
REGULARITY RESULTS FOR ROUGH SOLUTIONS OF THE INCOMPRESSIBLE
EULER EQUATIONS VIA INTERPOLATION METHODS

MARIA COLOMBO, LUIGI DE ROSA, AND LUIGI FORCELLA

Abstract. Given any solution u of the Euler equations which is assumed to have some regularity in
space – in terms of Besov norms, natural in this context – we show by interpolation methods that it
enjoys a corresponding regularity in time and that the associated pressure p is twice as regular as u. This
generalizes a recent result by Isett [17] (see also Colombo and De Rosa [9]), which covers the case of Hölder
spaces.

1. Introduction

In the spatial periodic setting T3 = R3/Z3, we consider the incompressible Euler equations{
∂tu+ div(u⊗ u) +∇p = 0
div u = 0

in (0, T )× T3 (1.1)

where u : (0, T )× T3 → R3 represents the velocity of an incompressible fluid, p : (0, T )× T3 → R is the
hydrodynamic pressure, with the constraint

∫
T3 p dx = 0, which guaranties its uniqueness.

The interest for low-regularity solutions to the Euler equations is strongly related to Kolmogorov’s 1941
theory of turbulence [19] and to the Onsager’s conjecture [24]. In recent years, distributional solutions
belonging to Hölder spaces were built with convex integration techniques, starting from the works of De
Lellis and Székelyhidi [12,13] and leading to the proof of the Onsager’s conjecture by Isett, see [18].

Such techniques were recently adapted by Buckmaster and Vicol to the Navier-Stokes equations by
developing a Sobolev (rather than Hölder) based method [5], which in turn appears also in a recent work by
Modena and Székelyhidi in [23]. This approach can be used to build solutions of the Euler equation with
velocity in L∞((0, T );L2 ∩W 1,θ(T3)) for some θ > 1. In the context of the physical theory of intermittency
it is currently an open problem (see [6, Open Problem 5]) to determine the best exponent θ such that
L∞((0, T );Hθ(T3)) solutions conserve the energy (it is known that for θ = 5/6 conservation holds).

The following theorem provides a regularization property of the Euler equations, for solutions which
enjoy some a priori Sobolev or Besov regularity in space. Roughly speaking, we prove that the pressure
associated to any such solution enjoys double regularity in space with respect to u, and that both u and
p enjoy a corresponding time regularity. In the main theorem below, by Bθs,∞ we denote a Besov space,
rigorously defined in Section 2. The choice to work in these spaces is motivated to avoid an ε-loss of
regularity in time and was previously performed for instance in [1, Chapter 7].

Theorem 1.1. Let (u, p) be a distributional solution to (1.1) in (0, T )× T3, for some T < ∞. For any
θ ∈ (0, 1), s ∈ [1,∞], r ∈ (1,∞), the following implications are true:

(i) if u ∈ L2s((0, T );Bθ2r,∞(T3)), then u ∈ Bθs,∞((0, T );Lr(T3)) and p ∈ Ls((0, T );B2θ
r,∞(T3));

(ii) if u ∈ L3s((0, T );Bθ4r,∞(T3)) and θ > 1/2, then p ∈ B2θ−1−β
s,∞ ((0, T );B1+β

r,∞ (T3)) for any β ∈
[0, 2θ − 1);

2000 Mathematics Subject Classification. 35Q31, 35A01, 35D30.
Key words and phrases. Incompressible Euler equations, weak solutions, Interpolation Theory.
Nonlinearity 33 (2020) 4818-4836, https://doi.org/10.1088/1361-6544/ab8fb5.

1



2 M. COLOMBO, L. DE ROSA, L. FORCELLA

(iii) if u ∈ L3s((0, T );Bθ3r,∞(T3)) and if θ ≤ 1/2, then p ∈ B2θ−ε
s,∞ ((0, T );Lr(T3)), for any ε > 0.

Moreover in the case θ > 1/2 we have p ∈W 1,s((0, T );B2θ−1
r,∞ (T3));

(iv) if u ∈ L6s((0, T );Bθ6r,∞(T3)) and θ > 1/2, then ∂tp ∈ B2θ−1−ε
s,∞ ((0, T );Lr(T3)), for any ε > 0.

Then we obtain the following corollary on the Sobolev solutions by considering suitable embeddings
between Sobolev and Besov spaces.

Corollary 1.2. Let (u, p) be a distributional solution to (1.1) in (0, T )× T3, for some T <∞. For any
θ ∈ (0, 1), s ∈ [1,∞], r ∈ (1,∞), the following implications hold true:

(i) if u ∈ L2s((0, T );W θ,2r(T3)), then u ∈W θ−ε,s((0, T );Lr(T3)) and p ∈ Ls((0, T );W 2θ−ε,r(T3));
(ii) if θ ≤ 1/2 and u ∈ L3s((0, T );W θ,3r(T3)), or if θ > 1/2 and u ∈ L6s((0, T );W θ,6r(T3)), then

p ∈W 2θ−ε,s((0, T );Lr(T3)).

When s = r = ∞, identifying W θ,∞ with the corresponding Hölder space, the previous theorem cor-
responds formally to [17, Theorem 1.1] and [9, Theorem 1.1]: roughly speaking, it says that if (u, p) is
a distributional solution to (1.1), θ ∈ (0, 1) and u ∈ L∞((0, T );Cθ(T3)), then u ∈ Cθ−ε((0, T );L∞(T3)),
namely u ∈ Cθ−ε((0, T )× T3) and p ∈ C2θ−ε((0, T )× T3). These regularity estimates were observed as a
common feature of many convex integration schemes which produce Hölder solutions of the Euler equations
[12, 13, 18], at least as far as the double regularity of pressure is concerned. Correspondingly, the regularity
properties of Corollary 1.2 must be expected when building nonsmooth solutions in L∞((0, T );Hθ(T3)) for
some θ > 1/3, as expected in [6, Open Problem 5].

Theorem 1.1 follows from two main ingredients: on one side, we obtain the time regularity by estimating,
for any time increment h, some norm ||u(t+ h)− u(t)|| by comparison between u and the convolution of
u with a mollification kernel at some scale δ, which is then linked to h. On the other side, to obtain the
double regularity of the pressure we look at

−∆p = div div(u⊗ u), (1.2)

which is the formal equation solved by p. We consider a bilinear operator which associates to two divergence-
free vector fields (u, v) the solution to −∆p = div div(u⊗ v) and we apply an abstract interpolation result
for bilinear operators (see Theorem 3.6 below). Previous results on the regularity of the pressure in Hölder
spaces (see [10] and [9]) were instead based on suitable representation formulas for the pressure by means
of the Green kernel of the Laplacian, while this strategy using real interpolation methods seems to be new
in this context.

2. Preliminary tools and notations

Along the paper, we will consider T3 as spatial domain, identifying it with the 3-dimensional cube
[0, 1]3 ⊂ R3. Thus for any f : T3 → R3 we will always work with its periodic extension to the whole space.

We will define the norms for a domain Ω ⊆ Rd, for a general dimension d ≥ 1, since in this way we
can handle both the space and the time regularities. Let Ω ⊆ Rd be an open and Lipschitz domain. For
θ ∈ (0,∞), r, s ∈ [1,∞], the Lr(Ω) and W θ,r(Ω) spaces are the classical Lebesgue and Sobolev-Slobodeckij
spaces, with the usual identifications W 0,r(Ω) = Lr(Ω) and W θ,∞(Ω) = Cθ(Ω). We first define the Besov
spaces on the whole Rd, then their version on general open sets Ω will be defined by extension. For any
θ ∈ (0,∞), let θ− to be the biggest integer which is strictly less than θ. For any non integer θ ∈ (0,∞),
the Besov space Bθr,s(Rd) is the space of functions f ∈W θ−,r(Rd) such that

[f ]Bθr,s(Rd) =
∑
|α|=θ−

(∫
Rd

1

|h|d+(θ−θ−)s

(∫
Rd
|Dαf(x+ h)−Dαf(x)|r dx

) s
r

dh

) 1
s

<∞,
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with the usual generalization when r, s =∞. The full Besov norm will be then given by

‖f‖Bθr,s(Rd) = ‖f‖W θ−,r(Rd) + [f ]Bθr,s(Rd).

If instead θ > 0 is an integer, the Besov space Bθr,s(Rd) consists of all the functions f ∈W θ,r(Rd), such that

[f ]Bθr,s(Rd) =
∑
|α|=θ

(∫
Rd

1

|h|d+s

(∫
Rd
|Dαf(x+ 2h)− 2Dαf(x+ h) +Dαf(x)|r dx

) s
r

dh

) 1
s

<∞,

again with the usual generalization when r, s =∞. Thus the full norm will be given by

‖f‖Bθr,s(Rd) = ‖f‖W θ,r(Rd) + [f ]Bθr,s(Rd).

For any open and Lipschitz set Ω we then define

Bθr,s(Ω) =
{
f : Ω→ Rd s.t. ∃ f̃ ∈ Bθr,s(Rd), f̃ |Ω = f

}
,

where the semi-norm is given by

[f ]Bθr,s(Ω) = inf
{

[f̃ ]Bθr,s(Rd), f̃ |Ω = f
}
.

By the definitions above we have that for any non integer θ ∈ (0,∞), Bθr,r(Ω) = W θ,r(Ω) for any r ∈ [1,∞],
which in the case r =∞ gives Bθ∞,∞(Ω) = Cθ(Ω). Moreover, since the domain Ω is Lipschitz, we always
have the existence of a linear extension operator to the whole space. It is well know that this operator
turns out to be also continuous between every Sobolev or Besov spaces.

Considering the flat d-dimensional torus Td, we define the Besov norm as above with Ω = [0, 4]d that is,
we compute the norm in 4 copies of Td.

Dealing with time dependent vector fields u = u(t, x), we will use the notations [u(t)] and ‖u(t)‖ when
the spatial semi-norm or norm, respectively, are computed at the fixed time t.

We give the following interpolation result in Besov spaces.

Proposition 2.1. Let Ω ⊂ Rd be an open and Lipschitz set. For any r ∈ [1,∞], θ, γ ∈ (0, 1) with θ ≥ γ,
there exists a constant C > 0 such that

[f ]Bγr,∞(Ω) ≤ C‖f‖
1− γθ
Lr(Ω)‖f‖

γ
θ

Bθr,∞(Ω)
, (2.1)

[f ]Bθr,∞(Ω) ≤ C‖f‖
1−θ
1−γ
Bγr,∞(Ω)

‖f‖
θ−γ
1−γ
W 1,r(Ω). (2.2)

Note that the same inequalities hold if one replaces all the semi-norms with the full norms.

Proof. We start by proving (2.1) and (2.2) in the whole space Rd. Note that for every f ∈ Bθr,∞(Rd) and
θ ≥ γ, we have

[f ]Bγr,∞(Rd) ≤ 2
(
‖f‖Lr(Rd) + [f ]Bθr,∞(Rd)

)
. (2.3)

By plugging in (2.3) the rescaled function f(εx), we also get

εγ [f ]Bγr,∞(Rd) ≤ 2
(
‖f‖Lr(Rd) + εθ[f ]Bθr,∞(Rd)

)
,

for every ε > 0. Thus by choosing ε = ‖f‖
1
θ

Lr(Rd)
[f ]
− 1
θ

Bθr,∞(Rd)
, we get (2.1) for Ω = Rd. Take now λ ∈ [0, 1)

such that (1− λ)γ + λ = θ. We estimate

‖f(·+ y)− f(·)‖Lr(Rd)

|y|θ
=

(‖f(·+ y)− f(·)‖Lr(Rd)

|y|γ

)1−λ(‖f(·+ y)− f(·)‖Lr(Rd)

|y|

)λ
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≤ [f ]1−λ
Bγr,∞(Rd)

‖∇f‖λLr(Rd),

from which, since λ = θ−γ
1−γ , we conclude (2.2) for Ω = Rd. If f ∈ Bθr,∞(Ω) for Ω as in the statement, (2.1)

and (2.2) easily follow from their versions in Rd and the existence of a (continuous) extension operator. �

Let ϕ ∈ C∞c (Rd) a smooth, nonnegative and compactly supported function with ‖ϕ‖L1 = 1. For any
δ > 0 we define ϕδ(x) = δ−dϕ(x/δ) and we consider, for any vector field f : Td → Rd its regularization
fδ(x) = (f ∗ ϕδ)(x) =

∫
Rd f(x− y)ϕδ(y) dy. We conclude this section by recalling some classical estimates.

The third one is for instance the one used in [11] to prove the positive statement of the Onsager’s conjecture.

Proposition 2.2. For any f : Td → Rd, θ ∈ (0, 1), r ∈ [1,∞] and any integer n ≥ 0, we have the following

‖f − fδ‖Lr(Td) ≤ Cδθ‖f‖Bθr,∞(Td), (2.4)

‖fδ‖Wn+1,r(Td) ≤ Cδθ−n−1‖f‖Bθr,∞(Td), (2.5)

‖fδ ⊗ fδ − (f ⊗ f)δ‖Wn,r(Td) ≤ Cδ2θ−n‖f‖2Bθ2r,∞(Td), (2.6)

for some constant C > 0 depending on θ, r, n but otherwise independent of δ.

3. Abstract multilinear interpolation

In this section we provide some estimates for multilinear operators, by means of abstract real interpolation
methods. They are the core of the paper, and the proof of Theorem 1.1 relies on them. We start by
recalling some definitions and basic facts about interpolation spaces and we refer the reader to the classical
monographs [2, 21,25] for further details.

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be two real Banach spaces. The couple (X,Y ) is said to be an interpolation
couple if both X and Y are continuously embedded in a topological Hausdorff vector space. For any interval
I ⊆ (0,∞) we denote by Lr∗(I) the Lebesgue space of r-summable functions with respect to the measure dt/t.
Let use notice that in particular L∞(I) = L∞∗ (I). Moreover, we recall the definition of the K-function, by
introducing the following notation. Given x ∈ X+Y we denote Ω(x) = {(a, b) ∈ X×Y : a+b = x} ⊂ X×Y.

Definition 3.1. For every x ∈ X + Y and t > 0, the K-function is defined by

K(t, x,X, Y ) = inf
Ω(x)
{‖a‖X + t‖b‖Y }. (3.1)

If no confusion can occur, we simply write K(t, x) instead of K(t, x,X, Y ).

Definition 3.2. Let θ ∈ (0, 1) and r ∈ [1,∞]. We set

(X,Y )θ,r =
{
x ∈ X + Y s.t. t 7→ t−θK(t, x) ∈ Lr∗(0,∞)

}
endowed with the norm

‖x‖(X,Y )θ,r = ‖t−θK(·, x)‖Lr∗ .

For these spaces we have the following inclusions

X ∩ Y ↪→ (X,Y )θ,r ↪→ (X,Y )θ,s ↪→ X + Y, (3.2)

for every θ ∈ (0, 1) and r, s ∈ [1,∞] with r ≤ s. Moreover if γ > θ we also have (X,Y )γ,r ↪→ (X,Y )θ,s, for
every r, s ∈ [1,∞], provided Y ↪→ X.

The following two remarks will be useful in the proof of Theorem 3.6.

Remark 3.3. When Y ↪→ X, the definition of K in (3.1) does not change if instead of Ω(x) we consider the
set Ω̃(x) = {(a, b) ∈ Ω(x) s.t. ‖a‖X ≤ ‖x‖X}; in other words,

K(t, x,X, Y ) = inf
Ω(x)
{‖a‖X + t‖b‖Y } = inf

Ω̃(x)
{‖a‖X + t‖b‖Y }.
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Indeed, since Y ↪→ X, one can choose a = x and b = 0 in (3.1), obtaining K(t, x) ≤ ‖x‖X . On the other
hand, we have that ‖a‖X + t‖b‖Y > ‖x‖X for all (a, b) ∈ Ω̃(x)c.

Remark 3.4. Consider again the case Y ↪→ X. Since a+ b = x, we have

‖a‖X + ‖b‖X ≤ 2‖a‖X + ‖x‖X ≤ 3‖x‖X , ∀ (a, b) ∈ Ω̃(x).

It is well known that
(
(X,Y )θ,r, ‖ · ‖(X,Y )θ,r

)
is a Banach space. Furthermore, we recall that a lin-

ear operator T behaves nicely with respect to interpolation, i.e. if T ∈ L(X1, Y1) ∩ L(X2, Y2), then
T ∈ L((X1, X2)θ,r, (Y1, Y2)θ,r) for any θ ∈ (0, 1) and r ∈ [1,∞].

Instead of linear operators, our aim is to treat the case of multilinear operators, in particular bilinear
and trilinear ones. It is worth mentioning that there exists a wide literature on Interpolation Theory for
multilinear operators, see for example the works [2], [16], [20] and [22], but at the best of our knowledge
the following results are new. We also emphasise that they are precisely designed for the applications to
incompressible fluid models of the next section. In what follows, a conjugate pair (s, s′) is a couple of reals
satisfying s′ = s

s−1 .

Theorem 3.5. Let (X1, X2) and (Y1, Y2) be two interpolation couples. Let T be a bilinear operator satisfying

‖T (a1, a2)‖Y1
≤ C0‖a1‖X1

‖a2‖X1
, (3.3)

‖T (b1, b2)‖Y2 ≤ C0‖b1‖X2‖b2‖X2 , (3.4)

and
‖T (a, b)‖(Y1,Y2) 1

2
,∞

+ ‖T (b, a)‖(Y1,Y2) 1
2
,∞
≤ C0‖a‖X1

‖b‖X2
, (3.5)

for some constant C0 > 0 independent on a, a1, a2 ∈ X1 and b, b1, b2 ∈ X2, where we implicitly assume
that T is well defined between the spaces involved in the previous estimates. Then, for any θ, γ ∈ (0, 1),
r, s, s′ ∈ [1,∞] with s, s′ being a conjugate pair,

‖T (x1, x2)‖(Y1,Y2) θ+γ
2
,r
≤ C0‖x1‖(X1,X2)γ,rs‖x2‖(X1,X2)θ,rs′

∀x1 ∈ (X1, X2)γ,rs, ∀x2 ∈ (X1, X2)θ,rs′ .

In particular, for γ = θ and s = s′ = 2, we get

‖T (x, x)‖(Y1,Y2)θ,r ≤ C0‖x‖2(X1,X2)θ,2r
, ∀x ∈ (X1, X2)θ,2r.

Proof. Let x1 ∈ (X1, X2)γ,sr and x2 ∈ (X1, X2)θ,rs′ . Then we can write x1 = a1 + b1 and x2 = a2 + b2 for
some a1, a2 ∈ X1 and b1, b2 ∈ X2, by definition. Since T is bilinear we have

T (x1, x2) = T (a1, a2) + T (a1, b2) + T (b1, a2) + T (b1, b2).

From (3.5) we know that T (a1, b2) ∈ (Y1, Y2) 1
2 ,∞

, hence for any t, ε > 0 there exist T1 ∈ Y1 and T2 ∈ Y2

such that T (a1, b2) = T1 + T2 and

‖T1‖Y1
+ t‖T2‖Y2

≤ (1 + ε)K(t, T (a1, b2), Y1, Y2)

≤ (1 + ε)
√
t‖T (a1, b2)‖(Y1,Y2) 1

2
,∞
≤ (1 + ε)C0

√
t‖a1‖X1

‖b2‖X2
.

(3.6)

Similarly, we can decompose T (b1, a2) = U1 + U2 with U1 ∈ Y1 and U2 ∈ Y2 with estimate

‖U1‖Y1
+ t‖U2‖Y2

≤ (1 + ε)C0

√
t‖a2‖X1

‖b1‖X2
. (3.7)

Therefore we can write T (x1, x2) = V +W , where

V = T (a1, a2) + T1 + U1 ∈ Y1,

W = T (b1, b2) + T2 + U2 ∈ Y2.
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Summing up (3.3)–(3.7) yields to

‖V ‖Y1
+ t‖W‖Y2

≤ (1 + ε)C0

(
‖a1‖X1

‖a2‖X1
+
√
t (‖a1‖X1

‖b2‖X2
+ ‖a2‖X1

‖b1‖X2
) + t‖b1‖X2

‖b2‖X2

)
= (1 + ε)C0

(
‖a1‖X1

+
√
t‖b1‖X2

)(
‖a2‖X1

+
√
t‖b2‖X2

)
,

which in turn implies

K(t, T (x1, x2), Y1, Y2) ≤ (1 + ε)C0K(
√
t, x1, X1, X2)K(

√
t, x2, X1, X2). (3.8)

Multiplying (3.8) by t−(γ+θ)/2 and by taking the Lr∗(0,∞)-norm we get, by means of the Hölder inequality
with conjugate exponents s and s′,

‖T (x1, x2)‖(Y1,Y2) θ+γ
2
,r

= ‖(·)−(θ+γ)/2K(·, T (x1, x2))‖Lr∗

≤ (1 + ε)C0

(
‖(·)−sγ/2Ks(

√
·, x1)‖1/sLr∗

‖(·)−s
′θ/2Ks′(

√
·, x2)‖1/s

′

Lr∗

)
= (1 + ε)C0‖x1‖(X1,X2)γ,rs‖x2‖(X1,X2)θ,rs′

,

and since the last inequality holds true for any ε > 0, we are done. �

Let us now focus on trilinear operators, for which a similar result as in Theorem 3.5 can be proved. In
what follows, it will be useful to consider interpolation couples (X1, X2) such that X2 ↪→ X1. For sake of
clarity, we require that the trilinear operator in the statement is symmetric in each variable, even though a
suitable adaptation would work without this requirement.

Theorem 3.6. Let C0 > 0, (X1, X2) and (Y1, Y2) be two interpolation couples with X2 ↪→ X1. Let T be a
trilinear and symmetric operator satisfying the following conditions

‖T (a1, a2, a3)‖Y1
≤ C0‖a1‖X1

‖a2‖X1
‖a3‖X1

, (3.9)

‖T (b1, b2, b3)‖Y2
≤ C0

(
‖b1‖X1

‖b2‖X2
‖b3‖X2

+ ‖b1‖X2
‖b2‖X1

‖b3‖X2
+ ‖b1‖X2

‖b2‖X2
‖b3‖X1

)
, (3.10)

and
‖T (a1, b2, b3)‖(Y1,Y2) 1

2
,∞
≤ C0‖a1‖X1

(
‖b2‖X2

‖b3‖X1
+ ‖b2‖X1

‖b3‖X2

)
, (3.11)

where we implicitly assume that T is well defined between the spaces involved in the previous estimates.
Then for any γ, θ ∈ (0, 1) and r, s ∈ [1,∞], for every x1, x2, x3 we have

‖T (x1, x2, x3)‖(Y1,Y2) θ+γ
2
,r
≤ 3C0

(
‖x1‖X1

‖x2‖(X1,X2)γ,rs‖x3‖(X1,X2)θ,rs′

+ ‖x1‖(X1,X2)γ,rs

(
‖x2‖X1

‖x3‖(X1,X2)θ,rs′
+ ‖x2‖(X1,X2)θ,rs′

‖x3‖X1

))
.

(3.12)
In particular, for γ = θ and s = s′ = 2, we get

‖T (x, x, x)‖(Y1,Y2)θ,r ≤ 3C0‖x‖X1
‖x‖2(X1,X2)θ,2r

, ∀x ∈ (X1, X2)θ,2r.

Proof. We assume without loss of generality that θ ≥ γ. Consider x1 ∈ (X1, X2)γ,rs and x2, x3 ∈
(X1, X2)θ,rs′ . For k = 1, 2, 3 we write xk = ak + bk with ak ∈ X1 and bk ∈ X2; therefore we expand

T (x1, x2, x3) = U + V +W

where

U = T (a1, a2, a3) + T (b1, a2, a3) + T (a1, b2, a3) + T (a1, a2, b3),

V = T (b1, b2, a3) + T (b1, a2, b3) + T (a1, b2, b3),

W = T (b1, b2, b3).
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Since X2 ↪→ X1 we have that bk ∈ X1 for any k = 1, 2, 3, then by (3.9) we can control U as

‖U‖Y1 ≤ C0

(
‖a1‖X1‖a2‖X1‖a3‖X1 + ‖b1‖X1‖a2‖X1‖a3‖X1

+ ‖a1‖X1‖b2‖X1‖a3‖X1 + ‖a1‖X1‖a2‖X1‖b3‖X1

)
.

(3.13)

The symmetry of the operator T and (3.11) imply that every term defining V belongs to (Y1, Y2) 1
2 ,∞

. Let
us consider without loss of generality the term T (b1, b2, a3); as already done in Theorem 3.5, for any t, ε > 0
there exist T1 ∈ Y1 and T2 ∈ Y2 such that T (b1, b2, a3) = T1 + T2 and

‖T1‖Y1 + t‖T2‖Y2 ≤ (1 + ε)K(t, T (b1, b2, a3), Y1, Y2) ≤ (1 + ε)
√
t‖T (b1, b2, a3)‖(Y1,Y2) 1

2
,∞

≤ (1 + ε)C0

√
t‖a3‖X1 (‖b1‖X1‖b2‖X2 + ‖b1‖X2‖b2‖X1) .

We point out that the elements T1 and T2 actually depend on a3, b1, b2, ε and t as well. The same
consideration for the other two terms defining V yields, for any t, ε > 0, to the existence of V1 ∈ Y1 and
V2 ∈ Y2 such that V = V1 + V2 and

‖V1‖Y1
+ t‖V2‖Y2

≤ (1 + ε)C0

√
t
(
‖a1‖X1

(
‖b2‖X1

‖b3‖X2
+ ‖b2‖X2

‖b3‖X1

)
+ ‖a2‖X1

(
‖b1‖X1

‖b3‖X2
+ ‖b1‖X2

‖b3‖X1

)
+ ‖a3‖X1

(
‖b1‖X1

‖b2‖X2
+ ‖b1‖X2

‖b2‖X1

))
.

(3.14)

By using (3.10) we also get

‖T (b1, b2, b3)‖Y2 ≤ C0

(
‖b1‖X1‖b2‖X2‖b3‖X2 + ‖b1‖X2‖b2‖X1‖b3‖X2 + ‖b1‖X2‖b2‖X2‖b3‖X1

)
. (3.15)

By combining (3.13), (3.14) and (3.15) we obtain, for any t, ε > 0, a decomposition of T (x1, x2, x3) =
(U + V1) + (V2 +W ), with U + V1 ∈ Y1 and V2 +W ∈ Y2 such that

‖U + V1‖Y1 + t‖V2 +W‖Y2 ≤ (1 + ε)C0

(
‖a1‖X1‖a2‖X1‖a3‖X1 + ‖b1‖X1‖a2‖X1‖a3‖X1

+ ‖a1‖X1‖b2‖X1‖a3‖X1 + ‖a1‖X1‖a2‖X1‖b3‖X1 +
√
t
(
‖a1‖X1

(
‖b2‖X1‖b3‖X2 + ‖b2‖X2‖b3‖X1

)
+ ‖a2‖X1

(
‖b1‖X1‖b3‖X2 + ‖b1‖X2‖b3‖X1

)
+ ‖a3‖X1

(
‖b1‖X1‖b2‖X2 + ‖b1‖X2‖b2‖X1

))
+ t
(
‖b1‖X1

‖b2‖X2
‖b3‖X2

+ ‖b1‖X2
‖b2‖X1

‖b3‖X2
+ ‖b1‖X2

‖b2‖X2
‖b3‖X1

))
≤ (1 + ε)C0

((
‖a1‖X1

+ ‖b1‖X1

)(
‖a2‖X1

+
√
t‖b2‖X2

)(
‖a3‖X1

+
√
t‖b3‖X2

)
+
(
‖a1‖X1

+
√
t‖b1‖X2

)(
‖a2‖X1

+ ‖b2‖X1

)(
‖a3‖X1

+
√
t‖b3‖X2

)
+
(
‖a1‖X1

+
√
t‖b1‖X2

)(
‖a2‖X1

+
√
t‖b2‖X2

)(
‖a3‖X1

+ ‖b3‖X1

))
:= R(t)

which clearly implies
K(t, T (x1, x2, x3), Y1, Y2) ≤ R(t). (3.16)

Now, by using Remark 3.3 and Remark 3.4 and by taking the infima over all the sets Ω̃(xk) = {(ak, bk) ∈
Ω(xk) s.t. ‖ak‖X1

≤ ‖xk‖X1
} for k = 1, 2, 3 in the right-hand side of (3.16), we achieve

K(t, T (x1, x2, x3), Y1, Y2) ≤ 3(1 + ε)C0

(
‖x1‖X1K(

√
t, x2)K(

√
t, x3)

+ K(
√
t, x1)

(
‖x2‖X1K(

√
t, x3) + ‖x3‖X1K(

√
t, x2)

))
.

Multiplying by t−(θ+γ)/2 the last inequality, taking the Lr∗(0,∞)-norm and using the Hölder inequality
with s, s′ as conjugate pair, we obtain (3.12) by letting ε→ 0. �
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We recall that interpolation theory also provides the following useful characterization of Besov spaces
(see for instance [2, Theorem 6.2.4]).

Proposition 3.7. Let Ω ⊆ Rd be a Lipschitz open set. For any θ ∈ (0, 1), r, s ∈ [1,∞] and σ1 6= σ2 ∈ Z,

(Wσ1,r(Ω),Wσ2,r(Ω))θ,s = B(1−θ)σ1+θσ2
r,s (Ω). (3.17)

Moreover, the same holds if we restrict all spaces in (3.17) to the linear subspace of divergence-free vector
fields.

Notice that for the sake of simplicity, we did not define, in Section 2, Besov spaces of order less than
or equal to 0. However, we will apply Proposition 3.7 only for the Besov spaces of strictly positive θ.
The statement for divergence-free vector fields follows instead from the same proof as (3.17), since the
construction in the interpolation is based on mollification at a suitable scale, and convolutions preserve the
divergence-free structure of the vector fields.

4. Regularity of Euler equation

The following result about elliptic equations follows by a direct application of Theorem 3.5 and Theo-
rem 3.6 of the previous section. The reader can compare the following proposition with [9, Proposition 3.1]
obtained for Hölder spaces through estimates on a representation formula for p and q.

Proposition 4.1. Let γ, θ ∈ (0, 1) and r ∈ (1,∞). Let u,w, z : T3 → R3 be divergence-free vector fields
and let p, q : T3 → R3 be the unique 0-average solutions of

−∆p = div div(u⊗ w), (4.1)
−∆q = div div div(u⊗ w ⊗ z). (4.2)

Then, for any s ∈ [1,∞], we have

‖p‖Bγ+θr,s
≤ C‖u‖Bγ2r,2s‖w‖Bθ2r,2s . (4.3)

Furthermore, if θ + γ > 1

‖q‖Bγ+θ−1
r,s

≤ C
(
‖u‖L3r‖w‖Bγ3r,2s‖z‖Bθ3r,2s + ‖u‖Bγ3r,2s

(
‖w‖L3r‖z‖Bθ3r,2s + ‖w‖Bθ3r,2s‖z‖L3r

))
. (4.4)

Proof. We denote by W 1,r
div the linear subspace of W 1,r made by divergence-free vector fields (and similarly

for Bθr,s,div). Let T (u,w) be the operator that for each couple (u,w) associate the unique 0-average solution
of (4.1). By the Calderón-Zygmund theory, we have

‖T (u,w)‖Lr ≤ C‖u‖L2r‖w‖L2r .

Moreover since div u = divw = 0 the right-hand side of (4.1) can be rewritten as

div div(u⊗ w) = ∂2
ij(u

iwj) = ∂j(u
i∂iw

j) = ∂ju
i∂iw

j ,

thus we can use again Calderón-Zygmund to get

‖T (u,w)‖W 1,r ≤ C‖u‖L2r‖w‖W 1,2r

and
‖T (u,w)‖W 2,r ≤ C‖u‖W 1,2r‖w‖W 1,2r .

Since, by Proposition 3.7, we have the embedding W 1,r
div ↪→ B1

r,∞,div = (Lrdiv,W
2,r
div ) 1

2 ,∞
, we can apply

Theorem 3.5 with X1 = L2r
div, X2 = W 1,2r

div , Y1 = Lr, Y2 = W 2,r, hence obtaining (4.3). Note that it is
important that all the spaces above consist of divergence-free vector fields.
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The proof of (4.4) follows similarly as a consequence of Calderón-Zygmund and Theorem 3.6, withX1 = L3r
div,

X2 = W 1,3r
div , Y1 = W−1,r and Y2 = W 1,r once one notices that the solenoidal nature of u,w, z implies that

div div div(u⊗ w ⊗ z) = ∂3
ijk(uiwjzk) = ∂2

ij(∂ku
iwjzk) + ∂2

ij(u
i∂kw

jzk)

= ∂j(∂ku
i∂iw

jzk + ∂ku
iwj∂iz

k) + ∂i(∂ju
i∂kw

jzk + ui∂kw
j∂jz

k). �

Remark 4.2. The regularity estimates for the pressure of the proposition above are also a generalization of
previously known results contained in [1, Lemma 7.9, 7.10 and 7.14], where some Lipschitz regularity of
the vector fields is assumed. Proposition 4.1 is however more general, both because it proves the double
regularity of the pressure based only on the Besov regularity of the vector field and because it does not
require boundedness or Lipschitz assumptions on the vector field, which are not satisfied for instance by
the solutions built by convex integration methods.

Moreover, the above double regularity results on the pressure do not depend on the specific structure
given by the Laplacian but also apply to more general elliptic operators. Indeed the Calderón-Zygmund
estimates in the extremal spaces Lr and W 1,r is enough to apply our abstract interpolation theorems.

We consider now a weak solution (u, p) of the incompressible Euler equations (1.1). Taking the divergence
of the first equation in (1.1), using the incompressibility constraint div u = 0, the pressure p solves

−∆p = div div(u⊗ u), (4.5)

thus it can be uniquely determined if one imposes that
∫
T3 p(t, x) dx = 0, for any time t ∈ (0, T ). For every

θ ∈ (0, 1) and r ∈ (1,∞), a direct application of Calderón-Zygmund leads to

‖p(t)‖Bθr,∞ ≤ C‖u(t)‖2Bθ2r,∞ . (4.6)

Since our solutions are just weak solutions, we will need to mollify (1.1) in order to justify some computations;
moreover, we will tune the convolution parameter in terms of the time increment h (a similar approach
was used for instance in [14]). By regularizing (in space) the equations (1.1), one gets that the couple
(uδ, pδ) = (u ∗ ϕδ, p ∗ ϕδ) solves {

∂tuδ + div(uδ ⊗ uδ) +∇pδ = divRδ
div uδ = 0

, (4.7)

where Rδ = uδ ⊗ uδ − (u⊗ u)δ. We can now prove our main theorem.

Proof of Theorem 1.1. Let h > 0 be a time increment. When it will help the readability we will also put in
the constants C all the norms of u and p which are already known to be finite. We prove the theorem for
s <∞, since the case s =∞ is a simple adaptation and it is easier using the identification Bθ∞,∞ = Cθ. In
the following, given an interval I, the function χ(·)I will denote the usual characteristic function on the set I.

Proof of (i). Assume that u ∈ L2s((0, T );Bθ2r,∞(T3)), for some s ∈ [1,∞). We split

‖u(t+ h)− u(t)‖Lr ≤ ‖u(t+ h)− uδ(t+ h)‖Lr + ‖uδ(t+ h)− uδ(t)‖Lr + ‖uδ(t)− u(t)‖Lr . (4.8)

Using (2.4) we have ‖uδ(t)− u(t)‖Lr ≤ Cδθ‖u(t)‖Bθr,∞ for every t ∈ (0, T ), from which we deduce

(∫ T−h

0

‖u(t+ h)− uδ(t+ h)‖sLr dt

) 1
s

+

(∫ T−h

0

‖u(t)− uδ(t)‖sLr dt

) 1
s

≤ Cδθ‖u‖Ls(Bθr,∞)

≤ Cδθ‖u‖L2s(Bθ2r,∞).
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In the last inequality we used the fact that both the time and spatial domains are bounded. We are left
with the second term in the right-hand side of (4.8). Since uδ solves (4.7), using also (2.5) and (4.6) we get

‖uδ(t+ h)− uδ(t)‖Lr ≤
∫ t+h

t

‖∂tuδ(τ)‖Lr dτ ≤
∫ t+h

t

(
‖div(u⊗ u)δ(τ)‖Lr + ‖∇pδ(τ)‖Lr

)
dτ

≤ Cδθ−1

∫ t+h

t

(
‖u⊗ u(τ)‖Bθr,∞ + ‖p(τ)‖Bθr,∞

)
dτ ≤ Cδθ−1

∫ t+h

t

‖u(τ)‖2Bθ2r,∞ dτ.

By the Hölder inequality with conjugate exponents s and s
s−1 we deduce

‖uδ(t+ h)− uδ(t)‖sLr ≤ Cδ(θ−1)shs−1

∫ T

0

χ(τ)(t,t+h)‖u(τ)‖2sBθ2r,∞ dτ,

from which, by integrating in time, we conclude∫ T−h

0

‖uδ(t+ h)− uδ(t)‖sLr dt ≤ Cδ(θ−1)shs−1

∫ T−h

0

∫ T

0

χ(τ)(t,t+h)‖u(τ)‖2sBθ2r,∞ dτ dt

≤ Cδ(θ−1)shs‖u‖2sL2s(Bθ2r,∞),

where in the last inequality we also used
∫ T−h

0
χ(t)(τ−h,τ) dt ≤ h. By choosing δ = h, we achieve(∫ T−h

0

‖u(t+ h)− u(t)‖sLr dt

) 1
s

≤ Chθ
(
‖u‖L2s(Bθ2r,∞) + ‖u‖2L2s(Bθ2r,∞)

)
,

from which, by taking the supremum all over h ∈ (0, T ), we conclude u ∈ Bθs,∞((0, T );Lr(T3)). Since p
solves (4.5), we can use (4.3) with u = w = u(t), γ = θ, s =∞, getting

‖p(t)‖B2θ
r,∞
≤ C‖u(t)‖2Bθ2r,∞ . (4.9)

Taking the Ls(0, T )-norm, we deduce that p ∈ Ls((0, T );B2θ
r,∞(T3)), namely that (i) holds.

Proof of (ii). Let θ > 1/2 and β ∈ [0, 2θ − 1). Note that

−∆(p(t+ h)− p(t)) = div div
((
u(t+ h)− u(t)

)
⊗ u(t+ h) + u(t)⊗

(
u(t+ h)− u(t)

))
.

Thus, by using (4.3) with γ = 1− θ + β, s =∞, we get

‖p(t+ h)− p(t)‖B1+β
r,∞
≤ C‖u(t+ h)− u(t)‖B1−θ+β

2r,∞

(
‖u(t+ h)‖Bθ2r,∞ + ‖u(t)‖Bθ2r,∞

)
, (4.10)

and taking the Ls(0, T − h)-norm in time, by also using the Hölder inequality, we achieve(∫ T−h

0

‖p(t+ h)− p(t)‖s
B1+β
r,∞

dt

) 1
s

≤ C

(∫ T−h

0

‖u(t+ h)− u(t)‖
3s
2

B1−θ+β
2r,∞

dt

) 2
3s

‖u‖L3s(Bθ2r,∞). (4.11)

By the interpolation inequality (2.1), the Hölder inequality, and since u ∈ Bθ3s
2 ,∞

((0, T );L2r(T3)) by (i),
we can estimate∫ T−h

0

‖u(t+ h)− u(t)‖
3s
2

B1−θ+β
2r,∞

dt ≤
∫ T−h

0

‖u(t+ h)− u(t)‖
3s
2

2θ−1−β
θ

L2r ‖u(t+ h)− u(t)‖
3s
2

1−θ+β
θ

Bθ2r,∞
dt

≤

(∫ T−h

0

‖u(t+ h)− u(t)‖
3s
2

L2r dt

) 2θ−1−β
θ

(∫ T−h

0

‖u(t+ h)− u(t)‖
3s
2

Bθ2r,∞
dt

) 1−θ+β
θ

≤ Ch 3s
2 (2θ−1−β)‖u‖

3s
2

2θ−1−β
θ

Bθ3s
2
,∞

(L2r)
‖u‖

3s
2

1−θ+β
θ

L
3s
2 (Bθ2r,∞)

≤ Ch 3s
2 (2θ−1−β).
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By plugging this last estimate in (4.11), we conclude that p ∈ B2θ−1−β
s,∞ ((0, T );B1+β

r,∞ (T3)), since we get(∫ T−h

0

‖p(t+ h)− p(t)‖s
B1+β
r,∞

dt

) 1
s

≤ Ch2θ−1−β .

Proof of (iii). In order to prove the Besov regularity in time of the pressure, we split

‖p(t+ h)− p(t)‖Lr ≤ ‖p(t+ h)− pδ(t+ h)‖Lr + ‖pδ(t+ h)− pδ(t)‖Lr + ‖pδ(t)− p(t)‖Lr . (4.12)

Using (2.4) and (4.9), we have, for every t ∈ (0, T ),

‖pδ(t)− p(t)‖Lr ≤ Cδ2θ‖p(t)‖B2θ
r,∞
≤ Cδ2θ‖u(t)‖2Bθ2r,∞ ≤ Cδ

2θ‖u(t)‖2Bθ3r,∞ ,

from which we deduce∫ T−h

0

‖p(t+ h)− pδ(t+ h)‖sLr dt+

∫ T−h

0

‖p(t)− pδ(t)‖sLr dt ≤ Cδ2θs‖u‖2sL3s(Bθ3r,∞).

It remains to prove the estimate for the middle term ‖pδ(t+ h)− pδ(t)‖Lr in the right-hand side of (4.12).
Notice that pδ(t+ h)− pδ(t) solves

−∆(pδ(t+ h)− pδ(t)) = div div
(
Rδ(t)−Rδ(t+ h) + uδ(t+ h)⊗ uδ(t+ h)− uδ(t)⊗ uδ(t)

)
= div div

(
Rδ(t)−Rδ(t+ h) +

∫ t+h

t

( d
dτ
uδ(τ, x)⊗ uδ(τ, x) + uδ(τ, x)⊗ d

dτ
uδ(τ, x)

)
dτ
)

= div div
(
Rδ(t)−Rδ(t+ h) +

∫ t+h

t

(
(div(uδ ⊗ uδ)−∇pδ − divRδ)⊗ uδ

+ uδ ⊗ (div(uδ ⊗ uδ)−∇pδ − divRδ)
)
dτ
)
.

Thus pδ(t+ h)− pδ(t) = q1 + q2 + q3, where q1, q2, q3 are the unique 0-average solutions to

−∆q1 = div div(Rδ(t, x)−Rδ(t+ h, x)),

∆q2 = 2

∫ t+h

t

div div((divRδ +∇pδ)⊗ uδ) dτ,

−∆q3 =

∫ t+h

t

div div div(uδ ⊗ uδ ⊗ uδ) dτ.

By Calderón-Zygmund, (2.6) and (2.5) we have that

‖q1(t)‖Lr ≤ C
(
‖Rδ(t+ h)‖Lr + ‖Rδ(t)‖Lr

)
≤ Cδ2θ

(
‖u(t+ h)‖2Bθ3r,∞ + ‖u(t)‖2Bθ3r,∞

)
,

and

‖q2(t)‖Lr ≤ C
∫ t+h

t

(
‖divRδ(τ)‖

L
3r
2

+ ‖∇pδ(τ)‖
L

3r
2

)
‖uδ(τ)‖L3r dτ ≤ Cδ2θ−1

∫ t+h

t

‖u(τ)‖3Bθ3r,∞ dτ.

Hence, by taking the Ls(0, T − h)-norm, we deduce

‖q1‖Ls(Lr) ≤ Cδ2θ‖u‖2L3s(Bθ3r,∞). (4.13)

and, similarly to above, by the Hölder inequality we have∫ T−h

0

‖q2(t)‖sLr dt ≤ Cδ(2θ−1)shs−1

∫ T−h

0

(∫ T

0

χ(t,t+h)(τ)‖u(τ)‖3sBθ3r,∞ dτ

)
dt

≤ Cδ(2θ−1)shs‖u‖3sL3s(Bθ3r,∞). (4.14)
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For q3 we can use, for any ε > 0, (4.4) with θ = γ = (1 + ε)/2, s =∞, u = w = z = uδ(t), getting

‖q3(t)‖Lr ≤ ‖q3(t)‖Bεr,∞ ≤ C
∫ t+h

t

‖uδ(τ)‖L3r‖uδ(τ)‖2
B

1+ε
2

3r,∞

dτ. (4.15)

By (2.2) and the estimate (2.5), we have

‖uδ(t)‖
B

1+ε
2

3r,∞

≤ ‖uδ(t)‖
1−ε

2(1−θ)

Bθ3r,∞
‖uδ(t)‖

1+ε−2θ
2(1−θ)
W 1,3r ≤ Cδθ−

1+ε
2 ‖u(t)‖Bθ3r,∞ .

Plugging this last estimate in (4.15), we achieve

‖q3(t)‖Lr ≤ Cδ2θ−1−ε
∫ t+h

t

‖u(τ)‖3Bθ3r,∞ dτ,

from which we deduce
‖q3‖Ls(Lr) ≤ Cδ2θ−1−εh‖u‖3L3s(Bθ3r,∞). (4.16)

Choosing δ = h, from (4.13), (4.14) and (4.16), we conclude(∫ T−h

0

‖pδ(t+ h)− pδ(t)‖sLr dt

) 1
s

≤ Ch2θ−ε
(
‖u‖2L3s(Bθ3r,∞) + ‖u‖3L3s(Bθ3r,∞)

)
,

which implies that p ∈ B2θ−ε
s,∞ ((0, T );Lr(T3)). If now θ > 1/2, we have to prove that p ∈W 1,s((0, T );B2θ−1

r,∞ (T3)).
It is enough to show that ∂tp ∈ Ls((0, T );B2θ−1

r,∞ (T3)). Indeed by point (i) of the Theorem 1.1 p ∈
L

3s
2 ((0, T );B2θ

3r
2 ,∞

(T3)) ↪→ Ls((0, T );B2θ−1
r,∞ (T3)). Thus we can write, by using (4.19), ∂tp = q1 + q2 where

q1, q2 are the unique 0-average solutions of

∆q1 = div div div(u⊗ u⊗ u),

∆q2 = 2 div div(∇p⊗ u).

Since, by (4.9),
‖∇p(t)‖B2θ−1

3r
2
,∞
≤ C‖u(t)‖2Bθ3r,∞ ,

by Calderón-Zygmund we get

‖q2(t)‖B2θ−1
r,∞
≤ C‖(∇p⊗ u)(t)‖B2θ−1

r,∞
≤ C‖∇p(t)‖B2θ−1

3r
2
,∞
‖u(t)‖Bθ3r,∞ ≤ C‖u(t)‖3Bθ3r,∞ .

Moreover, by (4.4) with γ = θ, s =∞ and u = w = z = u(t),

‖q1(t)‖B2θ−1
r,∞
≤ C‖u(t)‖3Bθ3r,∞ .

Hence, by taking the Ls(0, T )-norm we obtain

‖∂tp‖Ls(B2θ−1
r,∞ ) ≤ ‖q

1‖Ls(B2θ−1
r,∞ ) + ‖q2‖Ls(B2θ−1

r,∞ ) ≤ C‖u‖
3
L3s(Bθ3r,∞),

which concludes the proof of (iii).

Proof of (iv). By Lemma 4.3 we have that ∂tp solves (4.19). Therefore ∂tp(t+ h)− ∂tp(t) = q1 + q2 where

∆q1 = div div div(u(t+ h)⊗ u(t+ h)⊗ u(t+ h)− u(t)⊗ u(t)⊗ u(t))

= div div div
(
(u(t+ h)− u(t))⊗ u(t+ h)⊗ u(t+ h) + u(t)⊗ (u(t+ h)− u(t))⊗ u(t+ h)

+ u(t)⊗ u(t)⊗ (u(t+ h)− u(t))
)
,

∆q2 = 2 div div
(
∇p(t+ h)⊗ u(t+ h)−∇p(t)⊗ u(t)

)
.
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To estimate q1, for any small ε > 0, we apply (4.4) with γ = 1− θ + ε and s =∞, in such a way that the
factor u(t+ h)− u(t) gets only the B1−θ+ε

3r,∞ -norm and not the Bθ3r,∞-norm. Thus we get

‖q1(t)‖Lr ≤ ‖q1(t)‖Bεr,∞ ≤ C‖u(t+ h)− u(t)‖B1−θ+ε
3r,∞

(
‖u(t+ h)‖2Bθ3r,∞ + ‖u(t)‖2Bθ3r,∞

)
.

Integrating in time on (0, T − h) yields to∫ T−h

0

‖q1(t)‖sLr dt ≤ C
∫ T−h

0

‖u(t+ h)− u(t)‖s
B1−θ+ε

3r,∞

(
‖u(t+ h)‖2sBθ3r,∞ + ‖u(t)‖2sBθ3r,∞

)
dt

and by the Cauchy-Schwarz inequality we get∫ T−h

0

‖q1(t)‖sLr dt ≤ C

(∫ T−h

0

‖u(t+ h)− u(t)‖2s
B1−θ+ε

3r,∞
dt

) 1
2

‖u‖2sL4s(Bθ3r,∞).

Now, by (2.1) together with the Hölder inequality in time, we have∫ T−h

0

‖u(t+ h)−u(t)‖2s
B1−θ+ε

3r,∞
dt ≤

∫ T−h

0

‖u(t+ h)− u(t)‖2s
2θ−1−ε

θ

L3r ‖u(t+ h)− u(t)‖2s
1−θ+ε
θ

Bθ3r,∞
dt

≤

(∫ T−h

0

‖u(t+ h)− u(t)‖2sL3r dt

) 2θ−1−ε
θ

(∫ T−h

0

‖u(t+ h)− u(t)‖2sBθ3r,∞ dt

) 1−θ+ε
θ

≤ Ch2s(2θ−1−ε)‖u‖2s
2θ−1−ε

θ

Bθ2s,∞(L3r)
‖u‖2s

1−θ+ε
θ

L2s(Bθ3r,∞)
≤ Ch2s(2θ−1−ε),

where in the last inequality we used u ∈ Bθ3s,∞((0, T );L3r(T3)) ↪→ Bθ2s,∞((0, T );L3r(T3)), that comes from
(i). Thus we conclude with ∫ T−h

0

‖q1(t)‖sLr dt ≤ Chs(2θ−1−ε). (4.17)

Similarly, we obtain∫ T−h

0

‖q2(t)‖sLr dt ≤ C
∫ T−h

0

‖(∇p⊗ u)(t+ h)−∇p⊗ u)(t)‖sLr dt ≤ Chs(2θ−1−ε)‖∇p⊗ u‖s
B2θ−1−ε
s,∞ (Lr)

≤ Chs(2θ−1−ε)
(
‖∇p‖B2θ−1−ε

2s,∞ (L2r)‖u‖B2θ−1−ε
2s,∞ (L2r)

)s
≤ Chs(2θ−1−ε)

(
‖∇p‖B2θ−1−ε

2s,∞ (L2r)‖u‖Bθ2s,∞(L2r)

)s
≤ Chs(2θ−1−ε),

(4.18)
where we used that u ∈ Bθ2s,∞((0, T );L2r(T3)) by (i), and ∇p ∈ B2θ−1−ε

2s,∞ ((0, T );L2r(T3)) by (ii). Summing
up (4.17) and (4.18) we obtain ∂tp ∈ B2θ−1−ε

s,∞ ((0, T );Lr(T3)), as desired. �

Lemma 4.3. Let u ∈ L3s((0, T );Bθ3r,∞(T3)) for some r, s ∈ [1,∞] and θ ∈ (1/2, 1). Then ∂tp solves

∆∂tp = div div div(u⊗ u⊗ u) + 2 div div(∇p⊗ u), (4.19)

in the distributional sense.

Proof. For every δ > 0, we denote by pδ the unique 0-average solution of

−∆pδ = div div(uδ ⊗ uδ).

Note that by Calderón-Zygmund, pδ → p in L
3s
2 ((0, T );L

3r
2 (T3)) as δ → 0. Thus ∂tpδ → ∂tp in distribution.

Since ∂tuδ ∈ L
3s
2 ((0, T );C∞(T3)) from (4.7), we can compute

∂t div div(uδ ⊗ uδ) = 2 div div(∂tuδ ⊗ uδ) = −div div div(uδ ⊗ uδ ⊗ uδ)
− 2 div div(∇pδ ⊗ uδ) + 2 div div(divRδ ⊗ uδ).
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Obviously uδ → u in L3s((0, T );L3r(T3)). By (2.6), since θ > 1/2 we have that divRδ → 0 in
L

3s
2 ((0, T );L

3r
2 (T3)). Moreover by (i) in Theorem 1.1 we also have ∇pδ → ∇p in L

3s
2 ((0, T );L

3r
2 (T3)).

Thus we conclude that in the distributional sense

∂t div div(uδ ⊗ uδ)→ −div div div(u⊗ u⊗ u)− 2 div div(∇p⊗ u). �

Remark 4.4. In the above proof, one can make explicit quantitative estimates on the quantities which
appear in the statement of Theorem 1.1. For instance, as regards (i) we have

‖u‖Bθs,∞(Lr) ≤ C
(
‖u‖Ls(Bθr,∞) + ‖u‖2L2s(Bθ2r,∞)

)
,

‖p‖Ls(B2θ
r,∞) ≤ C‖u‖2L2s(Bθ2r,∞)

for a constant C > 0 depending only on r, s, θ.

Remark 4.5 (The case r = 1). When r = 1, the statements (i) and (ii) of Theorem 1.1 on the pressure may
not be true in general. On the positive side, if u ∈ L3s((0, T );W 1,1(T3)), the compensated compactness
methods [7] give that the pressure belongs to L

3s
2 ((0, T );W 2,1(T3)) (namely, the result with r = 1 and

θ = 1 would hold). On the other side, however, if r = 1 and θ = 0, the lack of the Calderón-Zygmund
theory gives us that a solution p to (1.2) is in general not more than in the weak-L1(T3) space. Trying
to repeat the proof of the abstract interpolation result of Theorem 3.5, as we did in Proposition 4.1 for
r = 1, this constitutes a problem because we would need to apply the interpolation result with Y1 = L1

weak,
Y2 = W 2,1. Hence, Theorem 3.5 would only give us that p(t) ∈ (L1

weak(T3),W 2,1(T3))θ,1 and it is unclear
if such space would coincide with a suitable Besov-type space.

Proof of Corollary 1.2. The proof is just a consequence of (i), (ii) and (iv) of Theorem 1.1 together with
the embeddings W θ,r ↪→ Bθr,∞ ↪→W γ,r, that hold true for any r ∈ [1,∞] and θ, γ ∈ (0, 1) with θ > γ. �
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