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A B S T R A C T   

Background: Machine learning (ML) employs algorithms that learn from data, building models with the potential 
to predict events by aggregating a large number of variables and assessing their complex interactions. The aim of 
this study is to assess ML potential in identifying patients with ischemic heart disease (IHD) at high risk of cardiac 
death (CD). 
Methods: 3987 (mean age 68 ± 11) hospitalized IHD patients were enrolled. We implemented and compared 
various ML models and their combination into ensembles. Model output constitutes a new ML indicator to be 
employed for stratification. Primary variable importance was assessed with ablation tests. 
Results: An ensemble classifier combining three ML models achieved the best performance to predict CD (AUROC 
of 0.830, F1-macro of 0.726). ML indicator use through Cox survival analysis outperformed the 18 variables 
individually, producing a better stratification compared to standard multivariate analysis (improvement of 
~20%). Patients in the low risk group defined through ML indicator had a significantly higher survival (88.8% 
versus 29.1%). The main variables identified were Dyslipidemia, LVEF, Previous CABG, Diabetes, Previous 
Myocardial Infarction, Smoke, Documented resting or exertional ischemia, with an AUROC of 0.791 and an F1-score 
of 0.674, lower than that of 18 variables. Both code and clinical data are freely available with this article. 
Conclusion: ML may allow a faster, low-cost and reliable evaluation of IHD patient prognosis by inclusion of more 
predictors and identification of those more significant, improving outcome prediction towards the development 
of precision medicine in this clinical field.   

1. Introduction 

Ischemic Heart Disease (IHD) remains the most important cause of 
morbidity and mortality in the world [1]. The objective to identify 
subjects at high risk of adverse events remains difficult due to IHD 
complexity, in which a large number of variables, clinical, anthropo-
metric, socioeconomic, life-style and, also, cardiovascular imaging 
contribute to prognostic stratification. Artificial intelligence (AI) is the 
computer science field related to the capacity to perform tasks normally 
associated with cognitive abilities. Its subfield of Machine Learning (ML) 
employs algorithms and builds models learned from data, without spe-
cific encoding of knowledge. They provide the potential to predict 

events in different patient groups by aggregating a large number of 
variables and assessing their complex interactions [2]. In the clinical 
setting, ML models have been used to identify predictors of events in IHD 
patients [3–9]. Previous studies showed that ML could identify different 
variables predicting mortality at early and late follow up time. Aziz and 
al identified age, heart rate, Killip class, fasting blood glucose, prior 
primary percutaneous revascularization or pharmaco-invasive therapy 
and diuretics, as predictors for 30 days and 1 year mortality of AMI 
patients [6]. Motwani et al. showed that combining clinical and coro-
nary computed tomographic angiography through ML improved pre-
diction of overall mortality at 5 years in respect to include only coronary 
computed tomographic angiography data [7]. D’Assenzo et al. showed 
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that ML identified different types of predictors in relation to the type of 
event considered [8]. Okere et al. showed that in-hospital length of stay 
and the mortality risk score, based on Elixhauser comorbidity measure, 
were predictors of 180-day in-hospital mortality using ML approach [9]. 
In the study of Chiu, the fusion of six classifiers was used to construct 
and optimize the stacked set of second level classifiers, with an accuracy 
of 95% in predicting mortality of HF patients at 3 days, 1 and 3 months 
and 1 year [10]. Moreover, random Survival Forest (RSF) approaches, 
which are RF models trained to maximize stratification, were also used 
to identify, among a large number of variables, the predictors of car-
diovascular events in a population-based observational cohort study 
[11]. The authors used the RSF approach both to select event predictor 
variables (i.e., 20 for each event), and as a model for risk prediction. This 
approach of risk prediction provided better event prediction over stan-
dard risk scores, such as the Framingham score and the Framingham 
Cardiovascular score, and also the Cox proportional hazard regression 
model. Additionally, ML methods without missing value imputation can 
outperform expert variable selection with imputation of missing values, 
with better performances in terms of prediction and risk stratification 
[12]. Thus, the hypothesis of the present study was that ML can identify 
IHD patients at high risk of long-term cardiac death (CD). Therefore, we 
conducted a retrospective analysis including patients with known IHD, 
considering clinical data in the ML analysis as potential predictors of CD 
occurring at long follow-up time (7 years). 

2. Methods 

2.1. Patient dataset 

The study included 3987 (mean age 68 ± 11 years) IHD patients 
hospitalized (1977–2011) at the CNR Clinical Physiology Institute in 
Pisa, Italy (angina 35.24%, arrhythmias 4.44%, dyspnea 8.21%, docu-
mented myocardial ischemia 26.52%, acute heart failure 9.16%, syn-
cope 1.67%, acute coronary syndrome 24.29, valvulopathy 1.48%), 
followed up for up to 10 years after hospital admission. IHD definition 
included one or more of the following conditions: 1) at least one coro-
nary vessel with stenosis ≥ 75%; 2) acute myocardial infarction (MI); 3) 
previous coronary artery bypass surgery (CABG); 4) previous coronary 
intervention; 5) previous MI; 6) post-ischemic dilated cardiomyopathy 
(IDC). Smoking habits, IHD family history, arterial hypertension, dia-
betes, obesity and dyslipidemia were coded in a dichotomized fashion 
(values 0/1; Smoking habits: 0-never smokers, 1-smokers for current/ex- 
smokers). All patients either suffered CD or survived for the whole 
observation period. Informed consent was obtained from each patient. 
The study complied with the Declaration of Helsinki regarding ethical 
conduct of research involving human subjects. All data (completely 
anonymous, evaluated as aggregated and not individually) were ac-
quired in the context of institutional clinical assistance within clinical 
care purposes in a retrospectively collected modality from our Institu-
tion patient’s dataset (Image database), including clinical characteristics, 
previous history, IHD risk factors, comorbidities, laboratory and 
instrumental results, pharmacological therapies, and post-discharge 
follow-up outcomes. Exclusion criteria: severe systemic diseases (e.g. 
neoplasia, acute or chronic inflammatory disease, immunological dis-
ease), non-CD during the observation period, refusal or inability to 
supply written Informed Consent [13–15]. The data are available pub-
licly on Github: https://github.com/orientino/ml4cad. 

2.2. Follow-up 

Follow-up data were obtained through review of the patient’s record, 
telephone interview, personal communication with the patient’s physi-
cian, or medical check. Death cause was derived from medical records or 
death certificates. CD definition required either significant arrhythmias, 
or cardiac arrest, or death attributable to congestive heart failure, or 
myocardial infarction, in the absence of any other precipitating factor. 

2.3. ML analysis 

ML analysis aims to develop an indicator based on multiple clinical 
variables suitable to stratify patients at high and low risk of CD. This was 
achieved through: 1) building ML model to separate two target classes: 
patients who survived for 7 years from hospital admission, and those 
who underwent CD within the same period; besides a binary classifica-
tion, this model also produces a probability of surviving for >7 years, 
which is the novel ML indicator; 2) evaluating the performance of the 
ML indicator using survival analysis; 3) identifying the most important 
clinical variables for this model, through single-variable and multi- 
variable ablation studies, obtaining a simplified ML indicator. The 
computational analysis was performed in Python, both data and analysis 
are publicly available at https://github.com/orientino/ml4cad. 

2.4. ML dataset preparation 

The processed dataset consists of 18 independent variables. We 
defined the binary dependent variable “survive7Y” indicating whether the 
patient survived for at least 7 years starting from the hospital admission. 
Even though follow-up was longer than 7 years, we chose the value “7 
years” empirically, since we observed better predictive performance for 
it on the validation data. However, we also tested a 10-year threshold, 
with very similar results for both prediction and stratification (see the 
results section for the results of the 10-year models). Since the final 
dataset presented a class imbalance (84% of patients survived >7 years), 
we employed two techniques for reducing its effects: “class weights” and 
“dataset sampling” [17]. Among the independent variables, creatinine 
and number of stenosed coronary vessels (“Vessels”) contained missing 
values, replaced with 0 (after translating the “Vessels” values by 1). 

2.5. ML model building 

We employed a standard ML pipeline [2,3]: we divided the dataset 
into 3 smaller datasets preserving the class ratio, with 60% of the pa-
tients placed in the training dataset (2391), 20% in the validation 
dataset (798) and 20% in the test dataset (798). We standardized all 3 
datasets, by computing the scaling parameters (mean and standard de-
viation) on the training dataset to prevent data leakage. Standardisation 
was performed after replacing missing values with 0. This decreased 
original averages and shifted the distributions of the Creatinine and 
Vessels variables to the left. However, it was necessary, otherwise the 
missing values would have been equal to the mean of the distribution of 
the variables after standardisation. For our models, we needed missing 
values to be different from others as they include information on medical 
decisions (i.e. recording or not a certain variable, see also ref. 12). Then, 
we trained the ML models using the training dataset to predict the 
dependent variable “survive7Y”. The models were evaluated using the 
validation dataset, while the test dataset was reserved exclusively to 
evaluate the final model with best results on the validation dataset. We 
used: logistic regression, support vector classifier, k-nearest neighbors, 
random forest (RF), adaboost, multilayer perceptron, gradient boosting, 
and extreme gradient boosting. For each model type, we optimized 
several model hyperparameters, and employed early stopping during 
training where possible, using 2-fold cross-validation on training data 
only. We include the complete definition of the hyperparameter search 
space as Supplementary file 1. To select the best hyperparameter com-
bination for each model, given that in our case we train multiple models 
with a different number of hyperparameters to be optimized, we per-
formed 5000 iterations of random search. Random search provides 
performance results comparable with a full grid search, but with much 
shorter running times [17,18], due to the fact that it does not explore all 
hyperparameter combinations but randomly selects a subset of combi-
nations to test. We have also tested a higher number of samples (10000) 
but results were very similar. To mitigate dataset imbalance, we applied 
“dataset sampling”, which modifies the training dataset by 
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simultaneously undersampling the largest class, and by oversampling 
the smallest class using SMOTE, Borderline SMOTE, or SVMSMOTE 
[16]. We chose among these procedures during the hyperparameter 
optimisation phase. Lastly, the final proposed model was designed as an 
ensemble of a subset of ML models. The ensemble computes the output of 
all the models in the set and averages them to obtain a better output 
estimate. The combination of models chosen as the final model was 
based on the performance on the validation dataset. We evaluated the 
models using F1-macro, the area under the receiver operating charac-
teristic curve (AUROC), precision and recall. We also performed cali-
bration analysis, in order to evaluate how the probabilities that the 
models produce are aligned with the actual class labels. We report the 
Brier scores for all models, and we also compare probabilities with 
actual survival times. 

2.6. ML variable importance 

We estimated variable importance by using “ablation tests” [19], 
applying the trained predictive model (the ensemble model above) to 
patients where one or several variables are replaced with their mean 
value, to remove the information they hold, i.e., performing a variable 
knock-out. A new F1-score is computed, denoted by F1’. If F1’ is lower 
than the original F1, then we can conclude that these variables are 
important for the prediction. Thus, we define a variable importance as the 
ratio F1/F1’. A value above 1 indicates an important variable; a value 
below 1 would indicate a noisy variable that does not help classification. 
Ablation tests have two main advantages: First, compared to feature 
selection methods that use rankings internal to the models (e.g., 
impurity-based feature importance for random forest), they are model 
agnostic, so they can be used also with models that do not provide an 
internal importance of features (such as our ensemble models). Second, 
compared to methods that use an external ranking (such as statistical 
tests or variance based methods), they can be used for multivariable 
analysis, i.e., estimating the importance for a set of features simulta-
neously. Furthermore, they have the advantage that they do not make 
any assumption on the probability distribution of variables, unlike most 
statistical tests [20]. 

We performed two types of ablation analyses to assess variable 
importance: 1) single-variable analysis, knocking out one variable at a 
time; 2) multi-variable analysis, using hierarchical clustering [16] to 
identify groups of most similar variables, and then knocking out one 
group at a time. The variable group importance is calculated as the ratio 
between the original F1 score and the score after knocking out all the 
variables in the group, F1’, similarly to the importance of single vari-
ables. Single- and multi-variable analysis were then combined to extract 
a set of important clinical variables for a reduced ML indicator, by 
considering the most important variable of each cluster. 

The advantage of multi-variable ablation tests is that they can enable 
simultaneous knockout of correlated variables, removing thus 
completely the signal contained in that group. In single-variable tests, 
even if we knock out one variable, if there is another correlated variable 
then the model could still be able to perform well, by employing the 
information from the correlated variable. 

2.7. Survival analysis 

We conducted survival analysis using the Kaplan-Meier curves on the 
test dataset, considering a CD event in the first 7 years. Firstly, we 
investigated the quality of stratification obtained by using the model 
output, i.e. the model’s probability of survival over 7 years, using a 
threshold to divide the dataset into two parts. A low threshold on the 
probability will divide the patients into a very small homogeneous high- 
risk group and a large heterogeneous low risk group. As the threshold 
increases, the high-risk group grows but at the same time it becomes 
more heterogeneous, with patients with higher survival, while the low- 
risk group becomes smaller. In general, even for higher thresholds, the 

low-risk group is much smaller, since the median probability value on 
the test dataset is 0.695. Here, we used a threshold of 0.6 that allowed us 
to maintain a good proportion between the two groups without sacri-
ficing too much the homogeneity of the smaller high-risk group., A 
different Kaplan-Meier estimator was used to fit on each group: by 
plotting the estimator’s results it was possible to visualize the quality of 
the stratification. Lastly, univariate and multivariate Cox Regression has 
also been performed, obtaining a Concordance value (C-index) for the 
predictor variables producing a quantitative comparison. To evaluate 
model performance, we again divided the patients into training and test 
datasets, and we report the average performance in 5-fold cross vali-
dation. We used the lifelines Python library [21] for survival analysis. 

3. Results 

3.1. Patients 

Clinical characteristics of the 3987 patients are summarized in 
Table 1. Patients with CD were older, had higher incidence of diabetes, 
atrial fibrillation, previous CABG and previous MI, IDC, reduced LVEF 
and a higher number of stenosed coronary vessels. 

3.2. ML indicator to predict CD risk 

We trained various ML classifiers with several parameters, 
combining the various models to obtain an optimal ensemble. Out of all 
possible combinations, the best performing ensemble (validation F1- 
macro = 0.685 and AUC = 0.817) was the one combining LR, RF and 
adaboost. This integrates the two top performing models based on the 
validation F1 score with the model in third position in terms of AUC. 
Table 2 shows standard classification performance metrics on the in-
ternal validation dataset and on the external test dataset, for each in-
dividual model and for the ensemble model; Fig. 1 shows ROC curves for 
the models. The ensemble classifier achieved the best performance 
(AUROC of 0.830, F1-macro of 0.726, precision of 0.705 and recall of 
0.762; Fig. 1). 

Table 2 also shows results of calibration analysis on test data, 
including Brier scores for all models. We note that all models have very 
low Brier scores, indicating that 7-year survival probabilities are well 
aligned with the two classes. Although classification performance is best 
for the ensemble methods, calibration results are best for the RF model. 
However, the ensemble model still shows good calibration. To investi-
gate this in more detail, Fig. 2 compares the survival probabilities pro-
vided by the model on test data with the actual survival in years. We 
note how as actual survival times increase, the distribution of model 
output values shifts towards larger values, as required. Also, as we move 
further from the 7-year threshold, probabilities become more extreme, i. 
e. closer to 0 or 1, indicating that the model is more confident in these 
patients. For censored patients, where we do not have an exact survival 
value, we observe that the model generally assigns large probabilities, 
again as expected, since we did not observe a CD event in these patients. 

The performance of the new ML indicator through Cox survival 
analysis was compared against univariate and multivariate survival 
analysis performed on the original clinical variables. Table 3 shows the 
performance of Cox univariate regression for all variables individually, 
along with the performance of traditional multivariate Cox regression: 
not only the ML indicator outperformed the 18 variables individually, 
but it also produced a better stratification compared to standard 
multivariate analysis (improvement in C-index of ~15%). 

Fig. 3a shows the Kaplan-Meier curves for the ML Indicator, the high- 
risk group was significantly separated from the low-risk one by using a 
ML indicator cut-off of 0.6. 

In this study we trained our model by considering events after 7 years 
of hospitalization. The threshold was chosen based on performance on 
validation data, however results were very similar for other thresholds. 
For the 10-year threshold we obtained an AUROC of 0.828 and an F1- 
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macro score of 0.726 for the ensemble model, very close to that of 7 
years (Table 2). For Cox regression, the C-index with the ML indicator 
with 18 variables was 0.814 for 10 years, and 0.816 for 7 years. Thus, 
the values are comparable and still larger than that obtained with Cox 
regression on the original variables, even multivariate, suggesting that 
the performance of our analysis does not depend a lot on the chosen 
threshold. 

3.3. Primary variable selection and a simplified indicator 

To select a subset of variables that maximizes the model perfor-
mance, we performed single- and multi-variable ablation tests for 
feature selection. Table 4 shows the ranking of variables, and corre-
sponding importance in single-variable ablation tests, for the 18 clinical 

variables employed in our study. Top variables were dyslipidemia, 
LVEF, Diabetes, previous MI, also showing very low p-values in Table 3 
(univariate Cox Regression). Ranking obtained with ML methods agrees 
with Cox analysis: top variables in Table 4 are also at the top (or at least 
statistically significant) in Table 3. However, the opposite is not true; i. 
e., some significant variables in univariate Cox Regression are ranked 
low by our method: Age, IDC, and angiography show little contribution 
to the predictive performance but have very low p-values at Univariate 
Cox Analysis. Among these, age maintains a low p-value also at Multi-
variate Cox Analysis. All this suggests that the ML model finds and uses 
its relationship with other related variables (e.g., creatinine, smoke and 
gender, see clustering results below), processing its significance in 
connection with other related biomarkers. Thus, assigning importance 
based on ML methods could have better ability to account for complex 
relations over traditional statistical analysis. Almost all variables pro-
vided a contribution, with values generally above one, albeit at times the 
contribution was very low (importance close to 1, Table 4). The only 
variable reducing the predictive power of the ML model is angina 
(importance<1), also not significant at Cox regression. Besides single- 
variable importance analysis, ML methods also have the advantage of 
enabling meaningful multivariable analysis, through the combination of 
clustering and ablation tests. Clinical variables were first clustered into 
meaningful groups and then ablation tests assigned a predictive 
importance to each group. Fig. 4 shows the 7 variable clusters, which 
group together variables correlated from a statistical as well as clinical 
viewpoints, thus validating the overall clustering procedure. Table 5 
shows the 7 cluster ranking, and their importance in the predictive 
model, with a good agreement with results presented in Table 4, (most 
important variables being those related to dyslipidemia, LVEF, IDC, and 
CABG). All clusters contribute to the prediction (values>1), suggesting 
the importance of using all available data. We note that some impor-
tance values were much closer to 1 in single-variable ablation tests. This 
is probably because in single-variable tests the model can employ in-
formation from a correlated variable to maintain a high performance. 
However, in multivariable tests that is not possible, explaining the 
generally higher importance values. When the single-variable and 
multivariable analysis were combined, a 7-variable-combined indicator 
(dyslipidemia, LVEF, previous CABG, diabetes, previous MI, smoke, and 
documented resting or exertional ischemia) was obtained. ML prediction 
power achieved AUROC of 0.791,F1-score of 0.674, precision of 0.656 
and recall of 0.719, lower than the model that combines all 18 variables 
(Table 2). Univariate Cox regression using the simplified ML indicator 
obtained an overall C-index of 0.77, while multivariate Cox regression 
using the same 7 clinical variables resulted in a C-index of 0.74. Again, 
the simplified ML indicator produces a more meaningful combination 
with respect to the 7 variables, (better risk stratification), being also 
superior to all individual variables (see Table 3 for comparison). How-
ever, as seen before for AUROC and F1-score, the simplified indicator 
did not outperform the full version, which combines all 18 variables. 
Fig. 3b shows Kaplan-Meier curves, where the 2 groups separated ac-
cording to the threshold of 0.6 were significantly different. 

4. Discussion 

In this study we applied ML tools for CD risk stratification in a large 
dataset of IHD patients. The main results can be summarized as follows:  

1) the proposed ML model was able to predict a CD with AUROC of 
0.830, F1-macro of 0.726, precision of 0.705 and recall of 0.762, 
with a calibration concordance index of 0.143.  

2) the ensemble method, consisting of an aggregation of logistic 
regression, RF and Adaboost models, had the higher prognostic 
stratification capability, superior to standard survival models;  

3) the most important variables at single-variable ablation analysis 
were dyslipidemia, LVEF, diabetes, previous MI and paroxysmal or 
chronic atrial fibrillation; 

Table 1 
Table describing the patients and the 18 variables considered. P-values corre-
spond to a univariate chi-square analysis on CVD death/no CVD1 death for 
discrete variables, and a Wilcoxon rank-sum test for continuous variables (Age, 
LVEF,2 Vessels, Creatinine). A total of 3987 patients are included, of which 757 
suffered CVD death over the observation period.   

Count 
(#)/ 
Mean ±
SD 

Percent. 
(%) 

CVD 
Death 
(n = 757; 
18.99%) 

No CVD 
Death 
(n =
3230; 
81.01%) 

p-value 

Sex, male/ 
female 

3058/ 
929 

76.7%/ 
23.3% 

566/191; 
74.8%/ 
25.2% 

2492/ 
738; 
77.1%/ 
22.9% 

0.1776 

Age 
(years) 

68 ± 11  74 ± 10 67 ± 11 <

0.0001 
Angina 2676 67.1% 473; 62% 2203; 

68% 
0.0029 

Previous CABG3 589 14.8% 193; 
25.4% 

396; 
12.2% 

<

0.0001 
Previous PCI4 966 24.2% 167; 

22.0% 
799; 
24.7% 

0.1337 

PMI5 1836 46.0% 465; 
61.4% 

1371; 
42.4% 

<

0.0001 
AMI6 661 16.5% 139; 

18.3% 
522; 
16.1% 

0.1581 

LVEF 49.58 ±
12.18  

40.28 ±
14.19 

51.75 ±
10.54 

<

0.0001 
Resting or 

exertional 
ischemia 

2501 62.7% 390; 
51.5% 

2111; 
65.3% 

<

0.0001 

Post ischemic 
DCM7 

746 18.7% 290; 
38.3% 

456; 
14.1% 

<

0.0001 
History of 

smoke 
1903 47.7% 330; 

43.5% 
1573; 
48.6% 

0.0127 

History of 
diabetes 

1096 27.4% 267; 
35.2% 

829; 
25.6% 

<

0.0001 
History of 

hypertension 
2503 62.7% 474; 

62.6% 
2029; 
62.8% 

0.9508 

History of 
dyslipidemia 

3228 80.9% 487; 
64.3% 

2741; 
84.8% 

<

0.0001 
Paroxysmal or 

chronic – AF8 
475 11.9% 170; 

22.4% 
305; 
9.4% 

<

0.0001 
Creatinine 1.20 ±

0.67  
1.5 ±
1.02 

1.14 ±
0.55 

<0.0001 

Angiography 3193 80.0% 493; 
65.1% 

2700; 
83.5% 

<0.0001 

Vessels 1.74 ± 1  2.15 ±
1.02 

1.66 ±
0.98 

0.0094  

1 CVD: cardiovascular diseases 
2 LVEF: left ventricular ejection fraction 
3 CABG: coronary by-pass grafting 
4 PCI: previous coronary intervention 
5 PMI: previous myocardial infarction 
6 AMI: acute myocardial infarction 
7 DCM: dilated cardiomyopathy 
8 AF: atrial fibrillation 
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Table 2 
Building the ML Indicator: comparison of the model performance for different model types. The best model is reported in the last row, while the best result per metric is 
marked with *.  

Model Val. AUROC Val. F1-macro Test AUROC Test F1-macro Test Precision- macro Test Recall-macro Test Brier Score 

LR1 0.808 0.672 0.820 0.704 0.683 0.750 0.139 
SVC2 0.781 0.668 0.790 0.683 0.664 0.737 0.211 
k-NN3 0.708 0.607 0.758 0.660 0.646 0.727 0.166 
RF4 0.805 0.680 0.826 0.698 0.695 0.700 *0.119 
Adaboost 0.799 0.680 0.786 0.663 0.647 0.704 0.236 
MLP5 0.789 0.668 0.802 0.708 0701 0.717 0.120 
GB6 0.811 0.664 0.815 0.704 0.683 0.747 0.137 
XGB7 0.810 0.676 0.820 0.708 0.686 0.759 0.139 
Ensemble (LR, RF, Adaboost) *0.817 *0.685 *0.830 *0.726 *0.705 *0.762 0.143  

1 LR: logistic regression 
2 SVC: support vector classifier 
3 K-NN: k-nearest neighbors 
4 RF: random forest 
5 MLP: multilayer perceptron 
6 GB: gradient boosting 
7 XGB: extreme gradient boosting 

Fig. 1. AUROC Curves for all the ML Models. 
On the left the curves for each individual model, while on the right we superimpose the ensemble model that shows best performance. AUROC: area under the 
receiver operating characteristic curve; logistic regression (LR), support vector classifier (SVC); k-nearest neighbors (KNN); random forest (RF), adaboost; multilayer 
perceptron (MLP); gradient boosting (GB); and extreme gradient boosting (XGB). 

Fig. 2. Calibration analysis for the ensemble model. 
The figure displays the survival probabilities generated by the ML model with 18 variables, for different actual survival times. We note that probabilities increase as 
survival time increases, as required. 
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4) considering the 7 clusters identified at multi-variable ablation 
analysis, the prognostic predictive weight of our indicator was su-
perior to the standard survival models using the same 7 variables, but 
significantly lower when compared to that obtained by our same 
indicator, including all the 18 variables of the study. 

These results show the effectiveness of ML-based models to identify 
IHD patients at high risk of CD, and to identify the major risk factors 
through ablation or analysis of feature importance, as demonstrated 

here. ML, in particular the use of ensemble methods for risk stratifica-
tion, has been previously applied in different settings of cardiac diseases, 
and mainly in patients with AMI [5–10,12,18,22–31], which however 
are largely different from our study in terms of patient population, type 
of outcomes, follow-up lengths, and variables. 

We focused on longer term CD prediction (7 years), and obtained 
AUROC values superior to those found in the literature for long-term 
event prediction. Furthermore, we employed the output of ML models 
as a new ML indicator for stratification, evidencing improved patient 

Table 3 
Univariate and multivariate Cox regression: performance in terms of C-index for 
standard clinical variables (univariate and multivariate) and for the novel ML1 

Indicator (univariate, because treated as a single composite variable containing 
all the information of other variables).   

Variable C-index 

Univariate Cox regression ML Indicator (18 variables) 0.82 
LVEF2 0.75 
Age 0.69 
Post-ischemic Dilated Cardiomyopathy 0.62 
Dyslipidemia 0.62 
Angiography 0.59 
Previous CABG3 0.56 
Documented resting or exertional ischemia 0.58 
Paroxysmal or chronic atrial fibrillation 0.54 
Previous Myocardial Infarction 0.54 
Diabetes 0.53 
Creatinina 0.60 
Gender 0.55 
Acute Myocardial Infarction 0.54 
Smoke 0.51 
Hypertension 0.50 
Angina 0.51 
Previous PCI4 0.49 
Vessels 0.48 

Multivariate Cox Regression (18 variables) 0.71  

1 ML: machine learning 
2 LVEF: left ventricular ejection fraction 
3 CABG: coronary by-pass grafting 
4 PCI: previous coronary intervention 

Fig. 3. Kaplan-Meyer curves for the ML Indicator and for the simplified ML indicator. 
a. we stratify using the threshold 0.6 on the probability of surviving >7 years estimated by the model. The curves show the fraction of patients that survive for a given 
number of years, separately for those under the threshold (blue line) and those over the threshold (red line). Patients classified as low risk by our model survive much 
longer, with a final survival at 88.8% for the red curve and 29.1% for the green curve. Ischemic Heart Disease (IHD). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Single-variable ablation tests for variable ranking. The Importance column 
quantifies the increase in performance (in terms of F1 score, see “Methods”) 
when the variable is included in the model. The higher the value, the more 
important the variable.  

Variable Importance 

Dyslipidemia 1.141 
LVEF1 1.106 
Diabetes 1.056 
PMI2 1.052 
Paroxysmal or chronic atrial fibrillation 1.044 
Previous CABG3 1.041 
Smoke 1.022 
Vessels 1.021 
Creatinina 1.018 
Gender 1.016 
Documented resting or exertional ischemia 1.016 
Previous PCI4 1.013 
Angiography 1.013 
Post-ischemic Dilated Cardiomyopathy 1.011 
Hypertension 1.011 
AMI5 1.005 
Age 1.001 
Angina 0.995  

1 LVEF: left ventricular ejection fraction 
2 PMI: previous myocardial infarction 
3 CABG: coronary by-pass grafting 
4 PCI: previous coronary intervention 
5 AMI: acute myocardial infarction 
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stratification compared to existing clinical variables. Our method, 
however, does not build the model having survival analysis as a goal, but 
for a different, related, classification task (predicting the events), and 
then employs the output as a variable in the survival analysis, similar to 
other recent works [5,25,26,29]. This approach has the advantage of 
employing any ML model, and not only RSF. 

Furthermore, we employed the new integrated model to identify the 
best predictive variables. Unlike the above-mentioned works, we used a 
posteriori method of variable ranking (ablation tests) that enabled us to 
evaluate how important the contribution of each variable was. Then, we 
performed multivariable analysis through clustering and ablation to 
identify important groups of variables, which has not been done in 
previous works. Finally, we identified 7 important factors that were 
integrated into a simplified ML indicator. Similarly to previous studies 
[11,27], the indicator combining 18 variables showed better predictive 
performance in comparison to that including only 7 variables, as the 
addition of more parameters increases the possibility that some of them 
contain prognostic value helpful to increase model performance. This 
result highlights the importance of processing as many variables as 
possible, in the prognostic prediction analysis, allowing for a more 

personalized and systemic approach to individual patients. This is 
definitely aligned with personalized or precision medicine, and suggests 
that all variables can enter ML analysis, potentially increasing prog-
nostic stratification power, without the risk of overfitting or undercut-
ting the input data [12]. While adding more variables in a model 
generally augments the risk of overfitting, the fact that the number of 
patients available is starting to grow, due to the increased digitisation of 
healthcare, reduces this risk. Furthermore, ML pipelines include various 
levels of cross validation that allow to avoid overfitting and ensure 
model generalization. In this way, all variables can be included without 
having to give up on any useful information through data undercutting. 
Our study brings further support in this direction, with the integrated 
ML indicator able to outperform other survival models. Furthermore, ML 
makes minimal assumptions about the data-generating systems and the 
probability distributions underlying the processes being measured. 
Therefore, it is more effective compared to classical statistical methods 
in presence of a large number of data and variables gathered without a 
carefully controlled experimental design, and in the presence of 
complicated nonlinear interactions, as in our study population [32]. 

4.1. Study limitations 

ML methods are considered as “black-box methods”, meaning that 
they provide a predictive capacity without explaining why certain results 
are obtained. The ranking of variables that we provided is a first step 
towards improving the explainability of our ML indicator. The simplified 
indicator also contributes to explainability and could be easier to adopt 
as the number of included variables is smaller. However, this simplifi-
cation reduced the predictive and stratification power. The study is 
retrospective, with data gathered several years ago, thus lacking new 
variables, evidencing how new integrated variables obtained from ML 
analysis need to be continuously updated with new predisposing 
parameters. 

By excluding no-CD in the training phase, we may have introduced a 
selection bias, not reflecting the clinical reality of patient outcomes. 
However, as stated, the model can be used on all deaths, both CD and no- 
CD. This approach incurs an obvious limitation, that is, some no-CD 
deaths could be attributed to a cardiovascular cause, and that is the 

Fig. 4. Clustering clinical variables. 
Dendrogram produced by the clustering algorithm, which grouped all the variables into 7 clusters containing related variables. Myocardial Infarction (MI); coronary 
by-pass grafting (CABG); left ventricular ejection fraction (LVEF); coronary stenosed vessels (Vessels); previous coronary intervention (PCI). 

Table 5 
Multi-variable ablation tests for variable ranking. The Importance column 
quantifies the increase in performance (in terms of F1 score, see “Methods”) 
when the group of variables is included in the model. The higher the value, the 
more important the group of variables.  

Cluster Variables Importance 

1 Dyslipidemia, Paroxysmal or chronic atrial fibrillation 1.243 
2 LVEF,1 Post-ischemic Dilated Cardiomyopathy 1.101 
3 Previous CABG,2 Angiography, Vessels 1.081 
4 Diabetes, Hypertension 1.080 
5 Previous PCI,3 Previous Myocardial Infarction 1.061 
6 Gender, Age, Smoke, Creatinine 1.053 
7 Angina, AMI,4 Documented resting or exertional ischemia 1.034  

1 LVEF: left ventricular ejection fraction 
2 CABG: coronary by-pass grafting 
3 PCI: previous coronary intervention 
4 AMI: acute myocardial infarction 
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reason why many authors do recommend all-cause deaths as an end- 
point [33]. However, our decision to exclude those deaths was taken 
to ensure a better understanding of how the AI-model works, because we 
did not want to query the model on end points that could not be pre-
dicted upfront, such as cancer and/or accidental events. It is the scope of 
our future research to develop the model into a more comprehensive 
assessment of outcome. 

5. Conclusion 

ML indicator, including all the available clinical variables, produced 
a higher stratification compared to the standard approach (improve-
ment of ~20% in survival analysis). ML approaches allow for accurate, 
reliable and low cost prognostic and risk stratification models in IHD 
patients, favoring the development of precision medicine. 

b. We stratify using the thresholds 0.6 on the probability of surviving 
>7 years estimated by the simplified model. The final survival values for 
the two groups are 89.1% for the low risk group (red curve) and 44.3% 
for the high risk group (blue curve). Ischemic Heart Disease (IHD). (For 
interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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