
Negation-Closure for JSON Schema

Mohamed-Amine Baazizia, Dario Colazzob, Giorgio Ghellic, Carlo Sartianid,∗, Stefanie
Scherzingere

aSorbonne Université, LIP6 UMR 7606, 4 place Jussieu, 75252, Paris, France
bUniversité Paris-Dauphine, PSL Research University, Place du Maréchal de Lattre de Tassigny, Paris, 75775, France

cDipartimento di Informatica, Università di Pisa, Largo Bruno Pontecorvo, 3, Pisa, 56127, Italy
dDIMIE, Università della Basilicata, Via dell’Ateneo Lucano, 10, Potenza, 85100, Italy

eUniversität Passau, Innstr. 43, Passau, 94032, Germany

Abstract

JSON Schema is an evolving standard for describing families of JSON documents. It is a
logical language, based on a set of assertions that describe features of the JSON value under
analysis and on logical or structural combinators for these assertions, including a negation op-
erator. Most logical languages with negation enjoy negation closure: for every operator, they
have a negation-dual that allows negation to be pushed through the operator. We show that this
is not the case for JSON Schema, study how that changed with the latest versions of the Draft,
and discuss how the language may be enriched accordingly. To this aim, we exploit an algebraic
reformulation of JSON Schema, which is helpful for the formal manipulation of the language.

Keywords: JSON Schema, Negation Closure, Schema Languages

1. Introduction

JSON is a simple data language whose terms represent trees constituted by nested records
and arrays, with atomic values at the leaves. JSON is now widely used for data exchange on the
Web. JSON Schema [1] is an ever-evolving specification for describing families of JSON terms,
and heavily used for specifying web applications and REST services [2], operator compatibility
in data science [3] and cloud computing pipelines [4, 5], or as schemas in NoSQL stores [6, 7].

Specifically, JSON Schema is a logical language based on a set of assertions that describe
features of JSON values and on a set of boolean and structural combinators for these asser-
tions, including negation and recursion. The expressive power of this complex language and the
complexity of validation and satisfiability have recently been studied: Pezoa et al. [8] relied on
tree automata and MSO to study the expressive power, while Bourhis et al. [9] mapped JSON
Schema onto an equivalent modal logic, called JSL, to investigate the complexity of validation
and satisfiability. Those papers proved that satisfiability is in 2EXPTIME in the general case.

∗Corresponding author
Email addresses: baazizi@ia.lip6.fr (Mohamed-Amine Baazizi), dario.colazzo@dauphine.fr (Dario

Colazzo), ghelli@di.unipi.it (Giorgio Ghelli), carlo.sartiani@unibas.it (Carlo Sartiani),
stefanie.scherzinger@uni-passau.de (Stefanie Scherzinger)

Preprint submitted to Theoretical Computer Science September 11, 2023

We study here the problem of negation-closure for JSON Schema, that we define as the prop-
erty of a logical formalism that allows every negated assertion to be rewritten into a negation-free
one. Most logical languages with negation enjoy negation-closure because, for every operator,
they have a “dual” that allows negation to be pushed through the operator, as happens for the
pairs and-or and forall-exists in first order logics, and for the modal-logic pair ♢-□ used in JSL
to encode JSON Schema [9]. Negation-closure is an important design principle for a logical sys-
tem, since it ensures that, for every algebraic property that involves an operator, a “symmetric”
algebraic property holds for its dual. This facilitates both reasoning and automatic manipulation.

We prove that JSON Schema, despite having the same expressive power as JSL, does not
enjoy negation-closure, by showing that both objects and arrays are described by pairs of oper-
ators that “almost” describe the negation of the other, but not “exactly”. We show that, in the
most common use-cases, negation can indeed be pushed through JSON Schema operators, and
we exactly characterize the cases when this is not possible. We focus here on Draft-06 [10] of
the JSON Schema language, but we also discuss what happens with the more recent versions,
which introduce important novel issues.

Based on these results, we present a negation-closed extension of JSON Schema, with the
same expressive power as the original language, but where all operators have a negation dual,
together with a simple and complete not-elimination algorithm for the extended language.

Our extension has already found practical applications: (1) we have built a tool to verify
equivalence and inclusion between JSON Schema documents through the generation of witnesses
for satisfiable schemas [11, 12]. The not-elimination algorithm here described is the first step
of the satisfiability verification algorithm employed in that tool. Thanks to this algorithm, our
tool is capable of dealing with negation without any limitation, while other tools impose strong
restrictions on the use of negation [2] or do not support negation at all [13]. (2) Our extension was
also implemented by a third party within a tool for debugging and repairing machine learning
pipelines [14].

We believe that the present study sheds light on aspects of JSON Schema that have not been
studied in previous works [8, 9], and that may be useful for the development of further tools for
JSON Schema manipulation.

Main Contributions.
(i) We study the problem of negation-closure of JSON Schema, that is, which operators are

endowed with a negation dual. We show that JSON Schema structural operators are
not negation-closed, and we exactly characterize the schemas where negation cannot be
rephrased. To this aim, we use a reformulation of JSON Schema that is algebraic, i.e.,
where no operator depends on an adjacent one, and where a subschema can be freely
substituted by an equivalent one. This property is essential for defining a denotational
semantics for JSON Schema, which in turn is essential for using induction when proving
properties. 1.6

(ii) We then extend our algebraic presentation of JSON Schema so that it becomes negation-
closed, and we prove negation closure by defining a not-elimination algorithm for this
closed language. The algorithm is based on a technique to deal with negated recursive
variables that is simple but, to our knowledge, original.

(iii) We extend our study to some new operators introduced in Draft 2019-09, that have a sig-
nificant impact on negation-closure. Existing works on formalizing JSON Schema take
into account Draft-04 only, and therefore do not consider these novel operators.

2

1 { " properties ": { "VAL ": { " type ": " number " },
2 " NEXTOBJ ": { " type ": " object " }},
3 " patternProperties ": { "^ NEXT ": { "$ref ": "#" },
4 " STRING$ ": { " type ": " string " }},
5 " additionalProperties ": { " anyOf ": [{" $ref ": "#/ definitions / OBJROOT " },
6 {" type ": " boolean "},
7 {" type ": " string "}]} ,
8 " required ": [" VAL", " NEEDED "],
9 " minimum ": 1,

10 " definitions ": { " OBJROOT ": { " allOf ": [{ "$ref ": "#" },
11 { " type ": " object " }]}}
12 }

Figure 1: A JSON Schema document.

Paper Outline. In Section 2 we provide an overview of JSON Schema. In Section 3, we define
the formal semantics of JSON Schema, based on our algebraic presentation. Sections 4 and 5 1.1
study negation closure. Section 6 analyzes the minContains and maxContains operators in-
troduced in Draft 2019-09. Section 7 presents our experiments. We conclude after a review of
related work.

2. JSON and JSON Schema

JSON Schema is a logical language whose terms are expressed as JSON terms, and describe
sets of JSON terms. Therefore, we first briefly review the JSON data model, and then introduce
the main features of JSON Schema through examples. We will discuss its semantics in Section 3.

2.1. The data model

JSON values are either basic values, objects, or arrays. Basic values B include the null value,
booleans, numbers m, and strings s. Objects O represent sets of members, each member (or field)
being a name-value pair (k, J) with no name appearing in two distinct members, and arrays A
represent sequences of values with positional access. Objects and arrays may be empty. Two
JSON values are equal if, and only if, they only differ in the order of members in objects.

In JSON syntax, a name is itself a string, and hence surrounded by quotes. Below, we specify
the data model syntax, where n is a natural number with n ≥ 0, and ki ∈ Str for i = 1, . . . , n.

J ::= B | O | A JSON expressions
B ::= null | true | false | m | s m ∈ Num, s ∈ Str Basic values
O ::= {k1 : J1, . . . , kn : Jn} n ≥ 0, i , j⇒ ki , k j Objects
A ::= [J1, . . . , Jn] n ≥ 0 Arrays

2.2. JSON Schema by example

Consider the schema document of Figure 1. We use here schema to indicate a subterm of a
JSON Schema document that is either an object or a boolean (true/false) and that is used to
validate instances.

3

Assertions. Any JSON Schema document is a schema, which usually contains many nested
schemas. The members of a schema whose name is chosen among the assertion keywords
are called assertions, and here we have five of them at the outermost level: properties,
patternProperties, additionalProperties, required, and minimum. A set of assertions
collected inside a schema denotes a conjunction: an instance must satisfy all those assertions to
satisfy the schema.
definitions is not an assertion keyword. It is just a placeholder, which does not assert any-

thing about the JSON instance, but whose value contains a set of name-schema pairs: here, it is
used to associate the name OBJROOT with the schema “{ "allOf" : [...] }”. These associations
are used by the $ref operator, described later.

JSON values belong to one of the six JSON types: number, null, boolean, string, object,
array. All assertions that analyze the values of a specific type T are conditional on T , that is,
their definition is “if the instance belongs to T then. . . ”, so that every instance that does not
belong to T satisfies that assertion.

For example, the properties assertion in line 1 specifies that, if the instance is an object,
then if the instance has a VAL member, then its value is a number, and, if it has a NEXTOBJ
member, then its value is an object. This assertion is conditional on the type object, and hence it
is satisfied by anything that is not an object, and is conditional on the presence of the members
VAL and NEXTOBJ. Hence, it is satisfied by any object without those members.

The required assertion is itself conditional on the instance type being object, but in that
case, if forces the presence of the listed member names. The names listed in the properties
assertions and those that are listed by required are, in principle, not related: in the example,
we restrict the value of NEXTOBJ member without forcing its presence, and we require the
NEEDED member without explicitly restricting its value.
patternProperties specifies that if the instance is an object and if a member name matches

some pattern, then the member value must satisfy the corresponding schema. JSON Schema
patterns are matched against any substring of the target string unless they are anchored to the
beginning of the target (using “ˆ” as in “ˆNEXT”) or to the end (using “$” as in “STRING$”).
Hence, any member whose name begins with NEXT must satisfy the assertion “{ "$ref": "#" }”
(to be discussed later) and any member whose name ends in STRING must satisfy the asser-
tion “{ "type": "string"}”. Hence, a member named NEXTxxxSTRING must satisfy both, and a
member named NEXTOBJ must satisfy both the schema “{ "type": "object"}” associated with
NEXTOBJ and the schema “{ "$ref": "#" }”.
additionalProperties is context-dependent: if the instance is an object, if a member

name does not match any properties or patternProperties that co-occur at the top level
of the schema where additionalProperties occurs, then the member value must satisfy
the schema of additionalProperties. Since NEEDED has not been explicitly constrained
in properties or patternProperties, its values must conform to the schema specified in
additionalProperties. Hence, "additionalProperties" : S is equivalent to
"patternProperties" : { cp : S } where cp is a pattern that matches any string that is not
matched by any properties or patternProperties assertions in the same schema object.

"minimum" : 1 is a conditional assertion about numbers, meaning: if the instance is a number,
then its minimum value is 1. The combination of this assertion with the previous assertions, that
are all conditional on the type object, means that: if the instance is a number, it must satisfy
"minimum" : 1. If it is an object, it must satisfy the other constraints described. If it has any other
type (null, boolean, string, array), then it satisfies this schema.

4

Reference assertions. A reference assertion "$ref": "path" is a recursive reference, denoting a
subschema (possibly also of a remote resource) reached by a path. Path "#" denotes the root of
the current document, while "#/definitions/OBJROOT" is the schema that is the value of the
OBJROOT member of the definitions member of the root. This allows any subschema to refer to
any other subschema.

Boolean combinators. Besides the conditional assertions, JSON Schema features boolean com-
binators such as allOf for boolean conjunction, anyOf for boolean disjunction, not for boolean
negation, and others. For example (see lines 10 and 11), "allOf": [{ "$ref": "#" } , { "type":
"object"}] in the example requires the instance to satisfy the root schema and to be an object,
hence excluding all the other types.

JSON instances. In Figure 2 we show three JSON fragments satisfying the schema of Figure 1.
The string "notAnObject" satisfies that schema since all assertions are conditional, and there-
fore satisfied by anything that is neither an object nor a number. All instances that are objects
must contain both VAL and NEEDED, but NEEDED values may have any type. The NEXTOBJ
value must be an object because of the properties assertion, and must satisfy the entire speci-
fication since this name matches "ˆNEXT".

" notAnObject "

1 { "VAL" : 16,
2 " NEEDED " : " Number of performance cores " }

1 { "VAL" : 8,
2 " NEEDED " : false ,
3 " NEXTOBJ " : { "VAL" : 4,
4 " NEEDED " : true }
5 }

Figure 2: Three JSON fragments satisfying the schema of Figure 1.

2.3. A negation example

Reasoning about negation can be tricky, due to some elusive aspects of JSON Schema se-
mantics [15]. Notably, in its security guidelines for designing JSON Schema documents, NSA
explicitly advises against the use of negation [16]. In Figure 3, we provide a supplementary ex-
ample that contains the not operator. Lines 1 through 3 state which values are allowed for the
fields color and size if the instance is an object and if it contains those members. Line 4 actually
declares that the instance must be an object and must not contain a field size. This can be sur-
prising, since the assertion might be mistakenly read for a field not being required, and therefore,
optional. In fact, in real-world schemas, the most frequent argument of not is required [15].

Figure 4 shows an equivalent schema, where negation has been pushed down, to the point of
elimination. It is now explicit that property size is not allowed (line 3). Moreover, line 4 states
that the schema allows only instances of type object, an assertion that was only implicit in the
original schema. The full equivalence of these schemas is not obvious.

5

1 { " properties ": {
2 " color ": {" enum ": [" white ", " black "]} ,
3 "size ": {" enum ": ["S", "M", "L"]} },
4 "not ": {" required ": [" size "]}
5 }

Figure 3: T-shirt schema with negation.

1 { " properties ": {
2 " color ": {" enum ": [" white ", " black "]} ,
3 "size ": false },
4 " type ": " object "
5 }

Figure 4: T-shirt schema after not-elimination.

As a more intricate (although artificial) example, consider the schema of Figure 5.

{" properties ": {"a": {" not ": {" $ref ": "#"}}}}

Figure 5: Recursive schema.

This schema may be puzzling, but it can be rewritten to be more readable: it describes an
instance that, in case it is an object with the field "a", then the value of this field must be an object,
which must contain an "a" field, whose value must recursively satisfy the same specification.

We will describe later (Example 6) how our not-elimination algorithm can be used to rewrite
the compact specification of Figure 5 into the readable oneOf Figure 6.

1 { " properties " :
2 { "a": { " type " : " object " ,
3 " required " : ["a"],
4 " properties " : { "a" : { "$ref ": "#" } }
5 }
6 }
7 }

Figure 6: Recursive schema after not-elimination.

2.4. JSON Schema Drafts
At the time of writing, there are five major versioned drafts of JSON Schema: Draft-03 of

November 2010 [17], Draft-04 of February 2013 [18], Draft-06 of April 2017 [10], Draft 2019-09
of September 2019 [19], and Draft 2020-12 [20] (Draft-05 was essentially a cleanup of Draft-04
and used the same meta-schema, while versions before Draft-03 have been absorbed by that one).

To analyze the real-world usage of JSON Schema, we retrieved virtually every accessible,
open source-licensed JSON file from GitHub that presents the features of a schema, based on a
BigQuery search on the Google GitHub public dataset. Over 80K schemas were downloaded in
July 2020, and are shared online [21].

6

In this GitHub corpus, the vast majority of schemas respect Draft-04, some use the new
features of Draft-06, and we found almost no examples of Draft 2019-09.

JSON Schema validation produces a validity result and it also annotates the validated in-
stance. Annotations are an important feature of JSON Schema but, up to Draft-06, one can
define a semantics of validation that does not depend on them, hence keeping the two issues
separated. Draft 2019-09 introduces a major semantic change in the language: the satisfaction
of assertions unevaluatedProperties and unevaluatedItems does not only depend on the
satisfaction of the sub-assertions that they contain, but also on the specific annotations that the
sub-assertions produce. Once this dependence of validation from annotations is added, not only
the semantics becomes more complicated but, unfortunately, De Morgan rules lose their validity.

Since the overwhelming majority of the schemas we found do not use the post-Draft-06
operators, we decided to focus our analysis on Draft-06, and to defer a detailed analysis of
negation closure for the annotation-dependent Drafts for future work. However, we decided to
include in our study the operators minContains and maxContains, added in Draft 2019-09,
since they do not depend on annotations and they are strictly related to the themes of our study.

3. Algebraic syntax and denotational semantics for JSON Schema

We say that a language is algebraic when it enjoys substitutability, meaning that the substi-
tution of every subterm with a semantically equivalent subterm preserves the semantics of the
entire term, independently of the surrounding context. The following example shows that JSON
Schema does not enjoy this property, because of the dependency of some operators on adjacent
operators. 1.1

Example 1. The assertion

" properties ": { "size ": true }

specifies that, if the instance is an object, then if the instance has a size member, then its
member must satisfy true. In other terms, it is a trivial assertion, verified by every JSON
instance, which has the same trivial semantics as

" properties ": { " color ": true }

Consider now the following JSON Schema document:

1 { " type ": " object ",
2 " additionalProperties ": false ,
3 " properties ": { "size ": true }
4 }

This schema is satisfied by the empty object, and by any JSON object having a unique prop-
erty named "size". If we substitute the trivial assertion in line 3 with the equivalent trivial
expression "properties": { "color": true }, the meaning of the entire schema changes,
and now only a "color" member is accepted. This happens because the "properties" asser-
tion, trivial when considered alone, influences the meaning of an "additionalProperties"
assertion that co-occurs at the top level of the same schema. Hence, the substitution of an asser-
tion with one satisfied by the same set of instances may modify the meaning of the surrounding
schema: the dependency of the "additionalProperties" operator on adjacent operators pre-
vents substitutability.

7

Substitutability allows one to define a denotational semantics, that is, to define the semantics
of an operator as a function applied to the semantics of its operands, and, more generally, substi-
tutability facilitates algebraic manipulations and proofs by induction. For this reason, we define
here an alternative syntax for JSON Schema, a syntax which enjoys substitutability since the
dependent operators such as "additionalProperties" are enriched with explicit contextual
information — the property names used by the adjacent operators — that makes them indepen-
dent of the other operators. 1.1,1.5

Another cause of non substitutability is the navigational nature of JSON Schema references.
Consider the following schema, where the "$ref" operator refers, through navigation, to the
{"not":{"multipleOf":3}} subschema.

1 { "$ref ": "#/ definitions / MofThree /not",
2 " definitions ":
3 { " MofThree ": { "not ": { "not ": { " multipleOf ": 3 } } } }
4 }

If we substitute the subschema {"not":{"not":{"multipleOf":3}}} with the equiva-
lent schema {"multipleOf":3}, the pointer "$ref":"#/definitions/MofThree/not" be-
comes invalid, which violates substitutability. Hence, in our presentation, we will use standard
named variables instead of navigational references.

In the remaining part of this section, we introduce our algebraic presentation of JSON Schema,
we define its semantics, and we prove its equivalence to standard JSON Schema.

3.1. The algebraic presentation of JSON Schema

The syntax. The operators of our succinct algebraic presentation correspond to those of JSON
Schema, as illustrated in Figures 9 and 10, and they obey the grammar presented in Figure 7. 1.1, 1.2

In the grammar, n is always a natural number starting from 0, so that we use here indexes
going from 1 to n + 1 when at least one element is required. In req(k1, . . . , kn), each ki is a
string. The other metavariables are listed in the first line of the grammar, where R indicates real
numbers, R>0 denotes positive real numbers, N are the naturals (zero included). The sets R−∞,
R∞, and N∞ stand for the base set enriched with the extra symbols −∞ or∞. JVal(∗) is the set of
all JSON terms. Apart from the syntax, this presentation reflects the operators of JSON Schema
Draft-06 [10].

Each schema expresses properties of an instance which is a JSON value; the semantics of a
schema S with respect to an environment E is, therefore, the set [[S]]E of JSON instances that
satisfy that schema, as specified in Figure 8. The environment E is a set of pairs (x : S), that are
introduced by the operator D = S defs(x1 : S 1, . . . , xn : S n) and are used to interpret variables xi,
as discussed below.

The operators. We provide an intuition for the operators, before discussing their formal seman-
tics. The assertion type(T1, . . . ,Tn+1) is satisfied by any instance belonging to one of the listed
predefined JSON types. const(J) is only satisfied by the instance J, and enum(J1, . . . , Jn+1) is
the same as const(J1) ∨ . . . ∨ const(Jn+1).

Our syntax includes the boolean operators (¬, ∧, ∨, ⇒, ⇒ |, {S 1, . . . , S n}, and 1). The
operators t, f, ¬, ∨, ⇒, ∧ combine the results of their operands in the standard way, while the
conditional (S 1 ⇒ S 2 | S 3) stands for (S 1 ∧ S 2) ∨ ((¬S 1) ∧ S 3), and is used for representing
JSON Schema "if"- "then"- "else". The exclusive or operator 1 (S 1, . . . , S n+1) is satisfied iff

8

r ∈ RegExp,m ∈ R−∞,M ∈ R∞, l ∈ N, j ∈ N∞, q ∈ R>0, J ∈ JVal(∗)

T ::= Arr | Obj | Null | Bool | Str | Num

S ::= type(T1, . . . ,Tn+1) | const(J) | enum(J1, . . . , Jn+1)

| len j
l | betwM

m | xBetwM
m | mulOf(q) | pattern(r)

| props(r1 : S 1, . . . , rn : S n; S n+1) | pro j
l | req(k1, . . . , kn) | propNames(S)

| items(S 1, . . . , S n; S n+1) | contains(S) | ite j
l | uniqueItems

| x | t | f | ¬S | S 1 ∨ S 2 | 1 (S 1, . . . , S n+1)

| S 1 ⇒ S 2 | (S 1 ⇒ S 2 | S 3) | S 1 ∧ S 2 | {S 1, . . . , S n}

E ::= x1 : S 1, . . . , xn : S n

D ::= S defs (E)

Figure 7: Syntax of the algebra.

exactly one of the arguments holds, and represents "oneOf". {S 1, . . . , S n}, finally, is the same as
S 1 ∧ . . . ∧ S n. 2.1

The operators from len j
l to uniqueItems are called, in this paper, implicative typed assertions

(ITAs), since their semantics has the following structure: “if the instance belongs to the type T ,
then . . . ”. Every ITA is associated with a specific type; it discriminates inside that type, and it is
satisfied by every element of any other type. pattern(r) means: if the instance is a string, then
it matches r. len j

l means: if the instance is a string, then its length is included between l and
j. betwM

m means: if the instance is a number, then it is included between m and M, extremes
included. xBetwM

m is the same with extremes excluded. mulOf(q) means: if the instance J is a
number, then J = i ∗ q, for some integer i.

An instance J satisfies the assertion props(r1 : S 1, . . . , rn : S n; S) iff the following holds: if
the instance J is an object, then for each pair k : J′ appearing at the top level of J and for every
ri : S i such that k matches ri, it holds that J′ satisfies S i, and, when k does not match any pattern
in r1, . . . , rn, then J′ satisfies S ; it combines the three JSON Schema operators properties,
patternProperties, and additionalProperties, hence resolving the problem of the de-
pendence of the third from the first two. 1.1

pro j
l means: if the instance is an object, it has at least l and at most j properties. Assertion

req(k1, . . . , kn) means: if the instance is an object, then, for each ki, one of the names of the
instance is equal to ki. The assertion propNames(S) means that, if the instance is an object, then
every member name of that object satisfies S .

An instance J satisfies items(S 1, . . . , S n; S n+1) iff the following holds: if J is an array, then
each of its elements at position i ≤ n satisfies S i, while further elements satisfy S n+1. Note that no
constraint is posed over the length of J: if it is strictly shorter than n, or empty, that is not a prob-
lem (this operator combines the two JSON Schema operators items and additionalItems).To
constrain the array length we have ite j

l , satisfied by J when, if J is an array, its length is between
l and j. Assertion contains(S) means: if the instance is an array, then it contains at least one
element that satisfies S . The assertion uniqueItems means that, if the instance is an array, then
all of its items are pairwise different.

The operator D = S defs(E), where E = x1 : S 1, . . . , xn : S n, is used in our presentation of

9

JSON Schema to introduce variables: an instance J satisfies a schema document D = S defs(E)
iff it satisfies S in the environment E, which means that, when a variable xi is met while checking
whether J satisfies S , xi is substituted by E(xi), that is, by S i. This results in a cyclic definition
when we have environments such as defs(x : x) or defs(x : ¬x). The JSON Schema standard
rules out such cyclic environments by specifying that checking whether J satisfies S by expand-
ing variables must never result in an infinite loop. We express this requirement as a guardedness
condition on E, as follows.

Let us say that xi unguardedly depends on x j if the definition E(xi) of xi contains one occur-
rence of x j that is not in the scope of any typed operator (otherwise, we say that the occurrence
is guarded by a typed operator): for instance, in defs(x : (items(y; w) ∧ z)), x unguardedly
depends on z, while y and w are guarded by items(;). Recursion is guarded if the unguardedly
depends relation is acyclic: no pair (x, x) belongs to its transitive closure. Informally, guarded
recursion requires that any cyclic dependency must traverse a typed operator, which ensures that,
when a variable is unfolded for the second time, the resulting schema is applied to an instance
that is strictly smaller than the one analyzed at the moment of the previous unfolding. This notion
was introduced as well-formedness in related work [8, 9].

From now on, we will assume that, for any schema document S defs(E), recursion in E is
guarded, and that E is closing for S , as defined below, and we will make the same assumption
when discussing the semantics of a schema S with respect to an environment E.

Definition 1. An environment E = x1 : S 1, . . . , xn : S n is guarded if recursion is guarded in E.
An environment E = x1 : S 1, . . . , xn : S n is closing for S if all variables in S 1, . . . , S n and in S
are included in x1, . . . , xn.

The semantics. We formalize JSON Schema semantics as follows. JSON Schema standard de-
fines the semantics of variables by specifying that x = E(x); unfortunately, this is not an inductive
definition, since S i is generally bigger than xi. In order to make it inductive, we add a parameter
i ∈ N to the semantic function [[S]]i

E , and we give the following definition for [[x]]i
E :

[[x]]0
E = ∅ [[x]]i+1

E = [[E(x)]]i
E

All other operators are defined as in JSON Schema specification, and the full formal definition
of [[S]]i

E is shown in Figure 8, where L(r) is the set of strings matched by r, JVal(Obj) is the set 1.2, 1.6
of JSON values whose type is "object", and similarly for the other types; JVal(∗) is the set of all
JSON values. We use these special curly braces “{{ }}” for sets, in order to avoid confusion with
standard braces “{}” that are used in JSON syntax.

The definition of [[S]]i
E in Figure 8 is inductive on the lexicographic pair (i, |S |), and we have

now to define a notion of “limit” for the [[S]]i
E succession, in order to get rid of the i index.

Because of negation, the sequence [[S]]i
E not necessarily monotonic in i, but we can still define

a forall-exists limit by stipulating that an instance J belongs to [[S]]E if an i exists such that J
belongs to every interpretation that comes after i:

[[S]]E =
⋃
i∈N

⋂
j≥i

[[S]] j
E

The definition above ensures that every schema has a well defined interpretation.
Our presentation differs from standard JSON Schema in the syntax, in the fact that we group

some operators together, and, most importantly, in how we deal with variables: while JSON
10

[[type(Null/Bool/Str)]]i
E = JVal(Null)/JVal(Bool)/JVal(Str)

[[type(Arr/Obj/Num)]]i
E = JVal(Arr)/JVal(Obj)/JVal(Num)

[[type(T1, . . . ,Tn+1)]]i
E = [[type(T1)]]i

E ∪ . . . ∪ [[type(Tn+1)]]i
E

[[mulOf(q)]]i
E = {{ J | J ∈ JVal(Num)⇒ ∃k integer with J = k ∗ q }}

[[const(J)]]i
E = {{J}}

[[enum(J1, . . . , Jn+1)]]i
E = {{J1, . . . , Jn+1}}

[[len j
l]]

i
E = {{ J | J ∈ JVal(Str)⇒ l ≤ length(J) ≤ j }}

[[pattern(r)]]i
E = {{ J | J ∈ JVal(Str)⇒ J ∈ L(r) }}

[[betwM
m]]i

E = {{ J | J ∈ JVal(Num)⇒ m ≤ J ≤ M }}
[[xBetwM

m]]i
E = {{ J | J ∈ JVal(Num)⇒ m < J < M }}

[[pro j
l]]

i
E = {{ J | J ∈ JVal(Obj)⇒ l ≤ |J| ≤ j }}

[[req(k1, . . . , kn)]]i
E = {{ J | J ∈ JVal(Obj)⇒ ∀k ∈ {{k1, . . . , kn}}.∃J′.(k : J′) ∈ J }}

[[ite j
l]]

i
E = {{ J | J ∈ JVal(Arr)⇒ l ≤ |J| ≤ j }}

[[uniqueItems]]i
E = {{ J | J = [J1, . . . , Jn]⇒ ∀l, j ∈ {{1..n}}. l , j ⇒ Jl , J j }}

[[t]]i
E = JVal(∗)

[[f]]i
E = ∅

[[propNames(S)]]i
E = {{ J | J = {k1 : J1, . . . , km : Jm}, l ∈ {{1..m}} ⇒ kl ∈ [[S]]i

E }}

[[props(r1 : S 1, . . . , rn : S n; S)]]i
E = {{ J | J = {k1 : J1, . . . , km : Jm}, l ∈ {{1..m}} ⇒

(∀ j ∈ {{1..n}}. kl ∈ L(r j)⇒ Jl ∈ [[S j]]i
E)∧

(kl < L((r1| . . . |rn))⇒ Jl ∈ [[S]]i
E) }}

[[items(S 1, . . . , S n; S n+1)]]i
E = {{ J |J = [J1, . . . , Jm], l ∈ {{1..m}} ⇒

(∀ j ∈ {{1..n}}. l = j⇒ Jl ∈ [[S j]]i
E)∧

(l > n⇒ Jl ∈ [[S n+1]]i
E) }}

[[contains(S)]]i
E = {{ J | J = [J1, . . . , Jm]⇒ ∃l ∈ {{1..m}}. Jl ∈ [[S]]i

E }}

[[S 1 ∧ S 2]]i
E = [[S 1]]i

E ∩ [[S 2]]i
E

[[¬S]]i
E = JVal(∗) \ [[S]]i

E
[[S 1 ∨ S 2]]i

E = [[S 1]]i
E ∪ [[S 2]]i

E

[[S 1 ⇒ S 2]]i
E = [[¬S 1 ∨ S 2]]i

E

[[(S 1 ⇒ S 2 | S 3)]]i
E = [[(S 1 ∧ S 2) ∨ ((¬S 1) ∧ S 3)]]i

E

[[1 (S 1, . . . , S n)]]i
E = [[

∨
1≤l≤n(¬S 1 ∧ . . . ∧ ¬S l−1 ∧ S l ∧ ¬S l+1 ∧ . . . ∧ ¬S n)]]i

E

[[{S 1, . . . , S n}]]i
E = [[S 1 ∧ . . . ∧ S n]]i

E

[[x]]0
E = ∅ (any arbitrary set of JSON values could be used)

[[x]]i+1
E = [[E(x)]]i

E

[[S]]E =
⋃

i∈N
⋂

j≥i[[S]] j
E

[[S defs(x1 : S 1, . . . , xn : S n)]] = [[S]]x1:S 1 ,...,xn:S n

Figure 8: Semantics of the algebraic presentation of JSON Schema.

Schema defines a variable meaning by ruling that x = E(x), we adopt the inductive limit defini-
tion that we described above. 1.1, 1.6

In order to show that our presentation is equivalent to JSON Schema, in Section 3.2 we detail
the syntactic relationship among our presentation and the original syntax, while in Section 3.3,
we prove the semantic equivalence between our formalization of variables and JSON Schema
definition.

11

3.2. Translating between JSON Schema and the algebraic presentation
Our algebraic rendition differs syntactically from actual JSON Schema in the use of a more

compact functional syntax. Furthermore, we eliminate the context-dependency of operators such 2.5
that "additionalProperties" and "additionalItems" by combining them with the oper-
ators on which they depend. We also replace the "$ref" reference mechanism, that does not
enjoy substitutability, with a standard variable mechanism. Finally, we collect pairs of min-max
operators into a single interval operator, mostly for space reasons, as we do with "minimum"-
"maximum" combined into betw j

i . 2.6
We can define a formal translation from JSON Schema to the algebraic form, as follows.
We say that a reference "$ref": path is normalized when path is either (i) "#" or (ii)

"#/definitions/"·x, where x is a string that contains no /, and k1·k2 is string concatenation. In
a first phase, for every subschema S that is referred by a non-normalized path, we copy S in the
"definitions" section of the schema, under a name f (path), where f transforms the path into
a flat string, and we substitute all references "$ref": path with a normalized reference "$ref":
"#/definitions/"·f (path). At this point, this reference-normalized document is translated as
follows, where ⟨S ⟩ is the translation of S , xroot is a fresh variable, and where each occurrence
of “"$ref" : "#/definitions/"·x” is translated as “x” and each occurrence of “"$ref": "#"” is
translated as “xroot”:

⟨{ k1 : S 1, . . . , kn : S n, "definitions" : {x1 : S ′1, . . . , xm : S ′m} }⟩ =

xroot defs(xroot : ⟨{k1 : S 1, . . . , kn : S n}⟩, x1 : ⟨S ′1⟩, . . . , xn : ⟨S ′n⟩)

After definition normalization, we can translate any assertion keyword : S into the corre-
sponding algebraic operator, as reported in Figure 9, where we also show how the non-algebraic
combination properties-patternProperties-additionalProperties is merged into a props
operator, and how the combination items-additionalItems is merged into a items. For
the items-additionalItems we detail all possible combinations. For the props triple, a
missing "properties" is treated as "properties": {}, a missing "patternProperties"
as "patternProperties":{}, and, finally, a missing "additionalProperties" assertion as
"additionalProperties": { }. In the translation of "properties", we use k to represent the
pattern that only matches k, so that "properties" : { k : S } is translated as props(k : ⟨S ⟩; t).

Definition 2. Given a string k, we denote with k the pattern only matching k, i.e., k = "ˆ"·k′·"$",
where k′ is obtained from k by escaping all special characters.

To illustrate equivalence between our presentation and JSON Schema, we also define a formal
translation in the other direction, defined in Figure 10, by means of the ⟨⟨_⟩⟩ mapping. Almost all
cases in the figure are self-explaining. Observe that our interval operators betwM

m admit trivial
bounds ∞ and −∞ that indicate a missing bound; in this case the corresponding "minimum" and
"maximum" are not generated; the same applies to xBetwM

m and to the upper bound of len j
l , pro j

l ,
and ite j

l . 1.1, 1.2
Observe that the two mappings ⟨_⟩ and ⟨⟨_⟩⟩ describe the correspondence between our syntax

and the original JSON Schema syntax, and each of them maps a schema into one that is satisfied
by the same values, but ⟨⟨ ⟨S ⟩ ⟩⟩ is not syntactically identical to S , since our syntax is more
compact, hence different JSON Schema terms are represented by the same term in our syntax.

This correspondence between JSON Schema and our presentation entails that every property
that we prove about the expressive power of the algebraic operators holds for the correspond-
ing operators of JSON Schema. For illustrative purposes, we will also provide JSON Schema
examples for some formal properties in the following. 1.5

12

⟨{ G1, . . . , Gn } ⟩ {⟨G1⟩, . . . , ⟨Gn⟩}

⟨"allOf": [S 1, . . . S n]⟩ ∧(⟨S 1⟩, . . . ⟨S n⟩)
⟨"anyOf": [S 1, . . . S n] ⟩ ∨(⟨S 1⟩, . . . ⟨S n⟩)
⟨"oneOf": [S 1, . . . S n] ⟩ 1 (⟨S 1⟩, . . . ⟨S n⟩)
⟨"not": S ⟩ ¬⟨S ⟩
⟨"if": S 1, “then” : S 2, “else” : S 3 ⟩ ⟨S 1⟩ ⇒ ⟨S 2⟩ | ⟨S 3⟩

⟨"const": J⟩ const(J)
⟨"enum": [J1, . . . , Jn]⟩ enum(J1, . . . , Jn)
⟨"boolean"/ "null"/ "number"/ "string"/ "array"/ "object"⟩ Bool/Null/Num/Str/Arr/Obj
⟨"type": Tp⟩ with Tp , "integer" type(⟨Tp⟩)
⟨"type": "integer"⟩ type(Num) ∧mulOf(1)
⟨"type": [Tp1, . . . ,Tpn] ⟩ with every Tpi , "integer" type(⟨Tp1⟩, . . . , ⟨Tpn⟩)
⟨"type": [Tp1, . . . ,Tpn,"integer"] ⟩ type(⟨Tp1⟩, . . . , ⟨Tpn⟩) ∧mulOf(1)
⟨"minimum": m ⟩ betw∞m
⟨"maximum": M⟩ betwM

−∞

⟨"exclusiveMinimum": m ⟩ xBetw∞m
⟨"exclusiveMaximum": M⟩ xBetwM

−∞

⟨"multipleOf": q⟩ mulOf(q)
⟨"minLength": m ⟩ len∞m
⟨"maxLength": M ⟩ lenM

0
⟨"pattern": r ⟩ pattern(r)
⟨"uniqueItems": "true"⟩ uniqueItems
⟨"uniqueItems": "false"⟩ t
⟨"minItems": m⟩ ite∞m
⟨"maxItems": M⟩ iteM

0
⟨"contains": S ⟩ contains(⟨S ⟩)
⟨"items": S , "additionalItems": S ′⟩ items(; ⟨S ⟩)
⟨"items": S ⟩ items(; ⟨S ⟩)
⟨"items": [S 1, . . . , S n], "additionalItems": S ′⟩ items(⟨S 1⟩, . . . , ⟨S n⟩; ⟨S ′⟩)
⟨"items": [S 1, . . . , S n]⟩ items(⟨S 1⟩, . . . , ⟨S n⟩; t)
⟨"additionalItems": S ⟩ items(; ⟨S ⟩)
⟨"minProperties": m ⟩ pro∞m
⟨"maxProperties": M⟩ proM

0
⟨"propertyNames": S ⟩ propNames(⟨S ⟩)
⟨"required": [k1,. . . ,kn]⟩ req(k1, . . . , kn)

⟨"properties": {k1 : S 1,. . . ,kn : S n }, props(k1 : ⟨S 1⟩, . . . , kn : ⟨S n⟩

"patternProperties": {r1 : S ′1,. . . ,rm : S ′m }, r1 : ⟨S ′1⟩, . . . , rm : ⟨S ′m⟩;
"additionalProperties": S ⟩ ⟨S ⟩)

⟨"dependentSchemas": { k1 : S 1,. . . ,kn : S n } ⟩ ((type(Obj) ∧ req(k1))⇒ ⟨S 1⟩)∧
. . . ∧ ((type(Obj) ∧ req(kn))⇒ ⟨S n⟩)

⟨"dependentRequired": (req(k1)⇒ req(r1
1 . . . , r

1
m1

))∧
{ k1 : [r1

1 . . . ,r1
m1

],. . . , kn : [rn
1 . . . ,rn

mn
] } ⟩ . . . ∧ (req(kn)⇒ req(rn

1 . . . , r
n
mn

))

⟨"dependencies": obj ⟩ see two previous cases

⟨k1 : S 1,. . . ,km : S m, xroot defs(xroot : ⟨{k1 : S 1, . . . , km : S m}⟩,

"definitions": { x1 : S ′1, . . . , xn : S ′n} ⟩ x1 : ⟨S ′1⟩, . . . , xn : ⟨S ′n⟩)
⟨"$ref": "#/definitions/"·x⟩ x
⟨"$ref": "#"⟩ xroot

Figure 9: Translation from JSON Schema to the algebra.

13

⟨⟨t⟩⟩ true

⟨⟨f ⟩⟩ false

⟨⟨{S 1, . . . , S n}⟩⟩ { ⟨⟨S 1⟩⟩, . . . , ⟨⟨S n⟩⟩ }
⟨⟨∧(S 1, . . . , S n)⟩⟩ "allOf": [⟨⟨S 1⟩⟩, . . . , ⟨⟨S n⟩⟩]
⟨⟨∨(S 1, . . . , S n)⟩⟩ "anyOf": [⟨⟨S 1⟩⟩, . . . , ⟨⟨S n⟩⟩]
⟨⟨ 1 (S 1, . . . , S n)⟩⟩ "oneOf": [⟨⟨S 1⟩⟩, . . . , ⟨⟨S n⟩⟩]
⟨⟨¬S⟩⟩ "not": ⟨⟨S⟩⟩
⟨⟨S 1 ⇒ S 2 | S 3⟩⟩ "if": ⟨⟨S 1⟩⟩, “then” : ⟨⟨S 2⟩⟩, “else” : ⟨⟨S 3⟩⟩

⟨⟨const(J)⟩⟩ "const": ⟨⟨J⟩⟩
⟨⟨enum(J1, . . . , Jn)⟩⟩ ⟨"enum": [J1, . . . , Jn]⟩
⟨⟨Bool/Null/Num/ "boolean"/ "null"/ "number"/

Str/Arr/Obj⟩⟩ "string"/ "array"/ "object"
⟨⟨type(S 1, . . . , S n)⟩⟩ "type": [⟨⟨S 1⟩⟩, . . . , ⟨⟨S n⟩⟩]
⟨⟨betwM

m⟩⟩ "minimum": m , "maximum": M
⟨⟨xBetwM

m⟩⟩ "exclusiveMinimum": m , "exclusiveMaximum": M
⟨⟨mulOf(q)⟩⟩ "multipleOf": q
⟨⟨lenM

m⟩⟩ "minLength": m , "maxLength": M
⟨⟨pattern(r)⟩⟩ "pattern": r
⟨⟨uniqueItems⟩⟩ "uniqueItems": "true"
⟨⟨iteM

m⟩⟩ "minItems": m , "maxItems": M
⟨⟨contains(S)⟩⟩ "contains": ⟨⟨S⟩⟩
⟨⟨items(S 1, . . . , S n; S ′)⟩⟩ "items": [⟨⟨S 1⟩⟩, . . . , ⟨⟨S n⟩⟩], "additionalItems": ⟨⟨S ′⟩⟩
⟨⟨proM

m⟩⟩ "minProperties": m, "maxProperties": M
⟨⟨propNames(S)⟩⟩ "propertyNames": ⟨⟨S⟩⟩
⟨⟨req(k1, . . . , kn)⟩⟩ "required": [k1,. . . ,kn]

⟨⟨props(k1 : S 1, . . . , kn : S n "properties": {k1 : ⟨⟨S 1⟩⟩,. . . ,kn : ⟨⟨S n⟩⟩ },
r1 : S ′1, . . . , rm : S ′m; "patternProperties": {r1 : ⟨⟨S ′1⟩⟩,. . . ,rm : ⟨⟨S ′m⟩⟩ },

S)⟩⟩ "additionalProperties": ⟨⟨S⟩⟩
⟨⟨S defs(x1 : S ′1, . . . , xn : S ′n)⟩⟩ ⟨⟨S⟩⟩, "definitions": { x1 : ⟨⟨S ′1⟩⟩, . . . , xn : ⟨⟨S ′n⟩⟩}
⟨⟨x⟩⟩ "$ref": "#/definitions/"·x

"minimum" : m and "exclusiveMinimum" : m are not generated when m = −∞
"maximum" : M and "exclusiveMaximum" : M are not generated when M = ∞
"maxLength" : M, "maxItems" : M, and "maxProperties" : M are not generated when M = ∞

Figure 10: Translation from the algebra to JSON Schema.

14

3.3. Semantic equivalence of the algebraic presentation and original JSON Schema
Our presentation differs from original JSON Schema in the syntax, which has however a strict

correspondence as illustrated in the previous section, and in our adoption of an inductive stratified
semantic to describe variables. In JSON Schema, it is specified that a variable is equivalent to its
definition, that is that

[[x]]E = [[E(x)]]E .

This is a very natural property, but it is not an inductive definition, since in general E(x) is big-
ger than x. For this reason, we adopted the definition of Figure 8, that allows us to conduct all
our proofs by induction. In this section, however, we prove that the property [[x]]E = [[E(x)]]E

derives from our definition. Moreover, recall that we defined the interpretation of all operators
by translating JSON Schema definitions into equations for [[S]]i

E , as in the following example: 1.1,1.6

[[propNames(S)]]i
E = {{ J | J = {k1 : J1, . . . , km : Jm}, l ∈ {{1..m}} ⇒ kl ∈ [[S]]i

E }}.

In order to prove that our semantics [[S]]E really corresponds to that of JSON Schema we
have now to prove that these equations are preserved when the limit [[S]]E of the [[S]]i

E succes-
sion is computed, so that, for example, for propNames(S) we have: 1.1,1.6

[[propNames(S)]]E = {{ J | J = {k1 : J1, . . . , km : Jm}, l ∈ {{1..m}} ⇒ kl ∈ [[S]]E }}.

These properties are proved in Theorem 1 below, after Lemma 1. Lemma 1 expresses the
fact that, having fixed a specific JSON value J and a schema S , the question whether J ∈ [[S]] j

E
may have different answers for small values of j, but, after a certain index I(J, S , E), the answer
to this question converges to either true or false, even in presence of negative variables, provided
that recursion is guarded. With this property, the proof of Theorem 1 becomes quite easy. 1.1,1.6

Lemma 1 (Convergence). There exists a function I that maps every triple J, S , E, where E is
guarded and closing for S , to an integer i = I(J, S , E) such that:

(∀ j ≥ i. J ∈ [[S]] j
E) ∨ (∀ j ≥ i. J < [[S]] j

E)

Proof. For any guarded E, we can define a function dE from assertions to natural numbers such
that, when x directly depends on y, then dE(x) > dE(y). Specifically, we define the degree dE(S)
of a schema S in E as follows. If S is a variable x, then dE(x) = dE(E(x)) + 1. If S is not a
variable, then dE(S) is the maximum degree of all unguarded variables in S and, if it contains
no unguarded variable, then dE(S) = 0. This definition is well-founded thanks to the guarded-
ness condition. We now define a function I(J, S , E) with the desired property by induction on
(J, dE(S), S), in this order of significance.

(i) Let S = x. We prove that I(J, x, E) = I(J, E(x), E) + 1 has the desired property. We want to
prove that

(∀ j ≥ I(J, E(x), E) + 1. J ∈ [[x]] j
E) ∨ (∀ j ≥ I(J, E(x), E) + 1. J < [[x]] j

E)

We rewrite [[x]] j
E as [[E(x)]] j−1

E :

(∀ j ≥ I(J, E(x), E) + 1. J ∈ [[E(x)]] j−1
E) ∨ (∀ j ≥ I(J, E(x), E) + 1. J < [[E(x)]] j−1

E)

i.e., (∀ j ≥ I(J, E(x), E). J ∈ [[E(x)]] j
E) ∨ (∀ j ≥ I(J, E(x), E). J < [[E(x)]] j

E)

This last statement holds by induction, since dE(x) = dE(E(x)) + 1, hence the term J is the same
15

but the degree of E(x) is strictly smaller than that of x.

(ii) Let S = ¬S ′. We prove that I(J,¬S ′, E) defined as I(J, S ′, E) has the desired property. We
want to prove that, for any J:

(∀ j ≥ I(J, S ′, E). J ∈ [[¬S ′]] j
E) ∨ (∀ j ≥ I(J, S ′, E). J < [[¬S ′]] j

E)

By definition of [[¬S ′]] j
E , we need to prove that for any J:

(∀ j ≥ I(J, S ′, E). J < [[S ′]] j
E) ∨ (∀ j ≥ I(J, S ′, E). J ∈ [[S ′]] j

E)

which holds by induction on S , since the term J is the same and the degree is equal.

(iii) Let S = S ′ ∧ S ′′. In this case, we let
I(J, S ′ ∧ S ′′, E) = max(I(J, S ′, E), I(J, S ′′, E)). We want to prove that:

(∀ j ≥ max(I(J, S ′, E), I(J, S ′′, E)). J ∈ [[S ′ ∧ S ′′]] j
E)

∨(∀ j ≥ max(I(J, S ′, E), I(J, S ′′, E)). J < [[S ′ ∧ S ′′]] j
E)

This follows immediately from the following two properties, that hold by induction on (J, dE(S), S),
since both S 1 and S 2 have a degree less or equal to S , and are strict subterms of S :

(∀ j ≥ I(J, S ′, E). J ∈ [[S ′]] j
E) ∨ (∀ j ≥ I(J, S ′, E). J < [[S ′]] j

E)

(∀ j ≥ I(J, S ′′, E). J ∈ [[S ′′]] j
E) ∨ (∀ j ≥ I(J, S ′′, E). J < [[S ′′]] j

E)

The same proof holds for the case S = S ′ ∨ S ′′.

(iv) Let S = items(S 1, . . . , S n; S n+1). We want to prove that:

(∀ j ≥ I(J, S , E). J ∈ [[items(S 1, . . . , S n; S n+1)]] j
E)

∨ (∀ j ≥ I(J, S , E). J < [[items(S 1, . . . , S n; S n+1)]] j
E)

Consider the definition of [[items(S 1, . . . , S n; S n+1)]] j
E :

{J | J = [J1, . . . , Jm], l ∈ {{1..m}} ⇒ ((∀k ∈ {{1..n}}. l = k ⇒ Jl ∈ [[S k]] j
E) ∧ (l > n ⇒ Jl ∈

[[S n+1]] j
E))}

The boolean value of the statement “J ∈ [[items(S 1, . . . , S n; S n+1)]] j
E” converges after it con-

verges for all pairs (Jl, S k) and (Jl, S n+1) that appear in the definition. Hence, we let I(J, S , E) be 2.3
the maximum among all the indexes I(Jl, S k, E) for the pairs l = k and the indexes I(Jl, S n+1, E)
for l > n, and we conclude by induction. The fact that all these indexes are well defined derives,
by induction, from the fact that each Jl is a strict subterm of J. Observe that the fact that each Jl

is strictly smaller than J is essential since, in general, the degree of each S k may be bigger than
the degree of S , since they are all in a guarded position.

Observe that, while we proceed by induction on S with the boolean operators, which apply
smaller schemas on the same term, we use induction on J when working with typed operators.
All operators of the language can be treated in the same way.

We can finally prove the semantics equivalence between our presentation and JSON Schema. 1.1, 1.6

16

Theorem 1 (Equivalence). For any E guarded, the following equality holds:

[[E(x)]]E = [[x]]E

Moreover, for each equivalence in Figure 8, the equivalence still holds if we substitute every
occurrence of [[S]]i

E with [[S]]E .

Proof. This is an immediate consequence of convergence (Lemma 1). Consider any equation
such as:

[[propNames(S)]]i
E = {{ J | J = {k1 : J1, . . . , km : Jm}, l ∈ {{1..m}} ⇒ kl ∈ [[S]]i

E }}.

That is:
J ∈ [[propNames(S)]]i

E ⇔ J = {k1 : J1, . . . , km : Jm}, l ∈ {{1..m}} ⇒ kl ∈ [[S]]i
E

Informally, if we consider any integer I that is bigger than I(J, [[propNames(S)]]i
E , E) and

of every I(kl, S , E), then, if the equation holds for one index i ≥ I, then it holds for every such
index, hence it holds for the limit. This is the general idea, and we now present a more formal
proof.

We first prove that: ⋃
i∈N

⋂
j≥i

[[x]] j
E =
⋃
i∈N

⋂
j≥i

[[E(x)]] j
E

We use Lemma 1 and the fact that I(J, x, E) = I(J, E(x), E) + 1:
J ∈
⋃

i∈N
⋂

j≥i[[x]] j
E

⇔ ∀ j ≥ I(J, x, E). J ∈ [[x]] j
E

⇔ ∀ j ≥ I(J, E(x), E) + 1. J ∈ [[x]] j
E

⇔ ∀ j ≥ I(J, E(x), E) + 1. J ∈ [[E(x)]] j−1
E

⇔ ∀ j ≥ I(J, E(x), E). J ∈ [[E(x)]] j
E

⇔ J ∈
⋃

i∈N
⋂

j≥i[[E(x)]] j
E

For the second property, the crucial case is that for J ∈ [[¬S]]E , where we want to prove:
J ∈ [[¬S]]E ⇔ J ∈ JVal(∗) \ [[S]]E .

We use Lemma 1 and the fact that I(J,¬S , E) = I(J, S , E):

J ∈ [[¬S]]E

⇔ ∀ j ≥ I(J,¬S , E). J ∈ [[¬S]] j
E

⇔ ∀ j ≥ I(J, S , E). J ∈ [[¬S]] j
E

⇔ ∀ j ≥ I(J, S , E). J < [[S]] j
E

⇔ (∗) ∃ j ≥ I(J, S , E). J < [[S]] j
E

⇔ ¬(∀ j ≥ I(J, S , E). J ∈ [[S]] j
E)

⇔ J < [[S]]E

⇔ J ∈ JVal(∗) \ [[S]]E

For the crucial ⇔ (∗) step, the ⇒ direction is immediate. The direction ⇐ derives from the
convergence property of I(J, S , E), once J < [[S]] j

E holds for an index bigger than I(J, S , E): then
it holds for any such index.

17

For all other cases, consider for example the case where J ∈ [[items(S 1, . . . , S n; S n+1)]]E . By
Lemma 1, if we let I = I(J, items(S 1, . . . , S n; S n+1), E) , we have the first equivalence below,
from which other equivalence follow in order to prove the case.

J ∈ [[items(S 1, . . . , S n; S n+1)]]E

⇔ ∀ j ≥ I. J = [J1, . . . , Jm], l ∈ {{1..m}} ⇒ (∀k ∈ {{1..n}}. l = k ⇒ Jl ∈ [[S k]] j
E) ∧ (l > n ⇒ Jl ∈

[[S n+1]] j
E))

⇔ (∗)J = [J1, . . . , Jm], l ∈ {{1..m}} ⇒
∀ j ≥ I.((∀k ∈ {{1..n}}. l = k ⇒ Jl ∈ [[S k]] j

E) ∧ (l > n⇒ Jl ∈ [[S n+1]] j
E))

⇔ (∗∗) J = [J1, . . . , Jm], l ∈ {{1..m}} ⇒
∀ j ≥ I.(∀k ∈ {{1..n}}. l = k ⇒ Jl ∈ [[S k]] j

E) ∧ ∀ j ≥ I.(l > n⇒ Jl ∈ [[S n+1]] j
E))

⇔ (∗) J = [J1, . . . , Jm], l ∈ {{1..m}} ⇒
(∀k ∈ {{1..n}}. l = k ⇒ ∀ j ≥ I.Jl ∈ [[S k]] j

E) ∧ (l > n⇒ ∀ j ≥ I.Jl ∈ [[S n+1]] j
E)

⇔ J = [J1, . . . , Jm], l ∈ {{1..m}} ⇒
(∀k ∈ {{1..n}}. l = k ⇒ Jl ∈ [[S k]]E) ∧ (l > n⇒ Jl ∈ [[S n+1]]E)

The two (∗) steps are justified by the fact that premises not depending by the universally
quantified i can be traversed by the universal quantification, while (∗∗) follows from the simple
rule ∀x.(P(x) ∧ Q(x)) ⇔ ∀x.P(x) ∧ ∀x.Q(x). The last equivalence follows from the fact that
I(J, items(S 1, . . . , S n; S n+1), E) is greater than each I(J, S i, E), for i ∈ {{1..n + 1}} and Lemma 1.

All other cases follow easily from convergence. Consider for example the case where J ∈
[[contains(S)]]E . We want to prove:

J ∈ [[contains(S)]]E ⇔ (J = [J1, . . . , Jn]⇒ ∃l ∈ {{1..n}}. Jl ∈ [[S]]E)

If J is not an array, the double implication holds trivially. Consider now the case J = [J1, . . . , Jn];
we exploit the fact that I(J, contains(S), E) is greater than I(Jl, S , E) for every l ∈ {{1..n}}:

J ∈ [[contains(S)]]E

⇔ ∀ j ≥ I(J, S , E). J ∈ [[contains(S)]] j
E

⇔ ∀ j ≥ I(J, S , E). ∃l ∈ {{1..n}}. Jl ∈ [[S]] j
E

⇔ (∗) ∃l ∈ {{1..n}}.∀ j ≥ I(J, S , E). Jl ∈ [[S]] j
E

⇔ ∃l ∈ {{1..n}}. Jl ∈ [[S]]E

For the ⇔ (∗) step, the right-to-left direction is obvious. In the other direction, consider any
j0 with j0 ≥ I(J, S , E), by hypothesis there exists l0 such that Jl0 ∈ [[S]] j0

E . Since I(Jl0 , S , E) ≤
I(J, S , E), we have that the value of the boolean assertion Jl0 ∈ [[S]] j0

E is fixed for every j0 greater
than I(J, S , E), hence ∀ j ≥ I(J, S , E). Jl0 ∈ [[S]] j

E , hence ∃l ∈ {{1..n}}.∀ j ≥ I(J, S , E). Jl ∈ [[S]] j
E .

All other cases are similar, or easier.

4. Failure of negation closure

In this section we will discuss the negation properties of JSON Schema and show that it is
almost closed under negation, but there are assertions that cannot be expressed without negation,
and we exactly characterize them.

18

4.1. Preliminaries
Definition 3 (Equivalence: (S , E) ≡ (S ′, E′), S ≡ S ′). We say that (S , E) is equivalent to (S ′, E′),
or (S , E) ≡ (S ′, E′), iff [[S]]E = [[S ′]]E′ .

We say that S is equivalent to S ′, or S ≡ S ′, iff they are defined over the same variables and,
for any environment E that is guarded and is closing for both, (S , E) ≡ (S ′, E).

4.2. Constraints and requirements
We divide object and array assertions into constraints and requirements, which are summa-

rized in Table 1.

Table 1: Constraints and Requirements.

Objects Arrays

Constraints proM
0 (M , ∞) iteM

0 (M , ∞)
props(k1 : S 1, . . . , kn : S n; S) items(S 1, . . . , S n; S)
propNames(S) uniqueItems

Requirements pro∞m (m ≥ 1) ite∞m (m ≥ 1)
req(k1, . . . , kn) contains(S)

An object assertion S is a constraint if it behaves as a universally quantification over all fields
of an object: it is satisfied by the empty object and the following implication holds, when J+ is
an object obtained by adding a member to J:

J+ ∈ [[S]]E ⇒ J ∈ [[S]]E

Hence, constraints can only be violated by adding a member: it prevents the addition of some
specific members, but does not require the presence of a member. The object constraints are the
assertions props(r1 : S 1, . . . , rn : S n; S), propNames(S) and proM

0 with M , ∞.
Dually, an object assertion S is a requirement if it behaves as an existential quantification

over the fields of an object: it is violated by the empty object and the following implication
holds, when J+ is an object obtained by adding a member to J:

J ∈ [[S]]E ⇒ J+ ∈ [[S]]E

Hence, a requirement can only be violated by removing a member: it requires the presence of
some specific members. The object requirements are the assertions req(k1, . . . , kn) and pro∞m with
m ≥ 1.

In the same way, we distinguish array constraints and requirements. An array constraint S is
satisfied by the empty array and the following implication holds, when J+ is an array obtained
by adding an element to J:

J+ ∈ [[S]]E ⇒ J ∈ [[S]]E

The array constraints are items(S 1, . . . , S n; S), uniqueItems, and iteM
0 with M , ∞.

Dually, an array requirement is violated by the empty array and the following implication
holds, when J+ is an array obtained by adding an element to J:

J ∈ [[S]]E ⇒ J+ ∈ [[S]]E

19

Hence, an array constraint may prevent the addition of an element, while a requirement may re-
quire the presence of some specific elements. The array requirements are the assertions contains(S)
and ite∞m with m ≥ 1.

4.3. JSON Schema is almost negation-closed, but not exactly

We say that a logic is negation-closed if, for every formula, there exists an equivalent one
where no negation operator appears. In our presentation of JSON Schema, negation operators
include S 1 ⇒ S 2, S 1 ⇒ S 2 | S 3 and 1 (S 1, . . . , S n), since ¬S can be also expressed as S ⇒ f
or as 1 (S , t). Negation-closure is usually obtained by coupling each algebraic operator with a
dual operator that is used to push negation inside the first one. We are going to prove here that
negation-closure is “almost” true for JSON Schema but not completely, and we are going to ex-
actly describe the situations where negation cannot be pushed through JSON Schema operators.

We first examine this issue for object-related assertions and we then move to arrays. 2.11

4.3.1. Objects
According to our collection of GitHub JSON Schema documents, the most common usage

patterns for props(r1 : S 1, . . . , rn : S n; S a) are those where each ri is the pattern ki that only
matches the string ki, generated by the use of the JSON Schema operator "properties", and
where S a is either t or f.

When every pattern has the form ki and S a is t, then negation can be easily pushed through
props, as specified by Property 1.

Property 1 (Negation of the most common use case for props).

¬props(k1 : S 1, . . . , kn : S n; t) ≡ type(Obj) ∧
∨

i∈{{1..n}}(req(ki) ∧ props(ki : ¬S i; t))

Proof. By definition, J ∈ [[props(k1 : S 1, . . . , kn : S n; t)]]E iff

∀l. J = {k′1 : J1, . . . , k′m : Jm}, l ∈ {{1..m}} ⇒ (∀i ∈ {{1..n}}. k′l ∈ L(ki)⇒ Jl ∈ [[S i]]E)

Hence, J < [[props(k1 : S 1, . . . , kn : S n; t)]]E iff

∃l. J = {k′1 : J1, . . . , k′m : Jm} ∧ l ∈ {{1..m}} ∧ (∃i ∈ {{1..n}}. k′l = ki ∧ Jl < [[S i]]E)

⇔ J = {k′1 : J1, . . . , k′m : Jm} ∧ ∃i ∈ {{1..n}}. ∃l ∈ {{1..m}}. k′l = ki ∧ Jl ∈ [[¬S i]]E)

⇔ (∗) J ∈ [[type(Obj) ∧
∨

i∈{{1..n}}(req(ki) ∧ props(ki : ¬S i; t))]]E

In the last equivalence we exploit the fact that any name can only appear once in an object, hence
saying that one field (k′l , Jl) with k′l = ki appears in the object such that Jl ∈ [[¬S i]]E is equivalent
to saying that one field with that name exists (req(ki)) and that every field with that name has a
value in ¬S (props(ki : ¬S i; t)).

Property 1 shows that, in the most common case, req can be used to express negation of props
in a quite natural way, although with a bit of complexity, since we need an extra “type(Obj)∧ . . .”
to negate the implicative part of props semantics, a

∨
i∈{{1..n}} to negate its implicit conjunction,

and every req(ki) must be paired with a props(ki : ¬S i; t) in order to express both the fact that ki

is required, and the fact that its schema must violate S i.

20

Example 2. Consider this fairly simple schema.

1 { "not" : { "$ref" : "#/ definitions /main "},
2 " definitions " : { "main" : {
3 " properties ":{" name ": {" type " : " string "},
4 " surname " : {" type " : " string "}} ,
5 " additionalProperties " : true }}}

This schema is satisfied by any value that does not satisfy the main definition, which only
constrains the type of name and surname properties in objects.

According to Property 1, this schema is equivalent to the one shown below, illustrating how
negation can be pushed down, inside "properties" assertions. 1.4

1 { " type " : " object ",
2 " anyOf " : [{" required " : [" name "],
3 " properties " : {" name" : {" not ": {" type " : " string "}}} ,
4 " additionalProperties " : true},
5 {" required " : [" surname "],
6 " properties " : {" surname " : {" not ": {" type " : " string "}}} ,
7 " additionalProperties " : true }]}

This schema is, hence, satisfied by any object having at least one property name or surname
(or both) not of type string, such as:

{ "name": 1564, "surname" : "Galilei", "year" : 1642}

The situation becomes much more involved when the "additionalProperties" part of
props is not t but is f, which is violated by the presence of a member name that does not belong to
{{k1, . . . , kn}}. We do not have a straightforward way, in JSON Schema, to express the requirement
that an object contains a member whose name is not in a set {{k1, . . . , kn}}, but this fact can be
nevertheless expressed, by stating that, for some i, the object contains at least i+ 1 members, but
at most i members whose names belong to {{k1, . . . , kn}}.

We first present a way to express in JSON Schema the fact that at most i members whose
names belong to {{k1, . . . , kn}} belong to an object, using a term whose size is quadratic in n.
The encoding is not immediate, but the same technique will be reused in the paper for different
problems.

We use I(l, p) to denote the p-th interval of size 2l starting from [1, 2l], so that I(2, 1), I(2, 2),
I(2, 3), . . . stands for [1, 4], [5, 8], [9, 12], . . ., and I(0, p) is the singleton [p, p]. Every interval
I(l, p) at level l is the union of two smaller intervals at level l − 1, as depicted in Figure 11,
according to this equation:

I(l, p) = I(l − 1, 2p − 1) ∪ I(l − 1, 2p) (†)

I(2, 1)

I(1, 1)

I(0, 1) I(0, 2)

I(1, 2)

I(0, 3) I(0, 4)

[1, 4]

[1, 2]

[1, 1] [2, 2]

[3, 4]

[3, 3] [4, 4]

⇒

Figure 11: Structure of the tree of intervals.

21

Definition 4 (I(l, p)).

I(l, p) = {{ i | ((p − 1) × 2l + 1) ≤ i ≤ (p × 2l) }}

Now, for each interval I(l, p) included in {{1..n}}, we define a set of schema variables Uu
l,p,

collected in an environment E({{k1, . . . , kn}}), such that the objects in [[Uu
l,p]]E are all and only the

objects with less than u names in {{k1, . . . , kn}} whose index belongs to I(l, p), that is:

J ∈ [[Uu
l,p]]E ⇔ | {{ ki | (ki, _) ∈ J ∧ i ∈ I(l, p) }} | ≤ u

Since, by (†), I(l, p) = I(l−1, 2p−1)∪ I(l−1, 2p), we have that J ∈ [[Uu
l,p]]E iff a number i exists

such that J satisfies both U i
l−1,2p−1 and Uu−i

l−1,2p — that is, u is an upper limit for the names of the
object whose index belongs to the interval iff exists i such that i is an upper limit for the names
whose index belongs to the first half of the interval and u − i is an upper limit for the names
whose index belongs to the second half of the interval: 2.7

Uu
l,p :

∨
0≤i≤u (U i

l−1,2p−1 ∧ Uu−i
l−1,2p) (††)

Hence, we define the environment E({{k1, . . . , kn}}) as follows. In the definition of E({{k1, . . . , kn}})
we do not assume that n is a power of 2, hence we need the second line. The interesting equation
is the third one, that we introduced above. Observe that the equation for Uu

l,p, in the case with
u = 2l − 1, requires that U i

l−1,_ is defined for i up to 2l − 1, which we ensure by adding, in line 4,
a trivial definition for a generic Uu′

l′,p′ for any u′ up to 2l′+1 − 1. Hence, when u < 2l, the variable
is defined by the (††) equation (line 3). When u ≥ 2l, then the set I(l, p) contains less than u
elements, hence any object trivially contains less than u elements whose names are indexed by
I(u, p), hence all variables Uu

l,p with 2l ≤ u are satisfied by any object. These trivial variables
could be easily optimized away, at the price of expressing the third line is a way that would be
slightly more complicated.

E({{k1, . . . , kn}}) =

(

(1) U0
0,p : props(kp : f; t) 1 ≤ p ≤ n

(2) U0
0,p : t n + 1 ≤ p ≤ 2⌈log2(n)⌉

(3) Uu
l,p :

∨
0≤i≤u(U i

l−1,2p−1 ∧ Uu−i
l−1,2p) 1 ≤ l ≤ ⌈log2(n)⌉, 1 ≤ p ≤ 2⌈log2(n)⌉−l, 0 ≤ u < 2l

(4) Uu
l,p : t 0 ≤ l ≤ ⌈log2(n)⌉, 1 ≤ p ≤ 2⌈log2(n)⌉−l, 2l ≤ u < 2l+1

)

The following property describes the semantics of these variables. Essentially, a variable Uu
l,p

denotes those objects that contain at most u names ki among {{k1, . . . , kn}} whose index i belongs
to I(l, p); for example, an object in [[U1

2,2]]E+ contains at most 1 name whose index is in the
interval I(2, 2). 2.7

Property 2. For a given set of names {{k1, . . . , kn}}, the variables Uu
l,p of the environment E+ =

E ∪ E({{k1, . . . , kn}}) enjoy the following property, for any object J:

J ∈ [[Uu
l,p]]E+ ⇔ | {{ ki | (ki, _) ∈ J ∧ i ∈ I(l, p) }} | ≤ u

22

Proof. We prove the property by induction on l.
Case U0

0,p : props(kp : f; t) with 1 ≤ p ≤ n: we want to prove that

J ∈ [[props(kp : f; t)]]E+ ⇔ | {{ ki | (ki, _) ∈ J ∧ i ∈ I(0, p) }} | ≤ 0

which holds since props(kp : f; t) is satisfied by all and only the objects that do not contain the
name kp, and the singleton interval I(0, p) only contains p.

Case U0
0,p : t with n + 1 ≤ p ≤ 2⌈log2(n)⌉: we want to prove that

J ∈ [[t]]E+ ⇔ | {{ ki | (ki, _) ∈ J ∧ i ∈ I(0, p) }} | ≤ 0 when n + 1 ≤ p

which holds trivially since, if n + 1 ≤ p, then {{ ki | i ∈ I(0, p) }} is empty.
Case Uu

l,p :
∨

0≤i≤u(U i
l−1,2p−1 ∧ Uu−i

l−1,2p) with 1 ≤ l ≤ ⌈log2(n)⌉, 1 ≤ p ≤ 2⌈log2(n)⌉−l, 0 ≤
u < 2l. We observe that | {{ ki | (ki, _) ∈ J ∧ i ∈ I(l, p) }} | ≤ u iff there exists i such that 0 ≤ i ≤ u
and

| {{ ki | (ki, _) ∈ J ∧ i ∈ I(l − 1, 2p − 1) }} | ≤ i ∧ | {{ ki | (ki, _) ∈ J ∧ i ∈ I(l − 1, 2p) }} | ≤ u − i

and we conclude by induction. We also observe that the variable U i
l,p is defined for every triple

(l, p, i) such that 0 ≤ l ≤ ⌈log2(n)⌉, 1 ≤ p ≤ 2⌈log2(n)⌉−l, 0 ≤ u < 2l+1. This ensures that both
U i

l−1,2p−1 and Uu−i
l−1,2p are defined when 1 ≤ l ≤ ⌈log2(n)⌉, 1 ≤ p ≤ 2⌈log2(n)⌉−l, 0 ≤ u < 2l.

Specifically, the biggest value required for i in U i
l−1,2p−1 is 2l − 1, when u = 2l − 1 and i = u, and

Uu′
l−1,_ is defined for values of u′ up to 2(l−1)+1 − 1, that is, u′ = 2l − 1. The same upper bound

2l − 1 holds for u − i in Uu−i
l−1,2p, when u = 2l − 1 and i = 0.

Finally, we have case Uu
l,p : t with 0 ≤ l < ⌈log2(n)⌉, 1 ≤ p ≤ 2⌈log2(n)⌉−l, 2l ≤ u < 2l+1:

we want to prove that

J ∈ [[t]]E+ ⇔ | {{ ki | (ki, _) ∈ J ∧ i ∈ I(l, p) }} | ≤ u

which holds trivially since I(l, p) only contains 2l indexes, and 2l ≤ u.

Property 3. The number of symbols in E({{k1, . . . , kn}}) grows like O(n2).

Proof. We only count the number of symbols in line 3, where the definition size grows as O(u);
the other lines are asymptotically dominated. Line 3 is defined for any l, p, and u such that
1 ≤ l ≤ ⌈log2(n)⌉, 1 ≤ p ≤ 2⌈log2(n)⌉−l, and 0 ≤ u < 2l, and its size grows like u, hence its total
size is: ∑

l∈{{1..⌈log2(n)⌉}}
∑

p∈{{1..2⌈log2(n)⌉−l}}

∑
u∈{{0..2l−1}}(O(u))

=
∑

l∈{{1..⌈log2(n)⌉}}
∑

p∈{{1..2⌈log2(n)⌉−l}} O(22l)

=
∑

l∈{{1..⌈log2(n)⌉}}(2⌈log2(n)⌉−l) · O(22l)

=
∑

l∈{{1..⌈log2(n)⌉}} O(2⌈log2(n)⌉+l)

= O(2⌈log2(n)⌉) ×
∑

l∈{{1..⌈log2(n)⌉}} O(2l)

= O(2⌈log2(n)⌉) × O(2⌈log2(n)⌉) = O(n2)

23

Now that we know how to express the fact that | {{ ki | (ki, _) ∈ J ∧ i ∈ I(l, p) }} | ≤ u, we
can express the negation of props(k1 : t, . . . , kn : t; f), as previously described: the instance is
an object, and exists i such that the instance contains at most i fields whose names are in the
set, but the instance contains at least i + 1 names (Property 4, case (1)). In Property 4, case (2)
combines Property 1 and case (1): props(k1 : S 1, . . . , kn : S n; f) is violated either by violating
props(k1 : S 1, . . . , kn : S n; t) or by violating the props(. . . ; f) part.

Property 4 (Negation of props(. . . ; f)).

(1) (¬props(k1 : t, . . . , kn : t; f), E)
= (type(Obj) ∧ (

∨
0≤i≤n(U i

⌈log2 n⌉,1 ∧ pro∞i+1)), E ∪ E({{k1, . . . , kn}}))

(2) (¬props(k1 : S 1, . . . , kn : S n; f), E)
= (¬props(k1 : S 1, . . . , kn : S n; t) ∨ ¬props(k1 : t, . . . , kn : t; f), E)

Proof. (1) By definition, J < [[props(k1 : t, . . . , kn : t; f)]]E iff

¬(∀l. (J = {k′1 : J1, . . . , k′m : Jm} ∧ l ∈ {{1..m}})⇒ (k′l < L(k1| . . . |kn)⇒ Jl ∈ [[f]]E))

¬(∀l. (J = {k′1 : J1, . . . , k′m : Jm} ∧ l ∈ {{1..m}})⇒ k′l ∈ L(k1| . . . |kn))

⇔ J = {k′1 : J1, . . . , k′m : Jm} ∧ ∃l. l ∈ {{1..m}} ∧ k′l < {{k1, . . . , kn}}

Consider now J ∈ [[type(Obj) ∧ (
∨

0≤i≤n(U i
⌈log2 n⌉,1 ∧ pro∞i+1))]]E∪E({{k1,...,kn}}). By Property 2, it

holds iff J is an object with at least i + 1 fields of which at most i belong to the set {{k1, . . . , kn}}.
(2) By definition,

props(r1 : S 1, . . . , rn : S n; S a) ≡ props(r1 : S 1, . . . , rn : S n; t) ∧ props(r1 : t, . . . , rn : t; S a)

The thesis follows immediately by setting ri = ki and S a = f, and by De Morgan rules.

Example 3. Consider the following schema. 2.8

1 { "not ": { " properties ": {" fullname ": { " type ": " string " },
2 " additionalProperties ": false
3 }
4 }

This schema is satisfied by any value that does not satisfy the schema inside "not", which
constrains the type of the fullname property and forbids additional properties.

According to Property 4 case 2, this schema is equivalent to the one shown below. Observe
that we only need here the variables U0

0,1 and U1
0,1, that correspond to lines (1) and (4) of the

definition of E. Line (2) generates no variable since ⌈log2(n)⌉ = 0, hence n + 1 > 2⌈log2(n)⌉, and
line (3) generates no variable since 1 > ⌈log2(n)⌉.

24

1 { " type ": " object ",
2 " anyOf ": [
3 { " required ": [" fullname "],
4 " properties ": { " fullname ": { "not ": { " type ": " string " } } },
5 " additionalProperties ": true
6 },
7 { " anyOf ": [
8 { "$ref ": "#/ definitions / UpTo_0_In_0_1 ", " minProperties ": 1 },
9 { "$ref ": "#/ definitions / UpTo_1_In_0_1 ", " minProperties ": 2 }

10]
11 }
12],
13 " definitions ": {
14 " UpTo_0_In_0_1 ": { " properties ": { " fullname ": false },
15 " additionalProperties ": true
16 },
17 " UpTo_1_In_0_1 ": true
18 }
19 }

This schema is, hence, satisfied by any object having at least one property fullname not of
type string (lines 3-4), or having at least one property and no fullname property (lines 8 and
14-16), or having at least two properties (lines 9 and 17), such as:

{ "fullname": 1642 }

{ "year" : 1642 }

{ "fullname": "Galileo Galilei", "year" : 1642 }

A natural question is which other use cases can be expressed, maybe through more and more
complex encodings. To answer this question, we first introduce some further notation.

Notation 1. Given a props assertion S = props(r1 : S 1, . . . , rn : S n; S a) and a string k, the
functions [k]S and SS (k) are defined as follows.

1. [k]S = {{ k′ | ∀i ∈ {{1..n}}. k ∈ L(ri)⇔ k′ ∈ L(ri) }}: the set of strings that match exactly the
same patterns found in S as k.

2. SS (k): let I = {{ i | k ∈ L(ri) }}; if I = ∅, then SS (k) = S a else SS (k) = ∧i∈IS i: hence,
SS (k) is the conjunction of the schemas that must be satisfied by J′ if k : J′ is a member
of an object that satisfies S .

The function SS is an alternative way of representing props(r1 : S 1, . . . , rn : S n; S a), since it
enjoys the following property.

Property 5. Given an assertion S = props(r1 : S 1, . . . , rn : S n; S a), for any object J, J belongs
to [[S]]E iff, for every member k : J′ of J, we have that J′ ∈ [[SS (k)]]E .

Proof. An object J belongs to [[props(r1 : S 1, . . . , rn : S n; S a)]]E iff the following two conditions
hold, where we use Ik to denote the set {{ i | k ∈ L(ri) }}:

1. for any field (k : J′) of J with Ik = ∅, we have that J′ ∈ [[S a]]E ;
2. for any field (k : J′) of J where Ik , ∅, we have that J′ ∈ [[S i]]E for each i ∈ Ik.

In both cases, by definition of SS (k), we are just asking that J′ ∈ [[SS (k)]]E .

25

We now prove that Property 4 exhausts all cases where ¬props(r1 : S 1, . . . , rn : S n; S a) can
be expressed without negation. When we say “(S , E) can be expressed without negation”, we
mean “there exists a pair (S ′, E′) that contains no negation such that (S , E) ≡ (S ′, E′)”.

Theorem 2. Given S = props(r1 : S 1, . . . , rn : S n; S a) and a closing environment E, if exist
k1, k2 such that (1) [k1]S and [k2]S are both infinite, and (2) exist both J+1 and J−2 such that
J+1 ∈ [[SS (k1)]]E and J−2 < [[SS (k2)]]E , then (¬S , E) cannot be expressed without negation.

Proof. By Property 5, ¬props(r1 : S 1, . . . , rn : S n; S a) is satisfied by every instance that is an
object that contains at least one member k : J′ such that J′ < [[SS (k)]]E . 2.9

Assume that k1, k2, J+1 , J
−
2 exist, and assume that a positive D = S 0 defs(E′) with E′ = x1 :

S ′1, . . . , xn : S ′n expresses (¬S , E), where S = props(r1 : S 1, . . . , rn : S n; S a), in order to reach
a contradiction. Consider a name k ∈ [k2]S that does not appear in any req operator that is in
D: since [k2]S is infinite, such k exists. Let mm be a number that is bigger than every lower
bound m that appears in any proM

m in D and strictly bigger than the number of members of any
object found inside any const or enum operator in D. Consider a set of mm different names
{{k′1, . . . , k

′
mm}} that belong to [k1]S — such a set exists since [k1]S is infinite. Now consider the

following two objects:

{ k′1 : J+1 , . . . , k
′
mm : J+1 , k : J−2 } O1

{ k′1 : J+1 , . . . , k
′
mm : J+1 } O2

Observe that O1 violates the constraint S , thanks to the k : J−2 member, while O2 satisfies
S , hence O1 satisfies the requirement ¬S , thanks to the same member, while O2 does not satisfy
¬S : we have that (O1 ∈ [[¬S]]E ∧¬(O2 ∈ [[¬S]]E)). Hence, we can prove that D does not express
¬S by showing that it enjoys the opposite property: (¬(O1 ∈ [[D]]E′) ∨ O2 ∈ [[D]]E′), that is,
O1 ∈ [[D]]E′ ⇒ O2 ∈ [[D]]E′ .

We say that a schema S ′ satisfies NonDifferentiating if O1 ∈ [[S ′]]i
E′ ⇒ O2 ∈ [[S ′]]i

E′ . We 2.10
now prove that every assertion S ′ inside D satisfies NonDifferentiating, by induction on the
lexicographic pair (i, |S ′|), where |S ′| is the size of S ′. In this way, we prove that D satisfies
NonDifferentiating, which means that it is not equivalent to ¬S .

Every assertion that cannot distinguish two objects (number assertions, for example) satisfies
NonDifferentiating. const and enum assertions in D do not contain O1 or O2 since these are
too big, by construction, hence they do not distinguish O1 from O2. The props and propNames
constraints can only fail because of the presence of a member, never for its absence, hence they
satisfy NonDifferentiating. The name k does not appear in any req requirement in D, hence all
req requirements in D satisfy NonDifferentiating. If O1 ∈ [[proM

m]]i
E′ , then O2 satisfies the upper

bound since O2 is shorter than O1, and it satisfies the lower bound since it has mm members, and
mm ≥ m by construction. If O1 ∈ [[S 1 ∧ S 2]]i

E′ , then O1 ∈ [[S 1]]i
E′ and O1 ∈ [[S 2]]i

E′ , hence the
same holds for O2 by induction on the size of S , hence O2 ∈ [[S 1 ∧ S 2]]i

E′ . The same holds if
we exchange ∧ with ∨ and and with or. For variables, the thesis follows by induction on i, since
[[x j]]i+1

E′ = [[S j]]i
E′ and S j is a subterm of D, and, finally, NonDifferentiating holds trivially when

i = 0. Hence, D itself is NonDifferentiating, hence D does not express (¬S , E).

Corollary 1. Let S = props(r1 : S 1, . . . , rn : S n; S a). The assertion (¬S , E) can be expressed
without negation only if (S , E) can be expressed either as (props(k1 : S 1, . . . , kn : S n; t), E) or as
(props(k1 : S 1, . . . , kn : S n; f), E).

26

Proof. Assume that (¬S , E) can be expressed without negation. By Theorem 2, it is not the case
that exist k1 and k2 such that (1) [k1]S and [k2]S are both infinite, and (2) exist both J+1 and J−2
such that J+1 ∈ [[SS (k1)]]E and J−2 < [[SS (k2)]]E . Hence, either for every k such that [k]S is infinite
there exists no J+ such that J+ ∈ [[SS (k)]]E , hence [[SS (k)]]E = [[f]]E , or for every k such that [k]S

is infinite there exists no J− such that J− < [[SS (k)]]E , hence [[SS (k)]]E = [[t]]E . In the first case,
props(r1 : S 1, . . . , rn : S n; S a) can be expressed as props(k1 : S ′1, . . . , km : S ′m; f), as follows:
every k f such that [k f]S is finite, so that [k f]S = {{k′1, . . . , k

′
l }}, is transformed into a finite set of

simple constraints k′1 : SS (k f), . . . , k′l : SS (k f), and the additional constraint f expresses the fact
that every name k such that [k]S is infinite must satisfy the assertion f. In the second case, we
reason in the same way to prove that the schema can be expressed as (props(k1 : S ′1, . . . , km :
S ′m; t), E).

Theorem 2 gives an abstract characterization of the schemas whose negation cannot be ex-
pressed. Observe that k1 and k2 may coincide, as long as SS (k1) is not trivial, where (S , E)
is trivial when either [[S]]E = [[t]]E , or [[S]]E = [[f]]E . Corollary 1 rephrases Theorem 2 and
shows that Properties 1 and 4 are exhaustive: negation cannot be pushed through props unless
the schema is equivalent to one of those presented in Properties 1 and 4. In terms of the orig-
inal patternProperties and additionalProperties operators, Corollary 1 shows that the
negation-free complement of a schema that contains patternProperties at the top level is
only expressible when the schema can be rewritten into one where patternProperties is not
used. For a schema S that contains additionalProperties at the top level, its complement has
a negation-free expression only if S can be rewritten into one where additionalProperties
is associated to a trivial schema.

A last Corollary of Theorem 2 regards expressibility of negation of propNames(S).

Corollary 2. (¬propNames(S), E) can be expressed without negation if, and only if, either
[[type(Str) ∧ S]]E is finite or [[type(Str) ∧ ¬S]]E is finite.

Proof. (⇐) If [[type(Str) ∧ S]]E is finite and equal to {{k1, . . . , kn}}, then (propNames(S), E) is
equivalent to props(k1 : t, . . . , kn : t; f), whose negation can be expressed by Property 4. If the
complement of [[type(Str) ∧ S]]E is finite and equal to {{k1, . . . , kn}}, then (propNames(S), E) is
equivalent to props(k1 : f, . . . , kn : f; t), whose negation can be expressed by Property 1.

(⇒) If both [[type(Str)∧ S]]E and its complement are infinite, then any string of [[type(Str)∧
S]]E satisfies the conditions for k1 in Theorem 2, and any string in the complement satisfies the
conditions for k2, hence no positive schema can express (¬propNames(S), E).

While propNames(S) is a constraint that specifies that “every name in J belongs to S ”,
¬propNames(S) is a requirement that specifies that there exists a name that satisfies ¬S ; Corol-
lary 2 specifies that ¬propNames(S) has a negation-free expression only in the finitary cases
when either the allowed names, or the forbidden names, form a finite set, so that propNames is
another operator that does not admit, in general, the negation-free expression of its negation dual
in JSON Schema.

4.3.2. Arrays
JSON Schema changes its expressive power when moving from objects to arrays. When

objects are described, the negated schema ¬props(; S) is used to require the presence of one
object member whose value satisfies S , independently of its name, and Corollary 1 specifies

27

that this assertion cannot be expressed in the negation-free fragment of JSON Schema, for any
non-trivial S . 2.11, 2.12

Consider now arrays; arrays can be described as objects where the member names are natural
numbers, with the extra constraint that, whenever the name n + 1 is present, with n ≥ 1, then n
must be present as well. However, arrays have a positive requirement operator contains(S)
that forces the presence of at least one element that satisfies any S , while the inexpressibility
of ¬props(; S) implies that objects have no negation-free way of requiring the presence of a
member that satisfies a non trivial S : hence, non-negative JSON Schema is more expressive for
arrays than for objects.

Despite this crucial difference, the overall situation, as far as negation closure is concerned,
is quite similar: for arrays, as it happens for objects, we will show that the negation of the
fundamental items operator can be expressed without negation in the most common cases, but
not in general.

From our analysis of GitHub schemas, we have verified that the most common use cases for
arrays are the following three, in this order:

1. homogeneous arrays "items": S a, that we indicate with items(; S a);

2. open tuple arrays "items": [S 1, . . . , S n], and no "additionalItems", or "additionalItems":
true, that we indicate with items(S 1, . . . , S n; t);

3. closed tuple arrays "items": [S 1, . . . , S n] with "additionalItems": false, that we
indicate with items(S 1, . . . , S n; f).

We first show, in Property 6, how negation of items can be expressed in these three most
common cases, where case (2) below generalizes the second case in the above list.

Observe that case (3) includes the case when any [[S i]]E = [[f]]E for some S i since, in that
case, [[items(S 1, . . . , S n; S a)]]E is equivalent to [[items(S 1, . . . , S i−1; f)]]E .

Property 6 (Negation of common use cases for items).

(1) ¬items(; S a) ≡ type(Arr) ∧ contains(¬S a)

(2) if for each i, [[S i]]E ⊆ [[S a]]E :

¬items(S 1, . . . , S n; S a)≡
type(Arr) ∧ (

∨
i∈{{1..n}}(items(t1, . . . , ti−1,¬S i; t) ∧ ite∞i) ∨ contains(¬S a))

(3) ¬items(S 1, . . . , S n; f) ≡ type(Arr) ∧ (
∨

i∈{{1..n}}(items(t1, . . . , ti−1,¬S i; t) ∧ ite∞i) ∨ ite∞n+1)

Proof.
We recall the definition of [[items(S 1, . . . , S n; S n+1)]]E :

[[items(S 1, . . . , S n; S n+1)]]E = {{ J |J = [J1, . . . , Jm], l ∈ {{1..m}} ⇒
(∀ j ∈ {{1..n}}. l = j⇒ Jl ∈ [[S j]]E)∧
(l > n⇒ Jl ∈ [[S n+1]]E) }}

(1) We apply De Morgan rules to the definition of [[items(; S a)]]E :

J < [[items(; S a)]]E ⇔ J = [J1, . . . , Jm] ∧ ∃l. l ∈ {{1..m}} ∧ l > 0 ∧ Jl < [[S a]]E

⇔ J ∈ [[type(Arr) ∧ contains(¬S a)]]E
28

(2) We apply De Morgan rules to rewrite J < [[items(S 1, . . . , S n; S a)]]E as (*) below:

J < [[items(S 1, . . . , S n; S a)]]E

⇔ J = [J1, . . . , Jm] ∧ ∃i ∈ {{1..m}}. (∃ j ∈ {{1..n}}. i = j ∧ Ji < [[S j]]E) ∨ (i > n ∧ Ji < [[S a]]E)

⇔ J = [J1, . . . , Jm] ∧ (∃i ∈ {{1..min(m, n)}}. Ji < [[S i]]E) ∨ (∃i. n < i ≤ m ∧ Ji < [[S a]]E) (∗)

We now prove that

(∗)⇔ J ∈ [[type(Arr) ∧ (
∨

i∈{{1..n}}

(items(t1, . . . , ti−1,¬S i; t) ∧ ite∞i) ∨ contains(¬S a))]]E

(⇒) Let us assume that J and i are such that i ∈ {{1..min(m, n)}} ∧ Ji < [[S i]]E ; in this case,
J ∈ [[type(Arr)∧ items(t1, . . . , ti−1,¬S i; t)∧ ite∞i]]E . Otherwise, by (*), we have that exists i such
that n < i ≤ m ∧ Ji < [[S a]]E ; hence, J ∈ [[type(Arr) ∧ contains(¬S a)]]E .
(⇐) In the other direction, assume that J ∈ [[type(Arr) ∧ (

∨
i∈{{1..n}}(items(t1, . . . , ti−1,¬S i; t) ∧

ite∞i) ∨ contains(¬S a))]]E ; hence, this implies that J is an array [J1, . . . , Jm] and either J ∈
[[
∨

i∈{{1..n}} items(t1, . . . , ti−1,¬S i; t) ∧ ite∞i]]E or J ∈ [[contains(¬S a)]]E . In the first case, let i
be the smallest index i such that J ∈ [[items(t1, . . . , ti−1,¬S i; t) ∧ ite∞i]]E . By J ∈ [[ite∞i]]E we
have that i ≤ m, hence we have that ∃i ∈ {{1..min(m, n)}}. Ji < [[S i]]E . In the second case,
J ∈ [[contains(¬S a)]]E implies that ∃i. i ≤ m ∧ Ji < [[S a]]E . If i > n, we have that ∃i. n < i ≤
m ∧ Ji < [[S a]]E , hence (*) holds. If i ≤ n, we observe that, by [[S i]]E ⊆ [[S a]]E , we have that
Ji < [[S a]]E implies Ji < [[S i]]E , hence ∃i ∈ {{1..min(m, n)}}. Ji < [[S i]]E , hence (*) holds.
(3) We first rewrite J < [[items(S 1, . . . , S n; f)]]E as (*) below:

J < [[items(S 1, . . . , S n; f)]]E

⇔ J = [J1, . . . , Jm] ∧ ((m > n) ∨ ∃i ∈ {{1..min(m, n)}}. Ji < [[S i]]E) (∗)

We now prove that (∗) ⇒ J ∈ [[type(Arr) ∧ (
∨

i∈{{1..n}}(items(t1, . . . , ti−1,¬S i; f) ∧ ite∞i) ∨
ite∞n+1)]]E . Let us assume that J and i are such that i ∈ {{1..min(m, n)}} ∧ Ji < [[S i]]E ; in this case,
J ∈ [[type(Arr) ∧ items(t1, . . . , ti−1,¬S i; f) ∧ ite∞i]]E . Otherwise, by (*), we have that m > n,
hence, J ∈ [[type(Arr) ∧ ite∞n+1]]E .

In the other direction, assume that J ∈ [[type(Arr) ∧ (
∨

i∈{{1..n}}(items(t1, . . . , ti−1,¬S i; f) ∧
ite∞i)∨ite∞n+1)]]E , hence J is an array [J1, . . . , Jm] and either J ∈ [[

∨
i∈{{1..n}} items(t1, . . . , ti−1,¬S i; f)∧

ite∞i]]E or J ∈ [[ite∞n+1]]E . In the first case, we reason as in (2) and have that ∃i ∈ {{1..min(m, n)}}. Ji <
[[S i]]E . In the second case, we have that m > n.

Example 4. Consider the following array schema.

1 { "not" : { " items ": { " type " : " object ",
2 " required " : ["name" , " surname "] } } }

This schema is satisfied by any array that contains at least an item which is not an object with
a name and a surname property. According to Property 6(1), this schema is equivalent to the one
shown below.

1 { " type " : " array ",
2 " contains " : { "not" : { " type " : " object ",
3 " required " : ["name" , " surname "] } }
4 }

This schema is therefore satisfied by arrays like the one shown below.
29

[1564, {"surname": "Galilei", "name": "Galileo"}, 1642]

The three cases of Property 6 include the quasi-totality of the items assertions that we found
in our collection. The only case that is not covered by the three cases above is when n > 0, there
exists an i where [[S i]]E ⊈ [[S a]]E , for all i [[S i]]E , [[f]]E , and [[S a]]E , [[f]]E . In this specific
case, we prove that negation cannot be expressed.

Theorem 3. Given (¬items(S 1, . . . , S n; S a), E), if n , 0, all schemas S 1, . . . , S n, S a, are non- 2.13
empty in E, and there exists an i where [[S i]]E ⊈ [[S a]]E , then the algebra without negation cannot
express it.

Proof. Assume that a positive document D = x j defs(x1 : S ′1, . . . , xm : S ′m) expresses the as-
sertion S = ¬items(S 1, . . . , , S n; S a), E, when n , 0, all schemas S 1, . . . , S n, S a, are non-
empty in E, and there exists an i where [[S i]]E ⊈ [[S a]]E , that is, there exist i and J−i such that
J−i ∈ [[S i ∧ ¬S a]]E .
¬items(S 1, . . . , S n; S a) is satisfied by any J that is an array and has either an element at a

position j ≤ n that satisfies ¬S j, or an element after position n + 1 (included) that satisfies ¬S a.
Let nn be a number greater (i.e., ≥) than n and greater than all the lower bounds of any iteM

m in
D and greater than the lengths of all the arrays that appear in const and enum assertions in D.
Consider the following two arrays:

[J1, . . . , Ji−1, J−i , Ji+1, . . . , Jnn, J+, J−i] A1
[J1, . . . , Ji−1, J−i , Ji+1, . . . , Jnn, J+] A2

In these arrays, J+ ∈ [[S a]]E , J−i ∈ [[S i ∧ ¬S a]]E , and all other elements J1, . . . , Jnn are chosen
to satisfy the corresponding S j, if their position j is before n, or S a otherwise, which is possible
since all these schemas are not empty.

A generic S ′ satisfies NonDifferentiating if A1 ∈ [[S ′]]i
E′ ⇒ A2 ∈ [[S ′]]i

E′ . We now prove that 2.10, 2.14
every assertion S ′ inside D satisfies NonDifferentiating, by induction on the lexicographic pair
(i, |S ′|), where |S ′| is the size of S ′. In this way, we prove that D satisfies NonDifferentiating,
which is a contradiction since ¬S is satisfied by A1, thanks to the last element J−i , and is not
satisfied by A2, since A2 satisfies S .

For variables, boolean expressions, and non-array typed operators we reason as in the proof
of Theorem 2. const and enum assertions in D do not contain neither A1 nor A2 since these are
too big, by construction. If S ′ is contains(S ′′), then it is either satisfied by both A1 or A2 or by
none, since they contain the same elements. The lower bound of iteM

m is satisfied by both A1 or
A2 since nn ≥ m by construction. Finally, uniqueItems, items(S ′1, . . . , , S

′
m; S ′a), and the upper

bound of iteM
m are constraints and not requirements, hence they all satisfy NonDifferentiating

since A2 is an initial segment of A1. Hence D is not equivalent to ¬items(S 1, . . . , , S n; S a).

Corollary 3. ¬items(S 1, . . . , , S n; S a) can be expressed without negation only if it is equivalent
to one of the three cases whose negation is expressed in Property 6.

Proof. By Theorem 3, if the positive algebra can express ¬items(S 1, . . . , S n; S), E, then either
n = 0, or exists one schema among S 1, . . . , S n, S a that is empty in E, or, for each i in {{1..n}},
[[S i ∧ ¬S a]]E is empty. These three situations correspond to, respectively, cases (1), (3), and (2),
of Property 6.

30

Hence, we are again in a situation where negation can be pushed through items in almost
all cases of practical interest, but not always. Moreover, as in the object case, we have an exact
characterization of what can be expressed without negation, and what cannot.

We finally observe that, while on one side the requirements req and contains can express
the negation of the constraints props and items in most cases, but not always, on the other side
the constraints props and items can always express the negation of the requirements req and
contains, in a quite simple and direct way.

Property 7 (Full negation for req and contains).

(1) ¬req(k1, . . . , kn) ≡ type(Obj) ∧ (props(k1 : f; t) ∨ . . . ∨ props(kn : f; t))
(2) ¬contains(S) ≡ type(Arr) ∧ items(;¬S)

Proof. (1) J ∈ [[req(k1, . . . , kn)]]E ⇔ (J ∈ JVal(Obj) ⇒ ∀k ∈ {{k1, . . . , kn}}. ∃J′. (k : J′) ∈ J),
hence J < [[req(k1, . . . , kn)]]E iff J ∈ [[type(Obj)]]E and ∃k ∈ {{k1, . . . , kn}}. ∀J′. (ki : J′) < J. The
property ∀J′. (ki : J′) < J is enjoyed by an object J iff it belongs to props(ki : f; t).

(2) J ∈ [[contains(S)]]E ⇔ (J = [J1, . . . , Jm] ⇒ ∃l ∈ {{1..m}}. Jl ∈ [[S]]E), hence J <
[[contains(S)]]E iff J = [J1, . . . , Jm] ∧ ∀l ∈ {{1..m}}. Jl < [[S]]E , that is, iff J ∈ [[type(Arr) ∧
items(;¬S)]]E .

This quasi-duality can be synthesized as follows: in JSON Schema we have two constrain-
t/requirement pairs, items/contains for arrays and props/req for objects. In both cases, the
requirement is somehow less expressive than the negation of its constraint companion: req lacks
the ability to describe infinite sets of names and the associated schemas, contains does not ex-
press the distinction between a head-part and a tail-part in an array schema.

Example 5. Consider the following schema, from a question posted on StackOverflow [22].

1 { " type ": " object ",
2 " properties ": {
3 "x": { " type ": " integer " }
4 },
5 " required ": ["x"],
6 "not ": { " required ": ["z"] }
7 }

This schema describes objects having a mandatory x property of type integer, but without any
z property. The fact that z is actually forbidden is not immediately clear, and, indeed, this was the
actual topic debated in the StackOverflow post. However, by exploiting Property 7, the previous
schema can be transformed as follows.

1 { " type ": " object ",
2 " properties ": {
3 "x": { " type ": " integer " },
4 "z": false
5 },
6 " required ": ["x"]
7 }

This new version of the schema clearly states that z is forbidden.

31

To conclude our remarks about arrays, we observe that the negation of uniqueItems cannot
be expressed in the language without negation.

Theorem 4. (¬uniqueItems, E) cannot be expressed in the algebra without negation.

Proof. Assume that a positive (D, E′) expresses ¬uniqueItems. Choose an integer N strictly
greater than any l that appears as lower bound in a ite j

l in D and also greater than the length of
any array that appears in a const or enum assertion in D. Define the following two arrays, the
first one ending with a repetition of N.

A1 = [1, 2, . . . ,N − 1,N,N] A2 = [1, 2, . . . ,N − 1,N]

An assertion S ′ satisfies NonDifferentiating if A1 ∈ [[S ′]]i
E′ ⇒ A2 ∈ [[S ′]]i

E′ . We now prove that 2.10
every assertion S ′ inside D satisfies NonDifferentiating, by induction on the lexicographic pair
(i, |S ′|), where |S ′| is the size of S ′. In this way, we prove that D satisfies NonDifferentiating,
which is a contradiction since ¬uniqueItems is satisfied by A1, thanks to the repetition of the last
element N, while A2 satisfies uniqueItems, hence it does not satisfy ¬uniqueItems.

We prove that every assertion S ′ inside D satisfies NonDifferentiating by induction on the
lexicographic pair (i, |S ′|). When S = x, we prove that by induction on i: in the base case,
[[x]]i

E′ = ∅ does not contain A1, and when i = i + 1 we have that [[x]]i+1
E′ = [[E′(x)]]i

E′ , and we
conclude by induction on i. Non-array typed assertions accept both A1 and A2. All const and
enum assertions refuse both, since the arrays that they enumerate are shorter than N. Since
A2 is an initial subarray of A1, any constraint items(S 1, . . . , S n; S) and uniqueItems, satisfies
NonDifferentiating. Since the length N is greater than any lower bound l, and A2 is shorter than
A1, any ite j

l that accepts A1 also accepts A2. A requirement contains(S) does not distinguish
the two since they contain the same elements. For S 1 ∧ S 2 we conclude by induction on the
size, since implication of satisfaction is preserved by ∧, and similarly for ∨. Since A1 belongs
to [[D]] by assumption, A2 belongs to [[D]], which contradicts the hypothesis, since A2 satisfies
uniqueItems.

4.3.3. Other types: mulOf(q)
We conclude this section with mulOf(q), whose negation cannot be expressed in the lan-

guage without negation. In the next section, we will show that this completes the list, hence that
negation can be pushed through all the other operators in the language. 2.12

Theorem 5. The pair (¬mulOf(q), E), for any q > 0 cannot be expressed in the algebra without
negation.

Proof. Assume towards a contradiction that a positive document D = S 0 defs(E′) with E′ = x1 :
S 1, . . . , xn : S n expresses ¬mulOf(q). Let us choose a number N such that N > q (hence, N > 0),
and N > M and N > m for any bound m and M, different from ∞, that is found in any assertion
betwM

m , xBetwM
m inside D.

We say that a generic S ′ is Full Or Finite (FOF) for i over the closed interval [N, 2N], if
[N, 2N] ∩ [[S]]i

E′ is either equal to [N, 2N], or is finite (where the empty set is also regarded as
finite). We prove that any subexpression S ′ of D is FOF over [N, 2N] for any i, by induction
on the lexicographic pair (i, |S ′|). For the variables, in the case i = 0 the empty set is finite,
and the inductive step is immediate since [[x j]]i+1

E′ = [[S j]]i
E′ and S j is a subterm of D. Typed

operators whose type is not Num accept all numbers, hence are Full. An interval operator whose
32

bounds are both smaller than N has empty intersection with [N, 2N], and is Full when M = ∞.
The positive mulOf(q) operator has a finite intersection with [N, 2N]. Union or intersection of
two subsets of [N, 2N] which are either finite or full is either finite or full. Hence, D is FOF
over [N, 2N] for any i. The limit

⋃
i∈N
⋂

j≥i[[D]] j can be infinite only if exists i such that [[D]] j

is infinite for j ≥ i, hence the limit is full or finite as well. However, ¬mulOf(q) is not FOF:
it is not full on [N, 2N] since the interval contains at least one multiple of q, by N > q, and its
intersection with [N, 2N] is not finite.

5. Completing the language

5.1. The missing operators
As we have seen, JSON Schema does not enjoy negation-closure, but is endowed with

constraint-requirement pairs props/req and items/contains that exhibit an imperfect duality. We
now define a more regular algebra by adding some negative operators, to obtain a closed alge-
bra where each operator has a real negation dual, and negation can be fully eliminated. This
negation-closed algebra is the one that we implemented in our tools and, in our experience, it is
practical both to reason about JSON Schema and to implement tools for JSON Schema analysis.

The closed algebra completes JSON Schema with the following four dual operators, defined
below: pattReq, contAfter, notMulOf, repeatedItems. All these operators can be expressed in
the algebra using negation but none of them, by the theorems we presented, can be expressed
without negation. The semantics of these operators is defined as follows (where the notation
t1, . . . , tn indicates a sequence of n copies of t).

pattReq(r1 : S 1, . . . , rn : S n) = type(Obj)⇒
∧

i∈{{1..n}} ¬props(ri : ¬S i; t)
contAfter(n : S) = type(Arr)⇒ ¬items(t1, . . . , tn;¬S)

notMulOf(q) = type(Num)⇒ ¬mulOf(q)

repeatedItems = type(Arr)⇒ ¬uniqueItems

The operator pattReq(r1 : S 1, . . . , rn : S n) specifies that, if the instance is an object, then, for
each i ∈ {{1..n}}, it must possess a member whose name matches ri and whose value satisfies S i.
It is strictly more expressive than req, since it allows one to require a name that belongs to an
infinite set L(ri), and it associates a schema S i to each required pattern ri. In the closed algebra,
we regard req as an abbreviated form of pattReq where every pattern has the shape k and every
associated schema is t.

contAfter(n : S) specifies that, if the instance is an array, it must contain at least one element
that satisfies S in a position that is strictly greater than n. This operator has an expressive power
that is slightly greater than the contains(S) operator, since it can distinguish between the head
and the tail of the array. In the closed algebra, we regard contains(S) as an abbreviation for
contAfter(0 : S).

The operators notMulOf(q) and repeatedItems are just the duals of mulOf(q) and uniqueItems.
In the next section we prove that these four operators are all that we need to make JSON Schema
negation-closed.

5.2. Proving negation closure: the not-elimination algorithm
We prove negation closure through the definition of a not-elimination algorithm, which elim-

inates any instance of negation from any expression in the closed algebra.
33

enum(J1, . . . , Jn) = const(J1) ∨ . . . ∨ const(Jn)
const(null) = type(Null)
const(n) = type(Num) ∧ betwn

n n ∈ Num
const(s) = type(Str) ∧ pattern(s) s ∈ Str
const([J1, . . . , Jn]) = type(Arr) ∧ iten

n ∧ itemAt(1 : const(J1)), . . . , itemAt(n : const(Jn))
const({k1 : J1, . . . , kn : Jn}) = type(Obj) ∧ req(k1, . . . , kn) ∧ pron

0
∧ props(k1 : const(J1); t) ∧ . . . ∧ props(kn : const(Jn); t)

Figure 12: Elimination of enum and const.

Not elimination exploits a complement operator r that denotes the pattern that matches any
string that is not matched by r, and the operator r1 ⊓ r2 that denotes a pattern whose language is
L(r1) ∩ L(r2). While this can be regarded as a metanotation, since regular languages are closed
under complement and intersection, in our implementation we actually extended JSON Schema
regular expressions with these operators, for complexity reasons. We delay the discussion of the
choice to Section 5.5.

The not-elimination algorithm starts with a simplification phase, where we use the following
derived operators, similar to those used in JSL for arrays [9]:

itemAt(i : S) = items(t1, . . . , ti−1, S ; t)
itemsAfter(i : S) = items(t1, . . . , ti; S)

These are the simplification steps.
1. items and props simplification: we rewrite each items(S 1, . . . , S n; S a) as itemAt(1 : S 1)∧
. . . ∧ itemAt(n : S n) ∧ itemsAfter(n : S a) and each props(r1 : S 1, . . . , rn : S n; S a) as
props(r1 : S 1; t) ∧ . . . ∧ props(rn : S n; t) ∧ props((r1| . . . |rn) : S a; t).

2. Type simplification: we rewrite each type(T1, . . . ,Tn) as type(T1) ∨ . . . ∨ type(Tn).
3. Const-elimination: we rewrite every instance of const and of enum, with the only ex-

ceptions of const(true) and const(false), through the repeated application of the rules
shown in Figure 12, as also done by Habib et al. in [2].

4. propNames elimination: we rewrite every instance of propNames(S) using props(rS :
f; t), as specified in Section 5.3.

5. Not-explicitation: we rewrite every instance of S 1 ⇒ S 2, (S 1 ⇒ S 2 | S 3) and 1 (S 1, . . . , S n),
according to their definition; the only remaining boolean operators are ¬, ∧, ∨, t, f.

Naïf not-explicitation may exponentially increase the size of the input schema, since the
translation of 1 (S 1, . . . , S n) takes n copies of each argument, and that of (S 1 ⇒ S 2 | S 3) takes
two copies of S 1. This explosion can be easily avoided, by substituting each duplicated argument
of these two operators with a fresh variable, so that the not-explicitation phase would only mul-
tiply the number of occurrences of these variables, but not the entire subschemas represented.
Moreover, the obvious encoding of 1 (x1, . . . , xn) produces an expression whose size is in O(n2),
but there exists an alternative encoding with linear size, that we present in Section 5.4. Hence,
not-explicitation can be implemented in such a way that its output size is linear in the input size,
and the same holds for the other phases of simplification.

On this simplified form, we now apply the following two fundamental steps. 2.15

34

1. Not-completion of variables: this is a key technical step, since not-elimination needs to
deal with the presence of recursive variables in negative positions. In this step, for every
variable xn : S n we define a complement variable not_xn : ¬S n, which will then be used
to eliminate negation applied to xn.

2. Not-pushing: given a not-completed pair (S , E) we repeatedly push negation inside every
¬S ′ expression until negation reaches the leaves and is removed.

Not-completion of variables. Not-completion of variables is a key step that allows us to deal
with the combined presence of unrestricted negation and recursive variables. In particular, not-
completion transforms a set of definitions as follows.

Definition 5 (Not-completion of variables). Not completion of a pair (S , E) is defined as fol-
lowing, where not_ is any string that does not appear at the beginning of any variable name
among x1, . . . , xn:

not-completion(S defs(x1 : S 1 . . . , xn : S n)) =

S defs(x1 : S 1, . . . , xn : S n, not_x1 : ¬S 1, . . . , not_xn : ¬S n)

As a result, every variable x has a complement variable co(x) defined in the natural way:
co(xi) = not_xi and co(not_xi) = xi. Variable co(x) will later be used for not-elimination.

Property 8. Let (x1 : S 1 . . . , xn : S n) be a closing environment. Then, for every variable xi with
i ∈ {{1..n}}, we have:

[[¬xi defs(x1 : S 1, . . . , xn : S n)]] =
[[not_xi defs(x1 : S 1, . . . , xn : S n, not_x1 : ¬S 1, . . . , not_xn : ¬S n)]]

Proof. Immediate, by Theorem 1.

The not-pushing phase. The not-pushing phase pushes negation down any algebraic expression
up to its complete elimination. Not-pushing is defined by the rules in Figure 13. Observe that
the negation of each conditional operation asserts the corresponding type, while the negation of
const is actually conditional: if the value is a boolean, then it is equal to false/true.

Not-pushing over lenM
0 or len∞i generates one satisfiable bound and one that is actually illegal

(len−1
0 or len∞∞+1). Rather than splitting the rule in three cases, we just assume that the illegal term

is rewritten as f in the resulting disjunction. An analogous assumption is made for the betw,
xBetw, pro, ite operators.

Not-elimination preserves the semantics of the schema.

Property 9. The not-elimination procedure preserves the semantics of the schema.

Proof. The simplification steps preserve the semantics by construction. Not-completion only
adds variables, hence it does not affect the semantics. The not-pushing rules should be analyzed
one by one. We just analyze the most interesting ones.

• ¬(type(T)) =
∨

(type(T ′) | T ′ , T)

The rule for ¬(type(T)) expresses the closed nature of our model — every value belongs
to one of the six base types. If we wanted to build a tool that reasons in an open model,
we should reconsider this rule by adding a seventh category, for all the values that do not
belong to the closed model.

35

¬t = f
¬f = t
¬(S 1 ∧ S 2) = (¬S 1) ∨ (¬S 2)

¬(S 1 ∨ S 2) = (¬S 1) ∧ (¬S 2)

¬(¬S) = S

¬(type(T)) =
∨

(type(T ′) | T ′ , T)

¬(const(true)) =
∨

(type(T) | T , Bool) ∨ const(false)

¬(const(false)) =
∨

(type(T) | T , Bool) ∨ const(true)

¬(len j
i) = type(Str) ∧ (leni−1

0 ∨ len∞j+1)

¬(pattern(r)) = type(Str) ∧ pattern(r)

¬(betwM
m) = type(Num) ∧ (xBetwm

−∞ ∨ xBetw∞M)2

¬(xBetwM
m) = type(Num) ∧ (betwm

−∞ ∨ betw∞M)2

¬(mulOf(q)) = type(Num) ∧ notMulOf(q)

¬(notMulOf(q)) = type(Num) ∧mulOf(q)

¬(ite j
i) = type(Arr) ∧ (itei−1

0 ∨ ite∞j+1)1

¬(uniqueItems) = type(Arr) ∧ repeatedItems

¬(repeatedItems) = type(Arr) ∧ uniqueItems

¬(itemAt(i : S)) = type(Arr) ∧ itemAt(i : ¬S i) ∧ ite∞i
¬(itemsAfter(n : S)) = type(Arr) ∧ contAfter(n : ¬S)

¬(contAfter(n : S)) = type(Arr) ∧ itemsAfter(n : ¬S)

¬(pro j
i) = type(Obj) ∧ (proi−1

0 ∨ pro∞j+1)1

¬(props(r : S); t) = type(Obj) ∧ pattReq(r : ¬S)

¬(pattReq(r : S)) = type(Obj) ∧ props(r : ¬S ; t)
¬(x) = co(x)

1Terms with an upper bound −1 or a lower bound∞ + 1 are rewritten as f
2Terms with an upper bound −∞ or a lower bound∞ are rewritten as f

Figure 13: Not-pushing rules.

• ¬(mulOf(q)) = type(Num) ∧ notMulOf(q) 1.3

By definition we have notMulOf(q) = type(Num) ⇒ ¬mulOf(q). We have that J ∈
[[mulOf(q)]]E iff J ∈ JVal(Num) ⇒ ∃k integer with J = k ∗ q. So J < [[mulOf(q)]]E iff
J ∈ JVal(Num) ∧ ∄k integer with J = k ∗ q, that is, J ∈ [[type(Num) ∧ notMulOf(q)]]E .

• ¬(itemAt(i : S)) = type(Arr) ∧ itemAt(i : ¬S i) ∧ ite∞i
By definition, J ∈ [[itemAt(i : S)]]E iff (J = [J1, . . . , Jm] ∧ m ≥ i) ⇒ Ji ∈ [[S]]E , hence
J < [[itemAt(i : S)]]E iff J = [J1, . . . , Jm] ∧m ≥ i ∧ ¬(Ji ∈ [[S]]E), that is, J ∈ [[type(Arr) ∧
itemAt(i : ¬S i) ∧ ite∞i]]E .

• ¬(itemsAfter(n : S)) = type(Arr) ∧ contAfter(n : ¬S)

By definition, J ∈ [[itemsAfter(n : S)]]E iff J = [J1, . . . , Jm] ⇒ ∀i. n < i ≤ m ⇒ Ji ∈

[[S]]E , hence J < [[itemsAfter(n : S)]]E iff J = [J1, . . . , Jm]∧∃i. n < i ≤ m∧¬(Ji ∈ [[S]]E),
36

that is, J ∈ [[type(Arr) ∧ contAfter(n : ¬S)]]E .

• ¬(contAfter(n : S)) = type(Arr) ∧ itemsAfter(n : ¬S)

By definition, J ∈ [[contAfter(n : S)]]E iff J = [J1, . . . , Jm] ⇒ ∃i. n < i ≤ m ∧ Ji ∈ [[S]]E ,
hence J < [[contAfter(n : S)]]E iff J = [J1, . . . , Jm] ∧ (∀i. n < i ≤ m⇒ ¬(Ji ∈ [[S]]E)), that
is, J ∈ [[type(Arr) ∧ itemsAfter(n : ¬S)]]E .

• ¬(x) = co(x)

This is a consequence of Property 8.

• ¬(props(r : S); t) = type(Obj) ∧ pattReq(r : ¬S) 1.3

By definition, J ∈ [[(props(r : S); t)]]E iff J = {k1 : J1, . . . , km : Jm} ⇒ ∀l ∈ {{1..m}}. kl ∈

L(r) ⇒ Jl ∈ [[S]]E . Hence J < [[(props(r : S); t)]]E iff J = {k1 : J1, . . . , km : Jm} ∧ ∃l ∈
{{1..m}}. kl ∈ L(r) ∧ ¬(J ∈ [[S]]E), that is J ∈ [[type(Obj) ∧ pattReq(r : ¬S)]]E

• ¬(pattReq(r : S)) = type(Obj) ∧ props(r : ¬S ; t)
By definition we have pattReq(r : S) = type(Obj)⇒ ¬props(r : ¬S ; t), hence
pattReq(r : S) = ¬type(Obj) ∨ ¬props(r : ¬S ; t). By negating both sides and by De
Morgan rules we obtain ¬pattReq(r : S) = type(Obj) ∧ props(r : ¬S ; t).

• ¬t = f, ¬f = t, ¬(S 1 ∧ S 2) = (¬S 1) ∨ (¬S 2), ¬(S 1 ∨ S 2) = (¬S 1) ∧ (¬S 2), ¬(¬S) = S 1.3

These are the standard De Morgan rules for the boolean algebra.

• ¬(const(true)) =
∨

(type(T) | T , Bool) ∨ const(false),
¬(const(false)) =

∨
(type(T) | T , Bool) ∨ const(true)

A value is different from true if it either belongs to a type other than Bool, or if it is the
boolean value false, and similarly for false.

• ¬(len j
i) = type(Str) ∧ (leni−1

0 ∨ len∞j+1),
¬(ite j

i) = type(Arr) ∧ (itei−1
0 ∨ ite∞j+1),

¬(pro j
i) = type(Obj) ∧ (proi−1

0 ∨ pro∞j+1)

A value violates len j
i if it is a string and is either strictly shorter than i or strictly longer

than j; when i = 0, then len−1
0 is substituted with f and we have ¬(len j

0) = type(Str)∧ (f ∨
len∞j+1), which is correct since a string violates len j

0 if, and only if, is strictly longer then
j. Similarly, we have ¬(len∞i) = type(Str) ∧ (leni−1

0 ∨ f), which is correct since a string
violates len∞i when is strictly shorter than i. The cases for ite j

i and pro j
i are analogous.

• ¬(betwM
m) = type(Num) ∧ (xBetwm

−∞ ∨ xBetw∞M),
¬(xBetwM

m) = type(Num) ∧ (betwm
−∞ ∨ betw∞M)

A value violates betwM
m if it is a number and is either strictly smaller than m or strictly

greater than M; when m = −∞, then xBetw−∞−∞ is substituted with f and we have¬(betwM
−∞) =

type(Num) ∧ (f ∨ xBetw∞M), which is correct since a number violates betwM
−∞ if, and only

if, is strictly greater than M. Similarly, we have ¬(betw∞m) = type(Num) ∧ (xBetwm
−∞ ∨ f),

since a number violates betw∞m when is strictly smaller than m. The case for xBetwM
m is

analogous.
37

• ¬(pattern(r)) = type(Str) ∧ pattern(r),
¬(notMulOf(q)) = type(Num) ∧mulOf(q),
¬(uniqueItems) = type(Arr) ∧ repeatedItems,
¬(repeatedItems) = type(Arr) ∧ uniqueItems

A value violates pattern(r) if, and only if, it is a string, and this string does not belong
to L(r); the fact that the value is a string is expressed by type(Str) and the fact that it
does not belong to L(r) is expressed by pattern(r), where r is the pattern that matches the
complement of L(r); the term type(Str) is necessary because values that are not strings
trivially satisfy pattern(r), but they do not violate pattern(r). The proofs for notMulOf(q),
uniqueItems, and repeatedItems are analogous.

Example 6. Consider again the JSON Schema document of Section 2.3:

{ "properties": {"a": {"not": {"$ref": "#"}}} }

We demonstrate how to eliminate negation in order to clarify its meaning. We write it in our 2.17
algebra as follows.

x defs(x : props(a : ¬x; t))

By applying not-completion, we get the following definition (for readability, we omit the
trivial “;t” at the end of the props operator).

x defs(x : props(a : ¬x), not_x : ¬props(a : ¬x))

This is how not-elimination would now proceed within our algebra (we push ¬ through props
using Property 1 and use {S 1, S 2} for conjunction):

defs(x : props(a : ¬x), not_x : ¬props(a : ¬x)) →

defs(x : props(a : co(x)), not_x : {type(Obj), req(a), props(a : ¬¬x)}) →

defs(x : props(a : not_x), not_x : {type(Obj), req(a), props(a : x)})

We now substitute not_x with its definition, and obtain a much clearer schema: if the instance
is an object with an a member, then the value of that member must be an object with an a member,
whose value satisfies the same specification:

x defs(x : props(a : {type(Obj), req(a), props(a : x)}))

These are some examples of values that match that schema:

1, {"b" : 2}, {"a" : {"a" : " f oo"}}, {"a" : {"a" : {"a" : {"a" : null}}}}

38

PattOfS(type(T), E) = .∗ if T , Str

PattOfS(type(Str), E) = .∗

PattOfS(const(true/false), E) = .∗

PattOfS(S 1 ∧ S 2, E) = PattOfS(S 1, E) ⊓ PattOfS(S 2, E)

PattOfS(¬S , E) = PattOfS(S , E)

PattOfS(S 1 ∨ S 2, E) = PattOfS(S 1, E) ⊓ PattOfS(S 2, E)

PattOfS(pattern(r), E) = r

PattOfS(x, E) = PattOfS(E(x), E)

Figure 14: Definition of PattOfS(S , E).

5.3. propNames(S) encoded through PattOfS(S , E)
The assertion propNames(S) in an environment E requires that, if the instance is an object,

every member name belongs to [[S]]E , which is equivalent to saying that no member name exists
that is not in [[S]]E . Hence, if we translate every S into a pattern r = PattOfS(S , E) that exactly de-
scribes the strings that satisfy [[S]]E , we can translate propNames(S) into props(PattOfS(¬S,E) :
f; t), which means: if the instance is an object, it cannot contain any member whose name
matches the complement of PattOfS(S).

We now show how to transform every schema S into a pattern PattOfS(S , E) such that the
following equivalences hold, where we write S ≡E S ′ as a more readable notation for (S , E) ≡
(S ′, E)

type(Str) ∧ S ≡E type(Str) ∧ pattern(PattOfS(S , E))

propNames(S) ≡E props(PattOfS(¬S,E) : f; t)

For all the implicative typed assertions S whose type is not Str, such as mulOf(q), we define
PattOfS(S , E) = .∗, since they are satisfied by any string. For the other operators, PattOfS(S , E)
is defined as shown in Figure 14. Observe that, while PattOfS(mulOf(q), E) = .∗ since mulOf(q)
is an implicative typed assertion, PattOfS(type(Num), E) = .∗, since type(Num) is not condi-
tional, and is not satisfied by any string; observe that .∗ matches any string and .∗ matches none.
Since PattOfS(S , E) definition does not depend on the schemas that are nested inside typed oper-
ators, this definition is well-founded in presence of guarded recursion: after we have expanded
a variable x once, in the result of any further expansion x will always be guarded, hence we will
not need to expand it again. For the operators not cited, such as enum and the derived boolean
operators, we first translate them as in the simplification phase before not-elimination, and then
we apply the rules of Figure 14.1

It is easy to prove that we have the following equivalences.

Property 10. For any assertion S and for any guarded environment E, the following equiva-

1We translate S 1 ∨ S 2 using PattOfS(S 1, E) ⊓ PattOfS(S 2, E) , rather than PattOfS(S 1, E)|PattOfS(S 2, E), since
PattOfS(S 1, E) may contain negation and intersection, and in our extended regular expressions we apply intersection
and negation only outside the standard regular expression operators. This is just a minor technical choice.

39

lences hold.
type(Str) ∧ S ≡E type(Str) ∧ pattern(PattOfS(S , E))

propNames(S) ≡E props(PattOfS(¬S,E) : f; t)

Proof. [[type(Str)∧S]]i
E = [[type(Str)∧pattern(PattOfS(S , E))]]i

E can be proved by induction on
i and |S |, using induction on i for S = PattOfS(x, E) and on |S | in all the other cases.

J ∈ [[propNames(S)]]E iff, when J is an object, then any name k in J satisfies k ∈ [[S]]E .
J ∈ [[props(PattOfS(¬S,E) : f; t)]]E iff, when J is an object, then no name k in J satisfies
k ∈ [[pattern(PattOfS(¬S , E))]]E , which, by the previous property, means that no name k in J
satisfies k ∈ [[¬S]]E , hence, every name satisfies k ∈ [[S]]E .

This encoding creates, in general, an exponential blowup, even if one extends regular expres- 2.18
sions with complement and intersection, because of the equation PattOfS(x, E) = PattOfS(E(x), E).
This could be avoided either by representing regular expressions by alternating automata, or
by extending regular expressions with systems of equations, as discussed in [23], or by avoid- 2.19
ing to encode propNames by extending the language with an operator reqPropName dual to
propNames, as discussed in Section 5.5.

5.4. Linear encoding of oneOf

We describe here a linear-size encoding of 1 (x1, . . . , xm); we assume that log2m is an integer,
which can always be obtained by adding irrelevant f arguments to the 1 operator. We use I(l, p)
to denote the p-th interval of size 2l, with 0 ≤ l ≤ log2m, as we did in the construction for
Property 2. Since these intervals form a complete balanced binary tree with m leaves, we have
2m − 1 such intervals.

Given a set of variables x1, . . . , xn, for each interval I(l, p), we define two variables Zl,p, and
Ol,p such that:

1. Zl,p is equivalent to the conjunction of ¬(xi) for all i ∈ I(l, p), hence Zl,p (Z for Zero) is
satisfied iff none of these variables is satisfied;

2. Ol,p is satisfied iff one and only one of the variables indexed by an i ∈ I(l, p) is satisfied (O
stands for One).

The environment for these two sets of variables is defined as follows, exploiting the equality
Il+1,p = Il,2p−1 ∪ Il,2p, for 0 ≤ l ≤ (log2m − 1) and 1 ≤ p ≤ m/(2l).

Z0,p : ¬xp O0,p : xp

Zl+1,p : Zl,2p−1 ∧ Zl,2p Ol+1,p : (Ol,2p−1 ∧ Zl,2p) ∨ (Zl,2p−1 ∧ Ol,2p)

The size of this environment is linear in m, and the variable Olog2m,1 encodes 1 (x1, . . . , xm).

5.5. About regular expressions

The negation of pattern(r) can be expressed in JSON Schema, since we have the following
equivalence:

¬pattern(r) ≡ type(Str) ∧ pattern(r)

However, the simplicity of this equivalence hides a problem. If we regard r as a notation that
indicates a regular expression whose language is the complement of L(r), then we must consider

40

the fact that the size of that expression is, in the worst case, doubly exponential in |r| [24], hence
the result of not-elimination could be very big, and unreadable. In our implementation, we added
an operator r at the outermost level of regular expressions, which keeps the size of the result of
not-elimination linear in the input size, and is very convenient for a theoretical treatment, but we
would not suggest its addition to the JSON Schema standard, as its impact would be too big.

In practice, the problem of negation-closure for pattern(r) would be better solved by adding
a dedicated dual operator notPattern defined by:

[[notPattern(r)]]E = [[typeStr⇒ ¬pattern(r)]]E

This operator is characterized by the natural not-pushing rules:

¬pattern(r) ≡ type(Str) ∧ notPattern(r)
¬notPattern(r) ≡ type(Str) ∧ pattern(r)

Similarly, in Section 5.3 we have proved that propNames(S) can be encoded in terms of
props(PattOfS(¬S,E) : f; t), which reduces its negation closure to the negation closure of props,
at the price of adding a tree of r and ⊓ operators around the language of regular expressions. This
is the approach that we used in our implementation of not-elimination, but, from a language-
design viewpoint, it would make much more sense to just add a direct dual reqPropName(S)
that requires at least one name satisfying S , with the natural semantics:

[[reqPropName(S)]]E = [[typeObj⇒ ¬propNames(¬S)]]E

This operator is characterized by the natural not-pushing rules:

¬reqPropName(S) ≡ type(Obj) ∧ propNames(¬S)
¬propNames(S) ≡ type(Obj) ∧ reqPropName(¬S)

Finally, at the beginning of not-elimination (Section 5.2) we translate props(r1 : S 1, . . . , rn :
S n; S a) as props(r1 : S 1; t) ∧ . . . ∧ props(rn : S n; t) ∧ props((r1| . . . |rn) : S a; t), again us-
ing r . Then, not-elimination, when applied to props((r1| . . . |rn) : S a; t), produces an instance
of pattReq((r1| . . . |rn) : ¬S a). This could be avoided at the price of a new algebraic op-
erator addPropReq(r1, . . . , rn; S a), which, at the JSON Schema level, could be expressed as
"additionalPropertyRequired" : S a, getting its meaning from the surrounding operators as
currently happens for "additionalProperties", and in the algebra it would have the obvious
semantics:

[[addPropReq(r1, . . . , rn; S a)]]E ≡ [[pattReq((r1| . . . |rn) : S a)]]E

At this point, we would simplify props(r1 : S 1, . . . , rn : S n; S a) as props(r1 : S 1; t) ∧ . . . ∧
props(rn : S n; t) ∧ props(r1 : t, . . . , rn, t; S a), and we would use the following not-pushing rules,
with no need for the r operator:

¬props(r : S ; t) ≡ type(Obj) ∧ pattReq(r : ¬S)

¬pattReq(r : S) ≡ type(Obj) ∧ props(r : ¬S ; t)
¬props(r1 : t, . . . , rn : t; S a) ≡ type(Obj) ∧ addPropReq(r1, . . . , rn;¬S a))

¬addPropReq(r1, . . . , rn; S a) ≡ type(Obj) ∧ props(r1 : t, . . . , rn : t;¬S a)
41

To sum up, when studying negation closure of JSON Schema, the issue raised by the negation
of pattern-based operators such as ¬pattern(r) is not trivial, and the best answer depends on the
applications we are envisioning for not-elimination. Since regular expressions are closed under
complement, but rewriting ¬r into a positive expression has double exponential complexity, if
we are looking for compact not-elimination meant for machine manipulation, which was our
central motivation, then the extension of regular expressions is a reasonable choice. If, instead,
one wants to design a language where every operator has a dual, in order to make it easier to
reason about negation, then we think that one may leave regular expressions untouched and add
explicit dual operators such as notPattern, reqPropName, and addPropReq.

6. The "minContains" and "maxContains" operators (Draft 2019-09)

6.1. The # j
i S operator

Draft 2019-09 introduced the new operators "minContains": n and "maxContains": n,
where n is a natural number. To understand their semantics, consider a schema that contains,
at the top level, the three assertions "contains": S, "minContains": m, "maxContains": M.
An instance J satisfies this combination iff: if it is an array, then it contains at least m and at
most M elements that satisfy S . When minContains is missing, its value defaults to 1, while a
missing maxContains means no upper limit. The three operators are better interpreted as speci-
fying the parameters of a unique operator; in particular, when "minContains": m is present, one
cannot consider "contains": S as an independent operator, since an adjacent "minContains":
0 has the effect that no item that satisfies S is required any more: the usual effect of "contains":
S is “deactivated”. These operators have an interesting relationship with the problem of negation
closure, hence we discuss them here.

We represent the "contains" : S , "minContains" : l, "maxContains" : j combination by
adding an operator # j

l S to the algebra, with l ∈ N and j ∈ N∞. The semantics of # j
l S is defined

as follows.

[[# j
l S]]i

E = {{ J | J = [J1, . . . , Jn]⇒ l ≤ | {{ o | o ∈ {{1..n}} ∧ Jo ∈ [[S]]i
E }} | ≤ j }}

Similarly to ite j
l , the operator # j

l S combines a requirement #∞l S and a constraint # j
0S .

The operator # j
l S cannot be expressed in the algebra (Theorem 6).

Theorem 6. The pair (# j
l S , E) with l ≤ j cannot be expressed in the algebra if (S , E) is not trivial

and either l ≥ 2 or 0 < j < ∞.

Proof. Assume that (S , E) is not trivial and that D = S 0 defs(E′) expresses (# j
l S , E) with l ≥ 2

or 0 < j < ∞. We first consider the case when l = 2, and we then consider the cases for l > 2
and for 0 < j < ∞.

Consider J+ ∈ [[S]]E and J− < [[S]]E . If we say that n is the head-length of an operator
items(S 1, . . . , S n; S ′), let N be the maximum among the head-lengths of all instances of this
operator inside D and the lengths of all arrays that appear inside the arguments of enum and
const in D.

Consider the following arrays of length N + 3, starting with N + 1 copies of J−: 2.21

[J−, . . . , J−, J+, J+] A1
[J−, . . . , J−, J+, J−] A2

42

An assertion S ′ satisfies BothOrNone if A1 ∈ [[S ′]]i
E ⇔ A2 ∈ [[S ′]]i

E . We now prove that
every assertion S ′ inside D satisfies BothOrNone, by induction on the lexicographic pair (i, |S ′|).
In this way, we prove that D satisfies BothOrNone, which is a contradiction since (# j

2S , E) is
satisfied by A1 but not by A2, since A1 has two copies of J+ and A2 only one.

Observe that BothOrNone is a stronger property than NonDifferentiating that we used in
the previous proofs. In this case we cannot rely on NonDifferentiating since we want to prove
that (# j

2S , E) cannot be expressed in a language that includes negation, and the weaker invariant
NonDifferentiating is not preserved by negation.

We now prove the invariant. When S ′ = x, if i = 0, then both arrays are rejected (i.e., are not
accepted), and when i > 0 the result follows by induction on i. Any implicative typed assertion
that is unrelated to arrays accepts both arrays, while uniqueItems, and all const and enum in D,
reject both of them, by construction. Since they have the same length, itel

j will not distinguish
the two. Consider any S ′ = items(S 1, . . . , S n; S ′′) and assume that it accepts A1. This means that
each S i accepts J− and that S ′′ accepts both J− and J+, since N is bigger than n by construction,
hence A2 ∈ [[S ′]]i

E′ as well. In the same way we prove that A2 ∈ [[S ′]]i
E′ ⇒ A1 ∈ [[S ′]]i

E′ .
If S ′ = contains(S ′′), then it cannot distinguish the two arrays since they contain the same

elements. If S ′ = S 1 ∧ S 2, or S ′ = S 1 ∨ S 2, or S ′ = ¬S 1, we know, by induction, that S 1 is not
able to distinguish A1 from A2 and the same holds for S 2, hence no boolean combination of S 1
and S 2 may distinguish A1 from A2.

To sum up, for every subterm S ′ of D we have that [[S ′]]i
E′ does not distinguish the two arrays,

and hence the limit [[S ′]]E′ does not distinguish them; therefore, [[D]] cannot be equivalent to
#∞2 S .

The case l > 2 can be proved in the same way, by having l copies of J+ in the tail of A1 and
l − 1 copies in the tail of A2. Finally, in the case when 0 < j < ∞, we put exactly j copies of J+

in the tail of A1 and j + 1 copies in the tail of A2, so that A2 violates the upper bound while A1
does not, and we reason in the same way.

6.2. # j
i S : negation closure of array operators

We have seen that full negation closure for the constraint items(S 1, . . . , S n; S a) can be ob-
tained through the combination of the requirements ite∞i and contAfter(n : S) (Property 9), but
the latter cannot be expressed in the algebra without negation (Theorem 3). When we enrich the
algebra with the # j

i S operator, the situation changes completely. First of all, # j
i S immediately

subsumes the two operators contains(S) and ite j
i :

contains(S) = #∞1 S ite j
i = # j

i t

More interestingly, # j
i S also allows one to encode the contAfter(n : S) operator, as follows.

To encode contAfter(n : S), we define the intervals I(l, p) as in Section 4, and we define a set of
variables Uu

l,p, such that:

[J1, . . . , Jm] ∈ [[Uu
l,p]]E ⇔ | {{ j | 1 ≤ j ≤ min(m, n) ∧ j ∈ I(l, p) ∧ J j ∈ [[S]]E }} | ≤ u

i.e., J ∈ [[Uu
l,p]]E implies that the number of elements J j of J whose position is in I(l, p) but is

not in the tail, and such that J j ∈ [[S]]E , is less than u. In the definition above, we count those j
that are less than n since Uu

l,p counts only the elements that are in the head, and we impose that
j ≤ m since J j is not defined past m, hence the upper bound for j in the definition is min(m, n).

43

The environment E(S , n) is defined as follows. In the first two lines we deal with intervals of
length 20 = 1 where u = 0 — the second line ensures that all positions greater than n + 1 will
be ignored. The third lines splits an interval I(l, p) in two halves, and uses the same technique
as in Section 4 to express Uu

l,p in terms of Ul−1,2p−1,i and Ul−1,2p,u−i. The fourth line introduces
variables for the trivial case when 2l ≤ u, when the interval I(l, p) contains less than u elements.

E(S , n) =
(U0

0,p : itemAt(p : ¬S) 1 ≤ p ≤ n

U0
0,p : t n + 1 ≤ p ≤ 2⌈log2(n)⌉

Uu
l,p :

∨
0≤i≤u(U i

l−1,2p−1 ∧ Uu−i
l−1,2p) 1 ≤ l ≤ ⌈log2(n)⌉, 1 ≤ p ≤ 2⌈log2(n)⌉−l, 0 ≤ u < 2l

Uu
l,p : t 0 ≤ l ≤ ⌈log2(n)⌉, 1 ≤ p ≤ 2⌈log2(n)⌉−l, 2l ≤ u < 2l+1

)

Property 11.

(contAfter(n : S) , E) ≡ (
∨

0≤i≤n

(U i
⌈log2(n)⌉,1 ∧ #∞i+1S) , E ∪ E(S , n))

Proof. We first prove that

J = [J1, . . . , Jm]⇒

J ∈ [[Uu
l,p]]E+ ⇔ | {{ j | 1 ≤ j ≤ min(m, n) ∧ j ∈ I(l, p) ∧ J j ∈ [[S]]E }} | ≤ u

where E+ = E ∪ E(S , n), by induction on l.
Case U0

0,p : itemAt(p : ¬S) with 1 ≤ p ≤ n: we want to prove that

J ∈ [[itemAt(p : ¬S)]]E+ ⇔ | {{ j | 1 ≤ j ≤ min(m, n) ∧ j ∈ I(0, p) ∧ J j ∈ [[S]]E }} | ≤ 0

Observe that I(0, p) = {{p}}. We distinguish the cases where p > m and p ≤ m. If p > m, then
j ≤ m is incompatible with j ∈ I(0, p), hence {{ j | . . . }} is empty, hence | {{ j | . . . }} | ≤ 0 holds,
and J ∈ [[itemAt(p : ¬S)]]E+ also holds trivially, since the array J has no element at position p.
If p ≤ m, then both the left hand side and the right hand side express the fact that Jp does not
belong to [[S]]E , hence they are equivalent.

Case U0
0,p : t with n + 1 ≤ p ≤ 2⌈log2(n)⌉: we want to prove that

J ∈ [[t]]E+ ⇔ | {{ j | 1 ≤ j ≤ min(m, n) ∧ j ∈ I(0, p) ∧ J j ∈ [[S]]E }} | ≤ 0 when n + 1 ≤ p

which holds trivially since, if n + 1 ≤ p, then {{ j | 1 ≤ j ≤ min(m, n) ∧ j ∈ I(0, p) }} is empty.

Case Uu
l,p :

∨
0≤i≤u(U i

l−1,2p−1 ∧ Uu−i
l−1,2p) with 1 ≤ l ≤ ⌈log2(n)⌉, 1 ≤ p ≤ 2⌈log2(n)⌉−l, 0 ≤

u < 2l. We observe that | {{ j | 1 ≤ j ≤ min(m, n) ∧ j ∈ I(l, p) ∧ J j ∈ [[S]]E }} | ≤ u iff exists i such
that 0 ≤ i ≤ u and

| {{ j | 1 ≤ j ≤ min(m, n) ∧ j ∈ I(l − 1, 2p − 1) ∧ J j ∈ [[S]]E }} | ≤ i

∧ | {{ j | 1 ≤ j ≤ min(m, n) ∧ j ∈ I(l − 1, 2p) ∧ J j ∈ [[S]]E }} | ≤ u − i

and we conclude by induction. We also observe that both U i
l−1,2p−1 and Uu−i

l−1,2p are defined when
1 ≤ l ≤ ⌈log2(n)⌉, 1 ≤ p ≤ 2⌈log2(n)⌉−l, 0 ≤ u < 2l, reasoning as in the proof of Property 2.

44

Finally, we have case Uu
l,p : t with 0 ≤ l ≤ ⌈log2(n)⌉, 1 ≤ p ≤ 2⌈log2(n)⌉−l, 2l ≤ u < 2l+1:

we want to prove that

J ∈ [[t]]E+ ⇔ | {{ j | 1 ≤ j ≤ min(m, n) ∧ j ∈ I(l, p) ∧ J j ∈ [[S]]E }} | ≤ u

which holds trivially since I(l, p) only contains 2l indexes, and 2l ≤ u.
At this point, we have proved that

J = [J1, . . . , Jm]⇒

J ∈ [[U i
⌈log2(n)⌉,1]]E∪E(S ,n) ⇔ | {{ j | 1 ≤ j ≤ min(m, n) ∧ j ∈ I(⌈log2(n)⌉, 1) ∧ J j ∈ [[S]]E }} | ≤ i

Hence, U i
⌈log2(n)⌉,1 is satisfied by an array iff it has less than i elements in its head positions that

satisfy S . We conclude by observing that an array J satisfies contAfter(n : S) iff there exists an
i such that J contains at least i + 1 elements that satisfy S , but at most i of these elements are in
the head positions, hence:

(contAfter(n : S) , E) ≡ (
∨

0≤i≤n

(#∞i+1S ∧ U i
⌈log2(n)⌉,1) , E ∪ E(S , n))

Hence, # j
i S is expressive enough to express contAfter(n : S), and thus to express negation of

items, although at the cost of a complex encoding (of size O(n2)).
Finally, we observe that # j

i S is self-dual, so that, while it solves the problem of not-elimination
for the items operator, it does not introduce any new not-elimination issue. The self-duality of
j

i S is expressed by the following equation, where #i−1
0 S is just f when i = 0, and #∞j+1S is just f

when j = ∞.
¬(# j

i S) = type(Arr) ∧ (#i−1
0 S ∨ #∞j+1S)

While contAfter(n : S) is strictly less expressive than # j
i S (by Theorem 6), it seems to be

more compact, in the sense that we could not find any way to express contAfter(n : S) using # j
i S

with an expression of size O(log(n)).
To summarize, JSON Schema Draft-06 needs four new operators — pattReq, notMulOf,

repeatedItems, and contAfter — in order to become closed under negation; if we add #l
jS , then

we only need three of them.

7. Experiments

We implemented our not-elimination algorithm as part of a more general tool that can be
used to verify equivalence and inclusion of JSON Schema documents, to decide satisfiability of
a schema, and to generate witnesses from satisfiable schemas, supporting Draft-06 extended with
minContains and maxContains, as described in [23]. An interactive version has been presented
as a demo [11, 12]. This Java implementation, that exploits the Brics automaton library [25] for
handling regular expressions, comprises about 110K lines of code. 2.22

In this section we report the results of two experiments, validating our claims of practical fea-
sibility of our not-elimination approach. In these experiments we analyze a corpus of schemas
and, for each schema S , we measure the size of its internal representation before and after not-
elimination, as well as the time required to apply not-elimination to S . A reproduction package is
available on GitHub: https://github.com/sdbs-uni-p/json-schema-not-elimination.

45

Table 2: Summary information about the corpus.

Size (Bytes)
min max avg median

25 747,779 3,984.37 1,524

≤ 100 100 - 1000 1000 - 10000 10000 - 100000 100000 - 1000000
Size (Bytes)

1

10

100

1000

N
um

be
r o

f s
ch

em
as

Figure 15: Size distribution of schemas.

7.1. Datasets

To run our experiments, we retrieved virtually every accessible, open source-licensed file
from GitHub that presents the features of JSON Schema, based on a BigQuery search on the
GitHub public dataset (Google hosts a snapshot of all open source-licensed GitHub repositories).
We performed duplicate-elimination and data cleaning (better described in [23]), arriving at a
corpus of 4,000 real-world schemas. These schemas come from multiple application domains,
and are representative of schemas used in real-world scenarios; they cover almost every aspects
of the language, apart from uniqueItems and some optional constructs, like format, whose
treatment in our tool is still under development.

In Table 2, we reported the minimum, maximum, average, and median size of these schemas,
while Figure 15 illustrates their size distribution.

7.2. Tests

We performed two different experiments on our schemas. We first processed them as they
are, to analyze the behavior and the effects of not-elimination in a real-world setting, where, as
reported in [15], negation is usually applied to relatively simple schemas; it should be observed,
however, that negation comes into play also with the translation of oneOf and if-then-else.

46

1 10 100 1000 10000 100000
Size of the input schema (Bytes)

1

10

100

1000

10000

100000

Si
ze

 o
f t

he
 s

ch
em

a
af

te
r n

ot
-e

lim
in

at
io

n
(B

yt
es

)

Figure 16: Size increase after not-elimination for original schemas.

Table 3: Summary of experimental results for original schemas.

runtime (ms)
avg median max min

144.158 1 178,107 <1

size ratio
avg median max min

4.43 4.14 47.14 1.66

To further stress our not-elimination algorithm, we repeated our tests by injecting negation
above the schema root node. By doing so, we obtained schemas where negation is applied to
very complex and deeply nested schema expressions.

7.3. Experimental setup

We performed our experiments on an M1 Pro 8-14 machine with 16 GBs of unified memory,
running macOS 12.4. As our tool has been implemented in Java, we used JRE 17.0.3 2022-04-19
LTS for our experiments.

7.4. Results

Results of our experiments on unmodified schemas are shown in Figures 16 and 17, where
we used for both axes the log-scale. Figure 16 shows that the schema size after not-elimination
grows polynomially with the schema size. Figure 17 indicates that in a vast majority of cases 2.23
running time is below 1s.

Figures 18 and 19 depict the results we obtained when negation has been injected above the
schema root node; we used again the log-scale for both axes. As in the previous case, the schema
size grows polynomially and, in most cases, the running time is below 1s.

In Tables 3 and 4 we summarized our findings.

47

1 10 100 1000 10000 100000
Size of the input schema (Bytes)

1

10

100

1000

10000

100000

Ti
m

e
(m

s)

Figure 17: Not-elimination runtime for original schemas.

1 10 100 1000 10000 100000
Size of the input schema (Bytes)

1

10

100

1000

10000

100000

Si
ze

 o
f t

he
 s

ch
em

a
af

te
r n

ot
-e

lim
in

at
io

n
(B

yt
es

)

Figure 18: Size increase after not-elimination for negation-injected schemas.

Table 4: Summary of experimental results for negation-injected schemas.

runtime (ms)
avg median max min

49.082 1 24,733 <1

size ratio
avg median max min

5.499 5.190 45.241 1.809

48

1 10 100 1000 10000 100000
Size of the input schema (Bytes)

1

10

100

1000

10000

100000

Ti
m

e
(m

s)

Figure 19: Not-elimination runtime for negation-injected schemas.

Discussion. Apart from a very limited number of schemas, translation to the algebraic represen-
tation, combined with not-elimination, is in the sub-second range, which we consider acceptable.
On average, not-elimination increases the size by a factor below 5.5 in both schema sets. The
maximum size ratio is caused by not-elimination over enumerations with over 200 items. Nev-
ertheless, we observe polynomial growth.

Our experiments show that not-elimination is indeed feasible on real-world JSON Schema
documents. While our prototype cannot yet handle all language constructs, the current limitations
are merely technical. One unique selling point is that our approach fully supports negation and
recursion (even in combination), which is often a conceptual limitation of algorithms and tools
designed for JSON Schema processing (e.g., [26]).

8. Related work

In an empirical study over the collection of real-world schemas used in our experiments, we
analyzed usage patterns of the negation operator [15, 27]. While we find occurrences of not to be 2.24
rare, there is anecdotal evidence that this operator can be subtle, and often difficult to understand.
This contributed some motivation for the work presented here.

The problem of negation closure of JSON Schema, that is, the precise study of the dual-
ity among couples of structural operators, does not seem to have been studied before. Not-
elimination for JSON Schema, which is not our central aim but is a contribution of this study,
has been partially studied by others, as discussed next.

Habib et al. [2] study schema inclusion for JSON Schema. Their algorithm comprises a
preliminary step of canonicalization and simplification, where a limited form of not-elimination
is also applied. More in detail, negation is pushed down into boolean connectives, and it is
eliminated from string and boolean schemas. However, their approach is not able to deal with
negated numbers, objects, and arrays. Furthermore, their technique is not able to process recur-
sive schemas as well as schemas with unions over objects and arrays. This is in line with their

49

intended use case, checking interfaces of operators in machine learning pipelines [3], where
recursion does not play a role. However, in general-purpose schemas, recursion does occur [28].

Indeed, our not-elimination algorithm for JSON Schema is the first one to deal with the com-
bination of negation and recursive variables [26], where we use a not-completion technique that
we believe to be original. The combination of negation and recursion has been deeply studied in
the context of logic languages, but these results cannot be easily transferred to JSON Schema,
because of the different nature of these languages. For example, languages in the Prolog/Datalog
family describe relations, while JSON Schema describes sets. Moreover, variables in relational
languages denote elements of the domain, while, in JSON Schema, a variable denotes a set, like
in Monadic Second Order logic (MSO). However, in MSO, variables are subject to quantifica-
tion, while here, variables are only used to express recursion. A logic language where variables
denote sets, and are used for recursion rather than for quantification, is the µ-calculus [29], which
has been used to interpret JSON Schema [9]. However, classical µ-calculus techniques cannot be
immediately transferred to this context, since µ-calculus does not allow the presence of negative
recursive variables, that is, recursive variables below an odd number of negations, but negative
recursive variables are allowed by the JSON Schema standard, if recursion is guarded. Alter-
nating automata are used in the study of µ-calculus and, in that case, the complement of an
alternating automaton is computed by switching final and non-final states, which is a technique
that is reminiscent of our not-completion approach [8, 30]. 2.25

The first effort to formalize JSON Schema semantics was by Pezoa et al. [8], who laid the
formal foundations of the JSON Schema proposal by studying its expressive power and the com-
plexity of the validation problem. The authors showed that JSON Schema cannot be captured by
MSO or tree automata thanks to the uniqueItems constraints. While they focused their attention
on validation and proved that it can be decided in O(|J|2|S |) time, they also showed that JSON
Schema can simulate tree automata, and, hence, schema satisfiability is EXPTIME-hard.

In [9] Bourhis et al. refined the analysis of Pezoa et al. They mapped JSON Schema onto
an equivalent modal logic, called JSL, and proved that satisfiability is PSPACE-complete for
schemas without recursion and uniqueItems, it is in EXPSPACE for non recursive schemas with
uniqueItems, it is EXPTIME-complete for recursive schemas without uniqueItems, and, finally,
it is in 2EXPTIME for recursive schemas with uniqueItems. The semantics that we provide is
not that different from that of Bourhis et al., who rely on JSL modal logic. The main difference
is that Bourhis et al. translate JSON Schema into an elegant mathematical formalism that is a bit
removed from JSON Schema syntax, and which indeed enjoys negation-completeness. On the
contrary, we work with an algebraic rendition of JSON Schema, since we want to study JSON
Schema at the source level, in order to build tools that manipulate JSON Schema as it is, with its
peculiarities and limits. 2.26

9. Conclusions

We have shown that JSON Schema is “almost” negation-closed and we have provided an ex-
act characterization of the schemas that cannot be expressed without negation. We have proposed
two different sets of operators whose addition would make JSON Schema completely negation-
closed, one set based on pattern complement r and intersection, and a richer set that avoids this
problematic extension.

We have studied the impact of the new operators minContains and maxContains intro-
duced in Draft 2019-09, and we have shown that they make the array operator items negation-
closed, at the price of a non-trivial encoding.

50

We have introduced an algebraic rendition of JSON Schema syntax that is amenable for
automated manipulation.

We contributed a not-elimination algorithm that we are using as a building block for our algo-
rithm for witness generation, satisfiability checking, and inclusion verification [11]. As shown in
Example 6, not-elimination can also be useful to improve the readability of some JSON Schema
documents. Our not-elimination algorithm is the first for JSON Schema that deals with negative
recursive variables, and it uses an original, and very simple, technique to do so.

To check the completeness of our approach, we have implemented the translation from JSON
Schema to the algebra and back, as well as a version of the not-elimination algorithm, and we
tested them on 4,000 schemas collected on the Web, as well as on their negation-injected coun-
terparts. Our experiments confirm that we deal with every aspect of the language, and that the 2.27
not-elimination result has a size that grows polynomially with the input size.

10. Acknowledgments.

We would like to thank Cristiano Landi and Francesco Falleni who implemented the original
algorithms. We would also like to thank Lyes Attouche for his terrific implementation, debug-
ging, and testing efforts. We further thank Luca Escher for helping with first tests, Michael Fruth
for helping with data preparation, Christoph Köhnen for handling JSON Schema patterns, and
Stefan Klessinger for his help with building a fully automated reproduction package.

Funding. Giorgio Ghelli’s contribution was supported by MIUR [project PRIN 2017FTXR7S
“IT-MaTTerS” (Methods and Tools for Trustworthy Smart Systems)]. Stefanie Scherzinger’s
contribution was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) [grant #385808805].

References

[1] json-schema org, JSON Schema, 2021. Available at https://json-schema.org.
[2] A. Habib, A. Shinnar, M. Hirzel, M. Pradel, Finding data compatibility bugs with JSON subschema checking, in:

C. Cadar, X. Zhang (Eds.), ISSTA ’21: 30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, Denmark, July 11-17, 2021, ACM, 2021, pp. 620–632. URL: https://doi.org/10.
1145/3460319.3464796. doi:10.1145/3460319.3464796.

[3] G. Baudart, M. Hirzel, K. Kate, P. Ram, A. Shinnar, Lale: Consistent automated machine learning, in: KDD
Workshop on Automation in Machine Learning, 2020. arXiv:2007.01977, https://arxiv.org/abs/2007.
01977.

[4] T. Makota, B. Maguire, D. Gagne, R. Chakrabarti, Scalable Data Streaming with Amazon Kinesis: Design and
secure highly available, cost-effective data streaming applications with Amazon Kinesis, Packt Publishing, 2021.
URL: https://books.google.de/books?id=GekmEAAAQBAJ.

[5] D. Poccia, AWS Lambda in Action: Event-driven serverless applications, Manning, 2016. URL: https://books.
google.de/books?id=8jozEAAAQBAJ.

[6] MongoDB, Inc., MongoDB Manual: $jsonSchema (Version 4.4), 2021. https://docs.mongodb.com/manual/
reference/operator/query/jsonSchema/.

[7] V. Lakshmanan, J. Tigani, Google BigQuery: The Definitive Guide: Data Warehousing, Analytics, and Machine
Learning at Scale, O’Reilly Media, 2019. URL: https://books.google.de/books?id=9pq4DwAAQBAJ.

[8] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, D. Vrgoč, Foundations of JSON Schema, in: Proceedings of the 25th
International Conference on World Wide Web (WWW), 2016, pp. 263–273.

[9] P. Bourhis, J. L. Reutter, F. Suárez, D. Vrgoc, JSON: Data model, Query languages and Schema specification, in:
36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (PODS), 2017, pp. 123–135.

[10] A. Wright, G. Luff, H. Andrews, JSON Schema Validation: A Vocabulary for Structural Validation of JSON -
draft-wright-json-schema-validation-01, Technical Report, Internet Engineering Task Force, 2017. URL: https:
//tools.ietf.org/html/draft-wright-json-schema-validation-01.

51

[11] L. Attouche, M. A. Baazizi, D. Colazzo, F. Falleni, G. Ghelli, C. Landi, C. Sartiani, S. Scherzinger, A Tool for
JSON Schema Witness Generation, in: Proceedings of the 24th International Conference on Extending Database
Technology, EDBT 2021, 2021, pp. 694–697. doi:10.5441/002/edbt.2021.86.

[12] L. Attouche, M. A. Baazizi, D. Colazzo, Y. Ding, M. Fruth, G. Ghelli, C. Sartiani, S. Scherzinger, A test suite for
JSON schema containment, in: R. Lukyanenko, B. M. Samuel, A. Sturm (Eds.), Proceedings of the ER Demos and
Posters 2021 co-located with 40th International Conference on Conceptual Modeling (ER 2021), St. John’s, NL,
Canada, October 18-21, 2021, volume 2958 of CEUR Workshop Proceedings, CEUR-WS.org, 2021, pp. 19–24.
URL: http://ceur-ws.org/Vol-2958/paper4.pdf.

[13] J. Blackler, Json generator, 2022. Available at https://github.com/jimblackler/jsongenerator.
[14] J. Dolby, J. Tsay, M. Hirzel, Automatically debugging automl pipelines using maro: ML automated remediation

oracle (extended version), CoRR abs/2205.01311 (2022).
[15] M. A. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger, An empirical study on the "usage of not" in

real-world JSON schema documents, in: A. K. Ghose, J. Horkoff, V. E. S. Souza, J. Parsons, J. Evermann (Eds.),
Conceptual Modeling - 40th International Conference, ER 2021, Virtual Event, October 18-21, 2021, Proceedings,
volume 13011 of Lecture Notes in Computer Science, Springer, 2021, pp. 102–112. URL: https://doi.org/
10.1007/978-3-030-89022-3_9. doi:10.1007/978-3-030-89022-3_9.

[16] Security Guidance for the Use of JavaScript Object Notation (JSON) and JSON Schema, Technical Report,
National Security Agency, 2018. URL: https://apps.nsa.gov/iaarchive/library/reports/security_
guidance_for_json.cfm.

[17] K. Zyp, G. Court, A JSON Media Type for Describing the Structure and Meaning of JSON Documents - draft-zyp-
json-schema-03, Technical Report, Internet Engineering Task Force, 2010. URL: https://tools.ietf.org/
html/draft-zyp-json-schema-03.

[18] F. Galiegue, K. Zyp, JSON Schema: interactive and non interactive validation - draft-fge-json-schema-
validation-00, Technical Report, Internet Engineering Task Force, 2013. URL: https://tools.ietf.org/

html/draft-fge-json-schema-validation-00.
[19] A. Wright, G. Luff, H. Andrews, JSON Schema Validation: A Vocabulary for Structural Validation of JSON

- draft-handrews-json-schema-02, Technical Report, Internet Engineering Task Force, 2019. URL: https://
datatracker.ietf.org/doc/html/draft-handrews-json-schema-02.

[20] A. Wright, H. Andrews, B. Hutton, G. Dennis, JSON Schema: A Media Type for Describing JSON Docu-
ments - draft-bhutton-json-schema-00, Technical Report, Internet Engineering Task Force, 2020. URL: https:
//json-schema.org/draft/2020-12/json-schema-core.html.

[21] M. A. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger, A JSON Schema Corpus, 2021. doi:10.5281/
zenodo.5141199.

[22] JSON Schema - valid if object does *not* contain a particular property, Available at:https://stackoverflow.
com/questions/30515253/json-schema-valid-if-object-does-not-contain-a-particular-property,
2015.

[23] L. Attouche, M.-A. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger, Witness generation for json schema,
2022. arXiv:2202.12849.

[24] W. Gelade, F. Neven, Succinctness of the complement and intersection of regular expressions, ACM Trans. Com-
put. Log. 13 (2012) 4:1–4:19. URL: https://doi.org/10.1145/2071368.2071372. doi:10.1145/2071368.
2071372.

[25] A. Møller, dk.brics.automaton – Finite-State Automata and Regular Expressions for Java, 2017.
http://www.brics.dk/automaton/, version 1.12-1.

[26] M. Fruth, M.-A. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger, Challenges in Checking JSON Schema
Containment over Evolving Real-World Schemas, in: Advances in Conceptual Modeling - ER 2020 Workshops
CMAI, CMLS, CMOMM4FAIR, CoMoNoS, EmpER, 2020, pp. 220–230.

[27] M. A. Baazizi, D. Colazzo, G. Ghelli, C. Sartiani, S. Scherzinger, An Empirical Study on the "Usage of Not" in
Real-World JSON Schema Documents (Long Version), CoRR abs/2107.08677 (2021). URL: https://arxiv.
org/abs/2107.08677. arXiv:2107.08677.

[28] B. Maiwald, B. Riedle, S. Scherzinger, What Are Real JSON Schemas Like?, in: Advances in Conceptual Modeling
- ER 2019 Workshops FAIR, MREBA, EmpER, MoBiD, OntoCom, and ER Doctoral Symposium Papers, 2019,
pp. 95–105.

[29] D. Kozen, Results on the propositional mu-calculus, Theor. Comput. Sci. 27 (1983) 333–354. URL: https:
//doi.org/10.1016/0304-3975(82)90125-6. doi:10.1016/0304-3975(82)90125-6.

[30] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison, M. Tommasi, Tree Automata
Techniques and Applications, 2008. URL: https://hal.inria.fr/hal-03367725.

52

