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ABSTRACT
Steering torque constitutes the primary motorcycle control input for the lateral
dynamics; consequently, estimating it is important. Conventionally, this is done with
complete motorcycle models, requiring significant identification effort. The simplified
models in the literature only describe the steering torque under specific cases.

This work defined a steering assembly model with few parameters to estimate
the steering torque analytically for stationary and transient manoeuvres.

The model equations followed from existing motorcycle models through simplify-
ing hypotheses; transfer functions describing the roll response and the Lane Change
Roll Index (LCRI) were obtained from these equations. Measured steering torque
signals from different datasets, including diverse motorcycle classes, were used as
the reference for validation.

A good agreement resulted between the estimated and measured torques, in the
time and speed-acceleration domains and in terms of LCRI. When using the roll
as the motorcycle response, manoeuvrability was highest at lower frequencies. The
scooter was the most manoeuvrable; the sports and touring motorcycle were the least
manoeuvrable at low and high frequency, respectively. Concerning design parame-
ters, the front-wheel spin inertia and front twist stiffness influenced manoeuvrability
the most.

The model allows recreating the steering torque signal for new and pre-existing
datasets using commonly measured signals; the signal can describe the riding style
and the effort required. The few parameters required facilitates its use and reduce
the computational burden, allowing its use for steering assistance systems.
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1. Introduction

The rider controls the motorcycle lateral dynamics mainly through steering inputs. As
early as 1978 Weir [1] made it clear that the steering torque input is the most effective
way to control the motorcycle roll (stabilisation task) and yaw rate (path-following
task); in contrast, the vehicle has a much smaller response to the upper body leaning.
Motorcycles, unlike cars, cannot be simulated in open-loop [2], due to their general
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instability. Consequently, an accurate steering torque description required to complete
certain manoeuvres is more important and difficult to achieve.

While it is clear that control occurs primarily through the steering, there are at
least two distinct aspects concerning vehicle behaviour: handling and manoeuvrability.
Handling is relative to the response properties of a motorcycle as perceived by the
human controller [3]; therefore, it depends on subjective rider perception, making a
rigorous evaluation difficult. In contrast, manoeuvrability is objective, and linked to
the lateral vehicle response, for example in terms of roll, yaw rate and corresponding
derivatives, when a specific steering torque is applied. Therefore, manoeuvrability
can be evaluated through different input-output responses. Weir [1] used the ratio of
steering torque to steering angle response to assess performance during steady corners.
Weir’s metric is not suitable for transient manoeuvres, so Koch [4] considered the
steering torque peak per unit of roll rate peak response, divided by the manoeuvre
speed, to assess corner entry manoeuvrability.

Cossalter showes that the steering torque is the resultant of several pairs of contri-
butions of similar magnitude but opposite sign [5]. This makes estimating the steering
torque required to complete a certain manoeuvre challenging. Notably, Cossalter derives
a straightforward expression to estimate the motorcycle manoeuvrability index called
Lane Change Roll Index from its caster and the front wheel radius and spin inertia
[6]. The expression assumes that the gyroscopic torque generated by the front wheel
in the presence of roll rate constitutes the bulk of the steering torque during a lane
change. The assumption proved valid, albeit mostly in peak-to-peak values, in the
experimental data presented; however, no indication was given about this assumption’s
validity domain (e.g. concerning frequency and speed). In particular, a roll rate is
only present during transients: a lane change performed with a steering torque input
having a spectrum dominated by low enough frequencies could excite the motorcycle
steady-state behaviour more than the transient terms, increasing the estimation er-
ror. In contrast, another work by Cossalter [7] defines a simplified expression for the
steady-state torque contributions: the function was employed to fit and extrapolate
experimental data; however, a comparison between the steering torque estimated from
the motorcycle parameters and the measured one was not conducted. Moreover, the
implications of the various terms from a design point of view were not discussed.

Biral [2] uses a more general approach, investigating the influence of frequency
through slalom tests. A contour plot shows the influence of manoeuvre frequency and
speed on the torque-to-roll transfer function. The dynamic behaviour represented is
obtained through the classic Sharp’s model [8]: although relatively simple, the model
still requires the many parameters describing a complete motorcycle. Moreover, it
considers lenticular tyres and neglects the tyre twisting torque due to camber: especially
the latter influences the steering torque significantly [5], and cannot be neglected. Biral
also uses a simplified version of the more sophisticated model by Lot [9] to calculate
some transfer functions of interest, but their analytical form is not shown or discussed.
This model requires more parameters than the one by Sharp.

This work aims to define a model to estimate the steering torque required for both
steady-state and transient manoeuvres to overcome the abovementioned limitations.
This result would also allow a description of low-frequency transient manoeuvres,
in addition to the two boundary cases. Moreover, it would also show concisely the
frequency over which the transient terms become appreciable or dominant. The model
should be simple so that the reduced number of parameters allows estimating the
motorcycle steering torque without time-consuming and expensive measurements. A
successful steering torque description would make it possible to study the implications of
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its analytical expression, as investigating the influence of the motorcycle and manoeuvre
parameters on the required steering torque.

The paper structure follows: Section 2 describes the general methodology, including
the approach used to estimate the steering torque, the instrumented motorcycle, the
manoeuvres conducted and the additional dataset taken from the literature. The results,
in terms of real and estimated steering torque along with the transfer functions and
maps describing manoeuvrability, are presented in Section 3; then Section 4 discusses
results and their meaning. Lastly, Section 5 sums up these findings, their implications
and possible extensions and applications.

2. Estimation and experimental methods

The method follows: first, we derive the equations for describing the steering torque
from existing, complex dynamic models. Then, we apply these equations to different
experimental datasets: one specially created through our instrumented motorcycle and
then pre-existing datasets available in the literature to validate the method concerning
different motorcycle classes and experimental campaigns.

2.1. Reference frame and signs convention

In this work, the ISO 8855 [10] signs convention was used: the x-axis points forwards,
the z-axis upward, and consequently, the y-axis leftward. A steering torque is positive
if pointing upwards. A non-tilting referenced frame was considered to calculate the
motorcycle motion1. The convention used justifies the signs of Equation (12): when
the rider pushes (forward, positive) the right handlebar more than the left one, an
anti-clockwise (positive) torque is produced.

2.2. Steering torque estimation

Euler’s second law of motion states, in its most general form:

M =
dL

dt
+ vO × p, (1)

where vO is the velocity of the pole O, M is the resulting torque about the pole,
L is the system’s angular momentum about that point, and p is the system’s linear
momentum. We apply this law to the steering assembly, considering the steering axis
as the pole. The steering assembly is a rigid body; therefore, its linear momentum has
the same direction as its centre of mass velocity. This velocity will be approximately
parallel to the velocity of the pole, as the tangential speed around the axis due to the
steering angular velocity δ̇ is much lower than the motorcycle velocity vO. Therefore,
vO × p ≈ 0. The steering axis is a principal axis of inertia, so L = Iδδ̇. We obtain the
scalar equation:

n∑
i=1

τi = Iδ δ̈, (2)

1The yaw rate and lateral acceleration used can be calculated from the angular velocities and accelerations

measured by the IMU by applying the rotation matrices computed from the Euler Angles.
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where τi is the ith torque component acting around the steering axis, δ is the steering
angle, and Iδ is the front frame moment of inertia around the steering axis. Given that
the band-pass of the rider feedback action is around 1-2Hz [11], while higher frequencies
only concern passive oscillatory stability [12, p.284], we neglect the derivative of the
angular momentum Iδ δ̈. Therefore:

n∑
i=1

τi ≈ 0. (3)

In steady-state, making the single steering torque contributions explicit gives:

τsteady + τg + τc + τFxf + τFyf + τFzf + τMzγf
+ τωψ̇f

= 0, (4)

where τsteady is the steady-state torque applied by the rider; τg and τc are the torques
produced by the weight and centrifugal forces acting on the front frame Centre of
Gravity (CoG); τFxf is the effect of the front tyre longitudinal force; τFyf and τFzf are
the torques produced by the front tyre lateral and vertical forces (the former applied
rearward of the contact patch centre, at a distance equal to the pneumatic trail); τMzγf

is the steering torque due to the front tyre twisting torque; lastly, τωf is the front
wheel gyroscopic torque induced by the vehicle yaw rate. For this study, only the
uncombined lateral dynamics is of interest, so no braking force is present on the front
tyre: consequently, if the small steering torque produced by the rolling resistance when
cambered is neglected, τFxf ≈ 0 holds. Then, the steady-state torque applied by the
rider balances the sum of the other contributions acting around the steering assembly:

τsteady = −τg − τc − τFyf − τFzf − τMzγf
− τωψ̇f

. (5)

For a simplified motorcycle model with lenticular wheels, neglecting the effect of the
gyroscopic torque on the roll angle, the moment equilibrium in the yz plane around
the front contact point shows that the sum of the weight and centrifugal forces acting
on the front frame CoG passes through the front contact patch. For small steering
angles, this point lies in the symmetry plane of the rear frame containing the steering
axis, so these two forces do not produce a resulting steering torque. These hypotheses
do not hold in reality; however, τg and τc are close in value and have opposite signs
in the domain of interest, as shown by Cossalter [5]. So, they can be neglected with
minimal error. The gyroscopic torque is equal to:

τωψ̇f
= −Iwf sin ε

Rf
ay, (6)

where Iwf is the front wheel spin inertia and Rf is its radius. The negative sign indicates
that this torque and the lateral acceleration have opposite signs: when ay is positive
(leftward), τωψ̇f

is negative (clockwise). Therefore, this torque component is aligning2

and tends to reduce the steering angle. The effect of the front tyre twisting torque

2We define ‘aligning’ a steering torque that tends to reduce the angle between the wheel and motorcycle

midplanes
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(Equation (43) from Cossalter [13]) reduces to:

τMzγf
=
ktfFzf cos ε

g
ay, (7)

where ktf is the normalised twist stiffness and Fzf is the front tyre load: their product
provides the tyre twist stiffness, which is the twisting moment per unit of camber angle.
The positive sign indicates that τMzγf

and ay have the same sign, so the twisting torque
is misaligning. Lastly, neglecting the impact of the total yaw moment produced by the
tyres on the front and rear partition of the total lateral force, the resulting steering
torque due to tyre forces τFyf + τFzf (Equations (40,41) from Cossalter [13]) reduces to
three terms:

τFyf + τFzf = −Fzfan sin ε cos ε

g2
ay|ay|+ Fzflan sin ε

ay
v2
− Fzflan sin ε2

g2

ay|ay|
v2

, (8)

where g is the gravity acceleration, an is the normal trail, l is the wheelbase, and v is
the vehicle speed. In particular, the second term on the right side of Equation (8) is the
moment generated by the front tyre load due to the additional camber of the front tyre
compared to the rear. In fact, due to the caster, the steering rotation occurs around
an inclined axis, and the longitudinal component of this rotation produces a larger
camber: γf = γr + δ sin ε, where the rear camber γr is equal to the roll. This torque
component is misaligning, as evidenced by its sign opposite to the lateral acceleration.
The first and third terms on the right hand side of Equation (8) are relative to the
normal trail variation induced by the motorcycle roll and the steering angles. In the
absence of a steering angle and due to the lenticular wheels assumption, the moment
equilibrium in the yz plane around the vehicle CoG would cause the resulting force
acting on the tyre to pass through the CoG. This fact would eliminate the steering
component relative to Equation (8), similarly to what explained about the combined
effect of the weight and centrifugal forces acting on the front frame. However, while
the latter two produce much smaller torques having similar magnitude and opposite
sign in the domain of interest [5], the torques produced by the lateral and vertical tyre
forces have much higher magnitudes. While still opposite in sign, their modules tend
to become different for higher lateral accelerations [5] (higher roll), or for lower speeds
(higher steering angle).

The total steering torque applied by the rider in steady-state is, therefore:

τsteady (ay, v) = −τMzγf
− τωψ̇f

−
(
τFyf + τFzf

)
= −ktfFzf cos ε

g
ay +

Iwf sin ε

Rf
ay +

Fzfan sin ε cos ε

g2
ay|ay|

− Fzflan sin ε
ay
v2

+
Fzflan sin ε2

g2

ay|ay|
v2

= −c1ay + c2ay|ay| − c3
ay
v2

+ c4
ay|ay|
v2

.

(9)

The expression is analogous3 to that shown by Cossalter [7]. a2
y is replaced by ay|ay|:

the torque applied by the rider is now an odd function of the lateral acceleration,
allowing the description of right and left corners with the correct sign. ci are positive

3The signs are different due to the different coordinates system (SAE J670).
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coefficients determined by a limited set of motorcycle parameters; only c1 could, in
theory, be negative, but in practice, its positive portion relative to the twisting torque is
significantly higher than the negative one due to the gyroscopic moment. Consequently,
the steady-state torque linearly depends on the lateral acceleration (through coefficients
c1,3), with opposite signs: for small to medium lateral acceleration values, the torque
applied by the rider is aligning (counter-steer). The applied torque also depends on
the second power of the lateral acceleration (through coefficients c2,4), with the same
signs: this reduces the aligning torque described by the linear terms and makes the
applied torque misaligning for sufficiently high lateral acceleration values. Lastly, for a
given lateral acceleration, the speed influences the steering torque (through coefficients
c3,4), especially at lower speeds (limv→+0 τsteady = ∞), while the dependency is lost
at higher speeds (limv→+∞ τsteady = −c1ay + c2ay|ay| = τsteady(ay)). This fact is due
to the steering angle: reaching a specific lateral acceleration at lower speeds requires
a larger steering angle so that its effect on the torque becomes perceivable under a
certain speed.

During transients, additional steering torques act on the steering, for example, the
apparent, inertial moment −Iδ δ̈, the moment due to the steering damper (if present)
and the moment generated by the component of the front tyre lateral force required to
generate the yaw acceleration. Cossalter [6] investigated the lane change manoeuvre
and showed that the gyroscopic torque τωφ̇f due to the front-wheel spin velocity and
the roll rate of the motorcycle is the most significant transient torque contribution.
Consequently, we neglect all the remaining transient torques so that:

τtrans

(
v, φ̇
)

= −τωφ̇f =
Iwf cos ε

Rf
vφ̇ = c5vφ̇. (10)

The gyroscopic torque and the roll rate have opposite signs: when entering a right
corner (φ̇ > 0), the torque is negative; thus, it tends to rotate the steering clockwise,
in the direction of the corner. This stabilising effect tends to reduce the curvature
radius, leading to higher centripetal force that reduces the roll. The rider will have to
compensate it with an opposite, aligning torque.

Therefore, the total torque applied by the rider is estimated as:

τest

(
ay, v, φ̇

)
= τsteadyest

(ay, v) + τtransest

(
v, φ̇
)

= −c1ay + c2ay|ay| − c3
ay
v2

+ c4
ay|ay|
v2

+ c5vφ̇,
(11)

The previous equation can estimate the steering torque applied from the measured
signals, using the known motorcycle parameters. The value of each parameter is given,
for each motorcycle considered in this study, in Appendix A.

2.3. Instrumented motorcycle

Figure 1 shows the sports, naked motorcycle used. A tank-mounted inertial measurement
unit (XSens 680 Gi) provided the vehicle’s orientation and position and their derivatives.
Two strain gauges on each side of the handlebar measured the deformation due to
the forces applied by the rider on the handles. A calibration procedure allowed the
calculation of the applied horizontal force F ; the difference between the right and left
measurement, multiplied by half the distance whand between the two knobs midpoints,
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Figure 1. The instrumented motorcycle with outriggers, as used in the experiment. The positions of the

inertial platform and strain gauges are shown.

Table 1. List of dataset manoeuvres.

Type Geometry

Steady Corner Centreline Radius 15 m
Steady Corner Centreline Radius 12.5 m
Lane Change 3 m×14 m
Lane Change 2.75 m×5.5 m
Slalom Cone Spacing 7 m

provided a torque which, projected on the steering axis through the caster angle ε,
constituted the measured steering torque τmeas:

τmeas = (Fright − Fleft)
whand

2
cos ε. (12)

The motorcycle was also equipped with outriggers, allowing testing demanding con-
ditions safely: the additional weight amounted to 25 kg (9% increase), while the roll
and yaw inertia increased by around 5 kg m2 and 9 kg m2 respectively (around 15%
and %20 increase). The rider did not notice a significant impact on the roll and yaw
dynamics compared to a conventional motorcycle.

2.4. Experimental dataset

The dataset consisted of nineteen laps of a cone course, closed to traffic and approxi-
mately 260 m long. Each lap started with a leftward corner followed by a slalom leading
to another bend to the left. A double lane change, with the two lane changes having
different geometries, completed the lap. Table 1 describes the manoeuvres. The rider
avoided using the throttle and brake excessively at a lean angle (uncombined dynamics).
The maximum roll reached was 38◦, during a 2.5 m×5.5 m lane change4, while the
speed remained in the 7 m s−1 to 14 m s−1 range.

4The numbers indicate the lateral offset and the longitudinal transition distance
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Figure 2. Comparison of the measured and estimated steering torque signals during two course laps. The
manoeuvres are, starting from the left: a wider steady corner (red), a slalom (green), a narrower steady corner

(blue) and a double lane change (yellow). The second lap starts at around 63 seconds.

2.5. Additional dataset from the literature

In addition to the dataset above, the data from Cossalter [14] were used. The article
presents the time signals relative to a 125cc scooter performing a 2.75 m×5.5 m lane
change, and to a heavy Touring motorcycle performing a less demanding 3 m×20 m lane
change. The time signals were extracted from the figures through sampling and a cubic
spline interpolation, and provided data relative to additional vehicle classes compared
to the motorcycle used in this study. Moreover, the article provides peak-to-peak or
average values for the runs not shown in the figures.

3. Results

3.1. Sports motorcycle

3.1.1. Steering torque estimation

Figure 2 compares the measured and estimated steering torques for our sports motor-
cycle during two course laps. The two signals had agreement throughout the different
manoeuvres; these are, starting from left: a wider steady corner (red), a slalom (green),
a narrower steady corner (blue) and a double lane change (yellow). Although the rider
performed the two laps slightly differently, no appreciable difference in the error was
noticed. Subsection 3.1.3 will show a detailed view of the lane change section; while
the reader interested in cornering and slalom can find a zoom and a discussion in the
Appendix B.

To further check the model’s accuracy, the comparison was repeated in the speed-
acceleration domain. The estimated transient steering torque τtransest was subtracted
to the measured steering torque τmeas for each time instant:

τsteadymeas
(t) = τmeas (t)− τtransest (t) . (13)

The steady-state component of the measured steering torque was then fitted, as a
function of speed and lateral acceleration, using Equation (9), obtaining the new coeffi-
cients ĉ1,2,3,4. Only the intervals relative to the two corners were considered, starting
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Figure 3. Steady torque maps obtained from vehicle parameters and from regression. The grey dots indicate
the motion conditions effectively reached by the motorcycle.

and ending with zero roll and yaw rate. In these manoeuvres, the transient steering
torque was small but present. In fact, if removed, the goodness of the fit improved.
Figure 3 compares the steady torque maps computed with the coefficients calculated
from vehicle parameters and with coefficients from the regression. In Figure 3a, the
maps showed similar behaviour in the whole speed-acceleration domain considered. The
speed influence on the applied torque was lost at higher speeds. For a given speed, the
steering torque initially increased in magnitude with the lateral acceleration, starting
from zero and reaching a maximum. For low to medium lateral acceleration values,
the applied torque was discordant with the lateral acceleration (counter-steering). A
further increase in lateral acceleration made the steering torque decrease in magnitude,
changing sign (positive-steering) for very high lateral acceleration values. For a given
speed, the lateral acceleration corresponding to maximum and zero steering torque
values are:

∂τsteady (ay, v)

∂ay
= 0→ ay

∣∣
τ=τmax

=
c1v

2 + c3

2 (c2v2 + c4)
, (14)

τsteady = 0→ ay
∣∣
τ=0

=
c1v

2 + c3

c2v2 + c4
= 2ay

∣∣
τ=τmax

. (15)

The speed-acceleration couples reached by the motorcycle during the test are indicated
by grey dots and spanned a wide lateral acceleration range relative to lower speed
values. Given that this region was only a fraction of the possible operating conditions,
Figure 3a shows the agreement between the map calculated from motorcycle parameters
and the one extrapolated from measured values. Figure 3b shows the difference between
the two: the error was lower than 1 N m in the reached motion conditions, confirming
the agreement during steady corners shown in Figure 2.

3.1.2. Manoeuvrability transfer function and sensitivity analysis

After assessing the steering torque estimation, both as a time signal and as a function
of the speed and acceleration, we derived a transfer function from the model. This
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Figure 4. Amplitude and phase of the roll-to-torque transfer function (v = 10 m s−1, φ0 = 0 rad).

function would describe the motorcycle manoeuvrability as a function of frequency,
investigating the influence of the manoeuvre and the motorcycle parameters.

Under the assumption of negligible variation of steering angular momentum (Equation
(3)), the rider balances the torques acting on the steering. Concerning manoeuvrability,
this balancing steering torque is of interest. We describe it through the roll-to-torque
transfer function Hφ→τ (s), obtained from Equation (11) by substituting ay ≈ −g tanφ.
Then, if we consider tanφ ≈ φ outside of the absolute values, we obtain:

Hφ→τ (s) :=
Test (s)

Φ (s)
≈ c1g−c2g

2 tan |φ0|+c3
g

v2
−c4

g2 tan |φ0|
v2

+c5vs = Hφ→τ
∣∣
v,φ0

(s) ,

(16)
where Test (s) = L (τest (t)), Φ (s) = L (φ (t)), and s is the Laplace variable. Equation
(16) is the transfer function describing the variation of steering torque required to the
rider following a roll angle variation for the nonlinear model described by Equation
(11) linearised around the equilibrium roll φ0.

The transfer function, computed from the motorcycle parameters, consists of a
single zero. Figure 4 shows it for v = 10 m s−1, φ0 = 0 rad, corresponding to the slalom
manoeuvre of the dataset. When φ0 = 0 rad, the zero is negative, as evident by Equation
(16). This fact was true more generally for this specific motorcycle, in all the speed-roll
domain considered, as Figure 6b will show. Consequently, Hφ→τ (s) = K(s− z), where
K is the static gain, and z is the zero. Therefore, at lower frequencies, its amplitude is
minimum and equal to the static gain, and the phase is null. Around the frequency equal
to the zero, the amplitude increases, with a 20 dB per decade slope. The phase starts
increasing approximately one decade before the zero and reaches π/2 approximately
one decade after it. The higher the frequency, the higher the steering torque required
following a roll variation. Alternatively, if we consider the torque as the input, there will
be a smaller roll response for a given torque applied. Moreover, the phase increases: the
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(a) Influence of the speed.
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(b) Influence of the equilibrium roll angle.

Figure 5. Influence of the manoeuvre parameters on the amplitude and phase of the roll-to-torque transfer

function.

steering torque perceived by the rider anticipates the motorcycle roll, or alternatively,
the roll response is delayed compared to the rider input.

Figure 5 shows the influence of the manoeuvre parameters on the transfer function;
with the transfer function already shown in Figure 4 plotted in red. Figure 5a shows the
influence of speed: increasing the speed decreased the low-frequency amplitude, with
progressively less impact. Instead, increasing the speed increased the high-frequency
amplitude proportionally5. The greater the speed, the greater the influence of frequency.
A speed increase lowered the frequency of the amplitude knee and shifted the phase-
change to lower frequencies. Figure 5b shows the influence of the equilibrium roll angle
φ0: its increase monotonically decreased the low-frequency amplitude, with no effect at
higher frequencies. The phase-change shifted to lower frequencies.

Figure 6 summarises these effects. In particular, Figure 6a shows the influence of the
speed and equilibrium roll on the static gain: the maximum value was reached at low
speeds and for an upright equilibrium condition. The static gain lost the dependency on
speed for high speed values; the minimum was relative to high values of both variables.
Figure 6b shows the zero value, which was influenced mainly by speed. A speed increase
reduces its absolute value: the change in behaviour of the transfer function between
low- and high-frequency behaviour shifted to lower frequencies.

The previous figures showed the influence of the manoeuvre parameters on the
roll-to-torque transfer function. The design choices influence manoeuvrability, too: this
impact can be quantified and understood by analysing the sensitivity of the transfer
function to motorcycle parameters. This analysis also quantifies the effect of an error
on one parameter on the estimated transfer function. Figure 7 shows this for the most

5As evidenced by the constant vertical spacing, in the log-log plot, of lines relative to different values of the

logarithmically-spaced speed.

11



10

15

15

20

20

25

25

30

30

35

35

40

40
45

50
55

60

10 20 30 40

Speed (m/s)

0

5

10

15

20

25

30

35

R
ol

l (
de

g)

0

10

20

30

40

50

60

70
Static Gain (Nm/rad)

(a) Static gain of the transfer function.

-9
-8

-7
-6

-5
-4

-4
-3

-3

-2

-2
-1

-1

10 20 30 40

Speed (m/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

R
ol

l (
de

g)

-10

-8

-6

-4

-2

0
Zero (rad/s)

(b) Zero of the transfer function.

Figure 6. Influence of the manoeuvre parameters on the roll-to-torque transfer function properties.

significant motorcycle parameters influencing the estimated torque (Equation (11)).
Figure 7a shows that increasing the front tyre normalised twist stiffness increased the
static gain of the transfer function, while not influencing the high-frequency amplitude.
The phase-shift moved to higher frequencies. Increasing the front-wheel spin inertia
(Figure 7b) decreased the transfer function amplitude at lower frequencies and increases
it at higher frequencies. Moreover, increasing the inertia increased the delay between
the applied torque and the resulting roll at medium frequencies. Increasing the front
tyre load (Figure 7c) increased the static gain modestly, with no effect at higher
frequencies. The phase reduced slightly at medium frequencies. Interestingly, the caster
(Figure 7d) influenced the transfer function marginally. However, this assumes that
the caster changes without influencing the other parameters: in reality changing the
caster requires changes to the fork offset, for example, to keep the same normal trail.
Lastly increasing the normal trail increased the low-frequency amplitude slightly, with
no effect on higher frequencies (Figure 7e). The phase reduced at medium frequencies.

3.1.3. Lane change roll index estimation and transfer function

The lane change manoeuvre is employed commonly to assess vehicle behaviour and
manoeuvrability. It consists of two very brief pseudo-stationary cornering phases,
corresponding to the maximum roll absolute value, each one preceded and followed by
a demanding transient manoeuvre, in which the roll rate can reach significant values.
The Lane Change Roll Index (LCRI) [14] describes the manoeuvrability during this
manoeuvre as:

LCRI :=
τp-p

φ̇p-pvavg

, (17)

where ‘p-p’ stands for peak-to-peak values and ‘avg’ stands for ‘average’ through the
manoeuvre. The Index evaluates the steering torque necessary to achieve a unitary
roll rate response, normalised by the vehicle’s speed. It captures a comprehensive
manoeuvre perspective by utilising peak-to-peak values instead of the absolute peak
value, decreasing the impact of riding style on its value [14].

Table 2 presents the LCRI values calculated using the measured and estimated torque.
Additionally, the value of the analytical, simplified expression for the LCRI by Cossalter
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(b) Front-wheel spin inertia.
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Figure 7. Influence of the motorcycle design parameters on the amplitude and phase of the roll-to-torque

transfer function. The black arrows indicate the increase in the parameter considered.
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Table 2. Lane Change Roll Index calculated

using the measured and the estimated steering

torque, for each suitable run of the 3 m×14 m
lane change. The simplified formula that only

considers the transient steering torque predicts a
value equal to Iwf cos ε/Rf=1.31 N rad−1 s−2

Run Number LCRI
(
N rad−1 s−2

)
Using τmeas Using τest

1 1.68 1.66
2 1.91 1.76
6 1.58 1.70
7 1.57 1.61
8 1.64 1.76
9 1.84 1.69
10 1.69 1.89
12 1.49 1.46
14 1.85 1.82
15 1.80 1.74
17 1.53 1.58
18 1.62 1.63
Mean 1.68 1.70
SD 0.14 0.12

[14], based on the transient term only, is provided. We only considered the 3 m×14 m
lane change, as the 2.75 m×5.5 m lane change exit was very close to the following
corner, and the rider did not have the time to fully stabilise the bike before entering it.
Moreover, the 3 m×14 m lane change runs where the motorcycle was not straight at the
beginning or end of the manoeuvre, also due to limited space available, were excluded
too. The measured LCRI ranged from a minimum of 1.49 N rad−1 s−2 to a maximum of
1.91 N rad−1 s−2, with a 1.68 N rad−1 s−2 mean value and a 0.14 N rad−1 s−2 standard
deviation. The LCRI from the estimated torque had a 1.70 N rad−1 s−2 mean, very close
to that of the measured LCRI, and its 0.12 N rad−1 s−2 standard deviation indicated a
metric variability similar to that obtained with the measured signal. The measured and
estimated values were strongly correlated: the estimated steering torque value is lower
when the measured value is lower. The LCRI calculated using the simplified expression
equalled 1.31 N rad−1 s−2, lower than the lowest measured value.

Figure 8 shows the measured and estimated torque signals along with its components,
for two Lane Change runs. Figure 8a is relative to lap six: the measured and estimated
torque signals were very close in the middle section, between the two steering torque
peaks. Here the motorcycle went from a small leftward roll to its maximum value to
zero to change direction. Before the first peak, the estimated steering torque lagged
the measured one, while after the last peak, the estimated signal did not capture the
oscillations of the measured one. The error on the LCRI is 0.12 N rad−1 s−2, higher
than in many other runs (Table 2). Nonetheless, there was good agreement between
the estimated and the measured signal. The transient term alone underestimated the
first peak and misses the dynamics of the manoeuvre exit. Figure 8b shows the signals
during lap 14, where the error on the LCRI was lower (0.03 N rad−1 s−2). As before,
the transient term alone underestimated the first peak while correctly reproducing the
instant of each peak.

We can express the LCRI as a transfer function:

LCRI (s) =

∣∣∣∣Test (s)

Φ̇ (s) v

∣∣∣∣ =

∣∣∣∣Test (s)

Φ (s) sv

∣∣∣∣ =

∣∣∣∣Hφ→τ (s)

sv

∣∣∣∣
φ0=0

=

∣∣∣∣∣g
(

c1

v + c3

v3

)
+ c5s

s

∣∣∣∣∣ , (18)
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Figure 8. Measured (solid, grey line) and estimated (solid, black line) steering torque, during a lane change
with the sports motorcycle. The steady (dash-dot, black line) and transient (dotted, black line) contributions of
the estimated torque are also shown. The dashed, red line indicates the roll.

where the roll equilibrium was set to zero because during a lane change the motorcycle
rolls around its vertical configuration. The transfer function describing the LCRI is a
single, negative zero with an integrator term.

During the middle section of a Lane Change manoeuvre, all the motorcycle signals
have an approximately sinusoidal shape, as shown by Cossalter [14] and verified in our
dataset, with a frequency influenced by the motorcycle speed and by the lane change
transition distance. Although the different signals have different phases, their frequency
is similar and can be approximated by:

f =
v

2d
, d =

√
(∆x)2 + (∆y)2, (19)

where ∆x and ∆y are the lane change effective transition distance and offset, re-
spectively, so that d approximates the distance travelled. ‘Effective’ means that it
is relative to the manoeuvre actually performed. The rider could start and end the
manoeuvre sooner or later than indicated by the cones. For the lane change considered,
(∆y)2 � (∆x)2 and d ≈ ∆x. The ‘two’ at the denominator of the estimated frequency
is because, while riding along the transition distance, the signals go from one peak to
the one having the opposite sign; therefore, this length corresponds to half the period.

Figure 9 shows the amplitude of the transfer function approximating the LCRI as
a function of speed and frequency, which are linked by Equation (19) (dashed lines).
The index increased at lower speeds (limv→0 LCRI (ω) = +∞) and lower frequencies
(limω→0 LCRI (ω) = +∞). The three dashed lines are relative to half, equal to and
double the distance covered in the lane change considered. For a specific lane change,
decreasing the speed decreased the frequency, and both made the index increase.
Considering the average speed (between all runs), equal to 11.7 m s−1, the intersection
with the 14 m dashed line provided a frequency of 0.41 Hz, and a 1.98 N rad−1 s−2 LCRI
value, higher than the measured one. However, from the GNSS data, the effective lane
change distance turned out to be 12.4 m. Using this value, the estimated LCRI becomes
1.79 N rad−1 s−2, much closer to the measured value. The frequency calculated using
this distance was 0.47 Hz, close to the one calculated using the time interval between
the peaks of the various signals. Notice that limω→∞ LCRI (ω) = c5 = Iwf cos ε/Rf,
obtaining the expression used by Cossalter to approximate the LCRI value [14].
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Figure 9. Magnitude of the transfer function approximating the LCRI as a function of speed and frequency,
for the sports motorcycle. The three dashed lines are relative to half, equal to and double the distance covered

in the lane change considered.

3.2. Scooter and touring motorcycle lane change

For each motorcycle in Cossalter’s article [14], the steady-state and transient steering
torque signals were calculated with equations (9) and (10) and summed to obtain the
total steering torque, which was then compared with the measured one.

Figure 10 shows the results. In particular, Figure 10a shows the scooter signals: the
estimated torque had approximately the same shape and amplitude as the measured
one, that anticipated it. The gyroscopic moment alone gave a reasonable description of
the total steering torque, as Cossalter states, with a lower amplitude. Adding τsteady

increased the steering torque amplitude, as the linear, dominant term of the steady
contribution is π/2 out of phase to the transient contribution. Figure 10a shows the
same signals for the touring motorcycle: again, the transient steering torque component
constitutes the bulk of the total steering torque. Adding the steady-state component
made the estimated steering torques closer to the measured one, committing a modest
error for most of the manoeuvre.

Table 3 reports the LCRI values obtained: the measured LCRI for the touring
motorcycle was significantly higher than the one of the scooter. For the scooter, using
the estimated torque, a 0.97 N rad−1 s−2 LCRI value was obtained, very close to the
measured 1.01 N rad−1 s−2. The simplified expression by Cossalter underestimated its
value by around one-fourth. For the touring motorcycle, the estimated torque provided
a 2.29 N rad−1 s−2 LCRI value, slightly higher than the 2.14 N rad−1 s−2 value from
the measured torque. The value estimated through the simplified formula was close to
the measured value and again lower. The values reflect the different mass of the three
vehicles, with the sports motorcycle used in this study being in the middle.

3.3. Lane Change Roll Index transfer function comparison

Figure 11 concludes the results section by showing the transfer function describing the
LCRI for the sports, scooter and touring motorcycles. The transfer functions are relative
to the average speed of the runs depicted in Figures 8b, 10a and 10b, respectively.
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Figure 10. Measured (solid, grey line) and estimated (solid, black line) steering torque, during a lane change

with the scooter and touring motorcycle. The steady (dash-dot, black line) and transient (dotted, black line)
contributions of the estimated torque are also shown. The dashed, red line indicates the roll.

Table 3. Lane Change Roll Index calculated using the mea-

sured steering torque, the estimated steering torque and
through the simplified formula that only considers the tran-
sient steering torque, for the scooter and the touring motor-

cycle.

Motorcycle LCRI
(
N rad−1 s−2

)
Using τmeas Using τest Iwf cos ε/Rf

Scooter 1.01 0.97 0.75
Touring 2.14 2.29 2.09
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Figure 11. Lane Change Roll Index transfer function for each motorcycle considered in this study. The

transfer function is relative to the average speed of the runs depicted in Figures 8b, 10a and 10b, respectively.
Frequencies calculated through Equation (19).
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The general trend was the same, with a 20 dB per decade slope on the left and an
asymptotic value for higher frequencies, but some quantitative differences emerge. The
scooter was the most manoeuvrable at all frequencies. The sports motorcycle was less
manoeuvrable, with a 60% higher LCRI at 0.1 Hz and a 75% higher right asymptote.
Peculiarly, the the transfer function predicted the touring motorcycle to require slightly
less steering torque at lower frequencies than the sports motorcycle but significantly
more at higher frequencies. The frequency calculated through Equation (19) is also
shown in the plot for each motorcycle, as the lane change geometry was chosen to be
appropriate for the vehicle class.

4. Discussion

Results globally showed a good agreement between the measured and estimated steering
torque. Consequently, the simplifying hypotheses discussed in Subsection 2.5 proved
valid, introducing a reasonable error.

In particular, Figure 2 showed that the estimated steering torque signal had dynamics
and amplitude similar to the real, measured torque for all the various manoeuvres
considered. Figure 3 showed an alternative and more general view, albeit limited to
the steady-state domain. The modest difference between the estimated torque and
the one obtained through regression implied that the motorcycle parameters used
agree with the ones obtained through the best-fit of the measured torque when using
the proposed formulation. The speed dependency was lost at higher speeds: the same
lateral acceleration is obtained with a small steering angle that cannot influence the
resulting steady-state steering torque, which becomes uniquely determined by the
lateral acceleration alone.

Subsection 3.1.2 presented the roll-to-torque transfer function Hφ→τ (s): as Figure 4
showed, its static value is the absolute minimum, maintained in a wide frequency range.
This result is in accordance to what shown by Lot [12, p.306]. Therefore manoeuvrability
is highest at lower frequencies, when considering the roll as the motorcycle response.
This fact is true independently of motorcycle parameters. Beyond the frequency of the
zero, the transfer function increases with a 20 dB per decade slope: the motorcycle
becomes progressively less manoeuvrable after this point. The frequency of the zero
for a specific motorcycle is a function of both the speed and, more weakly, of the
equilibrium roll (Figure 6b). Although the transient term influenced the amplitude
starting from a frequency between 0.1 Hz and 1 Hz, it influences the phase starting
from a decade earlier. Consequently, a slow, transient manoeuvre should not require
more steering torque than a steady corner having the same roll, but the transient,
gyroscopic effect would induce a delayed roll response. An increased steering input
required for the same roll amplitude and a higher response delay are indicators of worse
handling [2].
Hφ→τ (s) is a single, negative zero, so the torque-to-roll transfer function would have

a single, negative pole. The poles directly define the homogeneous response components.
As the only pole is real and negative, this transfer function would predict a stable,
non-oscillatory free evolution of the roll angle. Moreover, as the pole (or zero) becomes
more negative at lower speeds (Figure 6b), it would predict higher hands-off stability
when travelling slowly. This conclusion clearly contrasts with simple models for a
two-wheeled vehicle [15] and experimental evidence [16]. The reason for this apparent
contradiction is that all the equations presented follow the initial hypothesis that the
derivative of angular momentum of the front frame is negligible. Under this hypothesis,
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the steering torque applied by the rider balances all the other torques acting on the
steering: in a hands-off situation, this assumption is clearly no longer valid, manifesting
as rapid movements of the steering assembly. So, the proposed transfer functions inform
about the forced response but not the homogeneous response.

The influence of the manoeuvre and motorcycle parameters reflect in the transfer
function. For manoeuvres around small roll values, Equation (16) becomes:

Hφ→τ
∣∣
φ0≈0

(s) ≈ c1g + c3
g

v2
+ c5vs. (20)

Except for very low speeds, the previous expression is equivalent to:

Hφ→τ
∣∣
φ0≈0,v�0

(s) ≈ c1g + c5vs, (21)

as shown by the static gain of Figure 5a becoming constant with speed over a specific
speed value. Consequently, in many common driving conditions (e.g. highway lane
change), the transfer function describing the manoeuvrability has a static term, which
takes into account the twisting moment and the gyroscopic moment of the front wheel
linked to the yaw rate, and a dynamic term linked to the gyroscopic moment due
to the roll rate. While the former is constant, the latter is proportional to speed in
addition to the manoeuvre frequency: at higher speeds, the transient term is perceived
starting from lower frequencies, as confirmed by Figure 5a. For very high speeds, the
transient, gyroscopic term would make the most of the transfer function amplitude even
at lower frequencies, defining the motorcycle manoeuvrability. This fact could explain
why the rider acts as a position servo at low speeds and a torque servo at higher speeds
[17]: at lower speeds, the zero is higher than the rider input frequencies, so the roll
response does not depend on how rapidly the torque is applied, and consequently how
fast the steering turns. The opposite holds at higher speeds, with the input frequency
influencing the torque to be applied. For motorcycles frequently used at high speeds
and frequencies, e.g. for track riding, reducing the front-wheel spin inertia is crucial
to improve manoeuvrability, while intervening on other parameters should have more
limited effects. Lower spin inertia would also reduce the influence of speed and frequency
on the required torque, possibly making motorcycle behaviour more intuitive.

A sensitivity analysis concerning the design parameters was also conducted. The
front nondimensionalised twisting stiffness, its vertical load and the normal trail only
influenced the steady behaviour, while the front-wheel spin inertia and the caster
influenced the manoeuvrability in the whole frequency domain; However, the latter
seemed to have a marginal effect. The twisting moment is misaligning, so increasing the
twisting stiffness made the torque required to the rider even more aligning, increasing
the steady torque. This sign is coherent with the results of the much more complex
motorcycle model by Cossalter [13]. The same was true for the front tyre load and the
normal trail, in agreement with the model above. Therefore, increasing the twisting
stiffness reduces manoeuvrability during gradual manoeuvres but leads to a less delayed
response at medium frequencies. Notice that a front load increase also increases the
dimensional twisting stiffness. If the caster increased, the steady-state amplitude
reduced; Cossalter [13] confirms this but shows a much more significant impact. That
study considers a motorcycle in a curve with a 5 m s−2 lateral acceleration, while Figure
7d is relative to φ0 = 0, so it does not consider some terms of Equation (16) and most
of the caster influence with them. Lastly, a front-wheel spin inertia increase increases
both (yaw- and roll-related) gyroscopic torques, slightly increasing manoeuvrability at
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lower frequencies while making the motorcycle significantly more demanding to steer at
higher frequencies, leading to more frequency-sensitive manoeuvrability. Therefore, one
specific frequency exists where this parameter change does not influence the amplitude
while still impacting the phase.

Table 2 confirms the robustness of the LCRI: the measured value had a 0.083 coeffi-
cient of variation, much smaller than the variability of the individual signals forming
the index. While the input steering torque and the output roll and roll rate are subject
to variation, these are linked by the physical behaviour of the motorcycle. The mean
LCRI value was approximately the same whether the measured or the estimated torque
is used, whose estimation error was limited even under transient conditions. The approx-
imate formula proposed by Cossalter, although easy to calculate, underestimates the
index value. The transfer function approximating the LCRI (Equation (18)) shows why:
limω→∞ LCRI = limv→∞ LCRI = c5 = Iwf cos ε/Rf. Consequently, the approximated
expression is only valid for high speed or frequencies: as shown by Figure 9, the transfer
function has a minimum in the upper-right corner, taking on greater values elsewhere.
Consequently, the LCRI is only defined by the properties of the steering assembly at
sufficiently high frequencies: the higher the speed, the lower the minimum frequency
required to avoid significant estimation errors. At lower frequencies, especially if the
speed is also low, as in the case of these lane changes, the stationary term increases the
steering torque required and, therefore, the index value. Consequently, the simplified
expression by Cossalter gives a lower limit for the LCRI. In fact in the original article
[6] the measured LCRI matches or exceeds the one obtained through the simplified
formula for a variety of motorcycle classes. For very low frequencies, the index value
approaches infinity because the steering torque tends to the steady-state value while
the roll rate approaches zero. Using roll as the motorcycle response is more appropriate
to assess low-frequency manoeuvrability, as in the roll-to-torque transfer function.

Figures 8,10 showed that the steering torque signal can be estimated for motorcycles
of differing characteristics, with different sensors, performing lane changes with vastly
different geometries. Some patterns emerge: the transient, gyroscopic term alone
underestimated the peak values, and the total estimated torque was closer to that
measured in the entry and cornering phase than in the exit phase. Adding the steady-
state term postponed the peaks, especially the second one: in fact, the dominant, linear
steady contribution is delayed π/2 compared to the transient term. For the sports
motorcycle, τsteady(t) had an approximately-sinusoidal trend: the second-degree steady
term had a limited influence, and the steady contribution remained clearly counter-
steering. Conversely, τsteady(t) has a hump when the roll is highest; for the scooter
and touring motorcycle. Therefore, the sports motorcycle did not reach the ay

∣∣
τ=τmax

lateral acceleration value. Instead, the other two motorcycles exceeded this value, but
without reaching the ay

∣∣
τ=0

value: the steady-state torque remained counter-steering
throughout the manoeuvre.

Lastly, Figure 11 compared the predicted manoeuvrability of the three motorcycles.
The scooter requires relatively small torque inputs at all frequencies. The lower load on
the front tyre reduces most steady-state torque contributions, and the narrow front tyre
further reduces the misaligning twisting torque. Moreover, the small front tyre has a
lower mass and radius of gyration, reducing the high-frequency torque too. The transfer
functions for the touring motorcycle predicts a better low-frequency manoeuvrability
than the sports motorcycle, despite the higher mass and size. The higher front tyre
spin inertia and normal trail both reduce the stationary steering torque, as Figures 7b
and 7e show. However, the higher spin inertia increases the steering torque required at
higher frequencies (Figure 7b), making quick manoeuvres more demanding than for the
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sports motorcycle. These transfer functions were relative to the speed of the specific
manoeuvre, the effect of which overlaps with the intrinsic characteristics of the vehicles.
However, the three manoeuvres were performed at similar speeds, so this effect is tiny.
The frequency of each manoeuvre was slightly lower than the value over which the
LCRI reaches its asymptotic value: this explains the underestimation made by the
simplified formula by Cossalter and shows that the lane change geometry, different
for each motorcycle, was chosen appropriately to the vehicle class. For example, if
the manoeuvres of the scooter and the touring motorcycle were inverted, the transfer
function of the former would be evaluated at a relatively low frequency, with a significant
steady term influence. On the contrary, the latter would be excited at a frequency such
that the asymptotic behaviour would be achieved, provided the rider can perform such
a tight manoeuvre.

Future development could focus on extending the experimental dataset. For example,
it may include a comparison of the estimated and the measured torque for higher speed
manoeuvres, as this work considered low and medium speed manoeuvres; this would
allow testing the accuracy of the steering torque map shown in Figure 3a on a broader
speed range. Peculiar motorcycle classes, such as supersport or off-road motorcycles,
could be added to validate the approach further. The estimation equations could be
generalised to cover combined dynamics conditions. This could be done by adding the
load transfer, estimated from the longitudinal acceleration signal, to the front tyre
static load in Equation (9). The brake-steering torque could be estimated from the front
braking force through the front tyre radius, caster angle and instantaneous roll angle.
Lastly, the correlation between the manoeuvrability estimated by a transfer function
for different manoeuvres and motorcycles and the subjective handling perceived by
the rider during the corresponding run could be investigated to determine whether the
approach and the results shown in this paper could also allow the prediction of riding
feel.

5. Conclusion

This work proposed a motorcycle steering torque estimation methodology based on a
simplified steering assembly model. The model only requires a limited set of readily
available or easily measurable motorcycle parameters; this also allowed the estimation
of the steering torque of motorcycles from other datasets. The estimation equation
was employed to define transfer functions describing motorcycle manoeuvrability: the
influence of the manoeuvre and motorcycle parameters was shown and discussed. The
results extend what was found by Cossalter regarding the lane change manoeuvre:
in particular, they confirm that estimating the Lane Change Roll Index by only
considering the gyroscopic torque is feasible, but only as long as the manoeuvre
frequency is sufficiently high, with the frequency threshold dependent on the speed
and motorcycle properties. If this threshold is not exceeded, the transfer function for
the LCRI proposed in this article provides a more accurate value.

This work allows recreating the steering torque signal for new and pre-existing
datasets for which the torque measurement was not feasible or of interest, describing
the rider effort required during previous tests. The signals required6 for estimation are
commonly measured in experimental tests. The simplicity of the estimation equation
reduces the computational cost compared to more complex models, potentially making

6The speed and the roll angle or, alternatively, the lateral acceleration or yaw rate and the roll rate.
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it an ideal candidate for developing steering assistance systems.
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Table A1. Values of the parameters of the three motorcycles considered in this study.

Motorcycle Model Parameter

ktf Iwf Fzf ε an Rf l
(m rad−1) (kg m2) (N) (rad) (m) (m) (m)

Sports 0.035 0.43 1430 0.424 0.085 0.300 1.52
Scooter 0.025 0.22 1060 0.463 0.115 0.250 1.38
Touring 0.027 0.75 2080 0.475 0.135 0.320 1.64
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Figure B1. Measured (solid, grey line) and estimated (solid, black line) steering torque, during a left corner
and a slalom, with the sports motorcycle. The steady (dash-dot, black line) and transient (dotted, black line)
contributions of the estimated torque are also shown. The dashed, red line indicates the roll.

Appendix A. Motorcycle parameters

Table A1 contains the values of each parameter required to estimate the steering torque,
for each motorcycle considered in this study. For the sports motorcycle the caster,
normal trail, front tyre radius and wheelbase were obtained from the OEM spec sheet.
The front-wheel spin inertia was set equal to the value of another motorcycle of similar
characteristics; the nondimensionalised twisting stiffness was set equal to the mean of
the values relative to front tyres having the same size and similar characteristics, from
the available literature [18]. Most of the values relative to the other two vehicles were
taken from the original paper [14]; those not available in the article were taken from
motorcycle of similar characteristics.

Appendix B. Left corner and slalom manoeuvres

Figure B1 insights the estimation of steering torque during a left-hand bend (Figure
B1a) and a slalom (Figure B1b).

For the corner, the roll increased, reaching the maximum around 346 s, which is
maintained for around 2 s and then reduced again to zero. Around 351 s, the rider
applied a correction to align the motorcycle for the successive lane change. The measured
steering torque monotonically increased with the motorcycle roll; the estimated torque
agreed with the measured one. For this manoeuvre, the steady-state contribution made
up most of the estimated torque: the low frequency of the manoeuvre limited the
effect of the roll-related gyroscopic torque. Still, in the most abrupt sections of this
manoeuvre (345 s, 351 s), the roll rate was significant, and considering the roll-related
gyroscopic torque made the estimated torque much closer to the measured one. Lastly,
while the steady component of the estimated torque is in phase with the roll, both the
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measured and the total estimated torque anticipated it slightly due to the roll-induced
gyroscopic torque.

The estimated and measured steering torque also agreed during the slalom. The
peaks had similar values, except for the first part of the manoeuvre when the estimated
torque tended to lag the measured one.

24


