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Thermal dynamics and electronic temperature
waves in layered correlated materials
Giacomo Mazza 1✉, Marco Gandolfi 2,3, Massimo Capone4, Francesco Banfi 5✉ &
Claudio Giannetti 2,6,7✉

Understanding the mechanism of heat transfer in nanoscale devices remains one of the

greatest intellectual challenges in the field of thermal dynamics, by far the most relevant

under an applicative standpoint. When thermal dynamics is confined to the nanoscale, the

characteristic timescales become ultrafast, engendering the failure of the common descrip-

tion of energy propagation and paving the way to unconventional phenomena such as wave-

like temperature propagation. Here, we explore layered strongly correlated materials as a

platform to identify and control unconventional electronic heat transfer phenomena. We

demonstrate that these systems can be tailored to sustain a wide spectrum of electronic heat

transport regimes, ranging from ballistic, to hydrodynamic all the way to diffusive. Within the

hydrodynamic regime, wave-like temperature oscillations are predicted up to room tem-

perature. The interaction strength can be exploited as a knob to control the dynamics of

temperature waves as well as the onset of different thermal transport regimes.
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The capability to access ultrafast thermal dynamics recently
gave access to striking phenomena that take place in
materials at the nanoscale before complete local energy

equilibration among heat carriers is achieved1–5. For instance,
non-Fourier heat transport regimes have been reported for hot
spots dimensions inferior to the phonon mean free-path6–8, in
which energy is ballistically carried point to point, or have been
engineered via nano-patterning of dielectric substrates9–11. As a
consequence of the existence of two non-thermal populations,
wave-like thermal transport, often referred to as second
sound12,13, has been predicted in graphene, both in the frame of
microscopic14–17 and macroscopic models18. Temperature wave-
like phenomena have been recently observed at high temperatures
in graphene19 and 2D materials20 on sub-nanosecond timescales
and scheme for their coherent control have been proposed21. So
far most of the effort has been devoted to phononic non-Fourier
heat transport17,19,22–26, where, only recently, a theoretical fra-
mework, covering on equal footing Fourier diffusion, hydro-
dynamic propagation, and all regimes in between, has been
proposed27. On the contrary, electronic non-Fourier heat trans-
port remains relatively unexplored18,20,28,29.

In this work, we propose layered correlated materials (LCM) as
the ideal platform to access the entire spectrum of unconven-
tional electronic heat transport regimes. In quantum correlated
materials, the strong electronic interactions give rise to emerging
many-body properties, such as collective and decoupled diffusion
of energy and charge30,31. Tuning the interaction strength thus
opens the possibility to investigate transport regimes with no
counterpart in conventional weakly-interacting materials32,33.

We consider an impulsive excitation on the surface of a LCM
characterized by a strong local Coulomb interaction U (see
Fig. 1). The interaction U can drive fast local thermalization
processes leading to the rapid build up of a hot intra-layer elec-
tronic temperature before relaxation via slower scattering paths
takes place. At the same time, the interaction leads to heavier

quasiparticles with enhanced effective mass m* and a reduced
kinetic energy. As a consequence, energy propagation across the
layers is expected to slow down for increasing U. Overall the
interaction U, together with the anisotropy of the inter-layer and
intra-layer hopping terms, may thus act as a tuning parameter to
control the relative inter- and intra-layer energy exchange pro-
cesses in LCM. Eventually, as the interaction increases, the two
processes can effectively decouple, thus allowing for unconven-
tional electronic heat transport regimes to occur on the ultrashort
space and timescales.

We investigate the possibility for unconventional heat trans-
port regimes by focusing on the impulsive thermal dynamics of
the layered single-band Hubbard model, which represents a
general framework for understanding the effects of electronic
interactions in a large family of correlated materials. We show
that on sub-picosecond timescales the electronic heat transfer is
initially characterized by ballistic wavefront propagation, followed
by an hydrodynamic regime, which eventually evolves into con-
ventional Fourier heat transfer on longer timescales. In the
hydrodynamic regime, we predict that LCM may sustain tem-
perature wave oscillations at THz frequencies and up to ambient
temperature.

In order to contextualize the present concepts within the frame
of real systems and to connect with the realm of technologically
relevant materials, we focus on the correlated metal SrVO3
(SVO). SVO is a paradigmatic representative of the wider class of
correlated transition metal oxides (TMOs) and it has been pro-
posed as a platform for a wealth of potential technological
applications ranging from ideal electrode materials34, to Mott
transistors35 and transparent conductors36. We argue that the
degree of correlation of SVO, as measured by the interaction
strength, is such that ballistic transport first, and wave-like
thermal transport afterwords, are accessible on the sub-
picosecond timescale. Our results, together with the possibility
of heterostructuring TMO to atomic layer accuracy, promote
these materials to ideal building blocks for nanothermal device
architectures based on non-Fourier heat transport.

The present work rationalizes the microscopic interactions
underlying unconventional electronic heat transfer phenomena in
LCM. Our findings enlarge the functionalities of quantum
materials32,33 to the realm of nanoscale heat transport37, beyond
the case of radiative energy transfer38–40.

Results and discussion
Model and observables. The Hamiltonian of the layered Hub-
bard model reads:

H ¼ ∑
L

n¼1
hn þ ∑

L#1

n¼1
τn;nþ1 ð1Þ

with

hn ¼ ∑
<i;j>σ

tkc
y
inσcjnσ þ U ∑

i
nin"nin# ð2Þ

and

τn;nþ1 ¼ ∑
σ
t?c

y
inσcinþ1σ þ h:c: ð3Þ

where cyinσ is a fermionic creation operator for an electron with
spin σ at the site i belonging to the layer indexed by n, which
ranges from 0 to L. t∥ and t⊥ represent, respectively, the intra- and
inter-plane hopping amplitudes. The sum of the in-plane hopping
term runs over pairs of nearest neighbouring sites and we
introduce the number operator ninσ ¼ cyinσcinσ . We assume in-
plane translational invariance so that we can introduce an in-
plane momentum k= (kx, ky) and recast hn ¼ ∑kσϵðkÞc

y
knσcknσ þ

U∑inin"nin# with ϵðkÞ ¼ #2tkðcosðkxaÞ þ cosðkyaÞÞ and a the

Fig. 1 Setup. Cartoon of the layered correlated material impulsively excited
on the top surface by ultrafast light pulses. We assume that the excitation
drives a fast thermalization of the electronic population establishing an
electronic temperature Thot on the topmost layers of the sample. The right
panels display the electronic distributions at different depths after the
equilibration step (see text).
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lattice spacing. We fix the chemical potential in order to have an
average occupation of one electron per site (half-filling) corre-
sponding to the perfect particle-hole symmetric case. As a con-
sequence, the total number of electrons per layer is conserved
during the dynamics. This choice allows us to model energy
transport in the absence of mass and charge transport. We con-
sider the model parameters t⊥= t∥= 60 meV and U= 0.65 eV,
which correspond to an interaction-driven mass renormalization
m/m*≃ 0.3, and a lattice spacing a= 5 Å. This value of the
effective mass renormalization is consistent with experimental
estimates for SrVO3.

We study the non-equilibrium thermal dynamics in the frame
of model (1) by means of a time-dependent variational approach
based on the generalized Gutzwiller approximation for layered
systems41,42 (see Methods). This approach provides a versatile
tool for describing in a non-perturbative way the dynamics in the
Hubbard model, which is governed by the interplay between the
hopping terms t∥, t⊥ and the local Coulomb interaction U. In this
framework, the dynamics is described by using a variational
density matrix ρ̂ðtÞ with the structure43,44 ρ̂ðtÞ & PðtÞρ̂'ðtÞP

yðtÞ,
where ρ̂' is a density matrix which describes the dynamics of
quasiparticles through an effective non-interacting Hamiltonian,
and P ¼

Q
iPi are projectors onto the local Hilbert space at site i

which control the relative weights of the local many-body
configurations. The mutual feedback between the dynamics of the
localized degrees of freedom and the low-energy quasiparticle
excitations results in an effective mass renormalization m*=m/Z,
which is controlled by the interaction U through the quasiparticle
weight Z(U). In the non-interacting limit Z(U= 0)= 1, whereas
at finite interaction Z < 1 and decreases as a function of U.
Eventually, for a critical interaction strength, Uc, the system
undergoes a metal-to-insulator Mott transition, corresponding to
a vanishing quasiparticle weight, i.e. Z(Uc)→ 0. In this regime,
quasiparticle excitations are completely suppressed and the
dynamics becomes dominated by high-energy incoherent excita-
tions at energies ~U45. In this work we focus on the thermal
dynamics of hot quasiparticles in the correlated metal regime,
where Z is finite but significantly smaller than one.

The thermal dynamics is triggered by a sudden increase of the
electronic temperature localized within the first few surface layers of
the LCM as can be achieved, for instance, by excitation with a
femtosecond light pulse28. We mimic the impulsive excitation by
considering the two-step non-equilibrium protocol (see Methods):
first, we initialize the system in a non-equilibrium state characterized
by two-electronic populations at two different temperatures. In the
second step, we consider the unitary evolution of the initialized state,
as regulated by the Hamiltonian (1). The initialization steps consists
in a preliminary dynamics starting from the zero temperature state
in which each layer n is independently coupled with baths of non-
interacting electrons at temperatures Tbath(n). All the layers are at a
base temperature Tbath(n)=Tc0 except the five topmost which are
set at Tbath(n)=Th≫Tc0, for n= 1,…, 5, a temperature character-
izing the hot electrons. In the notation Tc0, the subscript “c” stands
for cold and “0” indicates the instant right after the impulsive
excitation, whereas the subscript “h” in Th stands for hot.
Throughout the paper, the temperatures used in the equilibration
step are Tc0≃ 35 K for the cold temperature in the bulk and
Th= 10 ×Tc0 for the hot temperature in the topmost layers.

The end of the equilibration step defines the instant of time
t= 0. At t= 0, we initialize the density matrix with the density
matrix obtained at the end of the equilibration step
ρ̂ðt ¼ 0Þ ¼ ρ̂equ. We switch off all the couplings to the baths
and let the initialized density matrix unitary evolve for t > 0. We
refer the reader to the Methods section for further details on the
non-equilibrium protocol.

At positive times, we study thermal transport by tracking the
time evolution of the electronic temperature and of the heat flux
at each layer. The electronic temperature is extracted from the
time and layer-dependent quasiparticle non-equilibrium distribu-
tion functions Nneq

n ðϵ; tÞ (see Methods). For any instant of time
t > 0, and for any layer index n, we find upon fitting that Nneq

n ðϵ; tÞ
can be expressed as a superposition of two equilibrium Fermi
distributions: (i) a hot distribution at the temperature Th, fixed by
the initial equilibration temperature in the five topmost layers,
and of weight ρhot(n, t); (ii) a cold distribution characterized by a
time- and layer-dependent temperature T(n, t) and of weight
ρcold(n, t)≡ 1− ρhot(n, t)

Nneq
n ðϵ; tÞ ¼ f hotρhotðn; tÞ þ f coldðn; tÞ 1# ρhotðn; tÞ

! "
; ð4Þ

with 0 ≤ ρhot(n, t) ≤ 1, fhot= f(ϵ, Th) and fcold(n, t)= f(ϵ, T(n, t)).
For any instant of time t and layer index n, we fit Nneq(ϵ, t),
computed via Eq. (19), with the expression given by Eq. (4),
ρhot(n, t) and T(n, t) being the only two fitting parameters. While
the temperature of the hot electrons is fixed at Th, the
temperature of the remaining 1− ρhot(n, t) fraction of electrons
in the “cold” state T(n, t) changes in time. In Fig. 2 we show the
decomposition, Eq. (4), for the layer n= 15 and two instants of
time at t= 0.32 ps and t= 0.81 ps for which the non-equilibrium
distribution functions are described by different populations of
hot electrons, and different cold temperatures T(n, t).

Remarkably, the effective electronic temperatures at t= 0.32 ps
and t= 0.81 ps extracted from the fit of Eq. (4) to Nneq

n ðϵ; tÞ result
to be, respectively, larger and smaller than the initial Tc0. In order
to demonstrate that these oscillations of T(n, t) are not an artifact
related to the fitting procedure, we report in Fig. 2c, d direct
evidence of temperature oscillations in the calculated distribution
function. More specifically, we subtracted the contribution of
the hot electrons (ρhot(n, t)fhot) from the total distribution
function Nneq

n ðϵ; tÞ, as calculated from the unitary dynamics.
The normalized cold distribution can be thus expressed as
Ncold

n ðϵ; tÞ ¼ ½Nneq
n ðϵ; tÞ # ρhotðn; tÞf hot)=½1# ρhotðn; tÞ). The dif-

ference between Ncold
n ðϵ; tÞ and the initial Fermi distribution, i.e.

ΔNcold
n ¼ Ncold

n ðϵ; tÞ # f ðϵ;Tc0Þ, clearly shows a change of occu-
pation in the vicinity of the Fermi level which resembles
a broadening (narrowing) of a Fermi distribution at
t= 0.32 (0.81) ps. These data directly demonstrate that, during
the dynamics, the electronic distribution changes in a complex
oscillatory way, which can be accounted for by the two-
temperature effective model described by Eq. (4). This fact allows
for a clear physical interpretation of the transient propagation of
energy and a practical definition of a local time-dependent
electronic temperature. Initially, the perturbation creates a
population of hot electrons described by ρhot(n, t), which
propagates across the layers. The interaction between the cold
electrons on each layer and the hot electrons propagating through
the system creates a modulation of the temperature of the cold
electronic population, encoded in the spatio-temporal evolution
of T(n, t). In the rest of the manuscript, we will refer to this
quantity as the cold electronic temperature, bearing in mind that
T(n, t= 0)= Tn, with Tn the bath temperatures defined in the
initialization step.

We extract the heat flux by considering the time evolution of
the energy density defined for each layer as

EnðtÞ & Tr½ρ̂ðtÞðhn þ τn;nþ1Þ) ð5Þ

where ρ̂ðtÞ represents the time-evolved Gutzwiller density matrix.
At positive times the density matrix evolves under unitary
dynamics, so that energy is conserved. As a consequence, there
exists a continuity equation that relates the time evolution of the
local energy density En to the divergence of the current associated
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with the transport of energy, namely the heat flux. Therefore, by
starting from the dynamics of the energy density, we compute the
heat flux qn at layer n, and along the z-direction perpendicular to
the planes, by applying the continuity equation

∂qn
∂z

þ
∂En

∂t
¼ 0 ð6Þ

where the discrete spatial derivative is defined with respect to the
inter-layer distance a, ∂qn∂z ¼ ðqnþ1 # qnÞ=a.

Ultrafast thermal dynamics. We now show how this model
offers the possibility to access different regimes of non-
conventional heat transport on the sub-picosecond timescale.
Each regime will be then separately discussed in the following.
Figure 3a reports the results for the time evolution of the hot
population weight and the local electronic relative effective tem-
perature variation, ΔT/Tc0(n, t) with ΔT= T(n, t)− Tc0, recorded
on layer n= 15, which we take as representative of the inner
region of the slab. For times 0 < t≲ 150 fs, both ρhot(15, t) and
T(15, t) remain fixed to the equilibrium values ρhot= 0 and
T= Tc0. At t ~ 150 fs the perturbation reaches the n= 15 layer
and the dynamics that follows can be neatly divided in three
steps.

(i) In the time window 150–400 fs the dynamics is characterized
by a significant increase of ρhot(15, t) highlighting the arrival
of the propagating hot-electron population. On this time-
scale, the electronic relative temperature variation remains
limited. This is indicative of a ballistic regime of energy
transport in which the energy flows without inducing any
heating in the underlying quasi-equilibrium distribution.

(ii) For t≳ 400 fs the hot-electron population displays a sharp
drop and, concomitantly, we observe the activation of a fast
oscillatory dynamics in the electronic temperature of the
cold electrons. Initially the oscillations are centered around
a value higher than the initial equilibrium temperature Tc0
indicating that the transit of the ballistic front of hot
electrons induced the heating of the population of cold
electrons on the layer.

(iii) Eventually the system equilibrates for t≳ 0.9 ps with the
residual damped temperature oscillations converging to Tc0.

We gain further insight into the thermal dynamics by
comparing the dynamics of the local cold electronic temperature
with the heat flux qn(t) at layer n. Figure 3b reports the spatial
profiles of the heat flux (right axis, blue trace) and of the local
electronic temperature (left axis, red trace) at fixed instants of
time. The broad feature at the forefront of the heat-flux profile
indicates the propagation of a ballistic energy front accompanied
by a small and more localized perturbation of the electronic
temperature. At the back front of the ballistic heat flux, as
indicated by the blurred yellow band in Fig. 3b, we observe
the formation of a sharp sinusoidal feature in the spatial profile of
the temperature. In the time domain, this sharp feature marks the
separation between the first two dynamical regimes of the local
temperature observed in panel a for the layer n= 15. The
presence of this pronounced oscillation of the temperature spatial
profile is accompanied by weaker temperature oscillations with
smaller spatial periodicity in the layers behind the ballistic front.

To fully characterize the thermal dynamics regimes occurring
after the ballistic front has transited, we further compare the
dynamics of the heat flux with that of the temperature gradient
∇⊥T(t)= (Tn+1(t)− Tn(t))/a perpendicular to the layers. These

Fig. 2 Non-equilibrium distribution functions decomposition. Non-equilibrium distribution functions, Eq. (4), decomposed in terms of the cold and hot
Fermi-distribution functions. Data correspond to the non-equilibrium distribution functions for the layer n= 15 at two instants of time t= 0.32 ps (left
panels) and t= 0.81 ps (right panels). Top panels a, b: ρcoldfcold (blue lines) and sum of the contributions ρcoldfcold+ ρhotfhot (red line) compared with the
non-equilibrium distribution functions Nneq

n (dashed black line), obtained by the numerical simulation. For simplicity we removed the layer and time index
from the labels. The blue/red shaded regions helps to visualize the cold and hot contributions to the non-equilibrium distribution functions. Bottom panels
c, d: ΔNcold, difference between the cold distribution function at the time t, and the initial one at temperature Tc0.
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quantities are shown in Fig. 3c for the n= 15 layer. In the time
window 0.15–0.4 ps, the ballistic regime shows up as a sharp
increase of the heat flux with no sizeable effect on the temperature
gradient. In correspondence of the end of the ballistic regime, i.e.
the sharp drop of the heat current, an oscillatory dynamics is
activated for the temperature gradient. The oscillatory dynamics
of ∇⊥T(t) is maintained in the 0.4–0.9 ps time window, along
with a residual positive heat current on the layer. At t≳ 0.9 ps the
heat current displays damped oscillations centred around zero
indicating the recovery of local thermal equilibrium. Remarkably,
the equilibration is characterized by the synchronization between
the dynamics of the temperature gradient and the heat flux. In
this regime, we can define an instantaneous proportionality
between the heat flux and temperature gradient, i.e. qn(t)∝−∇⊥
T(t), indicating that the heat transfer process is well described by
a Fourier-like heat transfer law.

At intermediate times (0.4 < t < 0.9 ps), before Fourier-like
transport sets in, there is a residual positive flow of the heat
current with an oscillatory dynamics of −∇⊥T(t) that is not
simply proportional to that of qn(t). This fact reveals the presence
of a new heat transport regime, which bridges the ballistic regime
established at the arrival of the perturbation (0.15 < t < 0.4 ps) and
the Fourier-like transport setting in at long times after the
perturbation has transited (t > 0.9 ps). This intermediate regime is
characterized by a residual population of hot electrons on the
layer and by an oscillatory dynamics of the temperature of the
cold electron population. We identify this regime as a hydro-
dynamic transport of heat sustained by the exchange of energy
between the two sub-populations of hot and cold electrons. By
comparing the dynamics on the single layer (Fig. 3a, c) with the
layer profiles at different times (Fig. 3b), we can observe that the
emergence of the hydrodynamic regime coincides with transit of
the sharp sinusoidal feature in the spatial profile of the
temperature at the trailing edge of the heat-flux ballistic front.

As it will be further discussed, this feature can be considered as a
temperature wave-packet propagating through the system.

Summarizing, the sub-picosecond thermal dynamics of
electrons displays three subsequent regimes of heat transport:
(i) the ballistic propagation of energy at the front of the
perturbation; (ii) the hydrodynamic regime at the trailing edge of
the ballistic front. The former is characterized by a wave-like
propagation of the electronic temperature; (iii) a Fourier-like heat
transport driving the recovery of thermal equilibrium. The time
and space extension of the three regimes are indicated by the
arrows in the plots of the dynamics at fixed layer index (see
Fig. 3c) and of spatial profiles at fixed time (see Fig. 3b). In the
remaining of the paper we analyse in detail the different regimes
and discuss the possibility to control their onset in layered
correlated materials.

Ballistic energy transport. We now address the possibility of
controlling the initial ballistic energy transport by tuning the
microscopic parameters entering in the Hubbard model (1). In
the ballistic regime, the energy is mostly carried by the population
of hot electrons at temperature Th. The energy propagates
through hopping processes of the hot electrons excited in the first
layers. Layered correlated materials thus offer two com-
plementary ways to control the inter-layer coupling and, in turn,
the velocity of propagation of the ballistic front, namely tuning
either the anisotropy of the system, t⊥/t∥, or the strength of the
interaction, U. The increase of the latter drives a reduction of the
quasiparticle weight Z, which leads to a larger effective mass for
the inter-layer motion and a smaller effective hopping, t'? ¼ Zt?.

We show these effects in Fig. 4 where we report the spatio-
temporal dynamics of the hot-electron population ρhot(n, t)
obtained for different values of anisotropy (horizontal gray
arrow) and relative interaction strength (vertical red arrow).

Fourier
Hydrodynamic Ballistic

Fourier

Hydrodynamic

Ballistic

(b)(a)

(c)

Fig. 3 Sub-picosecond thermal dynamics. a Dynamics of the hot-electron population (top) and relative temperature variation of the “cold” electronic
population (bottom) recorded on layer n= 15. b Layer profiles of the temperature of the “cold” electronic population (red, left axis) and of the heat flux
(blue, right axis) at different instant of times. The blurred yellow band highlights the wave packet of temperature oscillations that follows the ballistic front.
c Dynamics of the heat flux (blue, right axis) and temperature gradient of the “cold” electronic population (brown, left axis) on the layer n= 15. Arrows
indicates the three regimes of thermal transport discussed in the main text. Panels a and c share the same x-axis. For simplicity the labels are shown only in
the x-axis of panel c.
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Increasing either one, the propagation velocity of the wavefront is
diminished. In the inset we plot the velocity of ballistic
propagation vb as a function of U for t⊥/t∥= 1. vb is defined as
the slope of the white dashed line in Fig. 4. The correlation-
induced renormalization of t'? strongly suppresses the energy
propagation along the z-direction. For the sake of applications, we
note that, in nanosystems with sizes of the order of the ballistic
mean free-path, the thermal conductivity becomes a size-
dependent property46–49. Nanoengineering of LCM, combined
with proper tuning of U and t⊥/t∥, thus offers a mean to control,
on the picosecond timescale, the velocity of ballistic heat pulses
and, therefore, the thermal conductivity of nanodevices.

Hydrodynamic energy transport: temperature waves. The
results reported in Fig. 3 demonstrate that a purely electronic
hydrodynamic transport regime can be achieved in our correlated
system on much faster timescales than the more conventional
phononic counterpart13,14,19. Similarly to the phononic case, this
hydrodynamic regime manifests itself by a wave-like propagation
of temperature oscillations, which emerge after the ballistic front
has transited (see arrows in Fig. 3c). In this section, we will
quantitatively describe the characteristics of temperature wave-
like propagation, as it emerges from our microscopic model, and
compare with a macroscopic model for the description of the
hydrodynamic regime characterized by the emergence of elec-
tronic temperature waves.

In the microscopic model, we characterize the hydrodynamic
regime by tracking the position of the minimum of the wave
packet Xmin. We observe that Xmin linearly increases in time (See
the inset of Fig. 5a), allowing an estimate of the wave-packet
group velocity from the simple relation Xmin ¼ vgt, with vg ~ 30
nm/ps of the same order of magnitude of the ballistic energy
wavefront velocity. A similar result is obtained when tracking the

time-dependent maximum of the wave packet, Xmax. This result
suggests that we can approximately describe the wave packet as a
superposition of weakly dispersive waves with frequencies
νk= vgk/2π.

In order to identify the barycentric wavevector of the
propagating wave packet, in the top panel of Fig. 5 we report
the spatial Fourier transform of the electronic temperature profile
in the spatial window where the propagating packet is present, as
highlighted in the three curves of the bottom panel, which
correspond to three different times, t= 0.505 ps, t= 0.735 ps and
t= 0.945 ps. The small number of layers included in the Fourier
window produces spectrally broaden peaks with the maximum
occurring at slightly different k values for different times. We
estimate the peak wavevector by taking the average of the three
peaks observed at the three chosen times, obtaining k* ~ 2.2 nm−1,
corresponding to a wavelength λ ~ 2.85 nm. Inserting this result in
the linear dispersion relation we obtain a frequency ν* ~ 10.5 THz.
We notice that in the time domain, and at fixed layer index, this
frequency corresponds to the inverse of the period of the large
amplitude temperature oscillation originating after the transit of
the ballistic energy wavefront, as shown in Fig. 3a.

We now compare the predictions of the microscopic model to
a macroscopic description of electronic temperature waves based
on the phenomenological Dual Phase Lag Model (DPLM)50.
The DPLM builds on a modification of Fourier law by
the introduction of a delay between the time at which the
temperature gradient ∇⊥T is established, t+ τT, and the time
when the inter-layer heat-flux q sets in, t+ τq

qðt þ τq; zÞ ¼ #κT;el ∇?T t þ τT ; z
# $

: ð7Þ

Fig. 5 Spectral analysis in k-space of the electronic temperature waves.
Top panel: spatial Fourier transform of the layer profile of the electronic
temperature at three different times, t= 0.505 ps (diamonds), t= 0.735 ps
(squares) and t= 0.945 ps (circles). The inset shows the position of the
minimum of the temperature oscillation, indicated in the bottom panel, as a
function of time. The vertical dashed line indicated by k* shows the average
of the position of the three peaks. Bottom panel: Portions of the
temperature profiles at different times used to compute the discrete Fourier
transform. The arrows indicate the positions Xmin and Xmax.

anisotropy

interaction
Fig. 4 Control of ballistic energy propagation. The four panels matrix
displays the ballistic dynamics of the hot-electron population for varying
values of the correlation strength U and anisotropy t⊥/t∥ (t∥= 60meV).
The color scale represents the amplitude of ρhot(n, t) (yellow: maximum;
black: minimum). The inset displays the speed vb of the ballistic wavefront
for different values of U at t∥= t⊥. The ballistic wavefronts are highlighted
by the dashed lines in the main panels.
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This approach, although phenomenological, allows to easily
accounts for both thermal wave damping, and dispersion.
Recently, it proved effective in describing phononic temperature
wave oscillations in graphite18.

The expansion of Eq. (7) to first order, and its combination with
the local conservation of energy at time t, gives rise to a second
order parabolic differential equation for the temperature variation
ΔT(t, z)= T(t, z)− Tc0. We look for wave-like solutions of this
differential equation starting from a temperature pulse triggered at
initial time on the top side of the sample slab. Following ref. 18, the
pulse can be described by a superposition of plane-waves of real-
valued wave vectors k and complex frequencies ν. Underdamped
plane-wave solutions for ΔT(t, z) are found if the condition
τq > 2τT is met. These temperature waves are characterized by the
complex-valued dispersion relation

νðk;R; αÞ ¼ ν1ðk;R; αÞ þ iν2ðk;R; αÞ; ð8Þ

where ν1,2(k, R, α) depend on the wavevector k and on the
parameters R ¼ τT

τq
and thermal diffusivity α ¼ κT;el

Cel
, κT,el and Cel

being the electronic thermal conductivity and specific heat,
respectively. The analytical expressions for the real-valued ν1
and ν2, together with the quality factor defined as Qðk;R; αÞ ¼ ν1

ν2
,

are reported in the Supplementary Eqs. (1)–(3). It is important to
stress that the derivation of the dispersion for the DPLM, Eq. (8),
directly follows from energy conservation and the assumption of a
delay between the formation of a gradient of temperature and the
heat flux. As such, there is no direct connection between the
DPLM and the assumptions used for studying the thermal
dynamics in the microscopic model. We further notice that, in
principle, the quantities R and α do depend on the electronic
temperature T. However, since we are looking for relative
variation ∣ΔT(t)∣/Tc0≪ 1 (see Fig. 3a), the temperature depen-
dence may be limited to the initial base temperature Tc0, i.e.
R= R(Tc0) and α= α(Tc0).

In order to reveal under which conditions temperature waves
are sustained, we exploit the dispersion ν1(k) and its quality factor
Q, upon inserting in Eq. (8) the parameters relevant for SrVO3. In
particular, we extract the thermodynamic quantities from the
literature, whereas we use the sub-picosecond dynamics of the
microscopic model to estimate the delay time τq. We first identify
the time for setting a variation in the temperature gradient, τT, as
the electronic thermalization time. The local thermalization time
in SVO is estimated to be as short as ~5 fs on the basis of angle-
resolved photoemission spectroscopy51 and optical conductivity36
data (see Supplementary Fig. 1). This timescale is compatible with
the attribution in the microscopic model of an instantaneous local
temperature on the sub-picosecond timescale, as described in
Fig. 3. We thus set τT= 5 fs. On the other hand, the heat-flux
dynamics in Fig. 3c shows that the synchronization between ∇⊥T
and q starts at ~900 fs, i.e. 500 fs after the ballistic wavefront has
transited through the 15th layer. We can thus assume τq≃ 500 fs.
Based on these assumptions, we obtain R= τT/τq ~ 0.01, which is
well below the threshold R < 0.5 for the observation of a wave-like
behaviour18. While the electronic scattering time is expected to
weakly depend on the temperature, the temperature dependence
of τq is tested by studying the dynamics of the single-band
Hubbard model at different base temperatures Tc0. As shown in
Supplementary Fig. 2, τq is almost independent of Tc0, thus
allowing to assume a temperature independent value of R. The
temperature dependence of the wave frequencies is instead
retained through the thermal diffusivity α. Specifically, for
the case of SVO, Cel= γT with γ= 2.4 × 102 Jm−3 K−2 52. As
for κT,el(T) we retrieve it from the temperature-dependent
electrical conductivity, σ(T), of SVO single crystals52 upon
application of the Wiedemann-Franz-Lorentz relation: κT,el= LσT,

L= 2.44 ⋅ 10−8 WΩK−2 being the Lorentz number. The
temperature-dependent κT,el ranges from ≃10Wm−1K−1 at
300 K to ≃20Wm−1K−1 at 35 K.

With this parameters at hand, in Fig. 6 we show the dispersion
relation for the temperature oscillation frequency ν1 (top panel)
and the corresponding Q-factor (bottom panel) as a function of
wavelength λ= 2π/k and base temperature Tc0. The temperature
wave frequency ν∗ ~ 10.5 THz, obtained from the microscopic
model at the base temperature Tc0= 35 K, falls within the range
of the allowed frequencies and is compatible with two possible
wavelengths, λ ~ 6.5 nm and λ ~ 1.1 nm. These wavelengths
correspond to Q-factors ~5 and 0.2, respectively, therefore only
the longest wavelength is expected to be detectable. This
wavelength falls pretty close to the estimate λ ~ 2.85 nm obtained
from the microscopic single-band Hubbard model.

Given the quite general assumptions on the parameters of the
microscopic model and the realistic values used in the
phenomenological model, the above comparison shows an overall
good agreement between the temperature waves dynamics
obtained from the sub-picoseconds dynamics of the single-band
Hubbard model and the predictions based on a macroscopic
model. Such an agreement further confirms that LCM can
sustain, in the hydrodynamic regime, temperature waves with
wavelengths and periods fully compatible with state-of-the-art
materials growth techniques and time-resolved spectroscopies.
More in general, the frequencies and Q-factor values reported in
Fig. 6 show that the manifestation of temperature waves in LCM
can be observed up to temperatures as high as 300 K. This is the
consequence of the fact that the energy scales controlling the
electronic dynamics, i.e. t∥= t⊥= 60 meV and U= 650 meV,
correspond to temperatures of ≃700 K and ≃7000 K, respectively.

Fig. 6 Temperature wave dispersion in SVO3. Top panel: electronic
temperature oscillation frequency vs oscillation’s wavelength, λ, at a base
temperatures Tc0= 35 K (blue line) and 300 K (red line). Inset: Structure of
SVO3. Bottom panel: quality factor (colormap) as a function of the
oscillation’s wavelength, λ, and the base temperature Tc0. Calculations are
based on the dispersion relations, Supplementary Eqs. (1)–(3), upon
insertion of input parameters from experiments, α and τT, and from non-
equilibrium thermal dynamics results from the layered Hubbard model (see
text), τq. In both panels a linear-log plot is adopted.
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At variance with the phononic case, the sub-picosecond electronic
hydrodynamic regime is thus expected to be very robust against
temperature, giving rise to the emergence of temperature wave-
like oscillations in real materials at ambient conditions.

Similarly to the ballistic transport regime, the electronic
correlations are key to control the wave-like temperature
propagation. In Fig. 7 we report the temperature dynamics at
layer n= 15 for different values of the interaction U. We observe
that the smaller the interaction the smaller is the temperature
oscillation amplitude triggered in the population of cold electrons
by the transit of the hot-electron wavefront. The data further
show that the temperature oscillation periods, indicated in Fig. 7
by the black arrows, decrease as the interaction U is decreased. In
general, as already observed for the case of the ballistic energy
propagation, the thermal dynamics of quasiparticles becomes
slower as the interaction is increased. This may be traced back to
the effect of the correlation-driven renormalization of the
quasiparticle effective mass. Therefore, the electronic correlations
strength, which controls the quasiparticle effective mass renor-
malization, can act as a control parameter for the frequency and
amplitude of transient temperature waves in LCM.

Recovery of Fourier-like heat transport. After the transit of the
ballistic heat wavefront and of the temperature wave packet, the
hydrodynamic regime gradually evolves into a more conventional
dynamics (t > 0.9 ps in Fig. 3). Here, the non-equilibrium hot-
electron population has already left the region of interest, giving
rise to a free oscillatory equilibration dynamics of the temperature
of “cold" electrons. The wavelength of the temperature oscillation
is smaller than that of the temperature wave-packet propagating
with speed vg (hydrodynamic regime), as may be seen in Fig. 3b.
In the present regime, the oscillation frequency ν gives an
intuitive physical picture of the temperature oscillations. Indeed,
the oscillation frequency ν corresponds to an energy hν, which
exactly matches the energy 4t'? corresponding to the renorma-
lized bandwidth in the direction perpendicular to the layers
(Fig. 1). This fact clearly highlights that the oscillatory dynamics
of the temperature is governed by the particle inter-layer hop-
pings between occupied and empty states due to unbalanced
energy distributions on the different layers. In this simple picture,
the heat flux left behind by the temperature wave packet freely
oscillates with a frequency controlled by t'?, which is the only
intrinsic energy scale of the Hubbard Hamiltonian playing a role
on the hundreds femtoseconds timescale. The oscillating qn(t)

thus acts as the source for the temperature gradient, which
instantaneously follows the temperature variation, i.e. without
any delay, as expressed in Fourier law q t; zð Þ ¼ #κT;el ∇?T t; zð Þ.
For instance, for U= 0.65 eV one has t'? ’ 0:33t? ¼ 20meV and
the oscillation periods reads h=4t'? ’ 50 fs.

Interestingly, we can estimate the electronic thermal conductivity
by evaluating the ratio between the oscillation amplitude of the heat
flux and that of the temperature gradient, i.e. κT,el= ∥q∥/∥∇⊥T∥
where the symbol ∥…∥ represents the oscillation amplitude. As an
example of the moderately interacting regime we consider
U= 0.45 eV, resulting in U

Uc
* 0:55, that is quite far from the Mott

transition critical point, U/Uc ~ 1. In doing so we estimate
κT,el≃ 440Wm−1 K−1, which is in the order of typical zero-
frequency electronic thermal conductivity of conventional metals.
On the other hand, when we increase U, the interactions drive a
larger temperature gradient (see Supplementary Fig. 3), which in
turn results in a very small value of κT,el53. For instance, when
U/Uc= 0.7–0.8, the estimated thermal conductivity is in the range
40–2.5Wm−1 K−1, a value of the same order of the zero-frequency
conductivity reported for SVO52. Thus, despite its simplicity, the
thermal dynamics of the layered Hubbard model predicts the
correct order of magnitude of Fourier-like thermal conductivity of
materials for a very wide range of correlation strengths.

In conclusion, we have proposed layered correlated materials as
a platform enabling to access a rich variety of heat transport
regimes. We have considered a layered Hubbard model and
studied the thermal dynamics triggered by the creation of a non-
equilibrium population of hot electrons on the top of the system.
The transient dynamics undergoes, on ultrashort space and
timescales, a crossover between ballistic energy transport and
electronic temperature wave-like oscillations in the hydrody-
namic regime. Eventually, the Fourier-like heat transport regime
is recovered on the picosecond timescale. Specifically, transition
metal oxides thin films and heterostructures, with typical
thicknesses and periodicities in the few nanometers range, are
here predicted to sustain electronic temperature wave-like
oscillations in a parameter space fully compatible with state-of-
the-art time-resolved calorimetry techniques54. We stress that, in
contrast to the phononic case for which scattering is detrimental
to the formation of temperature waves, in the present electronic
case the correlation strengths are the key ingredients to observe
this phenomenon. As a results, electronic temperature waves can
exists for a much broader range of temperatures, and are
predicted to persist up to room temperature.

The outreach of our results ranges beyond LCM. Among the
most interesting applications we foresee is nanoengineering of
superlattices made out of correlated materials, allowing for
coherent control of temperature waves in nanodevices. For
instance, LCM can be grown in heterostructures with control of
the physical properties at the level of single atomic layers55 and
with the possibility of engineering artificial periodicities to select
high-Q modes of temperature waves. The recent introduction of
the temperonic crystal21, i.e. a periodically modulated structure,
which behaves like a crystal for temperature waves, provides a
new tool to coherently control temperature pulses in correlated
heterostructures. Furthermore, strong correlations, and their
control via the inter-layer twist angle, have recently been reported
in graphene superlattices56–58. The present work paves the way to
the control of electronic ballistic propagation and to the
engineering of nanodevices exploiting the wave-like nature of
the electronic heat transfer on the sub-picosecond timescale.

Methods
Gutzwiller variational dynamics. In this section we describe the general scheme of
the Gutzwiller variational dynamics used in this work to address the thermal

Fig. 7 Control of temperature wave-like oscillations. Temperature T(t)
of the “cold” electronic oscillation at the n= 15 layer for different values of
U (the same values used in the inset of Fig. 4) Some of the data have been
magnified and the curves shifted for graphical reasons. The horizontal
arrows highlight the oscillation periods that match the frequency ν*
extracted from spectral analysis of the temperature wave packet.
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dynamics in the layered Hubbard model. We refer the reader to existing literature
for an in-depth review about the method41,42,44. We start from the definition of a
variational density matrix of the form

ρ̂ðtÞ & PðtÞρ̂'ðtÞP
yðtÞ; ð9Þ

where ρ̂'ðtÞ represents the density matrix of an effective system of non-interacting
quasiparticles, and PðtÞ ¼

Q
inPinðtÞ is a projector, defined by operators Pin acting

on the local Hilbert spaces defined at the site with in-plane index i and layer index
n. The projectors PinðtÞ control the relative weights of the local many-body con-
figurations. We obtain dynamical equations of motions by using the Dirac-Frenkel
time-variational principle applied to the Gutzwiller ansatz (9). This variational
dynamics has been originally introduced for the description of the dynamics of
pure quantum states41, whereas extension to the dynamics of mixed states has been
presented in ref. 44. By representing the local projectors by a set of matrices Φ̂in
defined on the local Hilbert space, the variational dynamics is defined by the set of
coupled equation of motions

i_∂t ρ̂'ðtÞ ¼ H'½Φ̂ðtÞ); ρ̂'ðtÞ
! "

ð10Þ

i_∂tΦ̂inðtÞ ¼
δ

δΦy
inðtÞ

Tr ρ̂'ðtÞH'½Φ̂ðtÞ)
! "

þ HinΦ̂inðtÞ: ð11Þ

In the above equations H'½Φ̂ðtÞ) is a single-particle Hamiltoinan obtained by
replacing the fermionic operators in the hopping Hamiltonian H0,
cyinσ ! Rin½Φ̂)cyinσ , with Rin½Φ̂) hopping renormalization parameters determined by
the local projectors Φ̂in. Hin is the matrix representation of the Hubbard interaction
onto the local Hilbert space. The density matrix ρ̂'ðtÞ describes the dynamics of
effective quasiparticles with renormalized hopping or, equivalently, enhanced mass.
The quasiparticle renormalization is defined as Zi ¼ jRi½Φ̂)j2 ≤ 1; and it is con-
trolled by the local projectors Φ̂i. The local projectors Φ̂i describe the dynamics of
the local degrees of freedom associated with the interaction term. In the single-
band case at half-filling, the local degrees of freedom reduce to the excitations of
double occupied sites (doublons) at energies ~U. The two dynamics are coupled so
that the method is able to capture a non-trivial feedback between the delocalized
(quasipartcles) and localized (doublons) degrees of freedom. It is important to
mention that Eqs. ((10)–(11)) represent an exact solution of the variational pro-
blem only in the limit of a lattice of infinite coordination. For lattices of finite
coordination Eqs. ((10)–(11)) represent an approximation to the variation pro-
blem, known as the Gutzwiller approximation. In this work, we consider full in-
plane translation invariance, so that the matrices Φin depend only on the layer
index n. The non-equilibrium dynamics is completely determined by the solution
of the set dynamical Eqs. ((10)–(11)) with initial conditions set by the non-
equilibration protocol described below.

Non-equilibrium protocol. The non-equilibrium protocol defines the initial con-
dition for the unitary dynamics described in this work. We first solve the varia-
tional problem at T= 0, by looking at stationary solutions of Eqs. ((10)–(11)) for a
pure quantum state ρ̂' ¼ Ψ'ðtÞ

%% &
Ψ'ðtÞ
' %%. Therefore, we set the temperatures of

the two-electronic populations by running an equilibration dynamics in which
each layer is coupled to an external bath at temperature Tn. To this extent we
supplement the unitary dynamics for the quasiparticles (10) with a dissipative
term Lbath

i
∂ρ'ðtÞ
∂t

¼ H'ðtÞ; ρ'ðtÞ
! "

þ Lbath½ρ'): ð12Þ

which is obtained by considering, on each layer, a non-interacting bath defined on
the same square lattice of the Hubbard layer. We assume all the baths to be
identical, so that the bath Hamiltonian reads Hbath ¼ ∑knσϵbathðkÞd

y
knσdknσ . The

interaction with the electrons in the layers is described by local single-particle
hopping processes Hbath#sys ¼ v∑inσ c

y
inσdinσ þ h:c: ¼ v∑knσc

y
knσdknσ þ h:c:. By

integrating out the baths in the so-called Born-Markov approximation, and by
assuming that the baths belonging to different layers are completely decoupled, i.e.
hdyknσdkn0σ i / δnn0 , we obtain a standard Lindbladt form of the dissipative term
containing both single-particle losses, L# , and gains, Lþ ,

Lbath½ρ') ¼ Lþ½ρ') þ L#½ρ'); ð13Þ

with

L#½ρ') ¼ ∑
knσ

Γ#knðtÞ 2cknσρ'ðtÞc
y
knσ # fcyknσcknσ ; ρ'ðtÞg

h i
ð14Þ

Lþ½ρ') ¼ ∑
knσ

ΓþknðtÞ 2cyknσρ'ðtÞcknσ # fcknσc
y
knσ ; ρ'ðtÞg

h i
: ð15Þ

The couplings Γ±
k ðtÞ are defined by the distribution functions of the baths as

Γþkn & rðtÞΓNbath
n ðkÞ Γ#kn & rðtÞΓð1# Nbath

n ðkÞÞ; ð16Þ

where Γ is a constant proportionals to the couplings between layer and baths Γ∝ v2
and r(t)= θ(t− t−∞)θ(− t) is a box function function highlighting that the cou-
pling is switched-on at a time t−∞ < 0 and switched-off at time t= 0 when the

equilibration is reached. Nbath
n ðkÞ ¼ f ðϵbathðkÞ;TbathðnÞÞ is the Fermi-distribution of

the nth bath at temperature Tbath(n). The structure of the couplings reflects the fact
that the probability of jumping from the bath to the layer (gain) in a given
momentum state k is proportional to the occupation number in the corresponding
state in the bath. On the contrary, the probability to jump from the layer to the
bath (loss), is proportional to the probability of finding an empty state in the bath.
The Eq. (12) is solved together with the coupled equation for the local degrees of
freedom (11), so that the coupling of quasiparticles with the baths has an indirect
effect also onto the local degrees of freedom and, in turn, on the quasiparticle
renormalization Z. The quasiparticle renormalization corresponding to the mass
enhancement parameter mentioned in the main text m/m*≃ 0.3 corresponds to
the value obtained at the end of the equilibration step. The absolute value ∣t−∞∣
corresponds to the time needed to reach equilibration, being larger the smaller the
couplings Γ. In practice, it is found that the stationary solution does not depend on
the strength of the coupling, so that the equilibration can be reached considering an
equilibration dynamics much shorter than the picosecond dynamics discussed in
the main text.

When equilibration is reached, the density matrix ρ̂ðtÞ approaches a stationary
value ρ̂equ & Pequ ρ̂

equ
' Py

equ, independent of time. In the equilibrated state, the

quasiparticle occupation numbers Nequ
n ðkÞ & Tr½ρ̂equ' cyknσ cknσ ) become equal to the

occupation numbers of the baths. By changing variable from the quasi-momentum
k to energy using the bath dispersions ϵbath(k), the equilibration condition, in terms
of the quasiparticle energy distribution function, reads

Nequ
n ðϵÞ & Nequ

n ðϵbathðkÞÞ ¼ f ðϵ;TnÞ: ð17Þ

In Fig. 1 we show two energy distribution functions for a surface (n ≤ 5), and a bulk
(n > 5) layer, respectively, obtained after the equilibration step.

Non-equilibrium distribution functions. Here, we describe the definition of the
non-equilibrium distribution functions Nneq

n ðϵ; tÞ. We consider the time evolution
of the layer-dependent quasiparticle occupation numbers

Nnðk; tÞ & Tr ρ̂'ðtÞc
y
knσcknσ

h i
: ð18Þ

In order to track the evolution of the occupation numbers with respect to the initial
condition (17), we compare Nn(k, t) with the occupation numbers that would be
obtained after an equilibration step with a bath at fixed temperature. To this extent,
we define non-equilibrium distribution functions from the layer-dependent occu-
pation numbers, Eq. (18), in the same way as done in Eq. (17) for the equilibrated
distribution functions, namely

Nneq
n ðϵ; tÞ & Nneq

n ðϵbathðkÞ; tÞ: ð19Þ

We mention that such a definition of a non-equilibrium distribution is needed as
the Gutzwiller method does not give direct access to spectral quantities, but only to
quantities integrated in frequency. However, the definition (19) is physically
motivated by the need of having a meaningful comparison with the distribution
functions after the equilibration step, Eq. (17) which are known, being entirely
determined by the baths. In particular, at t= 0, the definition Eq. (19) correctly
reproduces Nneq

n ðϵ; t ¼ 0Þ ¼ Nequ
n ðϵÞ, with Nequ

n ðϵÞ defined in Eq. (17), whereas at
t > 0, when all the couplings with the baths are set to zero, the relation Eq. (17) is
no more satisfied and Nneq

n ðϵ; tÞ can be expressed as a superposition of two equi-
librium Fermi distributions, Eq. (4). This allows for the description of the thermal
dynamics in terms of a propagating hot electronic population and the temperature
dynamics of the cold electronic population.

Data availability
The data generated in this study, including the code used to generate the data, have been
deposited in the YARETA database59.
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