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Abstract
It is well-known that the classical hyperbolic Kirchhoff equation admits infin-
itely many simple modes, namely time-periodic solutions with only one Fourier
component in the space variables. In this paper we assume that, for a suitable
choice of the nonlinearity, there exists a heteroclinic connection between two
simple modes with different frequencies. Under this assumption, we cook up
a forced Kirchhoff equation that admits a solution that blows-up in finite time,
despite the regularity and boundedness of the forcing term. The forcing term
can be chosen with the maximal regularity that prevents the application of the
classical global existence results in analytic and quasi-analytic classes.
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heteroclinic connection, blow up, quasi-analytic functions

Mathematics Subject Classification numbers: 35B44, 37J46, 35L90, 35L72

1. Introduction

Let H be a real Hilbert space, and let A be a positive self-adjoint operator on H with dense
domain D(A). Let m : [0,+∞)→ [0,+∞) and f : [0,+∞)→ H be two continuous functions.
In this paper we consider the forced evolution equation

u ′ ′ (t)+m
(
|A1/2u(t) |2

)
Au(t) = f(t) (1.1)
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with initial data

u(0) = u0, u ′ (0) = u1. (1.2)

Equation (1.1) is an abstract version of the hyperbolic partial differential equation intro-
duced by Kirchhoff in the celebrated monograph [20, section 29.7] as a model for the small
transversal vibrations of elastic strings or membranes.

1.1. Local and global existence results

Existence of solutions to problem (1.1) and (1.2) has been extensively investigated in the lit-
erature. For the sake of shortness, unless otherwise stated, here we limit ourselves to recall the
main results for the case in which the nonlinearity is locally Lipschitz continuous and satisfies
the strict hyperbolicity assumption

m(σ)⩾ µ1 > 0 ∀σ ⩾ 0. (1.3)

Under these assumptions, problem (1.1) and (1.2) admits a local-in-time strong solution

u ∈ C0
(
[0,T] ,D

(
A3/4

))
∩C1

(
[0,T] ,D

(
A1/4

))
(1.4)

provided that

(u0,u1) ∈ D(A3/4)×D(A1/4) and f ∈ C0
(
[0,+∞),D(A1/4)

)
,

and this solution is unique in the class of strong solutions, namely solutions with the regular-
ity (1.4). This result was substantially established by Bernstein in the pioneering paper [3],
and then refined by many authors (see [1] for a modern version).

Global-in-time strong solutions are known to exist in many different special cases, which
we briefly describe below.

1. (Analytic case). Problem (1.1) and (1.2) admits a global solution if both the initial data and
the forcing term are analytic with respect to the space variables. Actually in this case it is
enough to assume that the nonlinearitym is just continuous and nonnegative. We refer to [2,
3, 5, 6] for more details (see also [15, 16]).

2. (Quasi-analytic case). Problem (1.1) and (1.2) admits a global solution if both the initial
data and the forcing term are quasi-analytic with respect to the space variables. This is not
just a refinement of the analytic case, because here the known proofs require in an essential
way the Lipschitz continuity and the strict hyperbolicity of the nonlinearity (see [14, 23]).

3. (Special nonlinearities). In the case where m(σ) = (a+ bσ)−2 for some positive real num-
bers a and b, problem (1.1) and (1.2) admits a global solution provided that

(u0,u1) ∈ D(A)×D(A1/2) and f ∈ C0 ([0,+∞),D(A)) .

The technical reason is that in this case (and in some sense only in this case) the equation
admits a higher order quantity whose growth can be controlled for all positive times. We
refer to [24] for the details.
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4. (Dispersive equations). Global existence results have been obtained in the concrete case
where A is the usual Laplace operator in the whole space Rd or in an external domain. The
prototype of these results is global existence provided that the initial data and the forcing
term have Sobolev regularity in the space variables, and satisfy suitable smallness assump-
tions and decay conditions at infinity. We refer to [7, 17, 22, 25] for precise statements.

5. (Spectral-gap data and operators). Global existence results are known in cases where both
the initial data and the forcing term are ‘lacunary’, in the sense that their spectrum contains
a sequence of large ‘holes’. The same is true whenever the eigenvalues of the operator A
are a sequence that grows fast enough. We refer to [13, 14, 18, 19, 21] for precise state-
ments. For the sake of completeness, we point out that the spectral gap theory has been
recently extended in order to show the existence of global weak solutions in the energy
space D(A1/2)×H (see [10]).

The main open problem for Kirchhoff equations is the existence of global solutions for
initial data and forcing terms below the analytic or quasi-analytic regularity, for example in
Gevrey spaces or in the Sobolev spaces D(Aα).

1.2. Simple modes

Let us consider the unforced equation

u ′ ′ (t)+m
(
|A1/2u(t) |2

)
Au(t) = 0. (1.5)

If ek is an eigenvector of A with eigenvalue λ2k > 0, and both u0 and u1 are multiples of
ek, for example u0 = αek and u1 = βek, then the solution to (1.5)–(1.2) remains a multiple of
ek for all times, and more precisely u(t) = z(t)ek, where z(t) is the solution to the ordinary
differential equation

z ′ ′ (t)+λ2km
(
λ2kz(t)

2
)
z(t) = 0

with initial data z(0) = α and z ′(0) = β.
These special solutions are called simple modes, and it is well-known that they are time-

periodic. Their stability has been studied extensively in the literature (see [4, 8, 9, 11, 12]).
In particular, there are many examples of unstable simple modes, and when this is the case
there exist non-periodic trajectories that are asymptotic to them as t→+∞ or as t→−∞.
What is not known yet is whether the stable manifold of a simple mode can intersect the
unstable manifold of a different simple mode. This intersection would deliver a trajectory that
is asymptotic, as t→−∞ and as t→+∞, to two simple modes corresponding to different
frequencies. Such a trajectory, which we call heteroclinic connection, would realise a transfer
of the energy from a low frequency to a higher frequency (due to reversibility we can always
change the verse of time).

1.3. Our result

In this paper we assume that, for some choice of the nonlinearitym, the unforced equation (1.5),
in the special case where H= R2 and A is an operator with two eigenvalues equal to 1 and
λ2 > 1, admits a heteroclinic connection between the simple modes corresponding to the two
eigenvalues (see definition 2.1).
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Under this assumption, in theorem 2.3 we show that in every infinite dimensional Hilbert
space H there exists an operator A, and actually a rather general class of operators, for
which there exist an external force f (t), smooth for every t⩾ 0, and a solution to the forced
equation (1.1) that blows-up in a finite time T∞. By ‘blow-up’ we mean that the pair
(u(t),u ′(t)) does not admit a limit as t→ T−∞ in the energy space D(A1/2)×H (where the
solution is necessarily bounded), while all higher order norms of the form

|Aαu ′ (t) |2 + |Aα+1/2u(t) |2 (with α > 0)

tend to +∞ as t→ T−∞.
The initial datum of this solution has only one Fourier component, and in particular it is

analytic, and hence necessarily the forcing term does not lie in any analytic or quasi-analytic
class, because otherwise the solution would be global. Nevertheless, the forcing term can be
chosen to lie in any class that is less than quasi-analytic, and in particular in all Gevrey spaces
Gs with s> 1. In other words, the existence of a heteroclinic connection would imply that the
classical global existence result in quasi-analytic classes is optimal.

1.4. Overview of the technique

Our proof involves three main steps.

• In the first step (proposition 3.2) we consider the heteroclinic connection that we assumed
to exist, and we show that for every interval [a,b] we can modify it in order to obtain a new
trajectory that coincides with the first limiting simple mode for every t⩽ a, and coincides
with the second limiting simple mode for every t⩾ b. We think of this new trajectory as a
sort of bridge that connects the two simple modes in the interval [a,b]. In general this bridge
is not a solution of an unforced Kirchhoff equation, but rather of a Kirchhoff equation with
a forcing term whose size depends on the length of the interval (the longer is the length of
the bridge, the smaller is the external force required).

• In the second step (proposition 3.3) we exploit a natural rescaling property of simple modes,
and from the bridge between the frequencies 1 and λ2 we obtain a bridge between the fre-
quencies λ2 and λ4, and more generally between the frequencies λ2k and λ2k+2.

• In the third step we consider an operator that admits the sequence λ2k among its eigenval-
ues, and we consider the solution obtained by glueing all the bridges. This solution moves
the energy toward higher and higher frequencies. More precisely, there exists an increas-
ing sequence {Tk} of times with the property that at time Tk the solution coincides with the
simple mode corresponding to the frequency λ2k. The key point is that we can arrange things
in such a way that Tk converges to some finite time T∞, and the size of the corresponding
forcing terms vanishes as t→ T−∞.

In summary, the existence of a heteroclinic connection between the frequencies 1 and λ2 for
the unforced equation (1.5) implies the existence of a heteroclinic connection between any
two ‘consecutive’ frequencies λ2k and λ2k+2, again for the unforced equation. Thanks to a
suitable external force, we can switch from one connection to the next one, and in this way
we obtain a trajectory that visits all frequencies. We can keep the external force small, and
actually vanishing as t→ T−∞, because the bulk of the work is done by the nonlinearity, and
the only role of the external force is to put the solution on the right track from time to time.

It could be interesting to realise a similar path without the aid of the external force, but
relying only on a suitable choice of initial data. This remains a challenging open problem.
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1.5. Consequences

Our result in some sense proves nothing, because we do not know yet whether a heteroclinic
connection exists or not.

If one believes that Kirchhoff equations are not well-posed in Sobolev or Gevrey spaces,
we have reduced the search of a counterexample to the existence of a special trajectory for a
Hamiltonian system in dimension two. We do hope that the community working on dynamical
systems could contribute in this direction.

On the contrary, if one believes that Kirchhoff equations do admit global solutions for all
data in Sobolev or Gevrey spaces, our result shows that the proof has to exclude the existence
of heteroclinic connections, and therefore it is very likely that it has to involve some ‘global’
property of the nonlinearity.

1.6. Structure of the paper

This paper is organised as follows. In section 2 we present formally the heteroclinic connection
assumption and we state our main result. In section 3 we prove the main result.

2. Statements

Let us state formally the main assumption of this paper.

Definition 2.1 (heteroclinic connection assumption). Let m : [0,+∞)→ (0,+∞) be a
function of class C1 satisfying the strict hyperbolicity assumption (1.3), and let λ> 1 be a
real number. We say that the pair (m,λ) satisfies the heteroclinic connection assumption if
there exist two functions v : R→ R and w : R→ R of class C2 with the following properties.

• They satisfy the non-triviality condition

v ′ (0)2 +w ′ (0)2 + v(0)2 +w(0)2 > 0. (2.1)

• They solve the system of ordinary differential equationsv
′ ′ (t)+m

(
v(t)2 +λ2w(t)2

)
v(t) = 0

w ′ ′ (t)+λ2m
(
v(t)2 +λ2w(t)2

)
w(t) = 0

∀t ∈ R. (2.2)

• There exist two positive real numbers A0 and B0 such that

|v ′ (t) |2 + |v(t) |2 ⩽ B0 exp(−A0t) ∀t⩾ 0, (2.3)

|w ′ (t) |2 +λ2|w(t) |2 ⩽ B0 exp(−A0|t|) ∀t⩽ 0. (2.4)

Before moving to our main result, we need to recall the usual notion of Gevrey spaces with
respect to an operator.

Definition 2.2 (Gevrey spaces). LetH be a real Hilbert space, let {ek}k⩾0 ⊆ H be a sequence
of orthonormal vectors (not necessarily a basis), let {λk}k⩾0 be a sequence of positive real
numbers, and let A be a linear operator on H such that

Aek = λ2kek ∀k⩾ 0.
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Given two positive real numbers r and s, and a vector u ∈ H, we say that u is a Gevrey
vector with exponent s and radius r, and we write u ∈ Gr,s(A), if

u=
∞∑
k=0

〈u,ek〉ek and ‖u‖2Gr,s(A) :=
∞∑
k=0

〈u,ek〉2 exp
(
rλ1/sk

)
<+∞.

We recall that ‖u‖Gr,s(A) induces a structure of Hilbert space on the set Gr,s(A), and that the
case s= 1 corresponds to analytic vectors. More general spaces can be introduced by consid-
ering different functions of λk in the exponential.

We are now ready to state our main result.

Theorem 2.3 (from a heteroclinic connection to a blow-up for a Kirchhoff equation). Let
m : [0,+∞)→ (0,+∞) be a function of class C1 satisfying the strict hyperbolicity assump-
tion (1.3), and let λ> 1 be a real number. Let us assume that the pair (m,λ) satisfies the
heteroclinic connection assumption of definition 2.1.
Let H be a Hilbert space, and let A be a self-adjoint linear operator on H for which there

exists a sequence {ek}k⩾0 ⊆ H of orthonormal vectors (not necessarily a basis) such that

Aek = λ2kek ∀k⩾ 0.

Then there exist a function f : [0,+∞)→ H such that

f ∈ C0 ([0,+∞),Gs,r(A)) ∀s> 1, ∀r> 0, (2.5)

a real number T∞, and a solution

u ∈ C2 ([0,T∞),Gs,r(A)) ∀s> 0, ∀r> 0, (2.6)

to equation (1.1) such that

limsup
t→T−∞

|Aαu ′ (t) |2 + |Aα+1/2u(t) |2 =+∞ ∀α > 0, (2.7)

and

lim
t→T−∞

u ′ (t) does not exist. (2.8)

We conclude with some comments on theorem 2.3 above.

Remark 2.4 (time regularity). The regularity of u and f with respect to time depends only
on the regularity of the nonlinearity m. If m is of class C1, then any pair of solutions v and
w to (2.2) is automatically of class C3. At this point, a careful inspection of our construction
reveals that actually we can improve (2.5) and (2.6), respectively, to C1 and C3 regularity.
We spare the reader from the details, which would require only longer but standard estimates,
without introducing new ideas.

In the same way, if the nonlinearity m is of class Cr, then we obtain Cr regularity in (2.5),
and Cr+2 regularity in (2.6).

Remark 2.5 (space regularity). We observe that in (2.6) we allow also values s< 1, which
means that the solution u is more than analytic. More precisely, for every T ∈ (0,T∞) there
exists a finitely dimensional subspace HT of H such that u(t) ∈ HT for every t ∈ [0,T].
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Concerning the forcing term, the function f that we construct in the proof satisfies

∞∑
k=0

〈 f(t) ,ek〉2 exp

(
cλk

(k+ 1)2

)
<+∞ ∀t⩾ 0

for a suitable c> 0. This implies the Gevrey regularity (2.5). More generally, for every increas-
ing function φ : [1,+∞)→ [0,+∞) such that

ˆ +∞

1

φ(σ)

σ2
dσ <+∞ and

φ(σ)

σ2
is nonincreasing, (2.9)

we can modify our construction (it is enough to modify the choice of Sk in the last step) in
such a way that

∞∑
k=0

〈 f(t) ,ek〉2 exp
(
φ
(
λk
))
<+∞ ∀t⩾ 0. (2.10)

We recall that, if f (t) satisfies (2.10) for some increasing function φ for which the integral
in (2.9) is divergent, then f (t) is quasi-analytic.

Remark 2.6 (size of the external force). A careful inspection of the proof reveals that we can
choose the norm of the external force (in any fixed non quasi-analytic class) to be smaller than
any given positive constant. To this end, again it is enough to modify the definition of Sk in the
last step. The other side of the coin is that the blow-up time T∞ depends on the norm of the
external force, and tends to infinity when the norm of the external force vanishes.

Remark 2.7 (more general heteroclinic connections). For the sake of simplicity the hetero-
clinic connection assumption, as stated in definition 2.1, involves a system that corresponds to
an unforced Kirchhoff equation with two components. We can generalise the assumption by
considering systems that originate from unforced Kirchhoff equations with a finite number of
components. The request becomes that all components, with the exception of one, decay expo-
nentially as t→−∞, and all components, with the exception of another one, corresponding
to a different eigenvalue, decay exponentially as t→+∞.

Under this more general assumption we can again reproduce the phenomenon of the-
orem 2.3, more or less with the same proof. We just need to be more careful in the choice
of the eigenvalues of the operator, in order to reproduce the bridge at different scales.

Remark 2.8 (more general operators). For the sake of simplicity we decided to construct the
counterexample for an operator that admits the sequence {λ2k} among its eigenvalues. With
some extra (but rather standard) work, it is possible to extend the construction to more general
multiplication operators, provided that the sequence {λ2k} is contained in the support of the
spectrum. We point out that this is always true, for example, in the concrete case where A is
the Laplacian in the whole space Rd, in which case the support of the spectrum is the half-line
[0,+∞).

Remark 2.9 (relation with known global existence results). We observe that our construc-
tion dodges carefully all the key assumptions of the known global existence results quoted
in the introduction. Indeed, we already observed that in our construction we can not take the
forcing term f (t) to be analytic or quasi-analytic. Moreover, a heteroclinic connection does not
exist when m is the nonlinearity considered in [24] (this can be proved by using Pohozaev’s
invariant), or when the energy is small enough, because simple modes with small energy are
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known to be stable (see [8, 11]), and therefore the existence of a heteroclinic connection does
not prevent global existence for small initial data. Finally, the operator and the forcing term
that we consider do not fall in the spectral gap regime, because the sequence λ2k does not grow
fast enough as required by those results.

3. Proof of the main result

3.1. Boundedness and Lipschitz continuity of the nonlinearity

To begin with, we observe that the solution (v(t),w(t)) to system (2.2) satisfies the classical
energy equality

v ′ (t)2 +w ′ (t)2 +M
(
v(t)2 +λ2w(t)2

)
= H2

0 ∀t ∈ R, (3.1)

for some real number H0 > 0, where

M(σ) :=

ˆ σ

0
m(s) ds ∀σ ⩾ 0, (3.2)

and the positivity of H0 follows from (2.1). Due to the strict hyperbolicity assumption (1.3),
the function (3.2) satisfies M(σ)⩾ µ1σ for every σ ⩾ 0. Thus from (3.1) it follows that

v(t)2 +λ2w(t)2 ⩽ H2
0

µ1
and v ′ (t)2 +w ′ (t)2 ⩽ H2

0

for every t ∈ R, and in particular

sup
t∈R

{
|v ′ (t) |, |v(t) |, |w ′ (t) |,λ|w(t) |

}
⩽max

{
1,

1
√
µ1

}
H0 =: H1. (3.3)

As a consequence, in the sequel we can assume that

0< µ1 ⩽ m(σ)⩽ µ2 ∀σ ⩾ 0, (3.4)

and that m is Lipschitz continuous with some Lipschitz constant L.

3.2. Simple modes

Let z1 : R→ R denote the standard simple mode with energy H0, namely the solution to the
ordinary differential equation

z ′ ′1 (t)+m
(
z1 (t)

2
)
z1 (t) = 0

with initial data

z1 (0) = 0, z ′1 (0) = H0.

It is well-known that z1(t) is a periodic function of class C3, and we call π1 its minimal
period. One can check that, for every real number λ> 0, the function defined by

zλ (t) :=
1
λ
z1 (λt) ∀t ∈ R,
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whose minimal period is of course πλ := π1/λ, is a solution to equation

z ′ ′λ (t)+λ2m
(
λ2zλ (t)

2
)
zλ (t) = 0 (3.5)

with the same initial data

zλ (0) = 0, z ′λ (0) = H0. (3.6)

We call zλ the simple mode of energy H0 corresponding to the frequency λ2. We observe
that all simple modes satisfy the energy equality

z ′λ (t)
2
+M

(
λ2zλ (t)

2
)
= H2

0 ∀t ∈ R,

and therefore

sup
t∈R

{
|z ′1 (t) |, |z1 (t) |, |z ′λ (t) |,λ|zλ (t) |

}
⩽ H1, (3.7)

where H1 is the same constant as in (3.3).
The key point is that the heteroclinic connection (v(t),w(t)) is exponentially asymptotic to

the simple mode z1 as t→−∞, and to the simple mode zλ as t→+∞. The formal statement
is the following (for the convenience of the reader, we include a proof in the appendix at the
end of the paper).

Lemma 3.1 (limiting periodic orbits). Let m : [0,+∞)→ (0,+∞) be a function of class C1

satisfying the strict hyperbolicity assumption (1.3), and let λ> 1 be a real number. Let us
assume that the pair (m,λ) satisfies the heteroclinic connection assumption.
Then there exist two real numbers τ0 ∈ [0,π1] and τ1 ∈ [0,πλ], and two positive real con-

stants A1 and B1, such that

|v ′ (t)− z ′1 (t− τ0) |2 + |v(t)− z1 (t− τ0) |2 ⩽ B1 exp(−A1|t|) ∀t⩽ 0, (3.8)

and

|w ′ (t)− z ′λ (t− τ1) |2 +λ2|w(t)− zλ (t− τ1) |2 ⩽ B1 exp(−A1t) ∀t⩾ 0. (3.9)

3.3. The basic bridge between simple modes

Thanks to lemma 3.1, we can think of the heteroclinic connection (v(t),w(t)) as a traject-
ory that connects the two simple modes z1 and zλ in an infinite time, without the aid of any
external force. Now we show that, if we allow an external force, then we can find a trajectory
(vS(t),wS(t)) that connects the same two simple modes in a finite time interval [−2S,2S]. The
size of the required external force decays exponentially when S grows.

Proposition 3.2 (transition between two simple modes in a finite time interval). Let
m : [0,+∞)→ (0,+∞) be a function of class C1 satisfying the strict hyperbolicity assump-
tion (1.3), and let λ> 1 be a real number. Let us assume that the pair (m,λ) satisfies the
heteroclinic connection assumption.
Then for every S> 0 there exist two functions vS : R→ R and wS : R→ R of class C2, and

two continuous functions φS : R→ R and ψS : R→ R, with the following properties.

9
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(1) (Kirchhoff equation with two modes and forcing term). The functions vS and wS are solu-
tions to the systemv

′ ′
S (t)+m

(
vS (t)

2
+λ2wS (t)

2
)
vS (t) = φS (t)

w ′ ′
S (t)+λ2m

(
vS (t)

2
+λ2wS (t)

2
)
wS (t) = ψS (t)

∀t ∈ R. (3.10)

(2) (Conditions at infinity). The functions vS and wS satisfy

vS (t) = z1 (t− τ0) and wS (t) = 0 ∀t⩽−2S, (3.11)

and

vS (t) = 0 and wS (t) = zλ (t− τ1) ∀t⩾ 2S. (3.12)

In particular, there exist S1 ∈ [2S,2S+π1] and S2 ∈ [2S,2S+πλ] such that

wS (−S1) = w ′
S (−S1) = vS (−S1) = 0, v ′S (−S1) = H0,

and

vS (S2) = v ′S (S2) = wS (S2) = 0, w ′
S (S2) = H0.

(3) (Bound on the forcing term). The functions φS and ψS are such that

φS (t) = ψS (t) = 0 ∀t ∈ (−∞,−2S]∪ [−S,S]∪ [2S,+∞) , (3.13)

and satisfy the estimate

|φS (t) |2 + |ψS (t) |2 ⩽
(

1
S2

+ 1

)2

B2 exp(−A2S) ∀t ∈ R, (3.14)

where A2 and B2 are two positive real numbers, both independent of S and t.

Proof. Let θ ∈ C∞(R) be a cutoff function such that

• θ(x) = 1 for every x⩽ 1,
• θ(x) = 0 for every x⩾ 2,
• 0⩽ θ(x)⩽ 1 for every x ∈ [1,2],

and let Γ be a constant such that

|θ ′ (x) |+ |θ ′ ′ (x) |⩽ Γ ∀x ∈ R. (3.15)

The idea is to use the function θ in order to define vS(t) and wS(t) as a convex combination
of trajectories that coincides

• with the heteroclinic connection (v(t),w(t)) for t ∈ [−S,S],
• with the limiting periodic trajectory (z1(t− τ0),0) for t⩽−2S,
• with the limiting periodic trajectory (0,zλ(t− τ1)) for t⩾ 2S.

10
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3.3.1. Definition when t⩽ 0. In the case t⩽ 0 we set θS(t) := θ(−t/S) and we consider the
functions

vS (t) := θS (t)v(t)+ (1− θS (t))z1 (t− τ0) and wS (t) := θS (t)w(t) .

Since

θS (t) = 0 ∀t⩽−2S and θS (t) = 1 ∀t ∈ [−S,0] , (3.16)

we deduce that (3.11) holds true, and in addition

(vS (t) ,wS (t)) = (v(t) ,w(t)) ∀t ∈ [−S,0] .

Computing the second order time derivatives of vS and wS, we discover that for t⩽ 0 these
functions are solutions to system (3.10) provided that we set

φS (t) := θ ′ ′S (t){v(t)− z1 (t− τ0)}+ 2θ ′S (t){v ′ (t)− z ′1 (t− τ0)}

+ θS (t)v(t)
{
m
(
vS (t)

2
+λ2wS (t)

2
)
−m

(
v(t)2 +λ2w(t)2

)}
+(1− θS (t))z1 (t− τ0)

{
m
(
vS (t)

2
+λ2wS (t)

2
)
−m

(
z1 (t− τ0)

2
)}

,

and

ψS (t) := θ ′ ′S (t)w(t)+ 2θ ′S (t)w
′ (t)+λ2θS (t)w(t)

{
m
(
vS (t)

2
+λ2wS (t)

2
)

− m
(
v(t)2 +λ2w(t)2

)}
.

Using again (3.16) we obtain that

φS(t) = ψS(t) = 0 ∀t ∈ (−∞,−2S]∪ [−S,0],

which proves (3.13) for t⩽ 0.
It remains to prove (3.14) for t⩽ 0. Let L1(t), L2(t), L3(t) denote the three lines in the

definition of φS(t). From (3.15) we deduce that

|θ ′S (t) |⩽
Γ

S
and |θ ′ ′S (t) |⩽ Γ

S2
∀t⩽ 0, (3.17)

and therefore

|L1 (t) |⩽
Γ

S2
|v(t)− z1 (t− τ0) |+

2Γ
S
|v ′ (t)− z ′1 (t− τ0) |.

Moreover, from (3.3) and (3.7) we deduce that

|vS (t) |⩽ H1 and λ|wS (t) |⩽ H1 ∀t⩽ 0,

11
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and therefore from the Lipschitz continuity of m we obtain that∣∣∣m(vS (t)2 +λ2wS (t)
2
)
−m

(
v(t)2 +λ2w(t)2

)∣∣∣
⩽ L

(∣∣∣vS (t)2 − v(t)2
∣∣∣+λ2

∣∣∣wS (t)2 −w(t)2
∣∣∣)

⩽ L
(
|vS (t)+ v(t)| · |vS (t)− v(t)|+ |λwS (t)+λw(t)| ·λ |wS (t)−w(t)|

)
⩽ 2H1L

(
|vS (t)− v(t)|+λ |wS (t)−w(t)|

)
.

Finally we observe that

|vS (t)− v(t) |= (1− θS (t)) |v(t)− z1 (t− τ0) |

and

|wS (t)−w(t) |= (1− θS (t)) |w(t) |,

so that in conclusion∣∣∣m(vS (t)2 +λ2wS (t)
2
)
−m

(
v(t)2 +λ2w(t)2

)∣∣∣⩽ 2H1L(|v(t)− z1 (t− τ0) |+λ|w(t) |) ,
(3.18)

and therefore

|L2 (t) |⩽ 2H2
1L
{
|v(t)− z1 (t− τ0)|+λ |w(t)|

}
.

In an analogous way we obtain that∣∣∣m(vS (t)2 +λ2wS (t)
2
)
−m

(
z1 (t− τ0)

2
)∣∣∣

⩽ L
(∣∣∣vS (t)2 − z1 (t− τ0)

2
∣∣∣+λ2wS (t)

2
)

⩽ L
(
|vS (t)+ z1 (t− τ0)| · |vS (t)− z1 (t− τ0)|+λ|wS (t) | ·λ|wS (t) |

)
⩽ 2H1L

(
|vS (t)− z1 (t− τ0)|+λ|wS (t) |

)
⩽ 2H1L

(
|v(t)− z1 (t− τ0)|+λ|w(t) |

)
,

and therefore

|L3 (t) |⩽ 2H2
1L
{
|v(t)− z1 (t− τ0)|+λ |w(t)|

}
.

From all these estimate we deduce that

|φS (t) |⩽
(
Γ

S2
+ 4H2

1L

)
|v(t)− z1 (t− τ0) |+

2Γ
S
|v ′ (t)− z ′1 (t− τ0) |+ 4H2

1Lλ |w(t)| .

Similarly, from (3.17) and (3.18) we obtain that

|ψS (t) |⩽
Γ

S2
|w(t) |+ 2Γ

S
|w ′ (t) |+ 2H2

1Lλ{|v(t)− z1 (t− t0) |+λ|w(t) |}

⩽
(

Γ

S2λ
+ 2H2

1Lλ

)
λ|w(t) |+ 2Γ

S
|w ′ (t) |+ 2H2

1Lλ|v(t)− z1 (t− t0) |.

12
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Finally, taking (2.4) and (3.8) into account, we conclude that

|φS (t) |2 ⩽ 2

(
Γ

S2
+

2Γ
S

+ 4H2
1L

)2

B1 exp(−A1|t|)+ 32H4
1L

2B0 exp(−A0|t|) ,

and analogously

|ψS (t) |2 ⩽ 2

(
Γ

S2λ
+

2Γ
S

+ 2H2
1Lλ

)2

B0 exp(−A0|t|)+ 8H4
1L

2λ2B1 exp(−A1|t|) .

Recalling that φS(t) = ψS(t) = 0 for t ∈ [−S,0], the last two inequalities imply (3.14) for
t⩽ 0.

3.3.2. Definition when t⩾ 0. In the case t⩾ 0 we set θS(t) := θ(t/S) and we consider the func-
tions

vS (t) := θS (t)v(t) and wS (t) := θS (t)w(t)+ (1− θS (t))zλ (t− τ1) .

As in the previous case we find that

(vS (t) ,wS (t)) = (v(t) ,w(t)) ∀t ∈ [0,S] ,

and that for t⩾ 0 these functions are solutions to system (3.10) provided that we set

φS (t) := θ ′ ′S (t)v(t)+ 2θ ′S (t)v
′ (t)

+ θS (t)v(t)
{
m
(
vS (t)

2
+λ2wS (t)

2
)
−m

(
v(t)2 +λ2w(t)2

)}
.

and

ψS (t) := θ ′ ′S (t){w(t)− zλ (t− τ1)}+ 2θ ′S (t){w ′ (t)− z ′λ (t− τ1)}

+λ2θS (t)w(t)
{
m
(
vS (t)

2
+λ2wS (t)

2
)
−m

(
v(t)2 +λ2w(t)2

)}
+λ2 (1− θS (t))zλ (t− τ1)

{
m
(
vS (t)

2
+λ2wS (t)

2
)
−m

(
λ2zλ (t− τ1)

2
)}

.

As in the previous case we obtain that∣∣∣m(vS (t)2 +λ2wS (t)
2
)
−m

(
v(t)2 +λ2w(t)2

)∣∣∣⩽ 2H1L
(
|v(t) |+λ|w(t)− zλ (t− τ1) |

)
,

and∣∣∣m(vS (t)2 +λ2wS (t)
2
)
−m

(
λ2zλ (t− τ1)

2
)∣∣∣⩽ 2H1L

(
|v(t) |+λ|w(t)− zλ (t− τ1) |

)
,

from which we deduce that

|φS (t) |⩽
(
Γ

S2
+ 2H2

1L

)
|v(t) |+ 2Γ

S
|v ′ (t) |+ 2H2

1Lλ|w(t)− zλ (t− τ1) |

and

|ψS (t) |⩽
(

Γ

S2λ
+ 4H2

1Lλ

)
λ|w(t)− zλ (t− τ1) |+

2Γ
S
|w ′ (t)− z ′λ (t− τ1) |+ 4H2

1Lλ|v(t) |.

13
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Finally, taking (2.3) and (3.9) into account, we conclude that

|φS (t) |2 ⩽ 2

(
Γ

S2
+

2Γ
S

+ 2H2
1L

)2

B0 exp(−A0t)+ 8H4
1L

2B1 exp(−A1t) ,

and

|ψS (t) |2 ⩽ 2

(
Γ

S2λ
+

2Γ
S

+ 4H2
1Lλ

)2

B1 exp(−A1t)+ 32H4
1L

2λ2B0 exp(−A0t) .

Recalling that φS(t) = ψS(t) = 0 for t ∈ [0,S], the last two inequalities imply (3.14)
for t⩾ 0.

3.4. A sequence of bridges between consecutive simple modes

In the next result we rescale the construction of proposition 3.2, andwe obtain a bridge between
the simple modes corresponding to the frequencies λ2k and λ2k+2.

Proposition 3.3 (rescaling). Let m : [0,+∞)→ (0,+∞) be a function of class C1 satisfying
the strict hyperbolicity assumption (1.3), and let λ> 1 be a real number. Let us assume that
the pair (m,λ) satisfies the heteroclinic connection assumption.
Let H be a Hilbert space, and let A be an operator as in theorem 2.3. Let k be a positive

integer, and let Sk be a positive real number.
Then there exist two functions uk : R→ H and fk : R→ H with the following properties.

(1) (Regularity). The functions uk and fk satisfy

uk ∈ C2 (R,Span(ek,ek+1)) and fk ∈ C0 (R,Span(ek,ek+1)) . (3.19)

(2) (Kirchhoff equation with two modes and forcing term). The functions uk is a solutions to
the forced Kirchhoff equation

u ′ ′
k (t)+m

(
|A1/2uk (t) |2

)
Auk (t) = fk (t) ∀t ∈ R. (3.20)

(3) (Conditions at infinity). The functions uk satisfies

uk (t) = zλk

(
t− τ0

λk

)
ek ∀t⩽−2Sk, (3.21)

and

uk (t) = zλk+1

(
t− τ1

λk

)
ek+1 ∀t⩾ 2Sk. (3.22)

In particular, there exist S1,k ∈ [2Sk,2Sk+πλk ] and S2,k ∈ [2Sk,2Sk+πλk+1 ] such that

uk (−S1,k) = 0, u ′
k (−S1,k) = H0ek, (3.23)

and

uk (S2,k) = 0, u ′
k (S2,k) = H0ek+1. (3.24)

14
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(4) (Properties of the forcing term). The function fk is such that

fk (t) = 0 ∀t ∈ (−∞,−2Sk]∪ [−Sk,Sk]∪ [2Sk,+∞) , (3.25)

and for every positive value of r and s its norm in the Gevrey space Gr,s(A) satisfies

‖fk (t)‖2Gr,s(A) ⩽
(

1
λkS2k

+λk
)2

B2 exp
(
rλ(k+1)/s−A2λ

kSk
)

∀t ∈ R, (3.26)

where A2 and B2 are the constants that appear in (3.14).

Proof. Let us apply proposition 3.2 with

S := λkSk,

and let vS, wS, φS and ψS be the functions that we obtain. At this point let us set

uk (t) :=
1
λk
vS
(
λkt
)
ek+

1
λk
wS
(
λkt
)
ek+1

and

fk (t) := λkφS
(
λkt
)
ek+λkψS

(
λkt
)
ek+1. (3.27)

Both the regularity (3.19) and equation (3.20) follow from these definitions and from the
corresponding properties of vS, wS, φS and ψS.

Moreover, for every t⩽−2Sk it turns out that λkt⩽−2S, and therefore from (3.11) we
obtain that

uk (t) =
1
λk
z1
(
λkt− τ0

)
ek =

1
λk
z1

(
λk
(
t− τ0

λk

))
ek = zλk

(
t− τ0

λk

)
ek,

which proves (3.21). Similarly, for every t⩾ 2Sk it turns out that λkt⩾ 2S, and therefore
from (3.12) we obtain that

uk (t) =
1
λk
zλ
(
λkt− τ1

)
ek+1 =

1
λk+1

z1
(
λk+1t−λτ1

)
ek+1 = zλk+1

(
t− τ1

λk

)
ek+1,

which proves (3.22).
Finally, (3.25) follows from (3.13), while from (3.27) and (3.14) we obtain that

‖fk (t)‖2Gs,r(A) ⩽ λ2k|φS
(
λkt
)
|2 exp

(
rλk/s

)
+λ2k|ψS

(
λkt
)
|2 exp

(
rλ(k+1)/s

)
⩽
(

1
λkS2k

+λk
)2

B2 exp
(
−A2λ

kSk
)
exp
(
rλ(k+1)/s

)
for every t ∈ R, which proves (3.26).

15
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3.5. Conclusion of the proof of theorem 2.3

3.5.1. Definitions. For every integer k⩾ 0 we apply proposition 3.3 with

Sk :=
1

(k+ 1)2
.

We consider the functions uk and f k, and the times S1,k and S2,k, provided by that result. We
consider the sequence {Tk} ⊆ [0,+∞) defined by T0 := 0 and

Tk+1 := Tk+ S1,k+ S2,k ∀k⩾ 0.

We observe that

S1,k ∈ [2Sk,2Sk+πλk ] and S2,k ∈ [2Sk,2Sk+πλk+1 ] ,

and therefore

Tk+1 −Tk = S1,k+ S2,k ⩽
4

(k+ 1)2
+πλk +πλk+1 =

4

(k+ 1)2
+π1

(
1
λk

+
1

λk+1

)
.

As a consequence, the sequence {Tk} ⊆ [0,+∞) is increasing and

T∞ := lim
k→+∞

Tk <+∞.

Let us define u : [0,T∞)→ H by

u(t) := uk (t−Tk− S1,k) if t ∈ [Tk,Tk+1] for some k⩾ 0,

and let us define f : [0,+∞)→ H by

f(t) :=

{
fk (t−Tk− S1,k) if t ∈ [Tk,Tk+1] for some k⩾ 0,

0 if t⩾ T∞.

We claim that the conclusions of theorem 2.3 hold true with these choices.

3.5.2. Regularity of f. To begin with, we observe that the definition is well-posed because
from (3.25) we know that

fk (Tk+1 −Tk− S1,k) = fk (S2,k) = 0= fk+1 (−S1,k+1) = fk+1 (Tk+1 −Tk+1 − S1,k+1) .

Moreover, from (3.26) we deduce that

‖fk (t)‖2Gr,s(A) ⩽
(
(k+ 1)4

λk
+λk

)2

B2 exp

(
rλ(k+1)/s−A2

λk

(k+ 1)2

)
∀t ∈ [Tk,Tk+1]

for every positive value of s and r. This implies in particular that

∀s> 1 ∀r> 0 lim
t→T−∞

f(t) = 0 in Gs,r (A) ,

which shows that f has the regularity (2.5).

16
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3.5.3. Regularity of u. To begin with, we observe that the definition is well-posed because
from (3.24) with k and (3.23) with k+ 1 we know that

uk (Tk+1 −Tk− S1,k) = uk (S2,k) = 0= uk+1 (−S1,k+1) = uk+1 (Tk+1 −Tk+1 − S1,k+1) ,

and

u ′
k (Tk+1 −Tk− S1,k) = u ′

k (S2,k) = H0ek+1 = u ′
k+1 (−S1,k+1) = u ′

k+1 (Tk+1 −Tk+1 − S1,k+1) .

In the same way from (3.20) and (3.25) we obtain that

u ′ ′
k (Tk+1 −Tk− S1,k) = 0= u ′ ′

k+1 (Tk+1 −Tk+1 − S1,k+1) ,

and therefore the regularity of u follows from the regularity of uk.

3.5.4. Blow-up of u. To this end, it is enough to observe that

limsup
t→T−∞

(
|Aαu ′ (t) |2 + |Aα+1/2u(t) |2

)
⩾ limsup

k→+∞
|Aαu ′ (Tk) |

= limsup
k→+∞

|Aα (H0ek) |2

= limsup
k→+∞

H2
0λ

4kα

= +∞
for every α> 0, which proves (2.7).

In the same way the sequence u ′(Tk) = H0ek has no limit as k→+∞, and therefore the
limit of u ′(t) as t→ T−∞ does not exist, which proves (2.8). □
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Appendix

A.1. Proof of lemma 3.1

We limit ourselves to proving the asymptotic behavior as t→+∞, because the case when t→
−∞ is analogous. As observed at the beginning of section 3, the functions v andw satisfy (3.1)
and (3.3), and we can assume thatm satisfies the bounds (3.4) and is Lipschitz continuous with
some constant L. We observe also that the simple mode zλ that solves (3.5) and (3.6) is an odd

17
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periodic function whose graph, roughly speaking, has the same qualitative behaviour of the
graph of the function t 7→ sin t, and in particular z ′λ has exactly two zeroes in a period (in πλ/4
and 3πλ/4).

Before entering into details, we describe briefly the general strategy. The constants H2, H3

and H4 that we introduce in the sequel depend only on µ1, µ2, L, λ, and on the constants H0

and H1 that appear in (3.1) and (3.3).

• In the first step we consider the set

S := {t⩾ 0 : w(t) = 0, w ′ (t)> 0} ,

and we show that it consists of a sequence of real numbers {Tn}n⩾0 ⊆ [0,+∞) such that

T0 ⩽
2π

λ
√
µ1

and
2π

λ
√
µ2

⩽ Tn+1 −Tn ⩽
2π

λ
√
µ1

∀n⩾ 0. (A.1)

• In the second step we show that, for every n⩾ 0 and every t⩾ Tn, it turns out that

|z ′λ (t−Tn)−w ′ (t) |2 +λ2|zλ (t−Tn)−w(t) |2 ⩽ H2 exp(H3 (t−Tn)− 2A0Tn) , (A.2)

where zλ is the simple mode that solves (3.5) and (3.6), and A0 is the constant that appears
in (2.3).

• In the third step we show that there exists a real number S∞ such that

|Tn− nπλ − S∞|⩽ H4 exp(−A0Tn) ∀n⩾ 0, (A.3)

where we recall that πλ denotes the period of zλ.
• In the fourth step we show that (3.9) holds true with τ1 = S∞.

A.1.1. Step one—the set of zeroes with positive derivative. The structure of the set S , and the
estimates in (A.1), are consequences of the following lemma, applied with

u(t) := w(t) , c(t) := λ2m
(
v(t)2 +λ2w(t)2

)
, m1 := λ2µ1, m2 := λ2µ2.

Lemma A.1 (oscillation lemma). Let m1 and m2 be two positive real numbers, let c :
[0,+∞)→ R be a continuous function such that

0< m1 ⩽ c(t)⩽ m2 ∀t⩾ 0, (A.4)

and let u : [0,+∞)→ R be a function of class C2 such that u ′(0)2 + u(0)2 > 0, and

u ′ ′ (t)+ c(t)u(t) = 0 ∀t⩾ 0.

Then the following conclusions hold true.
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(1) The set

S := {t⩾ 0 : u(t) = 0, u ′ (t)> 0}

consists of a sequence of real numbers {Tn}n⩾0 ⊆ [0,+∞) such that

T0 ⩽
2π
√
m1

and
2π
√
m2

⩽ Tn+1 −Tn ⩽
2π
√
m1

∀n⩾ 0. (A.5)

(2) For every n⩾ 0 there exists Sn ∈ (Tn,Tn+1) such that

u(Sn) = 0 and u ′ (Sn)< 0. (A.6)

Proof. Since u in not identically zero, we know that actually u ′(t)2 + u(t)2 > 0 for every t⩾ 0.
Therefore, there exists two functions ρ1 : [0,+∞)→ R and θ1 : [0,+∞)→ R of classC1 such
that

u(t) =
1

√
m1
ρ1 (t)cosθ1 (t) and u ′ (t) =−ρ1 (t)sinθ1 (t) (A.7)

for every t⩾ 0. We observe that t ∈ S if and only if θ1(t) =−π/2+ 2kπ for some k ∈ Z.
Moreover, with some computations we obtain that ρ1 and θ1 are solutions to the system

of ordinary differential equations (for the sake of shortness, we do not write explicitly the
dependence on t of ρ1 and θ1)

ρ ′
1 = ρ1 sinθ1 cosθ1

(
c(t)
√
m1

−
√
m1

)
, θ ′1 =

√
m1 sin

2 θ1 +
c(t)
√
m1

cos2 θ1.

In particular, from the second equation and the estimate from below in (A.4) we deduce
that

θ ′1 (t)⩾
√
m1 ∀t⩾ 0,

which implies the estimates from above in (A.5).
Analogously, we can write u(t) and u ′(t) in the form

u(t) =
1

√
m2
ρ2 (t)cosθ2 (t) and u ′ (t) =−ρ2 (t)sinθ2 (t) ,

where ρ2 : [0,+∞)→ R and θ2 : [0,+∞)→ R are function of class C1 such that

ρ ′
2 = ρ2 sinθ2 cosθ2

(
c(t)
√
m2

−
√
m2

)
, θ ′2 =

√
m2 sin

2 θ2 +
c(t)
√
m2

cos2 θ2,

and as before t ∈ S if and only if θ2(t) =−π/2+ 2kπ for some k ∈ Z. Moreover, from the
second equation and the estimate from above in (A.4), we deduce that

θ ′2 (t)⩽
√
m2 ∀t⩾ 0,

which implies the estimate from below in (A.5).
As for statement (2), it is enough to write u(t) and u ′(t) in the form (A.7), and observe

that θ1 is an increasing function, and the times Sn with the property (A.6) are those in which
θ1(t) = π/2+ 2kπ for some k ∈ Z.
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A.1.2. Step two—estimate on the difference with a translated simple mode. Let us consider
the function

rn (t) := zλ (t−Tn)−w(t) ∀t⩾ 0,

and its usual energy

En (t) := r ′n (t)
2
+λ2rn (t)

2 ∀t⩾ 0. (A.8)

With some calculations we discover that

r ′ ′n (t)+λ2m
(
λ2zλ (t−Tn)

2
)
rn (t) = λ2fn (t)w(t) ∀t⩾ 0,

where

fn (t) := m
(
v(t)2 +λ2w(t)2

)
−m

(
λ2zλ (t−Tn)

2
)

∀t⩾ 0,

and that (A.2) is equivalent to

En (t)⩽ H2 exp(H3 (t−Tn)− 2A0Tn) ∀t⩾ Tn. (A.9)

In order to prove this estimate, we compute the time-derivative

E ′
n (t) = 2λ2

{
1−m

(
λ2zλ (t−Tn)

2
)}

r ′n (t)rn (t)+ 2λ2fn (t)r
′
n (t)w(t) . (A.10)

From the bound from above in (3.4) we deduce that

2λ2
{
1−m

(
λ2zλ (t−Tn)

2
)}

r ′n (t)rn (t)⩽ λ(1+µ2)En (t) . (A.11)

From the Lipschitz continuity of m, and the estimates (3.3) and (3.7), we deduce that

|fn (t) |⩽ Lv(t)2 +Lλ2|w(t)+ zλ (t−Tn) | · |w(t)− zλ (t−Tn) |

⩽ Lv(t)2 + 2H1L ·λ|rn (t) |,

and therefore

2λ2fn (t)r
′
n (t)w(t)⩽ 2Lλ2v(t)2 |r ′n (t) | · |w(t) |+ 2λ2 · 2H1L ·λ|rn (t) | · |r ′n (t) | · |w(t) |

⩽ Lλ
(
λ2w(t)2 r ′n (t)

2
+ v(t)4

)
+ 2LH1 ·λ2|w(t) | ·En (t)

⩽ 3LλH2
1En (t)+ Lλv(t)4 ,

so that recalling (2.3) we obtain that

2λ2fn (t)r
′
n (t)w(t)⩽ 3LλH2

1En (t)+ LλB2
0 exp(−2A0t) . (A.12)

Plugging (A.11) and (A.12) into (A.10) we deduce that

E ′
n (t)⩽ λ

(
1+µ2 + 3LH2

1

)
En (t)+ LλB2

0 exp(−2A0t) .
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Integrating this differential inequality we conclude that

En (t)⩽
{
En (Tn)+

LλB2
0

2A0 +H3
exp(−2A0Tn)

}
exp(H3 (t−Tn)) ∀t⩾ Tn, (A.13)

where for the sake of shortness we set

H3 := λ
(
1+µ2 + 3LH2

1

)
. (A.14)

It remains to estimate En(Tn). To begin with, we observe that

rn (Tn) = zλ (0)−w(Tn) = 0,

and

r ′n (Tn) = z ′λ (0)−w ′ (Tn) = H0 −w ′ (Tn)> 0,

so that it is enough to estimate w ′(Tn) from below. To this end, we consider the energy equal-
ity (3.1) with t= Tn. Recalling that w(Tn) = 0 and M(σ)⩽ µ2σ for every σ ⩾ 0, we deduce
that

w ′ (Tn)
2
= H2

0 −M
(
v(Tn)

2
)
− v ′ (Tn)

2

⩾ H2
0 −µ2v(Tn)

2 − v ′ (Tn)
2

⩾ H2
0 −max{1,µ2}

(
v ′ (Tn)

2
+ v(Tn)

2
)

⩾ H2
0 −max{1,µ2}B0 exp(−A0Tn) .

It follows that

|r ′n (Tn) |= H0 −w ′ (Tn) =
H2

0 −w ′ (Tn)
2

H0 +w ′ (Tn)
⩽ max{1,µ2}B0

H0
exp(−A0Tn) ,

and hence

En (Tn) = r ′n (Tn)
2 ⩽

(
max{1,µ2}B0

H0

)2

exp(−2A0Tn) .

Substituting this relation into (A.13) we conclude that (A.2) holds true with H3 given
by (A.14) and

H2 :=

(
max{1,µ2}B0

H0

)2

+
LλB2

0

2A0 +H3
.
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A.1.3. Step three—asymptotic behavior of zeroes with positive derivative. The strategy of the
proof of (A.3) is the following.

• To begin with, we observe that (A.2) implies that

r ′n (t)
2
+λ2rn (t)

2 ⩽ H2 exp(2H3πλ)exp(−2A0Tn) ∀t ∈ [Tn,Tn+ 2πλ] (A.15)

for every n⩾ 0.
• Then we consider the constant

C :=
2
√
H2

H0λ
exp(H3πλ) ,

and the two sequences

An := Tn+πλ −Cexp(−A0Tn) , Bn := Tn+πλ +Cexp(−A0Tn) .

We show thatw(An)< 0 andw(Bn)> 0when n is large enough. This implies that there exists
T̂n ∈ (An,Bn) such that w(T̂n) = 0. Then we show also that w ′(T̂n)→ H0, which implies that
w ′(T̂n)> 0 when n is large enough.

• We show that, when n is large enough, there are no points in (Tn, T̂n) where w vanishes and
w′ is positive. This proves that Tn+1 = T̂n, and therefore

Tn+1 = Tn+πλ +Rn (A.16)

for a suitable Rn such that

|Rn|⩽ Cexp(−A0Tn) (A.17)

for n large enough. Up to changing the value of C, we can always assume that (A.17) holds
true for every n⩾ 0.

• Finally, we show that (A.16) and (A.17) imply (A.3) for suitable values of S∞ and H4.

So let us start by proving that w(Bn)> 0 for n large enough. To this end we observe that

w(Bn) = zλ (Bn−Tn)− rn (Bn) = zλ (Cexp(−A0Tn))− rn (Bn) . (A.18)

Moreover, for n large enough it turns out that Bn ⩽ Tn+ 2πλ, and therefore from (A.15) we
deduce that

|rn (Bn) |⩽
√
H2

λ
exp(H3πλ)exp(−A0Tn) . (A.19)

Now from the initial data (3.6) we deduce that

lim
t→0

zλ (t)
t

= z ′λ (0) = H0,

and hence from (A.18) and (A.19) we conclude that

liminf
n→+∞

w(Bn)exp(A0Tn)⩾ CH0 −
√
H2

λ
exp(H3πλ)> 0,
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which proves that w(Bn)> 0 when n is large enough. In an analogous way we obtain that
w(An)< 0 when n is large enough. This proves that T̂n exists and T̂n−Tn → πλ. Applying
again (A.15) we conclude that

lim
n→+∞

w ′
(
T̂n
)
= lim

n→+∞

(
z ′λ
(
T̂n−Tn

)
− r ′n

(
T̂n
))

= z ′λ (πλ) = H0.

Now we need to show that T̂n = Tn+1 for n large enough. Let us assume by contradiction
that Tn+1 ∈ (Tn, T̂n) for infinitely many indices n. From statement (2) of lemma A.1 we know
that between any two zeroes of w with positive derivative there exists at least one zero of w
with negative derivative. This means that for infinitely many positive integers n there exists Cn
and Dn, with

Tn < Cn < Tn+1 < Dn < T̂n < Tn+
9
8
πλ,

such that

w(Cn) = w(Dn) = 0, w ′ (Cn)< 0, w ′ (Dn)< 0.

From the energy equality (3.1), letting n→+∞ on this subsequence (not relabeled), we
obtain that

lim
n→+∞

w ′ (Cn) = lim
n→+∞

w ′ (Dn) =−H0,

and analogously

lim
n→+∞

w ′ (Tn) = lim
n→+∞

w ′ (Tn+1) = lim
n→+∞

w ′
(
T̂n
)
= H0.

As a consequence, since z ′λ(t−Tn) = r ′n(t)+w ′(t), from (A.15) we deduce that

lim
n→+∞

z ′λ (Cn−Tn) = lim
n→+∞

z ′λ (Dn−Tn) =−H0,

and

lim
n→+∞

z ′λ (0) = lim
n→+∞

z ′λ (Tn+1 −Tn) = lim
n→+∞

z ′λ
(
T̂n−Tn

)
= H0.

This shows in particular that, for n large enough, z ′λ(t) is positive for t equal to 0, Tn+1 −Tn,
T̂n−Tn, and negative for t equal to Cn−Tn and Dn−Tn. But this implies that z ′λ has at least
four zeroes in the interval [0,9πλ/8], which is absurd.

At this point we know that we canwrite Tn+1 in the form (A.16), withRn that satisfies (A.17)
for every n⩾ 0. Now we observe that the estimate from below in (A.1) implies that

Ti ⩾
2π i
λ
√
µ2

and Ti−Tn ⩾
2π (i− n)
λ
√
µ2

for every pair of integers 0⩽ n⩽ i. Due to (A.17), this implies in particular that the series of
Ri’s converges, and
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∞∑
i=n

|Ri|⩽ C
∞∑
i=n

exp(−A0Ti)

= Cexp(−A0Tn)
∞∑
i=n

exp(−A0 (Ti−Tn))⩽ H4 exp(−A0Tn)

for a suitable constant H4 that does not depend on n. At this point we can set

S∞ := T0 +
∞∑
i=0

Ri,

and observe that

Tn = nπλ +T0 +
n−1∑
i=0

(Ti+1 −Ti−πλ) = nπλ + S∞ −
∞∑
i=n

Ri,

and hence

|Tn− nπλ − S∞|⩽
∞∑
i=n

|Ri|⩽ H4 exp(−A0Tn) ,

which establishes (A.3).

A.1.4. Step four—conclusion. Thanks to (A.3), for every n⩾ 0 we can write Tn in the form

Tn = nπλ + S∞ + R̂n with |R̂n|⩽ H4 exp(−A0Tn) . (A.20)

Now we observe that zλ is a periodic function of class C2, and therefore there exists a
positive real number Λ such that∣∣∣z ′λ(τ + R̂n

)
− z ′λ (τ)

∣∣∣2 +λ2
∣∣∣zλ(τ + R̂n

)
− zλ (τ)

∣∣∣2 ⩽ ΛR̂2
n ∀τ ∈ R. (A.21)

Since

|zλ (t− S∞)−w(t) |2 = |zλ
(
t−Tn+ R̂n

)
−w(t) |2

⩽ 2|zλ
(
t−Tn+ R̂n

)
− zλ (t−Tn) |2 + 2|zλ (t−Tn)−w(t) |2,

and analogously

|z ′λ (t− S∞)−w ′ (t) |2 ⩽ 2|z ′λ
(
t−Tn+ R̂n

)
− z ′λ (t−Tn) |2 + 2|z ′λ (t−Tn)−w ′ (t) |2,

from (A.21), (A.20), (A.8), and (A.9) we obtain that

|z ′λ (t− S∞)−w ′ (t) |2 +λ2|zλ (t− S∞)−w(t) |2 ⩽ 2ΛR̂2
n+ 2En (t)

⩽
{
2ΛH2

4 + 2H2 exp(H3 (t− Tn))
}
exp(−2A0Tn)

(A.22)
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for every t⩾ 0. When t ∈ [Tn,Tn+1], from (A.1) we know that

exp(H3 (t−Tn))⩽ exp

(
2πH3

λ
√
µ1

)
, (A.23)

and similarly

exp(−2A0Tn) = exp(−2A0t)exp(2A0 (t−Tn))⩽ exp(−2A0t)exp

(
4A0π

λ
√
µ1

)
. (A.24)

Plugging (A.23) and (A.24) into (A.22) we conclude that

|z ′λ (t− S∞)−w ′ (t) |2 +λ2|zλ (t− S∞)−w(t) |2 ⩽ H5 exp(−2A0t) ∀t ∈ [Tn,Tn+1]

for a suitable constant H5 that does not depend on n.
Since Tn →+∞, this completes the proof of (3.9) with A1 = 2A0 and B1 = H5.

□
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