what is
studied in section 3.1, section 3.2 and section 3.3.

A (possible) problem is that q, q̃ fields are massive everywhere and decouple from the
system, except along the vortex core, where ϕ = 0 and mq,q̃ = 0. As is well known, such a
system develops a chiral two-dimensional q, q̃ zero-mode, traveling along the vortex core with
light velocity. They will produce an anomaly in the Ũ(1) gauge symmetry in the 2D vortex
worldsheet, as discussed, e.g., by Callan and Harvey [40]. To make the parallelism with the
problem discussed in [40] complete, let us for the moment forget about the contribution of
the fermions ψ and η in table 1. It will be taken care of later.

In a 4D system considered in [40], a Dirac fermion Ψ, with an electric charge, is coupled
to a complex scalar field Φ via a Yukawa interaction,

LY = gY Ψ̄ΦΨ , (4.1)

and Φ is assumed to get a nonvanishing VEV, ⟨Φ⟩ = v ̸= 0. The axial U(1)A is spontaneously
broken by the condensate, whereas the vector (electromagnetic) symmetry U(1)em remains
exact. Such a system can develop a solitonic vortex,

Φ(x) = f(ρ) eiθ , f(0) = 0 , f(∞) = v x2 + ix3 = ρ eiθ . (4.2)

Now the zero-mode for Ψ which develops on the string (vortex core) turns out to have a
chiral nature in the vortex worldsheet (x0, x1). As Ψ is charged, such a massless fermion

17The logic of this argument is somewhat similar to the one employed in [19] in the study of the vacuum
of the pure SU(N) Yang-Mills theory at θ = π.
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causes a 2D chiral anomaly

DaJa = 1
2πϵab ∂

aAb , a, b = 0, 1 , (4.3)

where Aµ and Jµ are the U(1)em gauge field and its covariant current. As U(1)em is supposed
to be an exact conserved symmetry of the system, this appears to present a paradox.

The solution to this puzzle [40] is the following. As the system suffers from the ABJ
anomaly for the axial U(1)A symmetry (U(1)A − [U(1)em]2 triangle), the spontaneous
breaking of the U(1)A(1) means that the low-energy (µ ≪ v) 4D effective action has an
axion-like (or better, π0 − 2γ like) term,

Lπ0γγ = e2

32π2

∫
d4xπ(x) ϵµνρσFµνF ρσ , (4.4)

where π(x) is the pion field,
Φ(x) = v eiπ(x)/v . (4.5)

Now, in the presence of the soliton vortex, the pion field π(x) is ill-defined as one goes
around the vortex string, see (4.2). As a result, the U(1)em variation δAµ = ∂µω in Lπ0γγ

turns out to be nonvanishing. The nontrivial vorticity in π(x) ∼ θ(x)

∂µ∂νθ(x) = −2πϵµνδ(x2)δ(x3) , µ, ν = 2, 3 (4.6)

indeed gives rise [40] to (“the anomaly-inflow”) δLπ0γγ in the vortex worldsheet (x0, x1),
which precisely cancels the 2D chiral anomaly (4.3) generated by the fermion zeromode.

The Callan-Harvey argument exactly applies to our model, upon identifying (see
table 1),

Ψ ≡
(
q

q̃c

)
, U(1)em ≡ Ũ(1) , U(1)A ≡ U(1)0 , (4.7)

as long as the effects of the other fermions ψ and η are not considered.
In our model qi− q̄i form, in the bulk, a Dirac fermion fundamental of SU(N)c, meaning

that also the 2D world-sheet fermion is fundamental under SU(N)c. Because of that the
same mechanism (a local 2D anomaly, canceled by a bulk inflow) happens also for SU(N)c,
without any significant difference.

More interestingly, the fact that the world-sheet fermions are coupled with the bulk
gauge field means that, as we continue to follow the RG-flow and approach µ ∼ Λ, something
should happen. In this work, we do not prescribe in detail what happens: we assume that
what remains of the vortices in IR does not contribute to the ’t Hooft anomaly matching of
the anomalies found above.18

As was recalled at the end of section 3.2, the ’t Hooft fluxes (3.6), (3.21) mean that one
is working in a bi-torus, T1 × T2 spacetime. The associated fractional flux A0 (3.6) hence
the Z2 vortex, must accordingly be considered both in T1 and in T2. The Callan-Harvey
solution of an apparent puzzle associated with the vortex (a point on T1) and the fermion

18If we lift this hypothesis some other interesting possibilities might arise. We will discuss them in a
future work.
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zeromodes propagating in the vortex worldsheet T2, has been adapted to our problem as
explained above. Exactly the same argument eliminates any issue concerning the second
vortex punctuating T2 and the chiral fermion zero-mode generating an anomaly in T1. The
details will appear elsewhere.

As a final remark, we note that the questions (the fermion zeromodes traveling along
the vortex core, etc.) discussed here concern perturbative, infinitesimal Ũ(1) variations of
the system. Regarding the Z2 −

[
Z

(1)
N

]2 discussed in subsection 3.2, apparently, the analysis
might be more involved, and the 2D chiral fermions might, in principle, contribute to this
anomaly. However, this is not the case: by explicit calculation both in the X-ray model
(as shown in subsection 3.2) and in the ψη model (as shown in ref. [35]) we have found a
nontrivial Z2 −

[
Z

(1)
N

]2 anomaly, thus, being them Z2 anomalies, they must agree, and the
overall contribution of the vortex physics must vanish.

5 Discussion and summary

All Bars-Yankielowicz (BY) and generalized Georgi-Glashow (GG) models [1–6] possess a
nonanomalous fermion parity symmetry (Z2)F ,19

ψi → −ψi (5.1)

where i labels the fermions present in the model. In the standard quantization, the instanton
analysis tells us that (5.1) is a nonanomalous symmetry of the quantum theory. However,
in some cases with even N (models of type I20), this statement holds because its anomaly
is given by

∆S =
∑
i

bi ×
1

8π2

∫
Σ4

trF
[
F (a)2

]
× (±π) = 2πZ , (5.2)

with ∑
i

bi = even integer ̸= 0 , (5.3)

whereas 1
8π2

∫
Σ4

trF
[
F (a)2] is the standard integer instanton number. It is essential to

realize that the (Z2)F anomaly is absent because the sum of the anomaly coefficients
∑
i bi

is a nonzero even number, not because it vanishes.
For the ψη model,

G = SU(N)c × SU(N + 4) × U(1)ψη × (Z2)F
ZN ×ZN+4

= G̃

ZN ×ZN+4
. (5.4)

The group G̃ is doubly-connected (Π0(G̃) = Z2) [8]. This always happens in models of
type I. Instead, in type II models, where (Z2)F is a subset of a continuous G̃.

19(Z2)F is equivalent to a subgroup of the proper Lorentz group. The point is whether or not in the
non-trivial 2-form gauge background, B(2)

c , the symmetry is broken by a (’t Hooft) anomaly.
20Among the generalized SU(N) BY and GG models with p Dirac pairs of fermions in the fundamental

representation, the models of type I are those with N and p both even. Other models are called type II in
this note.
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In general, in a type I theory, the gauging of the 1-form ZN symmetry leads to the
(Z2)F anomaly, given by a master formula [9]21

∆S(Mixed anomaly) = (±π) ·
∑
i

ci
(
d(Ri)N (Ri)2 −N ·D(Ri)

) 1
8π2

∫
Σ4

(
B(2)

c
)2
. (5.5)

The calculation gives ∑
i

ci
(
d(Ri)N (Ri)2 −N ·D(Ri)

)
= N2 , (5.6)

but (see (3.15))
1

8π2

∫
Σ4

(
B(2)

c
)2 = 1

N2 , (5.7)

therefore
∆S(Mixed anomaly) = ±π . (5.8)

The partition function changes sign under (Z2)F , in the ψη model with N even, and in all
other type I models: the mixed (Z2)F − [ZN ]2 anomaly.

As the candidate massless baryons do not support this generalized anomaly (see (B.3)
in the simplest, ψη model), such a confining vacuum cannot represent a correct phase in
type I models.

The aim of the present work was to cure the defect of the original analysis [7], i.e., the
use of a singular (Z2)F gauge field. In a theory with a regulator Dirac pair of fields q, q̃ (the
X-ray theory), the singular Z2 vortex background needed in [7] is replaced by a regular Z2
vortex, without affecting the crucial holonomy, (1.1). The 1-form ZN symmetry lies now in
the intersection between SU(N) and two nonanomalous U(1) symmetries, (3.1). In other
words, the model is described by a well-defined principal bundle, (3.2). The generalized
cocycle condition is met exactly as in [25].

In the X-ray theory the new anomalies are of the type, Ã−
[
B

(2)
c
]2 and A0−

[
B

(2)
c
]2. In

particular, the Ũ(1)−
[
Z

(1)
N

]2 mixed anomaly (3.18) and its UV-IR mismatch occur both for
even and odd N (of the SU(N) color group). Therefore the statement in the X-ray model
is somewhat stronger than in the ψη model.22 As for the U(1)0 −

[
Z

(1)
N

]2 anomaly, (3.20),
U(1)0 is spontaneously broken by the scalar VEV, therefore only the variations Z2 ⊂ U(1)0
can be used in the UV-IR anomaly matching algorithm. For N even, the anomaly found
here reduces to the Z2 anomaly found in [7].
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21ci is the Z2 charge, R is the fermion representation, N (R), d(R), D(R) are the associated N -ality, the
dimension, and the Dynkin index, respectively.

22The argument based on the strong anomaly [10] which also favors the color-flavor locked dynamical
Higgs phase, is equally valid for both even and odd N , too.
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SU(N)c SU(N + 5) U(1)ψη U(1)ψξ
ψ N(N+1)

2 · (·) N + 5 1

η (N + 5) ·
¯

N · −(N + 2) 0
ξ N · (·) 0 −(N + 2)

Table 3. The multiplicity, charges, and representation are shown for each set of fermions in the BY
model, (2.1)–(2.4). (·) stands for a singlet representation.

SU(N)c SU(N + 5) U(1)ψη U(1)ψξ

B1
(N+5)(N+4)

2 · (·) −N + 1 1

B2 (N + 5) · (·)
¯

−3 −(N + 3)

B3 (·) (·) N + 5 2N + 5

Table 4. Massless baryons in the hypothetical chirally symmetric phase of the extended BY
model, (2.1)–(2.4).

A The confining, symmetric vacua in the extended BY model

The generalized Bars-Yankielovicz model was studied earlier [1–6] by adopting the conven-
tional ’t Hooft anomaly matching conditions as criteria for possible infrared phases. An in-
teresting possibility discussed in the past is that the system confines but with no condensates
forming. The global chiral symmetry of the models would be fully present in the infrared,
saturated by certain massless composite fermions, “baryons”. In the model, (2.1), (2.2), (2.4),
all the anomalies associated with the global symmetries SU(N + 5) × U(1)ψη × U(1)ψξ (see
table 3) can be matched by gauge-invariant (candidate) massless composite fermions,

(B1)[AB] = ψijηAi η
B
j , (B2)A = ψ̄ij η̄

i
Aξ

j , (B3) = ψij ξ̄iξ̄j , (A.1)

the first is anti-symmetric in A ↔ B; their charges are listed in table 4. The anomaly
matching can be verified straightforwardly via a comparison between table 3 and table 4
(see [8] for explicit checks).

Note that this model is an extended BY model with p = 1 (one additional Dirac pair
of fermions in the fundamental representation): it is a Type II model. The Z2 is not a
genuine independent symmetry. The gauging of a color-flavor locked ZN symmetry by
introducing (B(2)

c , B
(1)
c ) gauge fields does not lead to any new constraints as compared with

the conventional ’t Hooft anomaly matching.
The situation is the same when a scalar field ϕ is introduced with the Yukawa coupling

to the (q, q̃) pair, but without taking into account the scalar VEV and the consequent
decoupling of (q, q̃). The Yukawa term simply reduces the symmetry as

G′
F = SU(N + 4) × U(1)ψη × U(1)V × U(1)0 × Ũ(1) , (A.2)

of which three of the U(1) symmetries are independent. The decomposition of the UV
fermions as a sum of the irreducible representations of the reduced symmetry group is given
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baryons SU(N)c SU(N + 4) U(1)ψη U(1)V U(1)0 Ũ(1)

B11 ψηη (·) −N
2 0 −1 −N

2

B12 ψηq̃ (·) 1 −1 1 −N
2

B21 ψ̄η̄q (·)
¯

−1 1 1 N
2

B22 ψ̄ ¯̃qq (·) (·) −N+4
2 2 −1 N

2

B31 ψq̄q̄ (·) (·) N+4
2 −2 −1 −N

2

Table 5. Decomposition of the baryons in table 4 as a direct sum of the irreps of the unbroken
symmetry group G′

F .

in table 1 in the main text. The decomposition of the “massless baryons” (table 4) in the
direct sum of the irreps of G′

F is in table 5.
Since this model (with or without the Yukawa coupling, but without the scalar VEV,

v) is of type II, the massless baryons in table 4 or table 5 reproduce all the conventional
’t Hooft anomalies with respect to unbroken global symmetries, and automatically, also
anomalies involving the Z2 which is a subgroup of a continuous nonanomalous symmetry
group. Consideration of the gauged color-flavor locked 1-form ZN symmetry does not
give any new information as compared to the conventional ’t Hooft anomaly-matching
constraints.23 Thus, as in any other type II models, here, the hypothetical confining phase
with massless baryons table 4 or table 5 cannot be excluded by the anomaly-matching
arguments only.

As we recalled several times in the text, the topology of the symmetry group space
changes discontinuously in going from Type II to Type I models. What is studied in this
work is precisely a realization of such a transition, by giving a mass to the extra Dirac pair
fermion, (q, q̃), and letting it to ∞ (or equivalently, by going to energy scales much less
than the scalar VEV, v.) At the decoupling mass scale, which we take as

⟨ϕ⟩ = v ≫ Λψη , (A.3)

the SU(N) interactions are still weaky coupled. No “baryons” in table 4 or table 5 are yet
formed. In other words, the correct degrees of freedom needed in discussing the decoupling
phenomenon are the original UV fermions,

ψij , ηAi , qi, q̃i , (i, j = 1, 2, . . . , N ; A = 1, 2, , . . . , N + 4) , (A.4)

listed in (2.4). The discussions given in section 4 appropriately take care of possible
subtleties associated with the presence of the vortex backgrounds, the fermion zeromodes,
and the decoupling of the fermions (q, q̃), below the mass scale v.

23This was shown explicitly in section 4 of [7]. It is a trivial exercise to write explicitly the low-energy
effective anomaly functionals as in appendix B, but keeping the contributions of all the baryons in 4 or 5
and to check that the consideration of the gauged color-flavor locked 1-form ZN symmetry does not yield
any new constraints as compared to the old ’t Hooft matching conditions.
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B A confining chirally symmetric phase in the X-ray model — ψη model

In the X-ray model the scalar field gets a VEV, ⟨ϕ⟩ = v ≫ Λψη, where Λψη is the RG
invariant mass scale of the ψη model. The fermions q and q̃ become massive and decouple
before the SU(N) interactions become strong.

A possible confining, symmetric phase (with no bifermion condensation) of the ψη
system has been discussed earlier in [6, 7]: the candidate massless composite fermion is just
B11 of table 5.

The global U(1)V and Ũ(1) symmetries reduce respectively to the identity 1 and to
U(1)ψη. The U(1)0 symmetry is broken as

U(1)0 → Z2 , (B.1)

where Z2 acts as
ψ → −ψ , η → −η . (B.2)

The anomaly functional in IR can be found by introducing

1. Ã: Ũ(1) 1-form gauge field,

2. A: U(1)0 1-form gauge field,

3. B(2)
c : ZN 2-form gauge field,

(the dynamical color gauge SU(N) field, a, does not appear in the infrared effective theory).
It is given solely by the contribution of B11,

A6D = 1
24π2

∫
Σ6

{(N + 4)(N + 3)
2

(
−N2 (dÃ+B(2)

c ) −
(
dA0 −

N

2 B
(2)
c

))3

= 1
24π2

(N + 4)(N + 3)
2

∫
Σ6

(
−N2 dÃ− dA0

)3 }
, (B.3)

which does not contain the 1-form gauge field B
(2)
c . Thus the mixed anomalies found in the

UV in section 3.1 and section 3.2, cannot be reproduced in confining, chirally symmetric
vacuum in the X-ray model, i.e., in the ψη model.

There is a subtle point to appreciate in the relation between what we discussed in
appendix A and the inconsistency of the model with only B11. The model of table 5
reproduces all the anomalies when v = 0. When the scalar acquires an expectation value
v ̸= 0 the baryons B12, B21, B22, B31 all get mass and decouple below the mass scale v,
thus leaving the theory with just B11 that does not reproduce new anomalies involving B(2)

c
in UV. How is it possible that a vectorial sector decouples and the anomaly matching is
changed? To answer this question note that the pairs (B12,B21) and (B22,B31) are vectorlike
with respect to SU(N + 4) × Ũ(1), but not with respect to U(1)0, which is however broken
to Z2. Possible operators that mimic the mechanism that gives mass to these baryons are
the Yukawa couplings with the scalar

ϕB12B21 + h.c. and ϕ∗B22B31 + h.c. (B.4)
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SU(N)cfη
SU(4)η U(1)′ψη

ψ N(N+1)
2 · (·) 2

η1
¯

⊕

¯

N2 · (·) −2

η2 4 ·
¯

N · −1

q̃
¯

N · (·) 0

q N · (·) 0

Table 6. UV fields in the model, table 3, are decomposed as a direct sum of the representations of
the unbroken group G′

F of (C.1).

SU(N)cfη
SU(4)η U(1)′ψη

B1

¯
N(N−1)

2 · (·) −2

B2 4 ·
¯

N · −1

Table 7. IR fermion fields in the Higgs vacuum of our model, (2.1)–(2.4), which are a subset of the
baryons B11 in table 4. More precisely, B1 ∼ ψη1η1; B2 ∼ ψη1η2.

Giving mass to B12, B21, B22, B31 in this way does not leave just B11 in the IR, but also
fermion zero modes localized on vortices where ϕ = 0. This confining symmetric theory
with B11 in the bulk plus degrees of freedom localized on vortices will require further
investigations in the future.

C The dynamical Higgs phase

It was noted in [6–9] that in all the BY and GG models another possible phase is a dynamical
(color-flavor-locked) Higgs vacuum, in which the color SU(N) is completely broken and the
global symmetry is partially realized in the Nambu-Goldstone mode. In the X-ray model
considered in this work, (2.1)–(2.5), the proposed bifermionic condensates, (3.22), together
with the scalar condensate ⟨ϕ⟩, break the global symmetries as

GF = SU(N + 4) × U(1)ψη × U(1)0 × Ũ(1)
−→ G′

F = SU(N)cf × SU(4)η × U(1)′
ψη , (C.1)

where U(1)′
ψη is generated by an appropriate linear combination of the SU(N + 4) generator,(

4 1N
−N 14

)
and that of U(1)ψη. The fermions in the UV are decomposed into the sum

of irreducible representations of the unbroken group, in table 6. The baryons which remain
massless among those in table 4 are listed in table 7.

Finally, we note that both U(1)0 and Ũ(1) of the X ray model, (2.1)–(2.7), and hence
the color-flavor locked ZN ⊂ SU(N)c × (Ũ(1) × U(1)0) itself, are spontaneously broken by
the bifermion condensates, (3.22). It follows that the mixed anomalies found in the X-ray
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model in section 3, are perfectly consistent with the physics of the dynamical Higgs phase,
in contrast to the case of the confining, chirally symmetric phase discussed in appendix. B.

Now, unlike the somewhat mysterious matching equations in the hypothetical confining
phase (as those fully exposed in [8]), the conventional, ’t Hooft anomaly matching constraints
with respect to the unbroken group G′

F in the dynamical Higgs phase are trivially satisfied,
as can be seen by inspection of table 6 and table 7.24

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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