Potential physiological stress biomarkers
in human sweat
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Abstract—Emotional sweating occurs in response to affective
stimuli like fear, anxiety, or stress and is more evident in
specific parts of the body such as the palms, soles, and axillae.
During emotional sweating, humans release many volatile organic
compounds (VOCs) that could play a crucial role as possible com-
municative signals of specific emotions. In this preliminary study,
we investigated seven volatiles belonging to the chemical class of
acids and released from the armpit as possible stress biomarkers.
To this aim, we processed sweat VOCs and physiological stress
correlates such as heart rate variability (HRV), electrodermal
activity, and thermal imaging during a Stroop color-word test.
Particularly, we modelled the variability of well-known stress
markers extracted from the physiological signals as a function of
the acid VOCs by means of LASSO regression. LASSO results
revealed that the dodecanoic acid was the only selected regressor
and it was able to significantly explain more than 64% of the
variance of both the mean temperature of the tip of the nose
(p=0.018, R>=0.64) and of the mean HRV (p=0.011, R>=0.67).
Although preliminary, our results suggest that dodecanoic acid
could be a marker of the sympathetic nervous system response
to stress stimuli, opening for the detection of new biomarkers of
stress.

Index Terms—Emotional sweat, stress correlate volatiles, phys-
iological stress correlates, LASSO

I. INTRODUCTION

Although sweat gland activity is commonly associated with
thermoregulation, maintaining the body temperature within a
certain range is not the only reason why our sweat glands
change their activity. The so-called emotional sweating repre-
sents a physical body response to psychological stimuli (e.g.,
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stress, anxiety or fear), and it occurs over the whole body
surface with the main effect on palms, soles, and armpits
[1], [2]. Particularly, the axillae regions are characterized by
the presence of two different types of sweat glands: eccrine
and apocrine glands. The eccrine are the largest group of
sweat glands, distributed over almost the whole body surface
and secrete a watery fluid mainly related to thermoregulatory
functions. Instead, the apocrine glands are concentrated only
in a few specific human body regions such as the axillary,
mammary, perineal, and genital areas, and are known to be
responsive to emotions as well as to psychological stress [3],
[4].

During perspiration, humans release several different gases
from the skin such as volatile organic compounds (VOCs)
of sweat [4]. Over hundreds of such chemical volatiles are
secreted by the apocrine sweat glands and are the non smelling
precursors of the odoriferous substances emanating from the
underarm when bacterial enzymes transform them. In the
literature, specific sweat compounds or patterns of volatiles
have been examined as a possible communicative signal for a
specific emotion (chemosignals) [5]. Indeed, emotional sweat-
ing changes its characteristics based on the emotion felt by
the human [6], [7]. In this context, it has been suggested
that specific chemical markers may be released from the
skin because of stress [8]. However, only a few studies have
investigated the chemical composition of volatiles released
during stress reporting acids as potentially associated with
stress [4], [8].

The number of studies involving the chemical analysis of
emotional sweat is low and extremely challenging due to the
difficulties in sweat sampling and processing and the need for
objective emotion elicitation. State-of-the-art methods include
expensive devices such as comprehensive two-dimensional gas



chromatography time-of-flight mass spectrometry (GCxGC-Q-
TOF) that allow the detection of hundreds of compounds in
complex samples. Such a method allows on the one hand to
detect a wide range of chemical classes at low concentrations
as potential human signaling molecules. On the other, with the
capability to detect so many different compounds, it is very
important, but not always possible, to control the chemical
background. In fact, there are plenty of potential confounding
factors such as smoking, food, alcohol, as well as the use
of detergents, soaps, deodorants, and other cosmetic products.
Also eliciting and measuring stress objectively is a complex
field of research. In clinical practice, stress is commonly
assessed through psychometric tests or self-assessed levels.
However, these methods have been strongly discussed because
of their subjective nature, which can lead to unreliable results.
To overcome these issues, many studies have analysed physi-
ological correlates of the autonomic nervous system (ANS)
in response to elicited stress [9], [10]. More specifically,
stressful stimuli trigger the activation of the sympathetic
nervous system (SNS), which temporarily dominates over the
parasympathetic nervous system (PNS) and leads to changes in
several physiological signals, e.g., electrocardiogram (ECG),
electrodermal activity (EDA), thermal signals, sweat secretion,
etc.

A recent study has combined the analysis of VOCs collected
from sweat during stress conditions and physiological ANS
correlates [11]. Results have suggested that compounds in
human sweat can be potentially related to stress biomarkers.
In this context, however, the integration of sweat compound
analysis with well-established ANS correlates of stress is still
to be fully investigated.

In this preliminary study, we investigated the relationship
between ANS correlates of stress and VOCs in human sweat.
To this aim, we acquired physiological signals (i.e., ECG,
EDA, thermal images of the face) and sweat samples of 10
healthy subjects during a Stroop color-word test (a stress
elicitation method). First, we processed physiological signals
to assess stress reaction and thus validate the efficacy of our
experimental protocol in a more objective way. Furthermore,
we modelled stress-related features with a linear combination
of the VOCs belonging to the chemical class of acids. In
particular, we applied a LASSO regression to identify the
best subset of VOCs explaining the ANS response and thus
revealing the sweat compounds related to the physiological
stress reaction.

II. MATERIALS AND METHODS
A. Subject recruitment

Ten healthy volunteers (7 females, age = 27 £ 3 years)
were recruited for this preliminary study. Each participant
signed informed consent for participating in the study. The
experiment was approved by the “Bioethics Committee of
the University of Pisa” (n. 15/2019). Subjects were asked
not to drink coffee and not to eat within the three hours
before the experiment. A sandwich was provided two hours
before the measurement to minimize confounders related to

food. Moreover, subjects were asked to shave their armpits
the evening before the experiment, and they were provided
with shampoo and deodorant to use from the day before
the experiment. In addition, they were asked to avoid strong
flavours and spices, garlic, onions, alcohol, smoking and drugs
starting from one day before the experiment. Finally, they
were asked to wash their upper body cloths with a provided
detergent. All the participants complied with these guidelines.

B. Experimental protocol

The timeline of the experiment is reported in Fig. 1. It
consisted of two resting sessions interleaved by a stress task
session.
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Fig. 1. Protocol Timeline. PAD = armpit and back sweat sampling time;
dashed line = not timed break for PAD changing; PS = perceived stress level
assessment.

During the resting sessions, subjects were asked to relax
with their eyes open for 10 minutes. On the other hand, the task
session was designed to elicit mental stress by means of the
Stroop Test [12]. This session was divided into three 3-minute
long subsessions: one initial resting subsession (RESTpre), a
Stroop Test (Stroop), and a recovery subsession (RESTpost).
During the Stroop task, incongruent tint-content words were
displayed every 2 seconds at the center of a tablet’s screen,
while subjects were required to answer according to word’s
tint.

To standardize the conditions among subjects and limit the
interactions with the experimenter, the whole protocol was
driven by an ad-hoc Android application developed for the
study and installed on a tablet. During the Stroop, the appli-
cation showed a score-counter, which indicated the number
of subsequent successes, and which turned back to zero after
any incorrect or missed answer. In addition, the passage of
time was marked throughout the task by a background ticking
and the subject was notified with an annoying acoustic buzzer
any time he/she gave a wrong/missed answer. Before and after
the stroop task, subjects reported their self-perceived level of
stress on a likert scale from O (not at all) to 10 (very stressed).

Finally, the room temperature and humidity were monitored
throughout the experiment by the EXTECH RH550 Humidity-
Temperature Chart Recorder at a rate of 0.5 Hz to ensure a
stable and comfortable environment. Indeed, during each ex-
periment, temperature and humidity were always constant and
in the range of 22°C to 28°C and 40% to 56%, respectively.
Once the subjects arrived in the laboratory, they had 10 min
to acclimatize before starting the experiment.

C. Data acquisition and processing

We acquired both chemical data and physiological signals
during the experiment. Additionally, self-reported stress scores
were recorded before and after the Stroop session.



1) Chemical data: We collected sweat samples during the
three sessions as shown in Fig. 1. This experimental design al-
lows shortening the duration for the reference samples (REST
task, PAD1-REST) and to investigate if the stress volatiles
are released more rapidly (first 10 min, PAD2-STRESS),
delayed (follow-up 10 min, PAD3-REST), or intermediately
by calculating the average ("PAD-MeanStress”). In addition,
we collected field blanks for each participant, which were
exposed to ambient air and treated in the same manner as
the sweat samples. Sweat samples were collected from the
armpit and upper back with pads (Dermatess), that were pre-
cleaned by bake-out at 150°C. After each session, the pads
were stored at -80°C until extraction of the volatiles. The
extraction and preconcentration into sorbent tubes were carried
out in a heated closed chamber with high-purity surfaces.
Separation was done with two subsequent gas chromatography
columns (GCxGC), with a flow modulator for synchronization
between columns, and analysis with a quadrupole-time-of-
flight (Q-TOF) mass spectrometer. After analysis, the raw
data files are automatically transformed into images using
GC Image. These images are the graphical representations of
the GCxGC chromatograms with first- and second dimension
retention times on the x- and y-axes, respectively, and the
intensity values on the z-axis are converted to a color scale. A
composite chromatogram was generated with an automated
peak alignment algorithm (i.e. from 40 individual images
for the armpit sample). We applied a two-fold approach
where we identified the chemicals first automatically and
then verified manually. We filtered by the following criteria:
spectral similarity (> 750%), linear retention indexing (+50
LRI units), and accurate mass matching of key fragment ions
(molecular ions or characteristic ions). The accurate masses of
these characteristic ions were used to automatically generate
new images of selected ion chromatograms (SICs). These
peak templates were applied to each SIC to extract the peak
volumes at pre-defined retention time windows. This way,
the response of all previously identified chemicals could be
monitored very selectively by their fragments’ accurate masses
in a fully automated way. Templates and their respective
images with appropriate spectral filters were generated for
60 chemical subclasses and applied to all samples (40 * 60
= 2400 images). Data pretreatment included correction for
negative peak volumes due to the automatic baseline correction
of GC Image. All values were shifted into the positive by
the addition of the minimal peak volume. Peak volumes were
adjusted by sweat weight for each pad (mg) by sample-
wise normalization (divided by weight and multiplied by the
mean sweat weight across samples). We were able to detect
a large number of 130 volatile compounds belonging to eight
chemical classes (acids, alcohols, aldehydes, esters, furans, O-
heterocycles, ketones, nitrogen-containing compounds, eight
others, and five unknowns). We focused our initial analysis
on the detected acids because acids have been previously
suggested as sweat volatiles associated with stress [4], [8]. The
detected seven acids were two carboxylic acids (acetic acid,
propionic acid), four fatty acids (hexa-, octa-, dec-, dodecanoic

acid), and diisopropyl adipate.

2) Physiological data: We acquired multiple physiological
signals, i.e. thermal signal from the nose, ECG and EDA,
during the entire duration of the experiment. Each recorded
physiological signal was analysed to extract state-of-the-art
features able to characterize the ANS dynamics and assess
the stress state.

Thermal imaging. The temperature of the skin is mainly
modulated by two ANS-driven phenomena, i.e., redistribution
of blood in the subcutaneous vessels and perspiration. Indeed,
thermal variations of specific facial regions have been analysed
in relation to mental states and emotional stimuli. Among
these regions, the nose has proven to be a very reliable stress
marker [13]-[16]. Therefore, we monitored the temperature
variations of the tip of the nose using a FLIR T640 thermal
camera (sampling rate = 5SHz, resolution = 640x480 pixels,
lens = 24.6mm, NETD <0.04mK @ +30°C, spectral range of
7.8-14 ym - LWIR). Additionally, we acquired RGB images
with a Logitech HD webcam C270 (sampling rate = 30Hz,
resolution = 1280x720 pixels) to identify the anatomical
landmark of the tip of the nose. RGB and IR data synchronized
after downsampling the RGB video to the sampling rate of
IR frames (i.e., SHz). Then, the synchronized RGB and IR
frames were spatially coregistered by means of an affine-2D
transformation matrix estimated on the first frame of the RGB
and IR datasets. A region-of-interest (ROI) around the center
of the tip of the nose was identified on the RGB frames with
the Yuval Nirkin algorithm for facial landmark detection [17].
Additionally, the ROI was purposely chosen to be proportional
to the size of the subject’s face. This latter was obtained by
means of an automatic segmentation procedure as suggested
in [15]. Afterwards, ROI tracking was carried out with a built-
in Matlab PointTracker object [18] (The Mathworks Inc.).
Accordingly, we properly controlled for potential undesired
subjects’ movement. Then, for each frame, we estimated the
median temperature of the nose ROI to obtain a thermal time-
series for subsequent feature extraction. Such thermal signal
was processed by filtering out high-frequency noise with a
moving median filter, and by further replacing outliers (i.e.,
temperature values exceeding 3 standard deviations) with their
nearest value. Finally, we extracted the mean of the processed
thermal signal (Nose Mean) during RESTpre and Stroop.

Electrocardiogram. ECG and EDA were recorded using a
BIOPAC MP 150 system, at a sampling rate of S00Hz. ECG
signals were analysed using the software Kubios [19] to extract
and process the HRV time series. Indeed, the analysis of HRV
in time and frequency domain provides a window through
which autonomic nervous system functions can be estimated
and it has been widely used to identify a stress state [20],
[21]. In particular, for both RESTpre and Stroop sessions, we
estimated the mean of the HRV (MeanHRYV), the root mean
square of successive differences between normal heartbeats
(RMSSD) and the spectral power in the range of 0.15-0.40 Hz
(high frequency - HF) expressed as a percentage of the total
power. These features are likely to reflect both sympathetic and
parasympathetic ANS activity [22], and have been previously



used in stress recognition tasks [23], [24].

Electrodermal activity. The EDA reflects changes in the
electrical properties of the skin induced by the sweat glands’
production on the palm of the non-dominant hand. Since such
sweat glands are under the direct control of the sympathetic
branch of the ANS [25], the EDA is considered a good way to
monitor the sympathetic activity and the stress state [26]. EDA
is made by the superimposition of a tonic component, which
reflects slow-varying changes in the sympathetic tone activity,
and a phasic component, which includes the fast variations di-
rectly evoked by external stimuli. During a continuous stressful
stimulation like the one in the present protocol, the effect on
the tonic component is predominant and its dynamic represents
effective stress correlate [26], [27]. Here, we used the cvxEDA
model to extract the tonic component from the raw EDA signal
[28]. Afterwards, for both RESTpre and Stroop sessions, we
extracted the mean tonic value (TonicMean) with a sliding-
window approach using 20s-long non-overlapped windows.

D. Statistical analysis

As an exploratory analysis, we statistically compared the
self-assessed stress scores, the physiological features and the
VOC concentration computed during the stressful and the
resting conditions. Particularly, for each acid VOC, we tested
possible significant differences between PAD-MeanSTRESS
and PADI-REST with a Wilcoxon sign-rank test. (where
PAD-MeanSTRESS is the average between PAD2-STRESS and
PAD3-REST) Analogously, for each physiological feature (i.e.
NoseMean, TonicMean, MeanHRYV, RMSSD, and HF), we
performed a Wilcoxon sign-rank test between Stroop and REST
pre to evaluate the effectiveness of stress elicitation. Likewise,
we performed a Wilcoxon sign-rank test on the self-assessed
stress scores recorded before and after the Stroop task.

1) LASSO regression: Before performing LASSO regres-
sion, we normalized both chemical and physiological sig-
nals by their relative rest session. Thus, we considered the
difference AVOCs = PAD-MeanSTRESS - PADI-REST for
each VOCs, and the difference AFeat = Stroop - RESTpre)
for each physiological feature. Then, for each physiological
stress correlate AFeat, we used a LASSO (least absolute
shrinkage and selection operator) regression model [29] to
explain the feature as a function of the selected group of acid
AVOC:s. Starting from the complete model, LASSO regression
selects the subset of regressors that minimizes the prediction
error for a quantitative response variable. The built-in feature
selection capability of the LASSO method is due to the L1
penalty factor included in the cost function. L1 -norm is
particularly suited to handle multicollinearity and mitigate the
overfitting risk in the regression models. Indeed, the L1 penalty
causes regression coefficients for some regressors to shrink
toward zero, discarding less important or redundant regressors.
The optimal hyperparameter A\ that tuned the intensity of
such L1 penalty was chosen using LOSO cross-validation.
Accordingly, after scaling the regressors by means of z-score,
we applied the LASSO model using different A values and
selecting the fit that minimized the mean square error (MSE).

Once the optimal A was identified, we performed a statis-
tical inference of each regressor (i.e., VOCs) whose relative
coefficient was different from 0. Specifically, we applied an
exact post-selection inference procedure to mitigate the risk
of overfitting occurring when the standard inference procedure
of linear regression models is applied to LASSO regression.
Finally, the coefficients selected by the LASSO that were
statistically significant (p-value < 0.05) were used to fit the
best model explaining each feature. Note that feature selection
was necessary to reduce the dimensionality of the model,
considering the high number of VOCs compared to the number
of observations in our dataset

III. RESULTS

1) Paired difference testing: The Wilcoxon test on the self-
assessed scores of stress confirmed that subjects significantly
increased their perceived level of stress after the task (median
4+ mad = 5 £ 1.3 vs. median + mad = 2 + 1.5, p <
0.01). Likewise, all the features extracted from physiological
signals showed significant differences between the Stroop and
RESTpre sessions. In particular, TonicMean and meanHRV
increased significantly during Stroop (p = 0.004). Conversely,
NoseMean, RMSSD and HF decreased significantly during
Stroop (respectively, p = 0.027, p = 0.049 and p = 0.006).
On the other hand, none of the VOCs showed any significant
difference between PAD-MeanSTRESS and PADI-REST ( P-
values are shown in Table I).

TABLE 1
PAD-MeanSTRESS VS PAD1-REST WILCOXON TEST P-VALUES FOR EACH
ACID COMPOUND

Acids p-value Acids p-value
dodecanoic acid 0.105 octanoic acid 0.695
hexanoic acid 0.232 Acetic 0.769
Propionic acid 0.275 decanoic acid 0.921
Diisopropyl adipate 0.275

2) LASSO regression: Considering the model explaining
the temperature of the nose tip (i.e., Nose Mean) as a function
of the VOC concentrations, the feature selection performed
by the LASSO reduced the regressors subset to one single
VOC (see top left Fig. 2). Accordingly, only dodecanoic acid
was associated with a non-zero coefficient. The model that
minimized the MSE (MSE = 0.1451) was for A\ equal to
0.0585. Moreover, the inference analysis showed a significant
p-value (p = 0.018) for dodecanoic acid with an R? of 0.64.
The resulting equation of the model is (2):

ANoseMean = —0.1620—3.128¢°- Adodecanoic acid (1)

The corresponding regression plot is shown in Fig. 3.
Concerning the HRV features, the LASSO model explaining
the meanHRYV selected both the dodecanoic and the octanoic
acids (MSE = 11.203 for A equal to 0.088). However, only the
dodecanoic showed statical significance after the post-selection
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Fig. 2. (Top) Coefficients of each regressor for different values of A; (Bottom) Mean Squared Error (MSE) of the LASSO regression model for different
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inference procedure (respectively, p = 0.011 and p = 0.322)
with an R? of 0.67. The equation of the model is (2):

AMeanHRV = 8.71 — 2.72¢~%- Adodecanoic acid

7 Lo 2)

+1.73e™ - Aoctanoic acid
The corresponding bidimensional regression plot showing the
relationship between the MeanHRYV and the dodecanoic acid
only (due to its statistical significance) is shown in Fig. 3. On
the other hand, the LASSO models concerning the RMSSD
and HF showed a minimum of the MSE for the highest value
of \. In this case, none of the VOC regressors had a coefficient
different from zero and the model with the minimum MSE was
the model with the only intercept term.

Finally, the LASSO model explaining TonicMean selected
again only the dodecanoic acid. However, the estimated co-
efficient was not statistically significant based on the post-
selection inference procedure (p = 0.16).

IV. DISCUSSIONS

In this preliminary study, we investigated the relationship
between some selected acid volatiles in human sweat produced
during mental stress and well-established physiological stress
correlates. More specifically, we used LASSO regression to
reduce model dimensionality, given the low number of ob-
servations, and select the most informative VOCs. Although
preliminary, our results highlighted a significant linear rela-
tionship between two physiological markers of stress, such
as the nose mean temperature and the meanHRYV, and the
concentration of the n-Dodecanoic acid in sweat.

The efficacy of our protocol in inducing stress was con-
trolled with both self-assessed measures of stress and phys-
iological features commonly used in stress recognition [15],
[26]. Specifically, we observed that these measures changed
significantly during the Stroop session as expected. More
importantly, we observed that among all the considered phys-
iological features for characterizing the stress condition, some
of them had a significant linear relationship with the n-
Dodecanoic VOC. Interestingly, one of these was the tem-
perature of the tip of the nose, which was previously found to
characterise stressful conditions [13]-[15], [30]. Analogously,
MeanHRV increased during the Stroop session possibly re-
flecting a response to sympathetic arousal [23], [24]. We also
controlled the environment, ensuring a stable temperature and
humidity during the whole experiment to exclude potential
confounders in the analyses due to thermoregulatory processes.
In addition, we tried to minimize confounding factors in
sweat analysis due to food intake, coffee, tobacco, as well
as to the use of cosmetic products with ad-hoc requirements.
Furthermore, the influence of minerals and solvents captured
by skin hair was minimized by asking subjects to shave their
armpits the evening before the experiment. Accordingly, we
assumed that the observed relations between physiological
features and sweat compounds were likely to be related to
the stressful condition rather than to other phenomena.



The LASSO models explaining both RMSSD and HF did
not select any regressor. Interestingly, both HF and RMSSD
are widely used markers of PNS activity [22]. On the other
hand, the LASSO models of NoseMean, MeanHRYV, and
TonicMean, which are commonly related to the sympathetic
stress response [23], [31] selected always the dodecanoic acid
as the first ranked or as the only regressor. Accordingly, we
could hypothesize that dodecanoic acid could be considered a
new potential correlate of the SNS.

Changes in VOCs were not significant in any of the compar-
isons between PAD-MeanSTRESS and PADI-REST. However,
we observed that for dodecanoic acid the p-value was lower
than for the rest of the acids (p = 0.105). In this view, we
cannot exclude that statistical significance was not reached
because of the relatively low number of subjects, which
limited the power of statistical comparisons. Accordingly,
future confirmatory analyses will be needed by enlarging the
number of subjects participating in the study.

V. CONCLUSION

In conclusion, although preliminary, our results suggest
the presence of a linear relationship between well-established
features for stress detection and the VOC dodecanoic acid
in human sweat collected during stressful conditions and
offers interesting insights for its future application as a stress
biomarker. Moreover, in future studies, we will consider
VOCs extracted from other body fluids and gases (e.g.,
breath, saliva, etc.) as they could provide additional and
complementary information on the subject’s mental state.
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