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Abstract

In 1991 De Giorgi conjectured that, given A > 0, if u, stands for the density
of the Allen-Cahn energy and v, represents its first variation, then f [vg + Mdue
should I"'-converge to cA Per(E) + kW(X) for some real constant k, where Per(E)
is the perimeter of the set E, ¥ = 9 E, W(X) is the Willmore functional, and c is an
explicit positive constant. A modified version of this conjecture was proved in space
dimensions 2 and 3 by Roger and Schiitzle, when the term | vs2 d g is replaced by
I vszs’ldx, with a suitable £ > 0. In the present paper we show that, surprisingly,
the original De Giorgi conjecture holds with k& = 0. Further properties of the limit
measures obtained under a uniform control of the approximating energies are also
provided.

1. Introduction

In [7, Conjecture 4] De Giorgi posed the following:

Conjecture. Let n = 2 be an integer number and let E C R" be a set whose
boundary ¥ := dE is a hypersurface of class C2. For any open set Q@ C R" and
any positive number ). > 0 let us consider the following family of functionals,
indexed by the parameter ¢ > 0,

- 2
DG, Q) :=/ |:(28Au—812u> +x} [sWuM“%} dx, (1.1)
Q

ifu e W>Y(Q), and DG, (u, Q) := +o00, ifu € LY (Q)\W>1(Q).
Then there exists a constant k € R such that

L(L'(Q) — lim DG, Q2rxe, Q) = H'" (=2 NQ) +k/ H?dH" !,
e—01 TNQ
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where xg is the characteristic function of the set E (that is equal to one inside E
and null outside), ¢ = 8+/2, H(y) is the mean curvature of ¥ at the point y and
H"~! stands for the (n — 1)-dimensional Hausdorff measure in R".

We point out that we have added a factor 2 in front of the laplacian so that, if
u € W?2(Q), the squared term is really the L2-gradient of the Allen-Cahn energy,
that is, the functional

Ee(u, Q) :=/ [ e|Vul® + ()} (1.2)
Q

ifu e Wh2(Q), and E;(u, Q) := +oo if u € L'(Q)\W"2(Q). Here W: R —
[0, 4-00) is a multiple-well potential, like W () = 1 — cos u, as in the conjecture of
De Giorgi, or the more popular double-well potential W (1) = (1 — u?)%. Precise
assumptions on W will be stated in Sect. 2.

The I'-convergence of the family {E.} is the object of the celebrated Modica-
Mortola theorem (see [8], [12] and [11]) which in this case says that

PL'@) - tim Eo (xi" @) = ofy Per(E. ).

where E now has finite perimeter Per(E, 2) in 2, a < b are two consecutive zeros
of W, Xg’b is a suitable modification of the characteristic function, defined as

ab a ifx ¢E,
' = 1.3
XE ) {b ifx e E, =
and

b
b~ 2/ VW) du. (1.4)

a
We observe that in the case W (1) = 1 — cos u it turns out that 0‘2,2” =c, SO

De Giorgi’s conjecture is actually saying that the functional

G.(u, Q) :=f [ ¢ Wg(”)] [ |Vul? + W(“)} X (1.5)
Q

is an approximation for a multiple of the Willmore functional

W(E, Q) = H?*dH" !,
=NQ
provided that X is of class C?.

This seems reasonable because the mean curvature is known to represent the
first variation of the perimeter and the term 2e Au — W’ (u) /€ represents the gradient
of the functional E.. Moreover, if {u.} is a family of functions that converges to
Xg’b in L', then the energy densities, that are the (normalized) measures

He i= — ! [ew 2+ W(”E)].ﬁf" (1.6)

UW
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where .£" is the n-dimensional Lebesgue measure, in the limit should be larger
than or equal to the measure 1"~ L_ %, as a consequence of the I'-convergence of
E..

For the case W (1) = (1 — u?)?, it was proven in [4] that this is what actually
happens when one considers the usual recovery sequences for the I'-limit of E,, that
consist of a slight modification of the functions u. (x) := go(dx (x)/e), where qo
is the optimal one-dimensional profile and dy, is the signed distance from ¥ = 0E
(precise definitions are given in the next section). More specifically, an estimate
from above for the I'-lim sup of DG, with a positive constant k > 0 was proved.

Moreover, the authors of [4] proposed to investigate the functional

, 2
ag(u, Q) :=/ é (28Au — WE(M)> dx,

Q
in place of G, in order to simplify the problem, and they proved a I'-lim sup
estimate (with a positive constant k > 0) also for the functionals E, + G .

The modification is motivated by the fact that the second factor in the integrand
of G, should be proportional to ¢! near X, while the contribution of both factors
far from this boundary should not be relevant for the I'-limit.

However, the I'-lim inf estimate turned out to be much more involved and,
after some partial results by Bellettini and Mugnai [2] and Moser [13], the problem
has been solved in dimensions 2 and 3 by Roger and Schitzle [16], and reproved
differently in dimension 2 by Nagase and Tonegawa [14], while it is still open in
higher dimensions. More precisely, in the special case W(u) = (1 — u?)? and
n € {2, 3}, Réger and Schiitzle were able to prove that, if ¥ is of class C2, then

DLt @) - tim (£ +Go) (xz . 2)
e—
= o, "HTHENQ) +k H>dH" !,
£NQ
for some positive constant £ > 0. Moreover, they also proved (see Theorems 4.1
and 5.1 in [16]) that if {u,} C W22(Q)isa family of functions for which
Ee(ue, ) + G (s, ) S C,

then the weak™ limit (up to subsequences) of the measures pi is an integral (n — 1)-
varifold with some estimates on the curvature depending on the weak* limit of the
measures

1 W’ 2
oy = — (ZSAME - (ug)) L.
3 €

As the authors explain in the introduction, a crucial step in their proof is the
control of the so-called discrepancy measures

£ = [s|w8|2 - @} R (1.7)

which is obtained in Propositions 4.4 and 4.9 in [16].
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For an exhaustive list of references about the approximation of the Willmore
functional and other variants of this model we refer to [5] and to the recent paper
[15], where the interested reader can also find many numerical simulations.

The main result of this paper is a proof that, surprisingly, De Giorgi’s conjecture
holds true with k = 0. This means that, as opposite to G, the functional G, does
not contribute to the I'-limit of DG, that, instead, turns out to be the same as the one
obtained with the functionals A E, alone, and this holds with a quite general class
of potentials W. This also implies that Conjecture 5 in [7] does not hold, because
the perimeter alone, if considered as a function of €2, is clearly subadditive.

The proof of course consists in finding a family {u.} C Wlf)’cl (R™) of functions

converging in L' to X%’b for which
lim Ee(ue, R") = o” - H'"1(2) and  lim G (ue, R") = 0.
e—01 e—0t1

We construct these functions by perturbing the classical recovery sequences for
E. In particular, we need to modify the optimal one-dimensional profile gg in such
a way that the two factors in the functional G, concentrate in different regions, so
that their product becomes small. We do this by means of a suitable differential
equation that prescribes the discrepancy measures in dimension one, providing us
with the required perturbed one-dimensional profile, that can be further modified
with cut-off functions, as in the classical theory by Modica and Mortola, to produce
the final family {u.}.

This would be enough in the case when X is a sphere, hence it has constant
mean curvature, but it turns out that the general case is more delicate. Indeed, in
this case the perturbation of the optimal profile has to be adjusted depending on
the local geometry of X. We do this by adding a parameter in the equation for the
perturbed profile, in order to gain more flexibility in the construction of the recovery
sequence.

We recall that in the functional 68 the second factor has been replaced by
the constant £~ ! so our strategy, that allows the first factor to be very large in
regions where the other one is small, is not effective in decreasing the value of
the modified functional, because in this case such regions do not exist (actually
ag(us, R"™) — 400 for our choice of {u.}).

As a corollary of our main result, we obtain that the limit of the energy densities
We 18 not necessarily (n — 1)-rectifiable, even if the functionals are equibounded.
In fact, it can also happen that these measures converge to a Dirac mass or, more
generally, to a measure that is not absolutely continuous with respect to 7" ~!.

In the opposite direction, despite this unexpected result, it seems that the bound-
edness of the family {G, (u., R™)} still carries some information on the behavior of
the energy densities. More specifically, we believe that it could prevent the diffusion
of the energy on large sets, while in general the limit of ©, under the only assump-
tion of the boundedness of the energy E. (u., R") can be any positive finite measure.
Indeed, in the toy model of radial symmetry, if we remove the origin (where a Dirac
mass could appear), we can prove that if {u.} C sz)cl RMHN Wlo’c2 (R") is a family
of functions with

E¢(ue, Rn) + Ge(ue, Rn) é C,



Arch. Rational Mech. Anal. (2023) 247:39 Page 5 of 37 39

then any weak* limit of u. is an integral (n — 1)-varifold if restricted to R\ {0}
(which of course in this case is simply a union of concentric spheres). The proof of
this fact is based on a blow-up argument, similar to the one in [2].

‘We observe that the radial symmetry and the removal of the origin automatically
imply that the limit measure is absolutely continuous with respect to H"~!, but
these assumptions do not prevent a priori that this measure may be supported on
sets with larger dimension. In particular, if one only assumes the boundedness of
the energies E.(u., R"), without additional assumptions on G (u., R"), then the
limit of the energy densities can be any positive finite radially symmetric measure,
so the integrality of the limit measure is not trivial.

We point out that the radial symmetry is not even ruling out the “pathology”
that leads to the disappearance of G, in the limit, in fact the recovery sequence for
the I"-limit of DG, when E is a ball can be made of radially symmetric functions.

For this reason, we think that this positive result could be true even in the general
case, in the sense that we expect that, if G (u., R") is uniformly bounded, then the
limit of the energy densities should be concentrated on a "~ ! -finite set. However,
a proof of this fact without the radial assumption would probably be much more
complicated, as it happens in the case of the modified functionals considered in
[16].

The rest of this paper is organized as follow: in Sect. 2 we introduce some nota-
tion, we recall some useful facts from the literature and we prove some preliminary
results. In particular, in Sect. 2.2 we prove all the properties of the family of ODEs
needed to construct the sequence {u,} which makes G (u., R") infinitesimal. In
Sect. 3 we prove our main result (Theorem 2.2), that is the computation of the
['-limit of the functionals DG,. In Sect. 4 we prove our integrality result in the
radially symmetric case (Theorem 2.5).

2. Statements and Preliminary Lemmas

In this section we introduce the precise setting of our work and we prove some
preliminary lemmas.

2.1. Assumptions on W and Main Results

First of all, we state our assumptions on the potential, that is a function W :
R — [0, +00) with the following properties:

(W1) W e C2(R),

(W2) thereexistsaninterval [a, b] C Rsuchthat W(a) = W(b) =0and W(u) > 0
for every u € (a, b),

(W3) W”(a) > 0and W”(b) > 0.

We state also an extra assumption, stronger than (W3), that we need only for
proving the results of Sect. 4.

(W3+) There exists k > 0 such that W’ () > 2«2 for every u € R\(a, b).
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We observe that the classical double-well potential W (u) = (1 — u?)? satisfies
assumption (W3+) with k = 2. On the other hand it is evident that the potential
W(u) =1 — cosu in De Giorgi’s conjecture does not satisfy this condition.

Remark 2.1. Combining assumption (W3+) together with W(a) = W(b) = 0 we
deduce that W (1) > k2(u — b)? forevery u > b and W (1) > «*(u — a)* for every
u < a, in particular W has no zeros outside [a, b]. Moreover, in this case it holds
that

|W' ()|

v W(u)
To prove (2.1) we notice that assumption (W3+) implies that W' is increasing in
[b, +00) (and also in (—o0, a]), hence

=k forevery u € R\[a, b]. 2.1

W) = W) + /u W' (t)dt £ W (u)(u — b) forevery u € [b, +00).
b

Therefore, if u > b we easily deduce from the previous inequality that

W' (u) S W (u) . 1 VW)
VWw) “u—b JWw) u—b

where in the last inequality we used W (u) = Kz(u — b)2. The case u < a is similar.

1\

K,

Now we can state our main results.

Theorem 2.2. Let W: R — [0, 400) be a potential satisfying (WI), (W2) and
(W3) and let E C R”" be a set with finite perimeter. Then there exists a family
{us} € C2(R™) of functions such that

lim ‘
e—0t

a,b _
Ue = X HLI(]R”) =0

and

lim (AES(%, R™) + G (e, R”)) = ro? Per(E),

e—>0t
where Xg’b and Uﬁ,’b are defined respectively in (1.3) and in (1.4).

Since the I'-liminf estimate is an immediate consequence of the Modica-
Mortola theorem, this result implies the validity of De Giorgi’s conjecture with
k = 0, actually with more general sets E and more general potentials. Moreover,
we have the following corollary:

Corollary 2.3. There exists a family {u.} C C*(R") of functions such that

lim sup (Eg(us, R™") + G (ue, Rn)) < +o00,
=01
and

e —~ 8¢ in duality with Co(R™),

where e are defined in (1.6), 8y denotes the Dirac mass centered at zero and
Co(R™) is the space of continuous functions vanishing at infinity.



Arch. Rational Mech. Anal. (2023) 247:39 Page 7 of 37 39
Proof. For any positive integer k € Nt and for any j € {—k, ..., k}, let us set

1 Lo =
Ty = ,
ST o \2k 11 T 2k2k+ 1)

where w,_; denotes the H"~! measure of the unit sphere in R”. Let us consider
the hypersurfaces

k
=) 9By,
j=—k

and the bounded sets Ey such that £; = 9 Ey, namely
Er = (B’k,k\B"k,k—l) U (Brk,k—Z\Brk,k—S) U---u (B’k,—k+2\B”k.—k+l) U B”k.—k’

where all balls are centered in the origin.
We observe that for any k € N it holds that

k
Per(Ep) =H"'(Z0) = ) wn_lr,f;l =1.
j=—k
By Theorem 2.2, for any k € N* we can find a family {u¥} c C?(R") of

functions such that
lim |[uf — x%
e—0t & XE

ab‘

= li KRY =
LI(R") O’ s—lfg)l* Gé‘ (ug ’ ) 07

and
1

avav’b e

. k . k
lim R = 5 tim Eo(uf,R") = Per(Ey) = 1.

where ,u’s‘ is the energy density associated to u’g
On the other hand, for every r > ry ; from Modica-Mortola theorem we deduce
that

1
liminf pf (B,) = — liminf E, (uf, B,) = Per(Ey. B,) = 1,
e—0F oW e—0F

and hence
: k on S T kmny _ .k _
81_1)r(r)1+ we (R"'\B,) = 51—1>I{)1+ (Mg(R ) ,u,e(Br)) =0.

Therefore, with a diagonal procedure we can find a family {k.} of positive
integer numbers such that k, — 400 as ¢ — 07 for which, if we set u, = u;°
and (e = M’ge, then

lim Ge(ue, R") =0, lim Eg(ue, R") = o,
e—0t e—0t

and such that, for every r > 0,

lim e (B) =1, lim ue(R"\B,) = 0.
e—071 e—071

This clearly implies that . A 8. O
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Remark 2.4. Using more or less the same argument (with tubular neighborhoods
instead of balls) one can obtain as limit of s, all the measures of the kind H¢L_ K,
where K C R”" is a smooth and closed d-dimensional submanifold of R”, for
some d € {0, ..., n — 2}. With some additional effort (for example perturbing the
tubular neighborhoods), it should be possible to obtain also more general measures
supported on submanifolds with codimension larger than one and probably also
more general classes of measures concentrated on sets that are " ~! negligible.

Now we state our second main result which suggests that, despite the fact that
G vanishes in the I"-limit and the examples of Corollary 2.3 and Remark 2.4, its
boundedness still restricts in some way the class of possible limits of the energy
densities. Unfortunately, we are able to prove such a result only in the simplified
case of radially symmetric functions.

Theorem 2.5. Let W: R — [0, 400) be a potential satisfying (WI), (W2) and
(W3+). Let {u.} C Wlf)’cl R" N Wli)’cz (R™) be a family of radially symmetric func-
tions such that

lim sup (Eg(ug, R") + G (e, R")) < 400,
e—0F
and let ug and &; be defined respectively in (1.6) and in (1.7).
Then, for any sequence g, — 07 there exist an at most countable index set I
and a family {ri}ic; C (0, 400) of radii such that

> o < oo, (2.2)

iel
and, up to (not relabelled) subsequences,

pep — > H'"'L9B,, in duality with Co(R"\{0}). (2.3)
iel
Moreover, we have

£, > 0 in duality with Co(R™\{0}). 2.4)

We point out that it is possible that r; = r; for i # j, therefore the limit has
not necessarily unit density, but higher multiplicities may occur.

We also remark that the vanishing of the discrepancy measures in the limit is
an important property, usually referred to as “equipartition of energy” because it
means that the two addenda in the Allen-Cahn energy are asymptotically equal. The
proof of this property is a crucial step in many results involving the Allen-Cahn
energy as, for example, in [10] and [16].

In our context it is not clear whether the uniform boundedness of E (u., R") +
G¢(us, R™) is enough to deduce this property, since we are not able to extend our
argument to the non-radial case, and actually even in the radial case we cannot
exclude that the discrepancy measures concentrate at the origin.

On the other hand, we do not have examples in which the functionals are uni-
formly bounded but the discrepancy measures do not vanish in the limit. Indeed,
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even for the family that we use to prove Theorem 2.2 we have equipartition of energy
and, as a consequence, the same holds for the family of Corollary 2.3. Therefore
the following natural question remains open, even if we consider only families of
smooth function:

Question 2.6. Let {u.} C Wécl ®RHN Wlécz (R™) be a family of functions such that

lim sup (Eg(u,;, R™") + G (ue, Rn)) < +o0.

e—0F

*
Is it true that &, — 0?

2.2. The Perturbed One-Dimensional Profile

Now we recall the definition of the one-dimensional optimal profile, that is the
solution go: R — R of the following ordinary differential equation:

Go(s) = V/W(go(s)) Vs eR,

2.5
q0(0) = 432 22

The assumptions on the potential W ensure that g satisfies the following prop-
erties (see for instance [3]):

Lemma 2.7. Let W: R — [0, 400) be a potential satisfying (W), (W2) and let
qo be the solution of (2.5). Then qq is well defined on the whole real line and

(i) go € C3(R) and a < qo(s) < b for every s € R,
(ii) qo: R — (a, b) is increasing and invertible. Moreover qo_l € C3(a, b).

Furthermore, if W satisfies also (W3), there exists a positive constant C > 0 such
that

(iii) qo(s) —a < Ce*/€ for every s € R,
(iv) b — qo(s) < Ce™/C for every s € R,
(v) 0 < Go(s) < Ce™BVC foreverys € R,
i) lGo(s)| < Ce V€ for every s € R.

Remark 2.8. The solutions of the equation (2.5) with initial datum g(sg) = y €
(a, b) are just the corresponding translations of gg, more precisely,

4(s) = qo (s — o+ qo_l(y)) Vs € R. (2.6)

Now we introduce the perturbation of the one-dimensional optimal profile that is
crucial for our proof. We point out that in the following the presence of the parameter
t is important for technical reasons, in order to be able to treat the general case. In
fact, it is possible to prove Theorem 2.2 when E is a ball without introducing this
additional parameter (and consequently in this case one can ignore the derivatives
with respect to ¢).
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Let us fix a function n € Cf. (IR?) and consider the following family of ordinary
differential equations:

35qe(1,8) = VW (qe(t, ) — en(t,s) Vs € I,
qe(1,0) = 42 Vi € R,

Q2.7)

where Z; ; is the maximal open interval containing 0 for which the solution exists.

We observe that the notation is (almost) consistent with the notation for the
optimal profile, in the sense that g. (¢, s) = go(s) when ¢ = 0, and hence Zp ; = R
for every ¢ € R. In the following lemma we show that ¢, is globally defined also if
¢ is small enough:

Lemma 2.9. Let n € CC2 (R2) and let g9, R > 0 be two positive real numbers such
that suppn C [—R, RY? and

go- max |n(t,s)| < min W(qo(2s)). 2.8)
(t,s)eR? Is|I<R

Then, for every (e,t) € [0, e9) X R, we have I, ; = R.

Proof. We observe that for every (g,t) € [0, g9) x R the function go(2s) is a
supersolution of the equation. Combining this with the fact that d;q. = 0 in Z; ,,
we deduce
b
4029 £ :(1,5) £ 07 Vs € T, 1 (—00,0],
a+b
2

Therefore, from (2.8), we obtain

S qe(t,s) = qo(2s) Vs e Zes N[0, +00).

inf (W(qg(t, ) —en, s)) >0
s€Ze N[—R,R]

for every (e,1) € [0, g9) x R. It follows that [-R, R] € Z.; for every (e,t) €

[0, g9) x R, otherwise the solution could be extended, violating the maximality of

Ze+. On the other hand (2.7) outside [—R, R] reduces to the equation for gp, that

has a globally defined solution for every initial datum in (a, b) (see Remark 2.8).

Hence ¢, is defined on the whole of RZif ¢ € [0, o). m|

In the following lemma, we list the properties of g, that we need in the proof
of Theorem 2.2:

Lemma 2.10. Let n and g > 0 be as in Lemma 2.9. Then there exist two positive
real numbers €1 € (0, 9] and C > 0 depending only on the functions n and W,
such that for every ¢ € [0, e1) the function q. has the following properties:

(Al) g5 € CXR? and a < qe(t,s) < b forevery (t,s) € R?,
(A2) gs(t,s) —a < Ce*/C for every (t,s) € R,

(A3) b — q.(t,5) < Ce /€ forevery (1, s) € R?,

(A4) 0 < 35q.(t,5) < Ce™BVC forevery (1, s) € R?,

(A5) |832q€(t, s)| < Ce ™ BIC for every (1, 5) € R
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Moreover, as ¢ — 07,

(B1) q¢(t,s) — qo(s) uniformly on R2,
(B2) 95q¢(t,s) = qo(s) uniformly on R2,
(B3) d;q.(t, s) — O uniformly on R?,
(B4) Btzqg (t,5) — O uniformly on R2.

Proof. By the smooth dependence of solutions of ordinary differential equations
on parameters (see, for example, [9], Theorem 4.1 and Corollary 4.1 on pages 100—
101) we know that the function Q(e, t, s) := g (¢, s) belongs to C%([0, g9) x R?).

Let R > 0 be as in Lemma 2.9. Since Q(0,1,s) = go(s) for every (z,s) €
R2, from the regularity of Q we deduce that the convergences in (B1)-(B4) hold
uniformly on compact subsets of R? and hence, by the properties of g listed in
Lemma 2.7, there exist two positive real numbers eg € (0, &9] and Cr > 0 such
that for every ¢ € [0, eg) all the properties (A1)-(AS5) hold with C = Cg if the
domain R? is replaced by [— R, R]%.

Outside [—R, R]? the function 7 is identically zero, so g, solves the equation

05qe (1, 5) =/ Wi(ge(t,5)) V(t,5) € [-R, R] X [R, +00),

with initial datum ¢, (¢, R) € (a,b), at least for ¢ € [0, eg). Therefore, from
Remark 2.8, we deduce that

4:(t.5) =0 (s = R+45" @e(t. R)) V(e 1.5) €10, er] x [~R, R] X [R, +0%).

Differentiating the previous identity, and exploiting the equation for gg, we
obtain

03ge(t, ) = do (s = R+ 45" (qe(t, R))

020:(1.5) = o (s = R+45 " (q: (1. R)) ).
e (1, R)

W@, B

2 o ~1 (3rq¢ (1, R))?
97 qe(t, 8) = go (S —R+qy (g:(t, R))) m

(g1, R))? )
2W(g:(t. R) )

040(1,5) = do (s = R+45" @1, R)))

do (s = R+a5" @1, R))
Wa: (. F)

for every (¢,5) € R x [R, +00).

By the regularity of Q, we know that ¢, (-, R) converges to the constant go(R)
in C2([—R, R]), and therefore its first and second derivatives converge uniformly
toOin [—R, R].

Thus, from the previous identities and Lemma 2.7 we deduce that (B1)-(B4)
are uniform also in the set [ R, R] X [R, +00), and also (A1)-(A5) hold for every
(t,s) € [—R, R] x [R, 400) if ¢ is small enough, possibly changing the values of
the constant C.

+

(aqu(r, R)
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The extension to [—R, R] x (—oo, —R] is analogous, hence we have proved
all the desired properties in the set [—R, R] x R, with positive constants &1 and C,
possibly different from ep and Cg.

Finally, we observe that g, (¢, s) = go(s) when ¢t ¢ [—R, R], because in this
case n(t,s) = 0 for every s € R and the equation for g, reduces to the equation
for go. This means that outside [— R, R] x R all the properties simply follows from
Lemma 2.7, so the proof is complete. O

We observe that from (2.7) we obtain the identity
(35qe(t, $))* = W(ge(t,8)) —en(t,s) V(e t,5) €[0,e1) x R*,  (2.9)
hence, differentiating once more with respect to s,

3s’7([» S)

V(e t,5) €10, e) x RZ, (2.10)
35qe (1, 5) :

202q.(t,s) = W' (qe(t,5)) — ¢

where the denominator never vanishes because of property (A4) in Lemma 2.10.

2.3. Smooth Hypersurfaces and the Signed Distance

Now we introduce some more notation and we recall some well-known facts
about the signed distance function from a smooth hypersurface in R”.

To this end, let £ C R” be an open set such that its boundary X := dE C R”
is a closed hypersurface of class C*. Let us denote with vy : & — §"~! the inner
unit normal to ¥ and with dy: R" — R the signed distance function from X,
positive inside E, that is defined as follows:

ds(x) = dist(x, R\ E) — dist(x, E) = | 8st 2 ifx e £,
—dist(x, X) ifx ¢ E.
Finally, we denote with Hy : ¥ — R the scalar mean curvature of X, that is
Hy := —divy vy, where divy denotes the tangential divergence on X.
In the following lemma we state some well-known properties of the signed
distance function from a smooth hypersurface (see for instance [1] and Lemma 3
in [11]):

Lemma 2.11. (Properties of the signed distance in a tubular neighborhood) Let
E, ¥, vy, ds and Hy, be as above. Then there exists a positive real number 5 > 0
such that the restriction of dy, to the set Us(X) := {x € R" : |dg(x)| < 8} is of
class C*°. Moreover, for every x € Us(Z) there exists a unique point wy(x) € X
such that

|x =g (x)] = min{lx — y|:y € T},

and ity . Us(X) — X is smooth.
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With these notations, it turns out that

Vds(x) = vy (75 (x))  Vx € Us(X), 2.11)
o) = S kirz ()
—Adp(x) =) Vx € Us(D), (2.12)

1 —dx (x)k; (s (x))

i=1

where {k;(y)} are the principal curvatures of ¥ at the point y € ¥, computed as
usual with respect to the outer normal —vy ().

In particular,
[Vds(x)| =1 Vx € Us(X), (2.13)
—Ads(y) = Hx(y) VyeZX. (2.14)
Finally,
lim K" '({ds = 1)) = H'~ (D), (2.15)
t—0

and therefore (by the coarea formula, (2.13) and (2.15))
i ZL"({lds (x)| = r})
im

r—>0t 2r

=H"I(Z). (2.16)

3. Proof of Theorem 2.2

This section is entirely devoted to the proof of Theorem 2.2.

First of all, we observe that by a standard density argument, we can assume
that ¥ := dE is a closed hypersurface of class C*°. Indeed, if E is a set of finite
perimeter in R”, then either E or its complement has finite measure, thus it can be
approximated (in the L' topology) by bounded smooth sets in such a way that the
perimeter of the approximating sets converges to the perimeter of the initial one.

For every positive real number ¢ > 0 let us fix a function ¥, € C*°(R; [0, 1])
with the following properties:

: 1 1
0 ifs e [—75, «/_5] s
Ue(s) =
| ifs e (—m,—ﬁ—l]u[%ﬂﬁoo),
[%:(s)] <2 and |F:(s)| <8 Vs eR. (3.1

Let Us(X) and rx, be as in Lemma 2.11 and consider the map W, : Us(X) —
R x [—&/e, §/¢] defined as

W (x) = (h(x), dz;’”) ,

where

h(x) ;== Hg(rx (x))
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and Hyx (y) € R is the mean curvature of X at the point y € X.
We observe that 4: Us(X) — R is smooth and it is constant in the direction
normal to X. Hence all the derivatives of & are uniformly bounded in Us(X) and

Vh(x)-Vds(x) =0  Vx € Us(X). (3.2)

We point out that if ¥ is a sphere then /4 is constant, so only the second com-
ponent of the function W, varies.

We set also
Agi={x eR": lds ()| < Ve}, Bo:={x eR": Ve < |ds(0)| = Ve +e}.
3.3)
and we notice that (2.16) implies that
lim Z"(A;) = lim £"(B;) =0. (3.4)
e—0t e—0F

Letus fix n € Cf (R2) and consider the functions qe asin (2.7). Let &1 > 0 be
as in Lemma 2.10 and for every ¢ € (0, &1) such that

Je+¢e€(0,9), (3.5)

let us define the function u, : R" — R as follows:

d d
ueg(x) 1= qe (We(x)) <1 — U < ZS(X)>> + Xg’b(X)ﬁg < E€(X)> .

We observe that, despite W, is defined only in Us(X), the function u, is well-
defined on R” and of class C2. Indeed, we have 9, (dx (x) /e) # 1l onlyif x €
Ag U Bg, and (3.5) ensures that A, U B, € Us(X), so W.(x) is well-defined
whenever 1 — ¥ (dx (x)/e) # 0. Moreover, u, € CZ(R") because qs € C2(R?),
the functions W, and v, (dx /¢) are smooth and ¥, (dx /¢) = 0in A,, while Xg’b is
smooth outside A,.

We observe also that u,(x) = Xz-’b(x) for every x ¢ A; U B,. Moreover from
property (A1) in Lemma 2.10 we have that u.(x) € (a, b) forevery x € A, U B;.
This implies that

< lim 2(b —a)(L"(Ae) + Z£"(Be)) = 0.

" — Xa,h‘
¢ E L1(R") e—0T

lim ‘
e—0t

Now we compute the gradient of u, and we find that

Vit (x) = [a,qe(wg<x)>v1«<x> g (W, (x)) L (x)] (1 — 9, (dz m))

& &

ds (X)) Vds (x)
&

+ [ 0 = ge (e | 9. (
In order to compute the Laplacian of u,, let us set

Ve(x) 1= div (3,qe (Ve (X)) VA (X))
= 029 (We ()| VR()? 4 8rqe (Ve (X)) AR (x),
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where the second identity follows from (3.2).
Therefore, recalling (2.13) and exploiting again (3.2), we have

Aug(x) =| Ve + as qg(\pa)g_z + 05qe (We) e I -1 ?
. ds. 1
=20 | — asq(s(\ljs)_z
& &

- (d 1 . (dx\ Ad
+ [ - ae o] [ﬁg (%) =+ (%) TZ} . (6

where every term in the right-hand side is computed at x.
Now we compute the functionals, starting with E,. First of all, recalling the
definitions of A, and B, in (3.3), we observe that

E¢(ug, Rn) = E¢(ug, Ag) + Ec(ug, Be),

because u, = Xﬁ-’b elsewhere.
We claim that

lim Eg(ue, Ag) = o H'™™(D), 3.7)
e—0F
and
lim Ee(ue, B:) = 0, (3.8)
e—>01

independently of the choice of 7.
PrOOF OF (3.7): We observe that on A,

W(u,) Vdyx
e|Vue* + Tg = & 019 (We) VA + Byqe (We) —

2
+ W(qi:(lps))

1
= (0qe (W) I VAP + — | (35e (W) + W (g (W) |
(3.9

because the double product in the square vanishes thanks to (3.2).
From (B3) in Lemma 2.10 and (3.4) we deduce that the integral on A, of the
first addendum in the right-hand side of (3.9) goes to zero, and hence

f (asCIs(qu))z"‘ W(ge(We)) d
A e X.

lim Eg(ug, A;) = lim
e—0F e—0t

Now we compute the integral in the right-hand side exploiting the coarea for-
mula and (2.13), so we obtain

f (35 (We))? + W(gs (W) J
X
As

-/ 8

5

- ds / [ @5ae(h (), ) + W(ge (h(y), 50| aH = ).
{ds=és)

o
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By (2.15) and properties (A2), (A3), (A4), (B1) and (B2) in Lemma 2.10 we
can pass to the limit and obtain

+00
lim Ee(ue, Ae) = H"H(T) /_ N [d0)? + W(qo(s)) | ds = oy 1"~ ().

that is exactly (3.7).
PrOOF OF (3.8): We observe that on B,

Wug)
e|Vue|* + Tg < 26(8,q: (W))?|Vh|?

2 24 W(up)
+g(8sqs(\1's))2 +2 [xjj:” - qg(lpa)] —t+— e

where we exploited again (2.13), (3.1) and (3.2), as well as the inequality («+ B)? <
2a% 4282

As before, the first term is uniformly bounded (actually vanishing as & — 07)
and hence its integral on B, goes to zero. For the term with W we observe that, if
x € B, then

e (x) — X&) £ Ige (Ve (x)) — x &P ()1, (3.10)

hence from the Lipschitz continuity of W in [a, b], properties (A2) and (A3) in
Lemma 2.10 and the fact that |dx (x)|/e = 1//¢ for every x € B, we deduce that
in B, we have

o ab Co-1/CYo)
e =Xl o a, by S

W(g”g) < Lip(W, [a. b])

In a similar way, exploiting again Lemma 2.10, we obtain

2 ) _ 20272V
7 (059 (Ye)) éf,

and
8 2 8(C2e2/(CVE)
=[x - qewo) ] £ ———.

Therefore the integrand is infinitesimal in the set B, and this is enough to
establish (3.8).
Now we focus on G, (u., R") and, as before, we observe that

Ge(ug, Rn) = Ge(ue, Ae) + Ge(ue, Be).

We claim that

+00
timsup Gitue, A0 £4 [ ds [ [an 1.9 + 20062 H0)] @,
—00 )

e—0F

(3.11)
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and

lim G, (ue, Bs) = 0. (3.12)
e—07F

PrOOF OF (3.11): In the set A, recalling (3.6) and exploiting again the elemen-
tary inequality (o« + 8)? < 2a% + 282, we obtain

W (1) \
(28Aug— (u8)> < 202V,
€

207qe (We) — W/ (ge (¥ 2
+2|: 5qs (We) - (qs( 8))+28sq8(qj5)Ad2]

3_77(\115) z

=8¢2V2 +2|20,q, (V) Ady — ———2 | |

e Ve + |: sqe (We) Ady 85615(“1’8)]

where the equality follows from (2.10).
Since V; is bounded because of the smoothness of & and properties (B3) and
(B4) in Lemma 2.10, from (3.7) we deduce

w
lim 8e2v?2 <8|Vu8|2 + (”5)) dx = 0.
. &

e—0t JA

Moreover, from (3.4) we get

51 (We) ]2 o
dqe(We)]

because every function in the integral is uniformly bounded as ¢ — 07 thanks to
Lemma 2.10. We point out that also the last term is bounded, because g (s) is larger
than a positive constant in the support of  and d;g. — ¢o uniformly by (B2) in
Lemma 2.10.

Therefore, combining the previous limits with (3.9), we obtain

35 (We) ]2
05qe (We)

e—0

lim | e(@qe(¥e)?| VA |:23s£]e(‘l’e)Adz -~
Ae

limsup Gg (ug, Ag) <lim sup/ 2 [28Sq£(\115)Adz —
Ae

e—071 e—071

(95qe (We))? + W(qe (We)) J
. 8 x

dsn(We) 17 2(05qe (We))?
— lim sup / B |:23_;qg(‘P5)Ad)j _ 51 (We) ] (95qe (We)) dx
e—0F A 0sqs (We) &

(W) 12
2(285qe (W) Ady, — 2122 We)dx
+~/As |: 48( ¢) ) Bsqe(%)} n(We) x}

where the equality follows from (2.9).

We observe that the integral in the last line goes to zero as ¢ — 0T, because
again all functions in the integral are bounded and (3.4) holds.

Thus, in the end,

4 2
lim sup G (itg, Az) < lim sup/ z [Z(Bng(\IIS))2Ad2 _ asn(\ps)] dx.
Ae €

e—071 e—071
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Now we apply the coarea formula exploiting again (2.13) and we get

4 5 2
| 2 [20awads - ancwo] ax

AE
1
7 2
= [ as /{ oy 2001902 8d5 ) = 209 | )
—% y=E&S

We can pass to the limit exploiting again Lemma 2.10 and, recalling (2.14) and
(2.15), we obtain (3.11).

PRrOOF OF (3.12): In the set B, we use again the inequality (¢ +5)> < 2a>+282,
so we have

W' (ug)

2
2
) < 8e%(Aug) + S W ue)’.
& &

(ZeAug —

Now we look at the expression (3.6) for the Laplacian of u,: we recall that V,
is bounded, and we observe that each other term is controlled by terms of the form
Ce 2~ 1/(CV®) pecause of properties (A2)-(AS) in Lemma 2.10 and the fact that
|ds (x)|/e = 1//¢ for every x € B,.

Concerning the term with W'(u,), it is enough to recall (3.10), hence the Lip-
schitz continuity of W’ on [a, b] implies that in B, we have

\W (ue)| < Lip(W', [a, b]) - |ge (W) — x &),

and again the right-hand side is bounded by Ce™!/ (€v%) thanks to conditions (A2)
and (A3) in Lemma 2.10.

Therefore (2€AM e — Wiug)/ 8)2 is uniformly bounded (and actually infinites-
imal as ¢ — 0%) in the set B, and this, together with (3.8), implies (3.12).

At this point, the conclusion follows from the following lemma and a diagonal
argument:

Lemma 3.1. Let X C R" be a closed hypersurface of class C*° andlet H : ¥ — R
be a continuous function. Let us set

Fop = [ ::o ds fz [B0(H (). 5) + 20 PHO aH™ () ¥y e CL®?).
Then
inf {F(n) ne CE(RZ)] —0.
Proof. Let us consider the function ®: R?> — R defined as

D, s) = —2r/S do()* dx.

We observe that trivially F(®) = 0, but unfortunately ® is not compactly
supported, so we need to introduce some cut-off functions.
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Let p € C2°(R) be a nonnegative smooth function such that

1 ifls| <1,

PO =00 s = 2.

and p(s) < 2 for every s € R. For every positive real number L > 0 we set
pL(s) := p(s/L) and we observe that o7 (s) < 2/L forevery s € R.

Letalso g € C2°(IR) be another nonnegative smooth function such that g(¢) = 1
whenever || < max{|H(y)|: y € Z}.

Now we set

ne(t,s) =@, s)pL(s)g(t),
and we claim that

lim F(n.) =0. (3.13)
L—+o00

Since nz, € CZ(RZ) for every L > 0, this is enough to conclude the proof.
To prove (3.13) we first observe that

AL, 8) = —2140(s)> L (5)g(t) + D (7, 5)pL(5)g(1). (3.14)

Moreover, g(H(y)) = 1 for every y € X, so we can ignore the presence
of g in the computation of F(nr). Since py = 1 in [—L, L], it follows that
dsnr (H(y), s) = —240(s)> H(y) for every s € [—L, L]. Hence

2
| as [ [amectaons) + 20067 H) | a o) =0
{Is|<L} P
Therefore, from (3.14), we have

F(o) = / ds
{L<]s1S2L)

2
/E 2406 PHO = p(5) + SH ). )1.(5) | dH™ (v),

Exploiting Lemma 2.7, the properties of p; and the identity

+o0 b ab
/ Go(s)* ds _/ Wiqo(s))qo(s) ds —f VW(g)dg = U%,

we finally obtain

ab 2
F(nr) £2L / 4H(y)? [CZ -2L/C 4 TW 7 } dH"(y),

from which we deduce (3.13). O
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We observe that our choice of 7y ensures that the diffuse mean curvature
2¢e Au, — W' (u,) /e concentrates outside an & L-neighborhood of the hypersurface
%, where we know that the energy density is asymptotically small independently of
the choice of 1. The fact that the two factors could concentrate in different regions
is the reason for which the functionals G, vanish in the I"-limit.

The situation is completely different with the modified functional G., as we
explain in the following remark.

Remark 3.2. Repeating the same computations with the modified functional G,
instead of G, one obtains analogous estimates, but with F (1) replaced by

+OO . (H 2
F(y) = / / [ ”(qo((y)) )+2qo(s)H(y>] dH"\(y).

Since 7 is compactly supported we have
+00
[t [ st ds <o,
)y —00
Therefore, expanding the square in the definition of F we obtain

P = / aH" ()
X

/+°° [(asn(H(y) )2
— Go(s)?

+0o0 2
/ aH () / [(as”(qf)’((sy))z $)) +4qo<s)2H<y>2]ds

+43n(H (y), s)H(y) + 46}0(S)2H(y)2] ds

This shows that in this case our construction can not decrease the energy with
respect to the “standard” approximation, corresponding to n = 0.

Furthermore, it can be checked that if 7, are the functions defined in the proof
of Lemma 3.1 then

lim F(n.) =
L—+00

4. An Integrality Result in Radial Symmetry

The aim of this section is to give a proof of Theorem 2.5. Here we deal mainly
with radial functions, hence we recall some definitions and we write the expression
of the functionals in this context.

Definition 4.1. We say thatu: R” — R is aradial function if there exists a function
it: [0, +00) — R such that u(x) = #(|x|) for every x € R”.
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In the sequel, we denote u and & with the same letter u. In particular, if r €
[0, 4-00) is a nonnegative real number, we write u () meaning u(x) for some x € R"
with |x| = r.

We recall that if u is a sufficiently regular radial function then Au(x) = ii(r) +
(n — Du(r)/r, where r = |x|. In particular, if Q2 = {c < |x| < d} then we can
rewrite the functionals E(u, 2) and G (u, 2) as follows:

d
w
E.(u, Q) = / <8L22 + (u)) wp_ 1" dr,
C

&

d _ / 2
Ge(u, Q) = / (28ii+ =D, ¥ (u)) (8”2+ @) -

r &

The main idea behind the proof of Theorem 2.5 is to look at the behavior of u,
near its y-level set, where y is any real number in (a, b). To this end, we study the
behavior of a sui table rescaling of u, that is usually called blow-up. The precise
definition is the following.

Definition 4.2. Let u.: R” — R be a family of radial functions and let {R,} C
(0, +00) be a family of positive real numbers. The blow-up of u, at R, is the family
of functions v, : [—R. /e, +00) — R defined as

Ye(s) := ug(Re + €5).

The next proposition shows that if {u. } is a family of functions with equibounded
functionals then the blow-up of u, at some points R, = ry > 0 must subconverge to
a translation of the optimal one-dimensional profile g¢ if we know in addition that
{us(Rg)} C [a + 8, b — 5] for some § > 0. This proposition is the main ingredient
in the proof of Theorem 2.5.

Proposition 4.3. Ler W: R — [0, 400) be a potential satisfying (W1), (W2) and
(W3+). Let {us} € Wl (R") N W,o>(R") be a family of radial functions such that

lim sup (Eg(ug, R") + G (us, R")) < +oo.
e—07F
Let us assume that there exist two constants ro > 0 and y € (a, b) and a family of
points {R} C [ro, +00) such that us(Ry) — y as e — 0T,
Let e be the blow-up of u. at Re. Then, for any sequence g — 07 there exists
a sequence {my} of positive real numbers such that my — 400, mrer — 0 as
k — 400 and, up to (not relabelled) subsequences, it holds that

-0

either ‘
W22 (—my,my)
“4.1)

-0 or’

'l/'Sk_QOOf;—‘ lﬂsk—qoofy_‘

W22 (—my,my)

as k — o0, where r]j'(s) =5+ qo_l()/) and 7, (s) =—s+ qo_l(y).
Moreover, in both cases

mi

tim [ (52 4 wo)ds = |

k—+00 J _p, —00

“+0oo b
(qg i W(qo))ds = o%r. (42)
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Remark 4.4. It is well known that if / C R is an open interval then W-2(I) C
Cp(I) with continuous injection, where Cp(/) is the space of continuous and
bounded functions on /. Moreover, for any u € W12(1I), it holds (see for instance
Theorem 8.8 and footnote 6 on page 209 in [6])

In particular, this implies that the conclusion of Proposition 4.3 holds also if in
(4.1) we replace the W22 norm with the C! norm.

In the proof of Proposition 4.3 we need the following two lemmas.

Lemma 4.5. Let [c, d] C R be an interval and let { f.} C C([c, d]) be a family of
continuous functions. Assume that

(i) {fsz} C Wl*l(c,d) and there exists a constant M > 0 such that H fs2 ”W],.@ ) <

(ii) fo = fo weakly in L'(c, d).
Then f. — fo strongly in L?(c, d) for any p € [1, +00).
Proof. The proof relies on the following general fact (see [6], exercise 4.16(3) on
page 123, solution on pages 398-399).
Let 1 < p < g.Then

fe — fo weakly in L9(c, d)

= — fo strongly in L?(c, d).
fe = fo almost everywhere on (c, d) fe Jo &y (€ d)

Fix I £ p < g; if we prove that {f;} is a bounded family in L9 (c, d) then
assumption (11) immediately implies that { f;} converges weakly to fo in L9 (c, d).
The boundedness of { f;} is an easy consequence of assumption (i), indeed

SCM
Whi(e,d) =

2
1ol ey = | £2 12

La/2(c, d) ‘

where C > 0 is a constant depending only on the length of (c, d).
Now we prove the almost everywhere convergence up to subsequences. Let us
define

fS,-‘r Zmax{fé" 0}’ fé‘,— :max{—fs,O}.

Cram: (fp,4)? € Whi(e,d) and || (fe1)?

statement holds for ( f,s,_)z.

Assuming the claim the conclusion follows thanks to the compactness of the
embedding Whl(e,d) < L'(c,d). Indeed, there exist hy, h_ € L'(c,d) and
ex — 07 such that

Whl(e,d) é ”fszHWl,](c‘d). A similar

(ﬁglﬁ_)2 — h4 almost everywhere on (c, d),

(fgk,,)2 — h_ almost everywhere on (c, d).
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Thus, fo — /hy — /h_ almost everywhere on (c, d). Moreover assumption (ii)

tells us that necessarily fo = hy — /h—.
Now, we turn back to the proof of the CLaIM. We notice that it is sufficient to

show that the function v, defined as

{(fg)’(s) ifs € Ap :={fs > 0},
ve(s) = :
0 if s € (¢, d)\As,

is the weak derivative of (f8,+)2. Let us write A, = U,~18" where {Isi} is an at
most countable family of disjoint open intervals and let us fix ¢ € C°(c, d). By
assumption f; is continuous, in particular f; = 0 on 91/, therefore it holds that

d d
[ ras =¥ [ s2vas=-3 [ s2roas=- [ uoas,
c i Ik ; Ik c
from which the conclusion follows. m]

Lemma 4.6. Let W: R — [0, 400) be a potential satisfying (WI1) and (W2). Sup-
pose that ¥ : R — R is a continuous function such that

(i) ¥ € CH(Q) where Q := {W () > 0},
(ii) Y ()2 = W (Y (s)) for every s € L,
(iii) ¥ (0) = y € (a, b).
Then either Y = qo o T, or ¥ = qo o T, where T
Proposition 4.3.

+

, and T, are defined in

Proof. The third assumption tells us that 0 € Q. Let Z C €2 be the largest open
interval containing 0. It follows from (i) and (ii) that either ¥ > OonZ or ¢ < 0
on Z. We treat the case ¢ > 0 since the other one is similar. We know that

{&(s) = /W) Vsel,

(4.3)
¥(0) =y € (a,b).

On the other hand ¢gg o ‘L';r solves (4.3) on the whole real line (see Remark 2.8),
therefore by the uniqueness of the solution and the maximality of Z we have 7 = R
andy =goot, .

In the case ¥ < 0 we obtain ¥ = qgooT, . |

Proof of Proposition 4.3. Before starting with the proof we outline briefly the
strategy in four steps.

STEP 1: The bound on E, (1., R") implies that there exists ¥ € Wli)’cz (R) such
that, up to subsequences, for any real number m > 0 it holds that

Ve — Yo weakly in W2 (—m, m). (4.4)

STEP 2: The bound on G (u., R"), together with the previous bound, implies
that for any m > 0 we have

1/f€2 — W(s) — 0 strongly in Wl’l(—m, m). 4.5)
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SteP 3: Combining the previous steps we notice that for any m > 0 the fam-
ily {fﬁgz} is bounded in W' (—m, m). Therefore we are in a position to apply
Lemma 4.5 with f, = 1&,5 (which is a family of continuous functions because
{ue} C Wlf)cl (R™)) and p = 2 to deduce that

Ve — 1 strongly in L*(—m, m), 4.6)
1/}3 = W (y) almost everywhere on (—m, m). “.7)

STEP 4: Using Lemma 4.6 we conclude that if v is a solution of (4.7) then
necessarily {9 = go o T)j' or Yo = qo o 7,/ . Finally, we improve the convergence
in (4.4) to strong convergence in W22(—m, m).

We start with the actual proof. By assumption there exist two constants £, Cop >
0 such that for every ¢ € (0, €) it holds that

Ee(ue, R") + Go(ue, R") = Co. (4.8)

By a change of variable in the integral, we can rewrite the functionals in terms
of Ye:

+o0
Eeur B = [ (524 WO ) 0rt(Re 420" ds,

+00 2"8_W/ . 2 —1) . 2 .
Getun ) = [ (2D T (32 wi)

&

wn—1(Re + 5)" " ds. (4.9)

Now, for any m > 0 there exists &;,; € (0, €) such that for any ¢ € (0, &;,) it holds
that

Re 465> %0 Vs € [—m, m]. (4.10)
Accordingly, for any ¢ € (0, €,,) we have

Co = Ge(ug, R") 2

.. 2
"2 — W/(I/fs) 2n—-1) . 52
/ﬂn ( . + R Tes wg) (2 + W)

ro\"—!
Wn—1 (5) ds

> /'" (2{/}5 — W' (Y) L 2= 1)%)

2

ro\"—1
g[/s2 Wn_1 (—) ds

“m £ R. + &s 2
. . . 2
"M (2 = W W)Y 20— 1) ., ro "1
_/w( - e 1//8) ot (2) s, @.11)

We observe that the term 20 e — W/ (W), in the last integral is the derivative
of wf — W(¥,). In particular, if we set

Be =2 and ge := W)
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we can rewrite (4.11) as follows:

. . 2 —1
m — 2(n —1 C 2\"
/ (’38 g | 20n )ﬁg> ds < =0 (—) . (4.12)
—m & Re +es wp—1 \70

Using this notation we deduce from (4.8) and (4.9) that for any ¢ € (0, &;,) it holds

that
" Co (2\"!
/ (Be +8e)ds = <—> : (4.13)
—m wp—1 \70

Notice also that the constant in the right hand side of (4.12) and (4.13) does not
depend on m > 0; this will be important in the sequel.

Exploiting that W satisfies assumption (W3+) we deduce from Remark 2.1 that
there exists ¢ > 0 such that W (u) > «2u?/2 — ¢ for every u € R. Therefore, the
validity of (4.4) in STEP 1 immediately follows from (4.13).

Moreover, the fact that W satisfies (W1) implies that W and W’ are locally
Lipschitz continuous, therefore {g.} converges locally uniformly to W (i) and
{W' ()} converges locally uniformly to W’ (). In particular, for any m > 0, it
follows that

g — W (o) weakly in W2 (—m, m). (4.14)

In order to obtain (4.5) in STEP 2 we first claim that, up to subsequences, the
functions B, — g, converge strongly to a constant in W1 (—m, m) for any m > 0.
Then we will show that any such constant must be zero.

To prove the claim it is clearly sufficient to establish, for any ¢ € (0, &5,), the
estimates

1B: = el Lt cmamy S C1o [ Be = &ell 1y S C1Vm +De (4.15)

for some constant C; > 0 whichdoesnotdependonm > 0. Notice that, from (4.13),
we have

CO 2 n—1
1Be — 8ellLt—mmy = I1Be + el Lt ooy = — . (4.16)
Wp—1 \T0

Moreover, using (4.10), (4.12) and (4.13) we have

||,3 . ” <. 2(n—1)'3 g — s +2£(n—1),3
e — 8|1 = Rg—‘l_gs_ e L e — 8e R. + s 2 L
2(n—1) . . 2e(n — 1)
fe||——= . +2m - — 8+ —
=& Re + 65 || o ll Bell 1 m- | Be — ge R. + s e o
20 —1)Co (2\" [2mCo (2 \"!
<e (”—)0(—) + =2 (—) , 4.17)
Wn—1 ro Wn—1 \70

where all norms are implicitly computed on (—m, m). The validity of (4.15) is now
an easy consequence of (4.16) and (4.17).
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We pick a subsequence {e } such that { s, —g¢, } converges strongly to a constant
coin W1 (—m, m) as k — +o00. From (4.15) it follows that

2m - co = kETOO ||,88k — 8¢y ||Ll(—m,m) g Ci (4.18)

and recalling that C; in (4.18) does not depend on m we deduce ¢y = 0, which
completes the proof of STEP 2.

So far we know that {8, — g} converges strongly to zero in Wl (—m, m), thus
if we are able to prove that { 8; — g} also converges to wg — W (40) then necessarily
1/}3 = W (¥9) almost everywhere on (—m, m) and hence, since m > 0 is arbitrary,
also in R. We start by proving (4.6) in STEP 3. This is a direct consequence of
Lemma 4.5 applied with f, = 1., provided that we check assumptions (i) and
(ii). The validity of assumption (i) is obtained from (4.15) and a triangular inequal-
ity, because (4.14) implies that {g.} is bounded in Wil (—m, m). Assumption (ii)
follows from (4.4).

Using this fact we can show that {g,} converges strongly to W (1) in W2
(—m, m). Indeed from (4.14) we already know that weak convergence holds; on
the other hand, from (4.6) we immediately conclude that

ge = W (e)¥re — W' (Yo)¥o strongly in L>(—m, m). (4.19)

The convergence of {f;} to Woz is also a consequence of (4.6); indeed we
know from (4.5), (4.14) and (4.19) that {f.} converges strongly to W (y) in
WLL(—m, m). On the other hand (4.6) ensures the existence of a subsequence
{Be, } converging almost everywhere to w& and therefore (4.7) in STEP 3 holds.

At this point we want to conclude that either {9 = ¢qg o 7:;r or Yo = qo o T,
using Lemma 4.6 with ¥ = /9. We have to check that the assumptions are satisfied.
Notice that ¥, (0) = u.(R,) and by assumption u.(R;) — y € (a,b) ase — 0T,
hence assumption (iii) holds. Moreover, the validity of (ii) follows from (4.7) once
we show that (i) holds. Therefore, we focus on proving that ¥g € C'(£2), where
Q = {W(g) > 0}. Given § > 0, we consider the open set

Qs i=1{s € (—m,m) : W(o(s)) > §}.

It is enough to show that ¥y € C! (2,,5) forany m > O and § > 0. It is clear from
the local uniform convergence of {g.} to W (i) that there exists &, 5 € (0, &)
such that for any ¢ € (0, &y,5) it holds W (¥ (s)) = §/2 for every s € Q5.
Starting from the first line in (4.11) we obtain the following estimate:

_ 2 2 n—1
/ (zw — W) + M%) as< S 20 (3> .(4.20)
Qm,é ro

R +¢s Wp—1

This is valid for any ¢ € (0, &, 5). Taking into account (4.20) and the fact that

sup W W oy + 10l 2y | < F000 @21

e€(0,e,)
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we deduce that {Y/¢}ec(0,,, ) is bounded in L?(S2,,5) which implies o € W22
(2,,5) and in particular ¥ € C! (£2y,5). Finally, thanks to Lemma 4.6 we obtain
that either o = go o 7,7 or o = qo o T, .

Now, we prove that {1/} converges strongly to 1o in W2 (—m, m). Combining
the precise expression of ¥ that we have just obtained with (i) in Lemma 2.7 and
Remark 2.8 we easily deduce that a < Y¥o(s) < b for every s € R. Therefore, for
any m > 0 there exists §,, > 0 such that 2, s = (—m, m) for any 6 € (0, §,,).

Using the expression of €2,, s together with (4.20) and (4.21) we get

|29 = W@ 12y S Cm) - &,

where C(m) > 0 is a constant that depends on m > 0. In particular, by (4.14), this
means that

29 — W' (o) = 2o strongly in L*(—m, m).

At this point the proof of the first part of Proposition 4.3 is almost complete;
to conclude we pick a sequence &, — 0% and, by a standard diagonal argument,
we can find a (not relabelled) subsequence and an increasing sequence mjy — +00
such that egmy — 0 and (4.1) holds.

Since rj and T, are isometries of R it is equivalent to prove (4.2) with ¥
instead of gg. First of all we notice that the convergence of the Lz(—mk, mp)-norm
of gbgk to the L2(R)-norm of 1&0 as k — +oo is an immediate consequence of (4.1).
Therefore, it is enough to show that

mi
lim |W (re,) — W (o) | ds = 0.

k—+00 J i,

Now, for any s € (—my, my) there exists ¢ (s) between ¥, (s) and ¥ (s) such that

|W (e, () = W(Eho ()| < [W (o ()] - [, () — Yo (s)]

L)

5 (Ve () —Yo(9))’. (422

Moreover, from (4.1) and Remark 4.4, we know that if k is large enough then
Ve, ()] < o)l + 1 < max{lal, |b]} +1 Vs € (—my., my).

In particular, there exists a constant M > 0 such that ]W” (k (s))] < M for every
s € (—my, my) and k large enough. Combining (4.22) with Holder inequality we
get

mg mg 1/2 mg 1/2
/ |W(We) — W(ho)|ds < (/; (W/(lﬁo))zds) (/ ey — 1//())2ds)

mp —mg

Mo
+ 7[ (e, — Y0)*ds. (4.23)
-
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If we prove that W/ () € L2(R) then the conclusion follows from (4.1) and (4.23).
By a change of variable in the integral we observe that

+00 +oo (W 2
/_ (W) s = /_ ) %\woww

_ /” W' @))?
o VW)

where the last integral is finite because W > Oin (a, b), W € C 2(R), and moreover

lim 22 _ @, tim e /e,

dyr < 400,

u—sat /W(u) u—b= /Wi(u)
This concludes the proof of Proposition 4.3. O

The nextlemma roughly says that the second order quantity G (u,, €2¢) controls
the first order quantity E.(u,., S2¢) in regions €2, that are not too large in measure
and in which u, stays close to the zeros {a, b} of the potential W. We prove that
without the radial symmetry assumption, since it does not simplify the argument
in this case.

Lemma 4.7. Let W: R — [0, +00) be a potential satisfying assumptions (W1),
(W2) and (W3+). Let {2} be a family of bounded open subsets of R" with smooth
boundary and let {u.} C sz)cl ®H N W|i>c2 (R™) be a family of functions such that
ugs € L*(Q) and

lim sup (X"(Qg) + G (ug, SZE)> < +00.

e—07t

Let us suppose that the following assumptions hold (at least for a sequence g —
07):

(1) we have

BRI
av

lim eV W(ug) -

dH" ' =0,
e=0" Jaq,

where v denotes the outward unit normal to 92,

(2) for any § > O there exists ¢5 > 0 such that, for any ¢ € (0, &s) it holds that
either

ue < a+ 8 almost everywhere in Q,
or

ue = b — 8 almost everywhere in Q..
Then (at least on the sequence {&y})

lim E;(ug, Q2¢) =0.
e—0F
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Proof. Let g € C!(R) and notice that

ou _
/ g(ug)Aug dx :/ g(ug) 31)8 dH"! _/ g/(ua) |V’/‘8|2 dx.
Qe 02

Qe
Therefore,
/ ¢/ (ue) <s|wg|2+w> dx
Q. e
9 W
2/ e (ue) e d’l—l"‘l—/ [g(ug)sAug—g/(ue) ws)}dx. (4.24)
Q% 3\1 Qe £

As we already know from Remark 2.1, if W satisfies both (W2) and (W3+) then
its only zeros are ¥ = a and u = b. Therefore, the function

2 W) ifu € (—o00,al,
g) = {-2/W(u) ifu € [a,b],
2 W) ifu e [b, +00)

is of class C'(R) as a consequence of assumption (W1) (to see this it is enough to
compute g’(u) and its limits as u — a and u — b). Moreover, it is easy to check
that g satisfies the relation g’-2W = W’. g. Thus, we can rewrite (4.24) as follows:

f &) (s Vue? + W(g”f)) dx
Qe

Z/ eg ) 2 gy —/ gty (sAus - W(”£)>dx. (4.25)
3% 9 Qe 2¢

v

We observe that Ig/(u)| = |W’(u)| /W (u) for every u ¢ {a, b}, therefore
from (2.1) and the continuity of g’ we deduce that there exists 89 > 0 such that

| (u)| = «/2 forevery u ¢ (a+ 8o, b — &). (4.26)

We pick €5, > 0 such that assumption (2) is satisfied; thus for any € € (0, &5,)
we have

f (EW’MZ + M)fix < E/ lg' (ue)| (a Vue|* + M)dx
= € kJa, 2

=2 ‘f ¢/ ue) (s Vil + M) dx‘
K 1Jq, &

2 ou
< f{/ S\g(ug)\' .
K 992 ov

W/
+/ gl ’Mua W)

2 du
< f{/ S\g(ug)\' =
K 992 v

dH"!

ar)

A"+ e LM () - Ge(te. sm} :
4.27)
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where to pass from the first to the second line we used (4.26) and the continuity of
g’, to pass from the second to the third line we used (4.25), and to pass from the

third to the fourth line we used the Jensen inequality together with the inequality
2

w
gue) < 8|Vu£|2+ (“8)
4e €

Now, the right-hand side of (4.27) goes to zero as ¢ — 07, since the first
addendum goes to zero thanks to assumption (1), while the second one goes to zero
because " () and G, (ug, Q) are bounded as ¢ — 0. |

Remark 4.8. Under the radial symmetry assumption, if 2, = By, for some d; > 0
then the integral in assumption (1) of Lemma 4.7 reduces to

/ e/ W) - lite| dH"™" = w,—1d" e/ W (ue (de)) - lite (de)] -
BBdg

Finally, we can prove Theorem 2.5. In the proof we use Proposition 4.3 with
Y0 := (a + b)/2 several times. In this case r;ro (s) = s and T (s) = —s. In order to
simplify the notation we set go(s) := go(—s) and from now on we use g in place
of go o 7).

Proof of Theorem 2.5. We divide the proof in seven steps.

STEP 1: Let us fix rg > 0 and let us define Z.(rg) := {r € [rg, +00) : u.(r) =
yo0}. We claim that there exists a constant R > 0 that does not depend on r( such
that, if ¢ is small enough, then Z. () is a discrete subset of [rg, R].

The uniform boundedness of Z. (r¢) is a direct consequence of Proposition 4.3.
Indeed let us suppose by contradiction that there exist a sequence g — 07 and
a family of points zx — o0 such that u,, (zx) = yo for every k € N. Then, by
Proposition 4.3, there exists a sequence {my} of positive real numbers such that
my — 400, mygr — 0 as k — 400 and such that the blow-ups ¥, of ug, at zg,
satisfy

” Ve, = qo ” W22 (—mymy) 0 or ” Ve — a0” W22(—mpm) 0.

Therefore, for any fixed M > 0 we have z,, = M for k large enough and also

M}’l*l a,b _ Mn71 oo )
oy = gy + W(qo) ) ds
—00
mp .
= lim (ijk + W(wgk)) (M + exs)"\ds
k—+00 J_p,

nmi .
< lim inf/ (wgzk + W(Iﬂgk)) (zg, + ers)" " lds

k—+00 J_,

Zk+myex w
= lim inf/ <eku2 + M) r"ldr
Z

g
k=400 J 71 —mpex ¢ €k
Esk (”ak ,R™)

9

Wp—1

A
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where in the second line we used (4.2). Thus we reach a contradiction if M is
sufficiently large.

As for the discreteness, let us assume by contradiction that there exist a sequence
&x — 07 and a family {z;} of points such that for every k we have z; € Zg, (o)
and zx is not isolated in Zg, (r9). Then, by Proposition 4.3, there exists a (not
relabelled) subsequence such that the blow-ups ¥, of u,, at zx converge strongly
to Yo in W>2(—1, 1) where either ¥ = go or Yo = §o. Since W22 convergence
implies C! convergence and g has nonvanishing derivative at s = 0, this implies
that s = Oisisolated in {s € (—1, 1) : ¥, (s) = po} if k is large enough. Then, we
deduce that also zj is isolated in Zg, (o), a contradiction.

Therefore, if € is small enough, we can order the points in Z, (rg) in decreasing
order, namely we can set Z,(rg) = {zg, zg, ...}, with z; > zg > ..

STEP 2: For every fixed rg > 0 the cardinality of Z,(rp) is uniformly bounded
if ¢ is sufficiently small.

In fact, if this is not the case, by a diagonal argument we can find a sequence
&r — 07 and a sequence {z;} C [ro, R] of points such that for every i € N we
have zék — z; ask — +oo.

Then, by Proposition 4.3, for every i € N there exists a sequence {m;;} of
positive real numbers such that m;( — +00, mj;sk — 0 as k — +o0 and such that

the blow-ups wgk of ug, at zék satisfy

We claim that for every N € N there exists a positive integer ky such that for
every k = ky it holds

>0 or H vi—Go H 0. (4.28)

W2~2(7m;(,m;()

Wék —qo0 H

W2-2(fm§\,,m;;)

zl, ¢ 2k, — mier, zb, +mjey) forevery i, j < N withi # j.  (4.29)

Suppose by contradiction that (4.29) does not hold; then there exist N € N and
i, ] < N withi # j such that the set

Qij =1k eN:z] € (z, —mek, zp, +mier)}
is infinite, and in particular there exists a sequence {k,} C Q;; such that kj, —
+00 as h — 4o00. Now, we can write zékk = zékh + spék, for some s, €
i i
(=my, . my )\{0}.

Without loss of generality, in (4.28) we can assume that 1//£k converges to g,
hence from Remark 4.4 we deduce that

lim sup [0 — go(s0)| = lim sup [y, (1) = qo(s)|
h—+00 h—+00 g

< lim sup H 1//ék —q0 H =0

k—+o0 Lo (=mjmj)

The previous estimate, together with (ii) in Lemma 2.7, implies that s, — 0 as
h — +oo.
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Moreover, by the Mean Value Theorem we deduce that for every 2 € N there
exists &5 € R such that |¢,| < |sp| and with the property that 1/}£kh (¢n) = 0. This
leads to a contradiction because from (4.28) and Remark 4.4 we know that {1, }
converges to go in C! but on the other hand ¢, — 0 and ¢ (0) # 0.

Therefore (4.29) holds. Dividing all the m}( by 2, we can assume in addition
that the sets (zék — mj;sk, zék + misk) corresponding to different values of i < N
are disjoint if k = ky. Moreover, we still have that m}( — 400, m}'{sk — 0 as
k — 400 and that (4.28) holds; in particular, we deduce that

+00
NG é‘vb<2z” ‘/ (a8 + W) ds

= lim Z / ( %k +W(¢§k)) (2, +exs)"ds

k—~400
ZS +mk8k w

= lim Z/ ¢ (eku2 + (ugk)) —ldr

k—>+ool ] _mkgk Ek

+00 w

< lim sup/ (ekdgk + ﬂ) rlar

k——+o00 JO Ek

n

< lim sup M’

k— 400 wp—1

where in the second line we used (4.2); as before we reach a contradiction if N is
sufficiently large.

StEP 3: Now, we build the family of radii (;);c; that verifies (2.2) and such
that (2.3) holds, possibly after extracting a subsequence.

Combining STEP 2 with a diagonal argument it is possible to find a sequence
ex — 07 such that for every r > 0 the cardinality of Z, (r) is eventually equal to
some N, € N. Namely for every r > 0 there exists a positive integer k, such that

for every k = k, we have Z,, (r) = {zslk, el zﬁﬁ}, with z;k > zgk > o> zSNk’.
Let us set
N if Nog = +o00,
No:=supN, and [ = 0 .+
r>0 {1,..., No} otherwise.

Then, possibly extracting another subsequence that we do not relabel, we can
assume that for every i € I there exists r; > 0 such that zék — ri as k — +oo.
Clearly r; = riy for every possible i.

STEP 4: By Proposition 4.3, for every i € I we can find {mf{} such that m}c —
400, mier — 0 as k — oo and such that the blow-ups Wék of ug, at zék
satisfy (4.28) as k — +o0.

As in the proof of STEP 2, we can choose {m;'(} such that for every r > 0 there
exists a positive integer k, such that forevery k 2 k, the sets (zf;k —misk, Zék +m;;8k)
corresponding to different values of i < N, are disjoint. Let us introduce

i i i i i i
Cp =2, — Mk and dy 1=z, + myeg.
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Forevery 0 < ¢ < d weset Ac g 1= Bg\B.. Now, we prove that for every
integeri €

* —
pe LA g — M TILOB,.

Since e and u, are radially symmetric, this is equivalent to show that

w o
(suiec 072 + D) 2N ) 2 a8 @30)
k
Let ¢ € Cp(0, +00); using (4.2) we obtain
o W) 1
lim | ek, £ ——— Jo(r)r" T dr
k— 400 c}{ Ek

i
my

..o\ 2 . . .
lim [ ((w) + W(%)) P, + er) L, + o)™ ds

k——+00 —mi

Y I_ab
oo™ [ (@ waw) ds = oir oy (4.31)
—00

which proves (4.30). Moreover, summing over i € I, we obtain

E. (ug ,R")
— b . s
D ot o < gl - lim sup —E—H— 2,

el k—+00 wWn—1

Since this holds for every ¢ € Cy(0, +00), we deduce (2.2).
STEP 5: We prove that for every i < Ny it turns out that

*
e, |_Ad;;+1, — 0.

i
Ck

Clearly, the conclusion follows if we prove that

lm i, (A d;;+‘,c;;) —0. (4.32)

k— 00

Since

o (Aggr ) = e (e Age )

equality (4.32) is a direct consequence of Lemma 4.7 applied with Q, = A 4+

provided that we check the two assumptions.
Assumption (1) follows by Remark 4.8, indeed (4.28) implies
: i+1yy 1 Ny
kEI—',I-loo W (ue, (d;)) = kl:rfoo W (ug, () =0, (4.33)
. . i1y _ 1 SN
kBToo splte, (d, ) = kgl}—lm gklig (c) = 0. (4.34)

Let us suppose by contradiction that assumption (2) of Lemma 4.7 does not
hold. Therefore, there exist §p > 0, a subsequence of {u,, } that we do not relabel,
and a sequence of points ry € Ayt i such that a + 8o < ug (1) < b — do.

k Tk



39 Page34of 37 Arch. Rational Mech. Anal. (2023) 247:39

Moreover, in the interval [d,’;“, c,i] we know that eitheru,, < yporug > yp. Then,
possibly extracting another subsequence, we can assume without loss of generality
that yo < ug, (rr) < b — 8. In this case we know that u, (d,’;“) = b — §p and
Ug (cf{) = b — §y for k large enough, since they both tend to b as k — +o0o. In
particular, if 7 is a minimizer of u,, in the interval [d;;‘H, c};] then 7y, is internal for
k large enough, indeed we have ug, (7x) < ug, (ry) < b — 8o and ug, = b — 8o on
the boundary.

Up to a further subsequence we can assume that there exists y € [yp, b—8p] such
that ug, (7)) — y as k — +oo. Then by Proposition 4.3 there exists a subsequence
such that the blow-ups v, of u,, at 7; converge in W22(—1, 1) to either gg o r;r
orgpot,, but this is in contrast with it¢, (7x) = 0. Hence we can apply Lemma 4.7
to deduce that (4.32) holds.

STEP 6: We recall from STEP 1 that there exists R > 0 such that d,g < R for
every k. Now, we prove that

— *
1o, L (R"\de) Xo.
Notice that

R\By = | Bi\By = |J A4
L>R L>R

Therefore, as in STEP 5, the conclusion follows if, for every L > R, we prove that

Jim e, (AL’ dkl) =0 (4.35)

We observe that for every k there exists Ly € [L, 2 L] such that

2L
<5k’;’sk (Li)* + W) Lf] S lf <8k125k r?+ Wu%}f(”)) " dr

LJL
< B e, R (4.36)
wy—1L

In particular, using the elementary inequality 2«8 < o? 4+ 2 we deduce that

. . -1
kEToo ek |tie, (L) | /W (uey (L)LY

W (ug, (L
< lim & <ekusk (L) + M) Lt=o0, 437
k—+00 2 &k
and also
W (ug, (L
lim W (L)) £ lim g (gkusk(Lk)2+ M) =0. (4.38)
k— 400 k—+00 Ek

It is clear from (4.38) that the only limit points of u., (Ly) as k — 400 are a
and b. On the other hand Ly > R and on [R, 4+-00) we have either u,, < yo or
ug, > Y0, therefore necessarily

lim ug (Ly) = lim wg, (d}) € {a, b). (4.39)
—+00 k—+00
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Now we want to apply Lemma 4.7 with Q;, = ALk,d,i' As in STEP 5, we have
to check two assumptions. The first assumption follows combining Remark 4.8
and (4.37) and also the analogues of (4.33) and (4.34) with d,i in place of d,i“
and c;.. The second assumption can be proved exactly as in STEP 5 because we
know from (4.39) that on the boundary of [d,g, L] we have either u,, < a+ 8o or
ug, = b — g for k large enough.
Therefore, Lemma 4.7 tells us that
lim Ee (e Ag, 41) =0,

k——+00

which clearly implies (4.35).
StEP 7: If N9 = N for some 7 > 0 (in particular Ng < +00), then for every
r < r we have

*
ey |_Ar’c£vo — 0.

This is again a consequence of Lemma 4.7 and the proof is very similar to the one
of STEP 6. The starting point is to prove the analogous of (4.36), that is for every k
there exists r¢ € [r/2, r] such that
w 2E , R*
<8kﬂ£k (rk)2 + —(M:;C(rk))> I’n_l —gk (Mgk ) .

wn—1r

A

k

Then we conclude as in the previous step using r¢ instead of L.

Finally, combining STEPS 4-7 we deduce the validity of (2.3).

To prove (2.4) itis enough to observe that |£.| < i, and hence the convergences
to zero in STEPS 5-7 also hold with &.

Furthermore, if we repeat the computations in STEP 4 with &, instead of u,,,
then (4.31) becomes

di
lim [ (skﬂz — —W(”Sk)> o(r)r"dr

k—+o00 c;’( Ek Ek

— n—1 oo -2 _
= (P(’”i)",- / (qO — W(qo)) ds = 0.

o0

This proves that &, ) and, since the limit does not depend on the sequence
{er}, we deduce that the whole family {&.} converges to zero. |
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