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Physiological Noise: Definition, Estimation, and
Characterization in Complex Biomedical Signals
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Abstract— Background: Nonlinear physiological sys-
tems exhibit complex dynamics driven by intrinsic dynam-
ical noise. In cases where there is no specific knowledge
or assumption about system dynamics, such as in phys-
iological systems, it is not possible to formally estimate
noise. Aim: We introduce a formal method to estimate
the power of dynamical noise, referred to as physiologi-
cal noise, in a closed form, without specific knowledge of
the system dynamics. Methodology: Assuming that noise
can be modeled as a sequence of independent, identically
distributed (lID) random variables on a probability space,
we demonstrate that physiological noise can be estimated
through a nonlinear entropy profile. We estimated noise
from synthetic maps that included autoregressive, logistic,
and Pomeau-Manneville systems under various conditions.
Noise estimation is performed on 70 heart rate variability
series from healthy and pathological subjects, and 32 elec-
troencephalographic (EEG) healthy series. Results: Our re-
sults showed that the proposed model-free method can
discern different noise levels without any prior knowledge
of the system dynamics. Physiological noise accounts for
around 11% of the overall power observed in EEG signals
and approximately 32% to 65% of the power related to heart-
beat dynamics. Cardiovascular noise increases in patho-
logical conditions compared to healthy dynamics, and cor-
tical brain noise increases during mental arithmetic com-
putations over the prefrontal and occipital regions. Brain
noise is differently distributed across cortical regions. Con-
clusion: Physiological noise is very part neurobiological
dynamics and can be measured using the proposed frame-
work in any biomedical series.

Index Terms—Approximate Entropy, complexity, elec-
troencephalography (EEG), heart rate variability (HRV),
nonlinear analysis, noise, physiological noise.
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[. INTRODUCTION

OISE has been accidentally discovered by Albert Einstein
N in 1905, when he observed that atoms move according
to the Brownian molecular motion [1]. After that, noise has
been brought up in countless accounts of physical and biological
systems, without acknowledging its critical role and, especially,
without a formal methodological framework for its definition,
characterization, and exploitation. The term noise generally
refers to random or unpredictable fluctuations and disturbances
that are not part of the target signal or system. On one hand,
the so-called measurement noise has a significant impact on
all system estimates and it is considered unpredictable except
for its mean, which is assumed to be zero, and its variance
among repetitions. This noise, also known as output noise,
adds up to the system output and it is supposed to not play
a role in the dynamical evolution of the system. On the other
hand, the dynamical noise is part of each integration step of
a dynamical system. While its presence may be quite peculiar
in a plethora of physical and biological systems, it has only
been qualitatively or heuristically investigated in the nervous
and cardiovascular systems [2], [3]. Also, variability induced by
noise seems essential in sensory perception and movement tasks
[4].

Noise in physiological systems has especially been studied in
the nervous system since neural activity and related trial-to-trial
variability are affected by multiple noise sources (see reviews
in [3], [4], [5]). More specifically, sensory noise is intrinsi-
cally present in external stimuli and sensory receptors (e.g.,
thermodynamics in chemical sensing for smell), and cellular
noise contributes to neuronal variability, i.e., the timing of action
potentials in response to identical stimuli varies over repeated
trials [6]. Electrical noise in neurons refers to stochastic changes
in voltage-gated ion channels that produce millisecond vari-
ability in action-potential initiation and propagation, whereas
motor noise refers to the noisy conversion of neural signals
into muscular forces [7]. Furthermore, synaptic noise has been
associated to noisy biochemical processes that underlie synaptic
transmission; it may also be experimentally simulated by adding
reasonable levels of extracellular noise to synaptic input. Such
noise improves information handling by brain circuits [6], also
by generating high-frequency oscillations [8]; it has been proven
determinant for the detection of subthreshold signals in hip-
pocampal neurons [9]. At a macroscopic level, noise generated
by random spikes of neurons may influence brain behavior [3],
and several important processes such as decision-making, or
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stability of memory recall [10]. Cognitive operations are also
affected by stochasticity in N-methyl-D-aspartate receptors,
which may affect short-term memory [11]. Overall, noise in the
brain may promote creativity and the shifting of attention to new
tasks [11]. Spontaneous voltage fluctuations in the neocortex has
been referred to in-vivo noise as their amplitude is comparable
to stimulus-induced voltage modulations [12].

Regarding cardiovascular dynamics, healthy heartbeat series
can be modeled as the output of a nonlinear deterministic system
(e.g., the pacemaker cells of sinus node) being forced by a
high-dimensional input (the activity in the nerves innervating the
sino-atrial node) [13], [14], [15]. Indeed, heartbeat series show
intrinsic physiological noise as the cardiovascular system is con-
stantly involved in a dynamical, mutual interplay with numerous
other physiological subsystems (e.g., endocrine, neural, and
respiratory) [16], as well as in multiple self-regulating, adaptive
biochemical processes [17]. In this context, it is well known
that the effects of combined sympathetic and vagal stimulation
on heart rate are not simply additive. This is because sympa-
thetic stimulation inhibits acetylcholine release by acting on
adrenergic receptors on the vagal terminals, cytosolic adenosine
3.5-cyclic monophosphate mediates postjunctional interactions
between the sympathetic and vagal systems, and acetylcholine
released by vagal stimulation inhibits norepinephrine release
by acting on muscarinic receptors on sympathetic nerve ter-
minals [17]. As a result, cardiovascular dynamics exhibits an
inherently complex structure characterized by non-stationary,
intermittent, scale-invariant and nonlinear behaviors [13].

The evidence above demonstrates that dynamical noise may
not only significantly affect physiological system functioning,
but also it is part of physiological system dynamics. Indeed,
physiological systems are deemed complex dynamical systems
and, particularly, nonlinear systems driven by stochastic inputs
(i.e., noise) where a chaotic regime may occur [13], [14], [15],
[18]. From a methodological viewpoint, to the best of our knowl-
edge, physiological noise has not been formally defined and
characterized yet. In fact, there is no effective and quantitative
methodological framework able to estimate dynamical noise
power in mono-dimensional or multi-dimensional physiological
time series, especially when the model of system dynamics is un-
known (or, at least, no assumptions are made). Previous attempts
for dynamical noise estimation in complex time series have been
proposed in [19], [20]. They rely on the precise estimation of
the system largest Lyapunov exponent, which however should
theoretically be known a priori. Besides not relying on formal
mathematical proofs, these heuristic, qualitative and geometrical
procedures may be severely biased by the time series behavior
and parameter selection (e.g., tolerance). Moreover, they may
not detect output noise level when its standard deviation (std)
exceeds 10% of the signal std [20]. Other interesting heuristic
methods for noise level estimation have been reported in [21],
[22], [23], [24]. While works in [21], [24] focused on output
noise exclusively, [22], [23] strictly focused on estimation on
chaotic time series. Moreover, these approaches relied on the
calculation of correlation dimension, which however may not
always detect chaos (e.g., a stochastic process can have correla-
tion dimension equal to 0 [25]).

In this work we propose a new methodological framework
for estimating physiological noise in a model-free manner. For-
mally, consider a physiological system described by an unknown
map 7. We suppose that the sampled signals z,, are contam-
inated by physiological noise, i.e., a sequence of independent
and identically distributed Gaussian random variables {¢,, },, ~
N (0, 0?) with mean 0 and fixed standard deviation o. We aim to
estimate the physiological noise {&,, },, for any signal of the form
zn =T (2n-1,2n-2,---,20) + €n in closed form, without any
information about the specific " function. This holds true for any
continuous and differentiable 7" function. In this study, we con-
sider noise as a stochastic component of a signal that modifies its
dynamics and cannot be predicted from its past history. Previous
works have attempted to characterize this unpredictability using
non-linear information theory tools, such as conditional entropy.
Especially, the logarithm of the variance of the prediction error
obtained through autoregressive models when the signal of
interest is modeled as a sequence of Gaussian random variables
has been explored [26], [27]. To test the proposed method, we
first evaluate its performance on synthetic data corrupted by dy-
namical noise and then apply it to experimentally gathered phys-
iological signals. Specifically, we aim to investigate whether
physiological noise can serve as an intrinsic complexity feature
for cardiovascular data, such as heart rate variability (HRV)
series, and cortical data, such as electroencephalography (EEG)
series. Our objective is to determine whether the estimated
noise varies both between (i.e., HRV vs EEG) and within (i.e.,
EEG channels) systems and whether it can be utilized as a po-
tential biomarker to distinguish pathological and physiological
conditions.

Il. MATERIALS AND METHODS
A. Physiological Noise Definition

Let us consider a physiological system as a discrete metri-
cal dynamical system (X, u,T). Here, X is a compact sub-
set of R, and T is any differentiable map function with
bounded derivative, which preserves the probability measure
1. A typical noise-free output of this system is represented as
wy, = T(wp—1,Wn_2,...,wy), where w; € X for all positive
integers 1.

We define the physiological noise as a sequence of I[ID random
variables {e,,},, which constitutes the dynamical noise. The
samples of &, in fact, modify physiological dynamics at each
step according to the equation:

Ty = T(Jﬁn,l;l‘o) + €n, (D

which may include generic mapping functions as =z, =
T(xp—1,%n-2,...,20) + €, where x; € X for all positive in-
tegers i, and {x,, (¢) })_, is anoisy physiological time series that
contains N samples. From the best of our knowledge, without
any specific information or assumption on 7', it is not possible to
estimate noise ,, formally. Let ¢)(¢) be the Probability Density
Function (PDF) of the random variable given by the difference
between any two samples of the noise process. For any perturbed
orbit of the system x(g) = (xo, T'(x0) + &1, T(T(zo) + 1) +
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€9,...), it holds [28]:
ApEn({z,(g)}21, m, ) & —log [2¢(0)r] 2

for any embedding dimension m € N and for a small enough
tolerance r, where ApEn represents the nonlinear quantifier
Approximate Entropy introduced by Pincus [25] to estimate the
complexity/regularity in short time series. A formal definition
of the ApEn is reported in the Appendix I below for the sake of
completeness. Next, we introduce a formal method to estimate
the ,, power without knowledge on the specific 7" function, i.e.,
for any 7" function.

B. Physiological Noise Estimation

Unlike Markovian formalism, where time series points are
seen as a sequence of random variables governed by transition
probabilities between consecutive states, in this framework the
following assumptions are made:

— The system dynamics is deterministic, taking also into
account the possibility of having deterministic chaos, and
ruled by any differentiable map T;

— Physiological noise samples are realization of IID Gaus-
sian random variables {e, },, following the distribution
P ~ N(0,0?);

— The system dynamics is perturbed by dynamical noise: for
a noise sequence {&, }, ~ N(0,0?), any orbit of the dy-
namical systems is of the form x,, = T(z,—1,...,20) +
€n

In terms of time series analysis, the properties of the map T’
appear the most general and suitable to describe and model a
wide class of observable phenomena, as long as the systems
under study is a dynamical system contaminated by random
components.

Given these assumptions, and following the theory in
Section II-A, the noise std o can be approximated
by the tolerance value r for which the functions z —
ApEn({z, ()}, m, 2) and z — — log z show the most sim-
ilar differential behavior. Then (2) becomes:

ApEn({zn(0) 521, m, ) & —log [r/(oV/T)]

Therefore, we can derive the power o of physiological noise in
a closed form as follows:

log(0) ~ ApEn({2, (0) 13y, m, ) + log(r/ /)

Here, j is a time index, m is the embedding dimension, 7 is the
delay-time for state-space reconstruction, and N + (m — 1)7is
the time series cardinality when r < o and 7 — 0.

1) Estimation Algorithm: Under the previous reasonable
assumptions, dynamical noise power o2 estimation can be per-
formed as follows:

— Consider a noisy series X composed by N samples;

— Fix an embedding dimension m;

— Estimate the profile map » — ApEn(X, m, r) as function

of the tolerance parameter r. The parameter r varies from
0 to the amplitude of the series X with an arbitrary Ar
step;

Noisy Time Series ApEn Profile
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Fig. 1. Dynamical noise estimation procedure: take a noisy series
as input (panel (a). First, the function » — ApEn(X,m,r) is estimated
(panel (b) - r ranging between 0 and the series amplitude with a Ar
step. A first, raw noise power estimation is performed by searching for
the point in which the ApEn profile and the curve —logr (red line) have
the same slope (panel (c)). According to the corollary, an improved std
estimation is then performed by a curve fitting procedure with respect to
the curve o — ApEn(X, m,r) + log [r/(o+/7)], in the tolerance interval
I(7) = [rmax, 7] (delimited by vertical dashed lines), where noise is
supposed to be seen (panel (d)).

— A first std o is estimated by searching for the tolerance
value 7 which minimizes the discrete derivative of r —
ApEn(X,m,r) + logr;

— Choose a neighborhood I(7) of 7 and find the best fit &
for the function o — ApEn(X,m, ) + log [r/(o+/T)].

A suitable choice of I(7) might be I(7) = [rmax, 7], where
Tmax denotes the tolerance value in which » — ApEn(X, m,r)
reaches its maximum. The estimation algorithm is illustrated in
Fig. 1. We focus our attention on the noise estimation algorithm’s
description, limiting our analysis to the interval I(7), which
spans from the point of maximum for ApEn to the point with
the most similar slope to the curve » — — log r. This approach
ensures that we avoid using corrective terms for the ApEn [29]
in situations where we have only (or mostly) self-matches,
specifically tolerance values between 0 and the maximum point.
It also prevents the introduction of erroneous noise effects and
the creation of additional spurious points with a slope similar to
the curve r — — log 7.

To enhance the efficiency of the approximate entropy al-
gorithm [25], we employ the Cumulative Histogram Method
(CHM) [30] instead of executing the ApEn algorithm for each
tolerance value of the uniform grid. The CHM method eliminates
the need for consecutive runs of the ApEn entropy algorithm,
which has a quadratic time complexity of O[n?] for each toler-
ance value r, where n is the length of the time series. The CHM
computes the ApEn profile efficiently in a single run, regard-
less of the number of tolerance radii, by utilizing cumulative
histograms.
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C. Experimental Data

1) Synthetic Data: The proposed noise estimation method
was tested on the following analytical benchmarks:
— Logistic maps: afamily of maps described by the equation

f)» : [07 1} - [071]3 fk(l) = )»1[,’(]. - ‘T)

where A is a real parameter in the interval [0,4]. Simu-
lation are performed with A = 4, i.e. in chaotic regime
(Kolmogorov-Sinai entropy > 0).

— Pomeau-Manneville maps: a family of chaotic maps de-
scribed by the function

T [0,1] = [0,1], Ta(z) = {z + 2}

where « is a real number greater than 1, and the braces
denote the reduction modulo 1. For each «, there ex-
ists only one T,-invariant measure [,. In addition, the
probability measure 14 ([0, 1]) is finite for 1 < o < 2, and
infinite for o > 2 [31]. Particularly, we took into account
Pomeau-Manneville maps with o = 1.8, almost close to
the threshold o = 2, where the absolutely continuous
probability measure leading is not preserved by the map.

— Autoregressive model: the series of an autoregressive
model of order p, denoted as AR(p), can be expressed
by the following equation:

p
Yn = Z iYn—i + €n (3)
=1

where y,, is the n-th observation in the time series, a;
are the p constant coefficients, and ¢,, is an IID Gaussian
random variable, also known as the innovation process. For
our analysis, we have chosen an AR(7) model with the
following parameter values: a; = 1.046, as = —0.219,
az = 0.105, a4 = 0.033, a5 = —0.0885, ag = —0.136,
a7 = 0.105. These values were obtained by fitting the
Yule-Walker equations to an exemplary Heart Rate Vari-
ability series of a healthy subject from the NS cohort (the
first series, as described in the next subsection). The choice
of an autoregressive model of order p = 7 is justified by its
importance in computational physiology. Autoregressive
models enable the characterization of time series regularity
in terms of conditional entropy and the variance of the
innovation process, particularly when the time series are
regarded as Gaussian random variables from an autore-
gressive model [26].

For Logistic and Pomeau-Manneville maps, synthetic time
series have been generated by superimposing dynamical noise
as follows: fixed an initial condition Z, it was exploited to
produce a noise-free series of 20000 samples; then, a realization
of a white Gaussian process (20000 samples) with a std equal
to a percentage of the amplitude of the noise-free series was
considered; finally, restarting from Z, the perturbed series was
constructed by adding a sample of the noise realization at each
step of the map equation.

‘We considered noise std percentages 2%, 5%, 10%, 15%, 20%
with respect to the time series amplitude. For each noise level
and parameter 100 perturbed series were obtained. Specifically,

a bounce effect was considered for Logistic maps simulations:
when an element of the series exceeded the interval [0,1], it
was forced in the interval [0,1] trough reduction modulo 1. As
a consequence, it must be considered that bounce effect might
result in actual noise std to be lower than the theoretical imposed
one. The bounce effect is automatically verified by the reduction
modulo 1 in Pomeau-Manneville maps definition.

To evaluate the performance of the AR(7) model, we gen-
erated 500 synthetic time series, each with 20000 samples.
We used Gaussian innovation (also known as dynamical noise)
with standard deviations of 0.5, 1, 1.5, 2, and 2.5 to create
100 realizations of the autoregressive model for each standard
deviation value. To estimate the noise in the synthetic data, we
used an embedding dimension of m = 2 and a radius step of
Ar = 0.001 x R, where R denotes the time series range. These
parameters were chosen to ensure a reliable estimation of the
noise level.

2) Cardiovascular Variability Series: The proposed noise
estimation methodology was tested on long-term heart rate
variability (HRV) series from three datasets, publicly-available
on physionet.org repositories [32], and specifically the MIT-BIH
database for healthy subjects (https://physionet.org/content/
nsrdb/1.0.0/), Congestive Heart Failure RR datasets [33] (avail-
able at https://physionet.org/content/chf2db/1.0.0/) and MIT-
BIH Atrial Fibrillation database [34] (and https://physionet.org/
content/afdb/1.0.0/) [32], [35].

More in detail, the first database comprised of 18 healthy
subjects (age range 20-50 yo, with ECG sampled at 128 Hz)
with normal sinus rhythms (NS data), the second dataset counted
29 HRV series gathered from subjects with congestive heart fail-
ure (CHF data) (24-hours Holter recordings sampled at 128 Hz,
34-79 yo), and the third dataset comprised of 23 HRV long-term
(i.e., 10-hour ECG series sampled at 250 Hz) series gathered
from subjects with atrial fibrillation (AF dataset). Further details
on experimental recordings are available on the relative web
pages.

HRV series were derived from ECG signals through the
well-known Pan-Tompkins algorithm for the identification of
R-peaks [36], and visually inspected for artifacts which were
eventually corrected through a point-process-based method [37].
To avoid any potential bias associated with the series length,
an artifact-free 10000-samples segment was selected for each
subject. This study was approved by the committee of bioethics
of the University of Pisa with review n. 19/2021.

Significant differences for group-wise statistics are estab-
lished through not-parametric Kruskal-Wallis test with threshold
a = 0.05, with null hypothesis of equal median among all the
cohorts; post-hoc pairwise comparisons are performed, instead,
through non-parametric Mann-Whitney test, with threshold o« =
0.05/3 =~ 0.01 and null hypothesis of having equal median
between two groups. Moreover, in order to test the robustness of
the method, we employ a conservative surrogate data analysis
with null hypothesis of not having physiological noise. In this
context, for any time series, we generated 50 surrogate data
series using random permutations, where the system dynamics
is destroyed. We reject the null hypothesis when the noise level
for the original series is before the 2.5-th and after the 97.5-th
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percentiles of the noise distribution for its surrogate data. Of
note, given that noise levels typically increase in series with
destroyed dynamics, as one would intuitively expect, employing
a one-tail surrogate data approach can also effectively serve as
a means to assess the method’s robustness.

Previous studies [2] have shown that the three cohorts exhibit
different complexity levels as measured by an entropy measure
over multiple scales, specifically, the multiscale sample entropy,
which measures the regularity of the series at various time lags.
The results indicate that for time scale one, the complexity
measures for the healthy cohort were smaller than those for
the remaining two cohorts. However, this trend is inverted for
higher time scale factors, indicating a change in complexity. This
change in complexity is also supported by other quantifiers, such
as symbolic entropy [38].

Noise estimation for HRV data have are performed with an
embedding dimension m = 2 and a Ar = 0.001 x R.

3) Electroencephalography Signals: The proposed noise
estimation methodology was further tested on a publicly avail-
able EEG series dataset, namely the EEG During Mental Arith-
metic Tasks [39]. This dataset is comprised of EEG gatherings
from 36 healthy volunteers undergoing a 180 s resting phase and
a 60 s mental cognitive workload task (i.e., performing mental
arithmetic). Recordings from four subjects were rejected after
visual inspection owing to gross artifacts. Thus, data from 32
persons (24 females) with ages of 18 &+ 2.01 yrs on average were
retained for further processing. The electrophysiological signals
were sampled at 500 Hz. The eligibility criteria were normal
or corrected—to—normal visual acuity, normal color vision, no
clinical manifestations of mental or cognitive impairment, and
no learning disabilities. The use of psychoactive medication,
drug or alcohol addiction, and psychiatric or neurological com-
plaints were considered as additional exclusion criteria. Power
line notch (50 Hz) and [0.5H z-45H z] band-pass filters were
applied in the EEG series before independent component anal-
ysis, and were used to identify artifacts (i.e., eyes, muscles,
and cardiac pulsation) that were subsequently rejected. Further
details on signal acquisition and preprocessing can be found
in [39]. For each EEG series, outlier samples over the 98th
percentile were not retained for further processing. To avoid
bias associated with the series length, it is important to note
that the length of the time series can affect the accuracy of
noise estimation [28]. Therefore, we chose to focus on the
central minute of the 180-second resting state recordings to
minimize the impact of any potential noise caused by transitions
to and from rest. For each channel and task, the EEG series
contained 30000 samples. For any of the 19 scalp channels,
Wilcoxon statistical test (o = 0.05), with null hypothesis of
having equal median between the noise levels computed in
resting and computational tasks, is used to assert the significance
for different levels of noise together with the Bonferroni-Holm
correction for p-values [40]. The robustness of the method has
been also tested with a surrogate data approach, following the
same procedure as the HRV dataset. To estimate the noise level
in the EEG data, we used an embedding dimension of m =5
and a time delay of Ar = 0.001 times the range of the time
series.
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Fig. 2. Effect of Ar choice on noise estimation. We evaluated the

performance of the noise estimation algorithm with different choices
of Ar, ranging from 1076 to 10! times the range of the time series.
Specifically, we computed the mean squared error (MSE) between the
estimated noise level (using embedding dimension m = 2) and the ac-
tual imposed noise for 10 different realizations of an AR(7) model with
Gaussian innovation standard deviation equal to 1, and series lengths
of 500, 1000, 2000, 3000, 4000, and 5000 samples.

Previous studies showed that higher gamma activity is asso-
ciated with mental stress tasks, while alpha band were mainly
present at resting state; from a time-domain analysis, it has been
seen that fractal measures are capable of better differentiating
signals between rest and task phases [41].

The exploitation of the dataset for this work was approved by
the committee of bioethics of the University of Pisa with review
n. 19/2021.

[ll. EXPERIMENTAL RESULTS
A. Numerical Examples on Analytical Maps

Firstly, we demonstrate the importance of selecting an ap-
propriate tolerance step Ar for the noise estimation algorithm
used with both synthetic and physiological data. In particular,
we propose to set Ar = 0.001 x R, where the time series range
R refers to the difference between the maximum and minimum
values in the series. Choosing the correct value of Ar is crucial as
it impacts both the accuracy of the ApEn profile characterization
and the computational cost of the algorithm. When a large
number of samples are available, a smaller Ar leads to a more
precise characterization of the profile. However, physiological
recordings are often related to short time window and to a limited
number of samples. To support our proposal, we performed a
series of experiments using 10 realizations of the AR(7) model
with Gaussian innovation standard deviation equal to 1. We
varied the length IV of the time series from 500 to 5000, and
computed the mean squared error (MSE) between the estimated
noise and the actual noise imposed with embedding dimension
m = 2 and different tolerance steps of orders of magnitude
Ar ={1075,107°,10"%,1073,1072,10"'} x R.Fig. 2 shows
that the MSE is minimized when Ar falls within the range
[0.001,0.01] x R, independently of the length N of the time
series. Taking into account computational complexity, storage
limitations, and machine constraints, we recommend setting
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Dynamical Noise Estimation
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Fig. 3. Noise estimates in synthetic data. For each superimposed

noise level (x-axis) noise was estimated with m =2, Ar =0.001 x R
on 100 realizations for Logistic map with A = 4 (top panel), Pomeau-
Manneville maps with o = 1.8 (middle panel), and an AR(7) model
(bottom panel). Levels of superimposed and estimated noise for the au-
toregressive model are expressed in terms of actual standard deviation
of the Gaussian innovations.

Ar = 0.001 x R. Next, numerical results of the proposed noise
estimation method are showed as boxplots in Fig. 3. In the case
of Pomeau-Manneville and Logistic maps, it is possible to see
how the proposed method discerns and estimates the different
levels of noise with minimal variance across multiple repetitions,
up to the limit case of disturbance as high as 20% of the time
series amplitude. We observe that, even in deterministic chaotic
regime, the method provides a good resolution for the noise
levels variations (e.g. from %2 to %5). We also notice that the
higher the level of superimposed noise, the more consistent is the
dispersion around the median value, even if such a spreading is
not large. The same pattern holds true for autoregressive models,
where the dynamics are not limited to the interval [0,1]. As the
level of noise decreases, the various levels of absolute noise can
be identified with greater precision. To provide a sense of the
magnitude of the estimated noise levels, it is worth noting that
the imposed noise standard deviations are roughly half of the
time series’ standard deviation.

Fig. 4 reports experimental results gathered from noise esti-
mation level over simulated series with several different lengths.
Notice that the proposed methodologies perform reasonably well
with 250 — 500 samples for Logistic, Pomeau-Manneville maps
and the AR(7) model (in this case the estimation reaches the
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Fig. 4. Noise estimates at different series length expressed as me-

dian (black line) + median absolute deviation (MAD) (shaded area)
among 100 realizations for Logistic map with A = 4 (top panel), Pomeau-
Manneville maps with o = 1.8 (central panel), and an AR(7) model (bot-
tom panel). Estimates are performed with embedding dimension m = 2.
The red dotted line indicates to the superimposed noise (20% of the
noise-free series amplitude for Logistic and Pomeau Manneville maps;
1 for the AR realizations, which corresponds to the actual imposed
innovation standard deviation).

imposed level more quickly). Although the estimation error
is not negligible for short series, the estimate is maintained
stable with any number of samples greater than 1000. Anew, the
method appears stable across repetitions, having low variability
(shaded area in Fig. 4).

B. Heart Rate Variability Series

Noise estimates from cardiovascular activity series are sum-
marized in Fig. 5. Cardiovascular pathologies modulate under-
lying physiological noise, particularly increasing in AF group
(13.56% =+ 5.98%) and CHF group (11.67% =+ 1.93%), with
respect to healthy NS group (7.85% + 1.39%) heartbeat dy-
namics. Moreover, cardiovascular noise reaches about 50% of
HRYV series standard deviation in case of AF (64.5% =+ 24.9%)
and CHF (54.74% + 10.69% with respect to healthy subjects
(35.5% =+ 7.18%). Interestingly, groups differ in median values
as well as in dispersion, with NS group being close to the median
value, and the other two having higher inter-subject variability,
more accentuated in AF group. Group-wise statistics confirmed
significant differences through not-parametric Kruskal-Wallis
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Fig. 5. Noise estimation in cardiovascular variability series. Boxplots

statistics for the proposed physiological noise estimation in CHF, AF, and
NS groups with embedding dimension m = 2. In the left panel, noise
estimates are standardized with respect to the signal range, whereas in
the right panel, noise estimates are normalized by the series standard
deviation. Red horizontal lines indicate group median values, whereas
circles indicate the single-subject estimate, and the violin plot denotes
the estimate’s density across central values.

Fig. 6.

Topographical representation of EEG noise distribution during
the resting state and mental arithmetic task. Normalized median val-
ues across subjects as t-scores across channels using an embedding
dimension m = 5.

test (p-value < 0.00298), whereas post-hoc comparisons per-
formed through non parametric Mann-Whitney test confirmed
main differences between CHF and NS groups (p-value <
0.0095), and between AF and NS groups (p-value < 0.0031).
Furthermore, the application of surrogate data analysis has ef-
fectively verified noise as a discriminant statistic for the entirety
of the HRV series. This conclusion is drawn from the rejection of
the null hypothesis stating that the original and surrogate series
possess equal noise levels.

C. EEG Data

Experimental results on noise estimates from EEG series
are here reported. Firstly, Fig. 6 reports a topographical rep-
resentation of noise estimates across the scalp during resting
and mental arithmetic states. More specifically, the represented
values refer to a t-score normalization performed across channels
to see if significant variation were present across different scalp
locations. For each channel, the value has been averaged across
subjects. From this representation it is possible to appreciate
that occipital and posterior parietal channels have the highest
cortical noise, compared to the central electrodes, which have
the lowest. In addition, right hemisphere seems to have extreme
variation, with both the highest value on the posterior scalp, and
the lowest on the temporal lobe.
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Fig. 7. Topographic representation of EEG noise estimations and
statistical comparison.(a)—(b) Median (top row) and median absolute
deviation (MAD) (bottom row) cortical noise levels across subjects dur-
ing the resting state (left column) and the mental arithmetic (MA) task
(right column). The colorbar in panel (a) represents the standardized
noise estimations expressed as percentage with respect to the range
of the series. In panel (b) the colorbar represents the percentage of
estimated noise normalized with respect to the standard deviation of
the series. (c) The topographical representation shows the corrected
p-values obtained from the non-parametric Wilcoxon test for paired
samples. White areas indicate non-significant differences, and blue color
indicates higher noise during the MA task. The statistical significance is
set at « = 0.05, and darker areas represent lower p-values.

Variations between experimental phases are also represented
in Fig. 7. In particular Fig. 7(a) and (b) illustrate a topographi-
cal representation of median (top panels) and median absolute
deviation (bottom panels), calculated across subjects, for both
experimental conditions, i.e., resting state (left column) and
mental arithmetic (right column), with embedding dimension
m = 5. Fig. 7(c) shows results from the statistical comparison
performed through non-parametric Wilcoxon test for paired
samples, where p-values were corrected for multiple compari-
son in accordance with Bonferroni-Holm criterion [40]. Mental
arithmetic task is associated with higher neuro-physiological
noise levels with respect to the resting state, especially in the
prefrontal and occipital regions. Cortical noise comprises about
1.5-2% of EEG dynamics (about 8-11% of signal standard
deviation) group-wise. Tasks differ in median values as well
as in dispersion, with mental arithmetic associated with higher
inter-subject variability over the frontal, right temporal, and oc-
cipital regions. The surrogate data approach provides compelling
evidence that physiological noise can be used as a discriminating
statistic for all EEG recordings. This is achieved by rejecting the
null hypothesis that the original and surrogate series have equal
noise levels.

D. Complexity vs. Dynamical Noise Power

Another crucial point we wish to emphasize is the in-
dependence between the estimated dynamical noise and the
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Fig. 8. Impact of Complexity on Noise Estimation. The left-hand side

of the figure presents boxplots illustrating absolute noise estimations
for 100 Logistic maps with varying complexity levels: periodic (A = 3.5
and K-S entropy of 0) and chaotic (1 = 4 and K-S entropy greater than
0). The estimations were performed using an embedding dimension of
m = 2 and a mean 0, Gaussian dynamical noise with a standard de-
viation of 0.1. Surprisingly, the estimated noises are almost indistin-
guishable, regardless of the complexity of the underlying system. On
the right-hand side, boxplots display the complexity values of the same
series using the ApEn quantifier with m =2 and a radius equal to
0.2 x std(series), representing a general setting.

complexity of the underlying system dynamics. This fact is
clearly demonstrated in Fig. 8, where we conducted noise esti-
mations on 100 series, each consisting of 5000 samples obtained
from two different Logistic maps. The first set of series is derived
from the Logistic map with a parameter value of A = 3.5, while
the second set is generated by the Logistic map with a parameter
value of L = 4. In both cases, a Gaussian dynamical noise
with a mean of 0 and a standard deviation of 0.1 was added.
Furthermore, we evaluated the complexity of these time series
using the approximate entropy quantifier with an embedding
dimension of m = 2 and a tolerance value r set to the standard
value of 0.2 x std(series) [25]. On the left-hand side panel,
as anticipated, we observe that noise estimations for the two
groups of series show no significant differences. However, on the
right-hand side panel, we discover that the conventional use of
ApEn fails to capture the complexity of the underlying dynamics
in the presence of noise perturbations. Surprisingly, it appears
that the first series is more complex than the second, which is
not the case.

IV. DISCUSSION

We introduced a formal definition, estimation, and charac-
terization of physiological noise. Our proposed methodology
is based on the ApEn quantifier, which exhibits distinctive
behavior under stochastic perturbations [28]. Such perturbations
can significantly affect complex biological systems and may
bias complexity estimates (e.g., entropy), therefore the resulting
dynamical noise quantification can carry valuable information
on the system under study. We define noise as the random
component of a system’s dynamics and develop methods for
estimating and characterizing it. We make the assumption that
the noise {e,} follows a Gaussian distribution with a mean
of zero, and we proceed to estimate its standard deviation.
However, it is important to note that the proposed framework
is not reliant on the specific nature or statistical distribution
of the noise. In other words, the definition of noise does not

WGN and Perturbed

Periodic Map Perturbed Chaotic Maps
2 2 —— Logistic A=4
Manneville «=1.8
15 15

0.5 / ———WGN

0.5
| Logistic A=3.5
0

0

[ = 3 2 gl 0 3 2 Bl 0
10 10 10 10 10 10 10 10
e (a) ®)
<
Exemplary HRV Series Exemplary EEG Series
2 2
1.5 1.5
1 1
05 0.5
0 0
10° 102 107! 10° 10° 102 107 10°
©  Standardized Tolerance ¥
Fig. 9. ApEn profiles for synthetic and physiological series. The ApEn

curve is represented as function of the tolerance parameter, standard-
ized with respect to the series amplitude, with embedding dimension
m = 2. Panel (a): ApEn profiles of a realization of white Gaussian noise
(WGN), and of a Logistic map in periodic regime (. = 3.5). Panel (b):
ApEn profiles of a chaotic Logistic (A = 4) and a Pomeau-Manneville
map (a = 1.8). All synthetic time series are corrupted by dynamical
WGN ~ N(0,0), being o = 5% of noise-free amplitude. Panel (c):
ApEn profile of a time series gathered from the HRV-NS cohort. Panel
(d): ApEn profile of an EEG series gathered from resting state.

necessitate prior knowledge or information, and it remains
applicable regardless of the underlying dynamical complexity
of the system. Indeed, the proposed methodology provides an
effective, non-heuristic estimation of dynamical noise in every
kind of mono-dimensional time series with unknown underlying
dynamical system, like any physiological system.

To evaluate the correctness and robustness of our method-
ology, we subjected Logistic and Pomeau-Manneville maps
in the chaotic regime and in the folding of the modulo 1, as
well as an autoregressive model of order 7, to different levels
of white Gaussian noise. The latter is of particular interest in
computational physiology since it allows us to easily compute
regularity quantifiers, such as the conditional entropy, while not
restricting the dynamics range under noisy perturbation. Our
numerical results demonstrate that our method is capable of
accurately discerning and estimating the various levels of super-
imposed noise, with minimal variance detected across repeated
estimates. Furthermore, we found that our approach is robust
even for time series with more than 250 samples. Regarding
noise detectability, previous research has demonstrated that the
presence of noise in a time series leads to a distinctive peak in
the profile of Approximate entropy as a function of the toler-
ance parameter [28]. Consequently, whenever the approximate
entropy associated with a time series exhibits a peak (refer to
Fig.9), we can infer that the time series is influenced by dynami-
cal/physiological noise. The proposed methodology can then be
applied to accurately estimate the power of such perturbations.
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This observation holds true for all the series analyzed in this
study, including both synthetic and physiological datasets.

On the other hand, the relevance of the noise level necessitates
a more nuanced discussion. When considering noise as a mea-
sure of the complexity of a series, it is not appropriate to classify
a certain level of noise as negligible. This is because we are
assessing the impact of intrinsic/dynamical perturbations, rather
than external perturbations on the output. In situations where the
encountered noise levels are significantly smaller than the range
of the series, noise may produce trajectories that closely resem-
ble the unperturbed ones, leading to the perception of negligible
noise. However, in the context of intrinsic perturbations, even
small disturbances can have a profound and irreversible effect
on the dynamics of the series. A notable example is the impact of
innovation processes on AR(p) models characterized by regular
and deterministic dynamics: even small noise variances, relative
to the series range, can completely alter the resulting trajectory.
Therefore, the estimated noise levels, even if of small magni-
tude, should always be considered as an indication of stochas-
tic and irreversible changes within the underlying (unknown)
dynamics.

Furthermore, we tested the proposed methodology on physio-
logical data to investigate if physiological noise varies between
systems (cardiovascular, recorded as HRV series, and cerebral,
gathered as EEQG), within systems (different EEG locations),
across pathological conditions (healthy subjects vs cardiovas-
cular patients), and across physiological states (resting state vs
experimental elicitation). Our results demonstrate that physi-
ological systems are significantly driven by noise. As shown
in Fig. 9, noise seems to change the underlying dynamics by
generating peaks in the ApEn profile. Qualitatively, by com-
paring the four panels, it can be observed that the dynamics of
HRV series might be more similar to a periodic series corrupted
by noise (panels a-c), while the EEG ApEn profile simulates a
structure more similar to chaotic systems due to the presence
of a positive plateau, broken by the presence of noise (panels
b—d). Quantitatively, we normalize the absolute estimate of noise
standard deviation with respect to the series range, as well as with
respect to the series standard deviation.

Group-wise, noise comprises approximately 1.5-2% of the
EEG dynamics (i.e., about 8—11% of standard deviation) and
approximately 5-10% of heartbeat dynamics (i.e., about 30—
40% of standard deviation), being modulated by mental states
and pathological conditions.

Focusing on HRV analysis, results suggest that cardiovascular
noise is significantly modulated by pathological conditions with
respect to a healthy state. Indeed, atrial fibrillation or congestive
heart failure generate noisier cardiac dynamics than healthy
controls, which also present much lower inter-subject variability.
This indicates that cardiac pathology may modulate underlying
physiological noise rather than underlying system complex dy-
namics. These findings are consistent with previous evidence
linking low signal-to-noise ratio and dynamics resembling white
Gaussian noise in cardiac disorders [2]. Further research should
then investigate the reliability of complexity modulation (e.g.,
entropy) in cardiovascular dynamics in different experimental
cases [13].

Regarding the neuro-physiological dynamics, the noise eval-
uation suggests a spatial distribution of noise across the scalp
(see Fig. 6). Similarly to the distribution of the EEG alpha power
in the resting state, occipital regions show a higher level of noise,
while central electrodes have alower level. Moreover, significant
differences were detected among experimental conditions. The
mental arithmetic task was associated with higher noise levels
on posterior scalp areas and left prefrontal locations than in the
resting state. This finding suggests that the mental arithmetic
task not only modulates cortical dynamics but also modulates
the underlying neurophysiological noise, targeting specific brain
areas in the prefrontal and occipital regions. The increase in noise
levels detected during the mental arithmetic task might be phys-
iologically correlated to a significant fluctuation of hemoglobin
oxygen levels in the brain during cognitive tasks [42] or to
the alpha rhythm decrease in the parieto-occipital regions [43].
Speculatively, the significant loss of alpha rhythm might reveal
an aperiodic and noisy component that is no longer covered by
the alpha-wave.

Next, we discuss potential biological origins of the physio-
logical noise observed in cardiac and cerebral systems. A link
between the level of noise in neural circuits and the activity
of the norepinephrine system, which is part of the sympathetic
nervous system, has been established [44]. It is not surprising
that such sympathetic activity and, thus, neurocardiac noise may
be modulated by cognitive states [44], as the sympathetic system
is part of the autonomic nervous system that innervates all body
organs and systems, including the cardiovascular system. This
neural control of cardiac activity is part of the central-autonomic
network, which means that noise may affect the dynamics of
the brain and body as a whole, including interconnected net-
works [18], [45]. The combined neural control of heartbeat
activity through acetylcholine, cytosolic adenosine 3,5-cyclic
monophosphate, and other mediators of postjunctional interac-
tions between the sympathetic and vagal systems may result
in neurocardiovascular noise [17]. Since neurocardiac noise
increases with pathology, the related modulation of heart rate
variability complexity should be re-evaluated. EEG originates
from the activity of pyramidal neurons in the cortex and seems
to be associated with a relatively high physiological noise level,
whose distribution varies across the scalp. Multiple factors may
influence its presence, including but not limited to, neurovas-
cular coupling, neuro-glia interactions, and related calcium dy-
namics, as well as vascular motion due to heartbeat dynamics.

The limitations of this work are mainly associated with the
limited parameter space spanned. Future attention will be de-
voted to a detailed exploration of all parameter spaces and
investigating other physiological signals and systems (e.g., elec-
tromyography, electrocardiography, fMRI) and physiological
correlates of estimated noise variations in patho-physiological
conditions.

From the simulations shown in Section III-D, we can deduce
that noise can impact the underlying system dynamics inde-
pendently, without necessarily altering the system’s complex-
ity. Nevertheless, stochastic perturbations have the potential to
introduce biases in complexity estimates, resulting in changes
to the entropy of a time series. These changes can arise from
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alterations in the system’s complexity, the underlying dynamical
noise, or a combination of both. Therefore, the estimated noise
remains largely unaffected by the complexity of the underlying
dynamics. However, the ApEn complexity quantifier proves un-
reliable in capturing the true complexity of the series dynamics
under noisy perturbations, leading to misleading complexity
characterizations.

Hence, it is essential to consider noise estimation when as-
sessing the complexity of a time series.

V. CONCLUSION

This study demonstrates that physiological noise exists and
may be quantified through the analysis of physiological time
series. Such noise is associated with its own physiological and
pathophysiological signatures. We demonstrate that the presence
of physiological noise may affect measurements and evaluations
in cardiovascular and neural systems. Physiological noise is also
unevenly distributed across brain regions, and it is modulated
by cognitive processes (i.e., mental arithmetics). An accurate
estimation of physiological noise is of utmost importance for
the assessment of psychological function and related patho-
physiology. Since noise may severely affect processing-derived
metrics (e.g., PSD or complexity metrics), measurements in
physiological systems and related statistics reported in the lit-
erature with no quantitative noise assessment are likely to be
severely biased by underlying noise levels. The proposed noise
estimation framework can be applied to any physiological time
series, providing a noise measure that may strongly affect any
existing biomarker derived from time-series.

DATA AVAILABILITY AND SOURCE CODE

The MATLAB source code used to execute the proposed noise
power estimation is available at https://github.com/AndScar/
noise_estimation.

APPENDIX |
APPROXIMATE ENTROPY (APEN)

The non-linear metric known as Approximate Entropy
(ApEn) provides a measure of predictability for a given time
series [25]. In mathematical terms, given a series {y,}"_,
consisting of /N samples and a positive integer m, it is pos-
sible to embed the series into R™ and form vectors Y; =
(Yiy ooy Uirm—1) With ¢ =1,..., N —m + 1. By selecting a
distance d in R™ and a positive value 7, it is possible to de-
fine C"(r) = {number of j s.t. d(Y;,Y;) < r} and ®"(r) =
(N —m+ 1)t SN 1 og Cm (1), which provide the def-

inition of the approximate entropy given by
ApEn({x"}g:h m, T) = ‘I)m(’r) - (I)m+1(r)'

The value of ApEn({y,, }2_,, m,r) is always non-negative and

n=1»
reflects the proximity of the embedded vectors {Y; ;-V;lmﬂ,
where lower ApEn values correspond to higher predictability of

the series.
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