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1 Introduction

In recent years, there has been a resurgence of interest in the study of S-matrix and
scattering amplitudes in quantum field theory using a bootstrap approach. This approach
aims to construct amplitudes solely by their analytical properties, that express the physical
requirements of unitarity and causality [1]. These ideas have been given a fresh look in
recent years by combining them with numerical bootstrap methods, [2–4]. One of the main
targets of this approach has been the scattering of the lightest strongly interacting particle:
the pion [5, 6]. Moreover, there have been recent bootstrap studies of spinning particles,
such as fermions [7] and photons [8].

Besides the non-perturbative S-matrix approach, many recent works have studied
constraints on weakly coupled effective field theories (EFTs) of gravity, photons or matter
using dispersive arguments. It was realised some time ago that not all choices of EFTs are
consistent with a well-behaved UV completion: unitarity and causality imply positivity
bounds on the Wilson coefficients parametrising the EFT action, [9–11]. Recently, the
methods for extracting constraints on EFTs from these basic requirements have been given
a more systematic foundation [12–18]. This has led to a number of important outcomes,
including a demonstration that S-matrix consistency implies two-sided bounds on ratios
of EFT coefficients, essentially “proving” the intuition of dimensional analysis above, as
well as a precise numerical recipe for obtaining optimal bounds [19–23]. This technique
has recently also been applied to pion scattering [24, 25] but also photons [26, 27] and
gravitons [28–30].

Both in perturbative and non-perturbative setups, partial wave decomposition has
proven to be an essential tool. By decomposing the total scattering amplitude into partial
waves, it becomes possible to analyse the scattering process in terms of different angular
momentum contributions. For 2 → 2 scattering of scalars in general dimension d, the
decomposition takes the form

S(s, t) = 1 + i
∞∑
J=0

n
(d)
J aJ(s)C

( d−3
2 )

J (cos θ) . (1.1)
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Here, J denotes the spin of the exchanged states, aJ(s) is a dynamical function of the
Mandelstam variable s and partial waves C(

d−3
2 )

J (cos θ) are Gegenbauer polynomials of the
(cosine of the) scattering angle θ. The convergence of this expansion has been proven to
be valid inside the Lehmann-Martin ellipse, see [31] for a recent review.1 For particles
with spin in d = 4, the partial waves are given by Wigner-d functions, [32]. In certain
cases in higher dimensions, these functions have been computed in the context of graviton
scattering in [33]. The motivation to go beyond four dimensions comes from the well-known
infrared divergences appearing in four-dimensional scattering amplitudes involving massless
particles [34].

More in general, partial waves represent an essential building block for scattering
amplitudes, very much like conformal blocks are the building blocks of conformal field
theories (CFTs). In both cases this allows for a simplified representation of the system,
as only a subset of the waves may significantly contribute to the process. It also offers a
convenient expansion to parameterise the most general amplitude/correlation function. After
the renaissance of the conformal bootstrap [35, 36], many works have explored the theory
of conformal blocks, their mathematical structure and properties, leading to interesting
insights and efficient and complementary techniques to compute them (see [37] for a review).

In order to develop further the S-matrix program, it is desirable to be able to compute
spinning partial waves efficiently and understand their mathematical properties. In this
work we provide a systematic computational scheme valid in arbitrary spacetime dimension.
Our starting point is the observation that partial waves relevant for 2 → 2 scattering of
spinning particles coincide with certain matrix elements of the rotation group SO(d− 1).
As we will show, this correspondence holds in any d and for particles of any spin. The
usefulness of such a relation between waves and matrix elements lies in the fact that
the latter have been extensively studied in harmonic analysis. Also known as spherical
functions, they have been recognised as of central importance in representation theory since
the early works [38–41]. (In the context of conformal field theories, the role of spherical
functions in conformal block decompositions was appreciated starting with [42–44].) In
some selected cases, standard results about spherical functions give explicit expressions for
partial waves. However, to the best of our knowledge, there seems to be no efficient way to
compute these functions in generality required for applications. In the present work, we
will provide such a method. The implementation in Mathematica is made freely available
gitlab.com/russofrancesco1995/partial_waves.

Summary of results. We will show that for scattering of spinning particles, the appro-
priate generalisation of (1.1) reads

S = 1 + i
∑
π,ρ,σ

aπρ,σ(s)F ρµσν(θ) wρµ ⊗ wσν . (1.2)

As shall be explained in detail below, here π denotes the spin of the exchanged state, ρ and
σ run over spins of external two-particle states, wρµ and wσν run over bases of two-particle

1Note that our terminology differs from some of the literature that uses ‘partial wave’ to refer to the
dynamical function aJ (s).
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spin states2 and aπρ,σ(s) are dynamical functions. The work is dedicated to the computation
of partial waves F ρµσν(θ).

Our procedure consists of two steps. We start with partial waves for scalar scattering,3
the familiar Gegenbauer polynomials. From these, spinning partial waves are generated by
applications of weight-shifting operators. These operators come in two classes, depending
on whether they alter quantum numbers of external or internal particles. The method is
similar in spirit to [45, 46], however with an important difference that all operators act
directly on invariant variables (the scattering angle and invariant spin variables). What
allows for computation of these reduced operators is the so-called Harish-Chandra’s radial
component map, [40]. Let us also note that our weight-shifting does not require knowledge
of any Clebsch-Gordan coefficients. The number of applications of shift operators required
to produce a spinning wave from a scalar one scales with spins of external particles and is
quite small in practical applications.

Let us now provide more details. The most general setup that we will consider is
a 2 → 2 scattering process of symmetric traceless (STT) particles in the d-dimensional
Minkowski space R1,d−1. The particles may be massive or massless and can have equal or
different spins. Since individual spins of particles are STTs, spins of two-particle states will
transform in representations of their little group SO(d− 2) with at most two-row Young
diagrams. We shall pair up particles (12) and (34) and label corresponding two-particle
spins as ρ = (l, ℓ) and σ = (l′, ℓ′), respectively.4 The most general type of exchanged
particles have spins with three-row Young diagrams, denoted π = (J, q, s). We shall show
that the relevant partial waves can be written as functions carrying these quantum numbers

fJ,q,sl,ℓ,l′,ℓ′(θ, x, y) . (1.3)

It is shown that labels (l, ℓ) and (l′, ℓ′) are nothing else but three-point tensor structures
for two external and the intermediate particle. We have traded spin indices of functions
f for a dependence on two spin invariants x and y. Four-point tensor structures are
written as polynomials in x and y of bounded degrees. With these notations in place,
we can state our main results. The function (1.3) is an eigenfunction of the (Casimir)
differential operator ∆(d)

l,ℓ,l′,ℓ′(θ, x, y) given in (C.18) with the eigenvalue C2(J, q, s) given
in (C.2). We think of (C.18) as a family of operators parametrised by the quantum numbers.
One can ‘move’ between different members of the family using operators ql,ℓ(θ, x, y) and
q̄l′,ℓ′(θ, x, y), (C.22)–(C.23), thanks to ‘exchange relations’ (C.24). These relations allow to
shift quantum numbers l, l′ by one unit. A closer analysis shows that ∆(d)

l,ℓ,l′,ℓ′ themselves
can be used to shift the internal quantum numbers (J, q, s). Thus, all functions (1.3) are
obtained from the set of ‘ground states’, to be referred as seed functions, with very special
quantum numbers,

fJ,ℓ,0ℓ,0,ℓ,ℓ(θ, x, y) = sinℓ θ C(
d−3+2ℓ

2 )
J−ℓ (cos θ) . (1.4)

Since it is based on solving the differential equations, the weight-shifting method produces
partial waves which are not normalised. For this reason, we supplement it by a normalisation

2Analogues of polarisation vectors.
3Actually, from a slightly more general set of seed functions, as specified below.
4For simplicity, we do not consider additional multiplicity labels in this introduction.
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procedure that is performed at the very end. The procedure is based on the simple fact
that, in order to normalise any matrix element, it suffices to normalise its leading coefficient
in the θ-expansion. In turn, this is achieved by finite iterations of the Gelfand-Tsetlin (GT)
formulas, [47]. After functions (1.3) are obtained and normalised, one obtains the partial
waves F ρµσν(θ).

All these steps are automatically implemented in a Mathematica notebook. This means
that in order to obtain a partial wave it is sufficient to plug in its quantum numbers, and
the program will give back the function in an appropriate basis, the Gelfand-Tsetlin one.
In appendix E, we provide instructions for how to use the notebook. Moreover, in section 2
we furnish a map to go from the GT basis to the polarisation basis commonly used in
the physics literature. With this map, we were able to check on the example of photon
scattering in five dimensions that we get the same set of partial waves as the ones computed
by other methods, [48].

Coming back to spherical functions, it is shown that (1.3) are matrix elements of the
SO(d− 1) representation π between vectors that transform under the subgroup SO(d− 2)
according to ρ and σ. As mentioned, we are not aware of any general formula for these
functions, but in special cases where results are available, our expressions agree with the
literature, [49].

The algebra of operators {∆, q, q̄} with appropriate potential additional members
{p, p̄, . . . } can be constructed in a much wider scope than used in this work, with little
increase in complexity of computations. Its rank-two version (rank coincides with the number
of spacetime invariants, in the case at hand the single scattering angle) was constructed
for purposes of conformal field theory in [50]. Whereas [50] shows how to increase the
rank, the present work demonstrates that one can also increase the ‘spin rank’, i.e. the
number of spin variables (cases analysed in [50] had at most one spin invariant). It is
expected that many physical problems are to be found among the examples covered by
this more general theory, some of which will be discussed in the concluding section. Let
us remark for the moment that it can be shown that a product of (1.3) and its analytic
continuation is a defect-channel conformal block for a two-point function in the presence of
a codimension-two defect. Due to the complexity of the external representations involved,
these blocks go beyond the results of [50, 51].

The paper is organised as follows. In section 2 we introduce the setup and show how
partial waves for 2 → 2 are given a group-theoretic interpretation as matrix elements. Per-
mutation and parity symmetries are also discussed. Section 3 is devoted to the computation
of the matrix elements. In it, we introduce the relevant tools from harmonic analysis and
proceed to construct the Casimir and weight-shifting operators. The section ends with
checks of our results against group theory literature. For presentation purposes, Section 3
focuses on the case where ρ and σ are STTs. The more general case of two-row mixed
symmetry tensors is treated in appendix C. The latter contains our main new results. At
various points, the discussion requires the spacetime dimension to be sufficiently large,
d ≥ 8, and has to be slightly adjusted for smaller dimensions. The case d = 5 is treated
in section 4.5 At the end of this section, we work out an example — the scattering of

5The analysis in d = 6, 7 is similar and we can provide explicit formulas upon request.
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photons in five dimensions, and compare the resulting partial waves to known ones. The
concluding section 5 discusses future directions and applications. Appendices A and B
contain background on representation theory, while C and D supplement the main text by
more involved calculations. Appendix E gives instructions for how to use the accompanying
Mathematica code.

2 From partial waves to matrix elements

We begin this section by recalling some facts from Poincaré representation theory and
introducing the relevant notation. The second and third subsection are devoted to the
group-theoretic interpretation of three-point tensor structures and partial waves, respectively.
In the fourth subsection, some of the general concepts are illustrated by determining the
representations of two-particle states and possible exchanged particles that can appear in
scattering of gravitons and photons.

2.1 Single-particle states

In this subsection, we introduce our conventions for description of massive and massless
particle states. Elements of the Poincaré group in d spacetime dimensions (we are working
in mostly-positive signature)

P = ISO(1, d− 1) ∼= SO(1, d− 1)⋉ Rd , (2.1)

will be denoted as (L, q), where L is a Lorentz transformation and q = qµ is the transla-
tion vector,

(L, q) · p = Lp+ q .

We shall often refer to p and q as momenta (not to be confused with vectors in irreducible
representations of the Poincaré group). The orbit of p under the Lorentz group will be
denoted by Op, and the little group of p by Gp ⊂ SO(1, d− 1). Little groups of different
vectors in the same orbit are related by conjugation. Physically relevant orbits, that have
positive energy are either massive

Op = {pµpµ = −m2, p0 > 0}, p̄ = (m, 0, . . . , 0) , (2.2)

or massless
Op = {pµpµ = 0, p0 > 0}, p̄ = (k, k, 0, . . . , 0) . (2.3)

Next to each orbit, we have written a vector belonging to it, that we shall refer to as the
standard representative. The corresponding little groups are

Gp = SO(d− 1), Gp = ISO(d− 2) ∼= SO(d− 2)⋉ Rd−2 . (2.4)

Finally, for the description of representations, we need the notion of standard boosts. This
is a family {Λp} of Lorentz transformations labelled by momenta such that

Λpp̄ = p . (2.5)

– 5 –
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Standard boosts are not unique. In this work, we make the following choice for massless
momenta p (corresponding to the helicity basis)

Λp =

1 0 0
0 q2 qa
0 −qa δab − papb

1+p2

L
k

p0
01 , qα = pα

pβpβ
. (2.6)

We have written the Lorentz matrix in (2.6) in the block-diagonal form in the obvious way.
Indices α and a run over α = 2, . . . , d− 1 and a = 3, . . . , d− 1. We refrain from writing Λp
in the massive case explicitly, as we will not need it in the following.

With these notations in place, we may describe the irreducible representations of the
Poincaré group. Consider any momentum vector of mass m ≥ 0 and let ρ be an irreducible
representation of the orthogonal part of its little group, (2.4). The Poincaré representation
Πm,ρ is spanned by vectors |p, w⟩, where pµpµ = −m2 and w runs over a basis for the carrier
space of ρ.6 The action of Poincaré transformations reads

(L, q)|p, w⟩ = eiqµ(Lp)µ |Lp,WLp(L)w⟩, Wp(L) = Λ−1
p LΛL−1p . (2.7)

The Lorentz transformation Wp(L) is a called a Wigner rotation. One can easily verify
that (2.7) indeed defines a representation of the Poincaré group.

The states of particles with spin are often described with the help of polarisation
vectors ϵµ (e.g. in [33, 52]). Thus, it is useful to provide a dictionary between our labels
w and polarisations. To this end, consider a massless spin-1 particle, i.e. the photon. Let
Aµ(x) = ϵµe−ip·x be a plane wave. We have

(L, q) ·A = L ϵ e−ip·(L
−1(x−q)) = L ϵ e−iLp·(x−q) = eiq·Lp L ϵ e−iLp·x . (2.8)

Thus, we see that (p, ϵ) are transformed as (Lp,Lϵ). In order to achieve the correct
transformation property for w given in (2.7), one has ϵ = Λp(0, 0, w).7 For particles of
higher spin, the last relation still provides the dictionary between descriptions of states in
terms of w-s and polarisation vectors, by means of tensor products. Indeed, in the formalism
of polarisations, higher-spin particle states depend on higher-degree polynomials in ϵ, which
corresponds to writing vectors in higher-spin representations of SO(d− 2) as tensors that
carry vector indices. The discussion for massive particles is entirely analogous.

Example. The massless little group in d = 5 is SO(3)⋉ R3. Thus, states of a photon can
be labelled as |p, wα⟩, where, as above, α = 2, 3, 4 is the vector index for SO(3). Let p = p̄

be the massless standard representative (2.3). Then the polarisation vector reads

ϵ(p̄, w) = (0, 0, w2, w3, w4) .

For a graviton, the states can be labelled as |p, w{αwβ}⟩, where {, } denotes the traceless
symmetric part. In terms of polarisations, the states are quadratic polynomials in ϵ. At

6We use terms ‘carrier space’ and ‘representation space’ interchangeably.
7Recall that w ∈ Rd−2 belongs to the vector representation of SO(d − 2). We identify Rd−2 with the last

d − 2 directions of R1,d−1. This corresponds to the choice of massless standard representative (2.3).
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p = p̄, they are characterised by a symmetric tensor a

aµνϵ
µϵν = aαβϵ

αϵβ .

The tracelessness condition on aαβ is manifested by the requirement that graviton polarisa-
tions be light-like, ϵ · ϵ = 0. To compare ϵ-s and w-s away from p = p̄, one uses the standard
boosts Λp.

2.2 Three-point structures

We consider a quantum field theory in d spacetime dimensions, characterised by the S-matrix

S = 1 + iT . (2.9)

We will focus on 2 → 2 scattering processes of spinning particles, that may be either massive
or massless. The spin of any particle will be denoted by π (we use the word spin, but π
is an arbitrary irreducible representation of the little group of an on-shell momentum).
Single-particle states will be denoted by |p, w⟩, where p is an on-shell momentum and w a
vector in the representation π of Gp. A two-particle state is a vector in the tensor product
of two Poincaré irreducible representations and can be expanded in irreducible components

|p1, w1, p2, w2⟩ =
∑
π,i,w

δ(p− p1 − p2)Ci12,π(p, w)|p, π, w, i⟩ , (2.10)

where the coefficients are, by definition, the Clebsch-Gordans of the Poincaré group. To
emphasise that the sum is over different spins π, we have included them among the labels on
the right. If the decomposition is not multiplicity-free, one needs the label i. Regardless of
whether the original particles are massive or massless, most8 of the sum on the right hand
side of (2.10) ranges over massive states. Motivated by their position space wavefunctions,
we will call basis states on the left and on the right of (2.10) plane waves and spherical
waves, respectively. The two-particle Hilbert space will be denoted by

H = Πm1,π1 ⊗Πm2,π2
∼=

∫
dµ(m)

∑
π,i

Π(i)
m,π . (2.11)

For the moment, the right-hand side is just a definition. However, let us elaborate on the
on meaning of multiplicity indices i. Consider a three-point function, by which we mean a
kinematical object of the form

⟨⟨p1, w1, p2, w2|p, w⟩⟩ = f(p1 + p2, w1, w2, w) . (2.12)

Double brackets designate that the have stripped of the momentum-conserving delta function
δ(p1 + p2 − p). The multiplicity of Πm,π inside Πm1,π1 ⊗ Πm2,π2 is, by definition, equal
to the number of independent three-point structures. In turn, this is counted as the
number of SO(d − 2) invariants in π1 ⊗ π2 ⊗ π∗. Indeed, let Gp1,p2 = Stab(p1, p2) be the

8In this work, we consider only massive representations from the sum, i.e. massive exchanges in
the scattering.
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SO(d− 2) subgroup of the Poincaré group that fixes momenta p1 and p2. Without loss of
generality, assume that p1,2 lie in the 01-plane and that p1 + p2 = p̄ is the massive standard
representative.9 In the following, we shall refer to such a configuration as a frame. For any
R ∈ Gp1,p2 we have (see (2.7) and (2.23))

R|p1, w1, p2, w2⟩ = |p1, Rw1, p2, Rw2⟩ . (2.13)

That is, under this group, elements labelled by spin vectors w1 and w2 transform as elements
of the tensor product π1 ⊗ π2. Both for massless and massive external particles, π1,2 are
indeed representations of SO(d − 2). Furthermore, the action of SO(d − 2) on w, the
spin of the third particle, is clear. The number of three-point structures is the number of
SO(d− 2) intertwiners

π1 ⊗ π2 → π , (2.14)
or equivalently the number of SO(d−2) invariants inside π1 ⊗π2 ⊗π∗. The analysis of these
invariants is somewhat simpler when π1 ⊗ π2 is multiplicity-free10 (which is the case for
massless particles), and we assume this from this point on. We will explain at the end how
to modify the discussion to account for multiplicities, thus accounting for massive external
particles as well. Since p̄ is massive, π is a representation of SO(d− 1). Upon restriction
to SO(d − 2), one gets a list of irreducible representations π(1), . . . , π(n), each of which
appears in π with multiplicity one. On the other hand, on can list irreducible components of
π1 ⊗ π2, denoted π

(1)
12 , . . . , π

(m)
12 . The number of three-point invariants can now be counted

as those representations of SO(d − 2) that are contained in both lists. Obviously, this
number depends both on external and exchanged particles. When considering partial waves,
we will adopt a slightly different labelling scheme which only refers to external particles as
detailed below.

Defining summands Π(i)
m,π on the right hand side of (2.11) is equivalent to specifying

three-point tensor structures. Consider a single irreducible component π(i)
12 of π1 ⊗ π2 and

let P (i) be the projector to this representation. We define in the frame

⟨⟨p1, w1, p2, w2|p̄, w, i⟩⟩ = ⟨w1 ⊗ w2|P (i)|w⟩ , (2.15)

and extend the definition by covariance to a unique three-point function.

Example. Consider the scattering of photons in d = 5 dimensions. Then π1 = π2 = (1)
of the massless little group SO(3). From the decomposition

π1 ⊗ π2 = (1)⊗ (1) = (0)⊕ (1)⊕ (2) , (2.16)

one gets the list of two-particle spins {π(m)
12 } = {(0), (1), (2)}. Spins of intermediate particles

carry two quantum numbers (J, q) of SO(4), which are related to two SU(2)-spins (j1, j2)
by J = j1 + j2, q = j1 − j2. By the branching rules from SO(4) to SO(3), see appendix A,
one of the π(m)

12 from above appears in (J, q) only for

(J), (J,±1), (J,±2) . (2.17)

These are the possible exchanges in the scattering process.
9So Gp1,p2 is of the rotation group the subspace spanned by vectors e2, . . . , ed.

10The reader should be mindful of two types of multiplicities under consideration, the one for representations
of SO(d − 2) referred to here, and the one for Poincaré representations discussed earlier.
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2.3 Definition of partial waves

The interacting part T of the scattering matrix can be expanded in partial waves using
the fact that the scattering operator S commutes with generators of the Poincaré group.
Indeed, we have

⟨p3,w3,p4,w4| T |p1,w1,p2,w2⟩ (2.18)
= ⟨p3,w3,p4,w4|p′,π′,w′, j⟩⟨p′,π′,w′, j| T |p,π,w,i⟩⟨p,π,w,i|p1,w1,p2,w2⟩

= δ(p′−p3−p4)Cj34,π′(p′,w′)⟨p′,π′,w′, j| T |p,π,w,i⟩δ(p−p1−p2)Ci12,π(p,w) , (2.19)

where the summation over internal states is understood. Since T commutes with Poincare
transformations, it does not change the quantum numbers

⟨p′, π′, w′, j| T |p, π, w, i⟩ = f ijπ,w(p)δ(p′ − p)δπ′πδw′w . (2.20)

We may therefore focus on the case p′ = p, π′ = π and w′ = w. Let γ ∈ Gp be an element of
the little group and w1,2 two elements in the representation space of π such that w2 = γw1.
We have

⟨p, π, w2, j| T |p, π, w2, i⟩ = ⟨p, π, w1, j| γ−1Tγ |p, π, w1, i⟩ = ⟨p, π, w1, j| T |p, π, w1, i⟩ .

Therefore, the coefficients f ijπ,w(p) do not depend on w. We get

⟨p3, w3, p4, w4| T |p1, w1, p2, w2⟩
δ(p1 + p2 − p3 − p4)

=
∑
π,w,i,j

f ijπ (p)Cj34,π(p, w)Ci12,π(p, w) =
∑
π,w,i,j

f ijπ (s)Cj34,π(p̄, w)Ci12,π(p̄, w) ,

where in the last step we specified to the frame p = p̄ = (E, 0⃗). Partial waves are defined
by performing the sum over w with fixed π, i and j

gijπ =
∑
w

Cj34,π(p̄, w)Ci12,π(p̄, w) =
∑
w

⟨⟨p3, w3, p4, w4|p̄, π, w, j⟩⟩⟨⟨p̄, π, w, i|p1, w1, p2, w2⟩⟩ .

(2.21)
We wish to regard gijπ as functions of a single variable θ, the scattering angle between
incoming and outgoing particles. To this end, put p̂1i = e1 and p̂3i = e1 cos θ + e2 sin θ.
Here e1, e2 are two of the unit vectors from an orthonormal basis of Rd−1 and a hat over a
vector denotes unit normalisation. Then

|p3, w3, p4, w4⟩ = e−θL12 |p1,Λ−1
p1 e

θL12Λp3w3, p2,Λ−1
p2 e

θL12Λp4w4⟩ , (2.22)

where Λp denotes the standard boost. We denote the spin components on the right by w′
3,4.

Let the massive standard representative with respect to which standard boosts are defined
be p1. We then have (for bosonic fields)

Λp1 = 1, Λp2 = eπL12 , Λp3 = e−θL12 , Λp4 = e(π−θ)L12 , (2.23)
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and therefore w′
3,4 = w3,4. With these choices, the partial waves become

gijπ (θ)(w1, . . . , w4) =
∑
w

⟨⟨p1, w
′
3, p2, w

′
4|eθL12 |p̄, π, w, j⟩⟩⟨⟨p̄, π, w, i|p1, w1, p2, w2⟩⟩

= π(eθL12)ab⟨⟨p1, w3, p2, w4|p̄, wb, j⟩⟩⟨⟨p̄, wa, i|p1, w1, p2, w2⟩⟩ ,

where a is an index transforming in π.11 Recall the transformation properties under
SO(d − 2) of particle spins w1,2 in the frame, (2.13). We write the SO(d − 2)-Clebsch-
Gordan decomposition as

|w1⟩ ⊗ |w2⟩ =
∑
ρ,µ,k

C(k)
12ρw

ρµ
(k) , (2.24)

where ρ ranges over the representations that appear in the tensor product, µ is an index
transforming in ρ and k accounts for multiplicities. We can label two-particle states as
|p1, p2, w

ρµ
(k)⟩. Using orthogonality of SO(d− 2) matrix elements now we obtain

gijπ (θ)(w
ρµ
(k), w

(l)
σν) = π(eθL12)ab⟨⟨p1, p2, w

(l)
σν |p̄, wb, j⟩⟩⟨⟨p̄, wa, i|p1, p2, w

ρµ
(k)⟩⟩ =

= cijkl π(e
θL12)ρµσν . (2.25)

Therefore, up to coefficients cijkl, partial waves coincide with the matrix elements πρµσν .
Below we show that these matrix elements are related to so-called spherical functions of
the pair (SO(d− 1), SO(d− 2)).

Example. Let us consider the case of massive scalars. Then, there are no multiplicities and

gπ(θ) = π(eθL12)0
0 = C

( d−3
2 )

J (cos θ) . (2.26)

In the last step, we used the well-known expression for the zonal spherical function, [49].
The normalisation coefficients cijkl are determined by the normalisation of three-point

functions as we shall now explain. Under the simplifying assumption about multiplicities
that we are making, indices k and l are absent. The partial waves are now re-written as

gijπ (θ)(wρµ,wσν)=π(eθL12)ab⟨⟨p1,p2,wσν |p̄,wb, j⟩⟩⟨⟨p̄,wa, i|p1,p2,w
ρµ⟩⟩ (2.27)

=π(eθL12)ab⟨wσν |P (j)|wb⟩⟨wa|P (i)|wρµ⟩= c(π,ρ,σ)δiρδjσ π(eθL12)ρµσν .

In the last step, we have used the fact that, in the frame, projectors P (i) project precisely
to irreducible components ρ in the two-particle spin space. With our choice of three-point
structures specified in (2.15), we have c(π, ρ, σ) = 1.

Remark. In d = 3, the above derivation goes through, although most of the steps become
trivial. Partial waves are complex exponentials. We will not discuss this case in the following.

11Indices introduced in the remainder of this subsection have no relation to indices of section 2.1.
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2.4 Irreducible content of two-particle states

In previous subsections, we gave a description of three-point structures, which allow to
decompose external two-particle states over internal single-particle states. The stated
rules are fairly simple to use in practice to determine possible exchanged particles in any
2 → 2 scattering process. In the present subsection, we illustrate the rules on a few
relevant examples.

In the first step, the tensor product of spins of external particles is decomposed into
SO(d − 2)-irreducible components to obtain the list {π(m)

12 }. For scalars, photons and
gravitons in dimensions d ≥ 6, the decomposition reads

(0)⊗ (0) = (0), (1)⊗ (1) = (2)⊕ (0)⊕ (1, 1),
(2)⊗ (2) = (4)⊕ (2)⊕ (0)⊕ (3, 1)⊕ (2, 2)⊕ (1, 1) .

When d ≤ 5, the two-particle little group SO(d−2) does not admit mixed symmetry tensors
and these decompositions are to be modified appropriately.

After the list {π(m)
12 } is obtained, one inspects for each π

(m)
12 which representations of

SO(d− 1) contain it upon restriction to SO(d− 2). This is determined by the well-known
SO(d− 1) ↓ SO(d− 2) branching rules. The rules state that a representation of SO(d− 2)
appears in the restriction of a representation of SO(d− 1) if and only if a their quantum
numbers satisfy a set of betweenness conditions. Concretely, if π(m)

12 = (l, ℓ) is a mixed
symmetry tensor with two labels, the intermediate representation has at most three non-zero
labels (J, q, s), subject to

J ≥ l ≥ q ≥ ℓ ≥ s . (2.28)

Applied to scalars, photons and gravitons, these rules lead to the following sets of exchanges

scalars (J) ,
photons : (J), (J, q ≤ 2), (J, 1, 1) ,
gravitons : (J), (J, q ≤ 4), (J, q ≤ 3, 1), (J, 2, 2) .

As above, we stated results in generic dimension d ≥ 8. They are subject to appropriate
modifications in low dimensions.12 The first line is the familiar statement that scalar particles
exchange symmetric traceless tensors of arbitrary spin J . After possible intermediate
particles are determined, one proceeds to count the three-point tensor structures, i.e.
multiplicities, as explained in the last subsection — π = (J, q, s) is restricted to SO(d− 2)
and the result compared to the list {π(m)

12 }. For external scalars, the number of tensor
structures is always one. For photons, possible multiplicities are one and two, corresponding
to exchanges

multiplicity two : (J ≥ 2), (J ≥ 2, 1) ,

multiplicity one : (1), (0), (1, 1), (J, 2), (J, 1, 1) .

12See section 3.2 for details.
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For gravitons, the multiplicities go up to four

multiplicity four : (J ≥ 4, 2), (J ≥ 4, 1)

multiplicity three : (J ≥ 4), (3, 2), (3, 1)

multiplicity two : (3), (2), (J ≥ 4, 3), (2, 2), (2, 1), (J ≥ 3, 2, 1)

multiplicity one : (1), (0), (J, 1), (3, 3), (1, 1) ,
(J, 3, 1), (2, 2, 1), (2, 1, 1), (J, 2, 2) .

Above results do not account for parity or the fact that particles in the scattering process
are identical. These additional symmetries in general restrict the possible exchanges and
reduce the number of three-point structures. We turn to them presently.

Remark. Another view on tensor product decompositions of Poincaré particles is provided
by the tensor product theorem, [53]. The theorem determines intermediate spins, counted
with multiplicity, as SO(d− 2)-irreducible components of the induced representation

IndSO(d−1)
SO(d−2)(π1 ⊗ π2) . (2.29)

One may verify that this succinct description is equivalent to the rules we stated above.
The equivalence between the two is a manifestation of Frobenius reciprocity, [54], which
relates notions of induced and restricted representations.

Summary. We summarise the procedure arrived at above, focusing on massless STT
particles. Other cases are similar. Start with the set of external spins (J1, J2, J3, J4).
Compute the external irreducible representations (the vertices) by the SO(d − 2)-tensor
decomposition,

(J1)⊗ (J2) =
⊕
i

ρi (J3)⊗ (J4) =
⊕
j

σj . (2.30)

For every pair of vertices (ρ, σ), list the representations π of SO(d− 1) that contain both
ρ and σ upon restriction to SO(d − 2) (intermediate representations). For every triple
(ρ, σ, π), there is the corresponding partial wave πρσ. It is a vector-valued function and
coincides with the set of matrix elements π(eθL12)ρµσν . The latter are computed using the
implementation described in appendix E. Schematically,

(J1, J2, J3, J4) {ρi}, {σj} ∀ (ρ, σ) form {π} compute πρσ .

3 Harmonic analysis

This section is dedicated to a detailed study of matrix elements (2.27). After illustrating
the main ideas on the example of SO(3) in the first subsection, we proceed to give general
definitions related to matrix elements and spherical functions in section 3.2. In the next
two subsections, we derive the reduced Laplace and weight-shifting operators acting on
the spherical functions. Section 3.5 develops the solution theory for these functions. A
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subset of our results is checked against the known literature in section 3.6. For simplicity of
presentation, the present section only contains explicit calculations with the assumption
that ρ and σ are STTs. The more general case with ρ and σ two-row MSTs is treated in
appendix C.

Unless specified otherwise, we will denote the three groups relevant for the discussion by

G = SO(d− 1), K = SO(d− 2), M = SO(d− 3) . (3.1)

For the most part, the global structure of the groups will not play a role, because we are
interested in differential operators, which are local objects. The dependence on global
properties only enters through possible choices for representations of G and K.

The Lie algebra of G is denoted by g, and similarly for other groups. The Lie algebra g

is spanned by elements {LAB} with brackets

[LAB,LCD] = δBCLAD−δACLBD+δBDLCA−δADLCB, A, . . . ,D=1, . . . ,d−1 . (3.2)

When attached to L, indices A . . . will always run over these values. We will use indices
µ, ν = 2, . . . , d− 1 and i, j = 3, . . . , d− 1. Thus, {Lµν} are generators of K and {Lij} are
generators of M . We will re-use some types of indices to label bases of various representation
spaces. In any equation, which of these two meanings is being used should be clear from
the context.

Remark. The Riemannian Laplace-Beltrami operator ∆ on G with respect to the bi-
invariant metric coincides with the quadratic Casimir constructed from invariant vector
fields. Either left- or right-invariant vector fields may be used, as they lead to the same
operator. We will use terms ‘group Laplacian’, ‘Laplacian’ and ‘Casimir’ interchangeably
to refer to this operator.

3.1 Illustration: Wigner-d functions

Before discussing matrix elements (2.27) in full generality, we illustrate their properties on
the simplest example, that of the group SO(3). By the previous section, these functions
coincide with partial waves in d = 4 dimensions.

The group G = SO(3) is conveniently parametrised by Euler angles (ϕ, θ, ψ)

g(ϕ, θ, ψ) = eϕL23eθL12eψL23 . (3.3)

Irreducible matrix elements of G are dense in the space of functions L2(G). Let |j,m⟩
be eigenstates of L23 in the spin-j representation. In the Euler angle parametrisation,
matrix elements between such states factorise into a product of two exponentials and the
Wigner-d function13

⟨j,m|eϕL23eθL12eψL23 |j′,m′⟩ = δjj′e
−i(mϕ−m′ψ)djmm′(θ) . (3.4)

13Compare to our previous notation in (2.27), π ∼ (j) and ρ, σ ∼ m, m′, the indices µ, ν being redundant.
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One possible way to determine the Wigner-d function is by imposing that the function on
the right hand side of (3.4) is an eigenfunction of the group Laplacian with the eigenvalue
−j(j + 1). The Laplacian is the operator in all group coordinates

∆ = ∂2
θ + cot θ ∂θ +

∂2
ϕ − 2 cos θ∂ϕ∂ψ + ∂2

ψ

sin2 θ
. (3.5)

When acting on matrix elements (3.4), we can substitute ∂ϕ → −im, ∂ψ → im′ to reduce
∆ to a single-variable operator that acts on djmm′(θ), namely

∆m,m′ = ∂2
θ + cot θ ∂θ −

m2 + 2mm′ cos θ +m′2

sin2 θ
. (3.6)

Solving the eigenvalue equation ∆m,m′djmm′ = −j(j+1)djmm′ , one gets the familiar expression
for the d-function in terms of Jacobi polynomials. In the case m = m′ = 0, these reduce
to Legendre polynomials, dj00(θ) = Pj(cos θ), as can be directly seen from the change of
variables t = cos θ,14 that maps (3.6) to the Legendre equation.

In higher dimensions, the above derivation meets some difficulties. Firstly, our computa-
tion of the reduced Laplacian ∆m,m′ passed through that of the more complicated operator
∆ in all group coordinates. Secondly, for d > 4 the group K = SO(d−2) is no longer abelian
and its (non-trivial) irreducible representations are not one-dimensional. Therefore, matrix
elements have further dependence on states in K-representations. Below, both of these
problems will be resolved using a tool called Harish-Chandra’s radial component map, [40].
The map allows to obtain the reduction of the Laplacian to any space K-K-covariant matrix
elements by a simple manipulation in the universal enveloping algebra of g. In the remainder
of this subsection, we describe the general prescription on the above example.

In the first step, we introduce a new basis for g

g = span{L12, L23, L
′
23}, L′

23 = e−θL12L23e
θL12 = cos θ L23 − sin θL13 . (3.7)

Any polynomial in the generators L12, L13, L23 may also be written as a polynomial in L12,
L23, L′

23. In writing such polynomials, we impose the ordering prescription in which L′
23

and L23 always appear on the left and the right of L12, respectively. Any element of U(g)
written according to these rules is said to be radially decomposed. The radial decomposition
of the quadratic Casimir reads

C2 = L2
12 + cot θ L12 +

L′2
23 − 2 cos θ L′

23L23 + L2
23

sin2 θ
. (3.8)

We observe that the reduced Laplacian ∆m,m′ is closely related to the radial decomposition
of C2. Namely, the former is obtained from the latter by making substitutions

L12 → ∂θ, L′
23 → −im, L23 → im′ . (3.9)

This result is a special case of Harish-Chandra’s theorem. The theorem can also be suitably
applied for manipulations of non-Casimir elements of U(g), and in particular the generators

14We will use the notation t = cos θ for the remainder of the text. It is not to be confused with a
Mandelstam variable.
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(elements of g) themselves. Let us radially decompose the raising and lowering operators
for L23

L=L12+iL13 =L12+icotθ L23−
iL′

23
sinθ , L̄=L12−iL13 =L12−icotθ L23+

iL′
23

sinθ ,
(3.10)

and apply the same substitutions (3.9). This gives rise to operators

qm,m′ = ∂θ −m′ cot θ − m

sin θ , q̄m,m′ = ∂θ +m′ cot θ + m

sin θ . (3.11)

Operators qm,m′ and q̄m,m′ can be used to raise and lower the index m′ on ∆m,m′ by one,
thanks to the exchange relations

∆m,m′+1qm,m′ = qm,m′∆m,m′ , ∆m,m′−1q̄m,m′ = q̄m,m′∆m,m′ . (3.12)

There is a similar pair of operators that change the value of m. Therefore, through
applications of these shifting operators one obtains all matrix elements from Legendre
polynomials dj00(θ).15

Harish-Chandra’s theorem applies in higher dimensions and for matrix elements trans-
forming in arbitrary representations of K. Therefore, it allows for a simple computation of
Casimir and shifting operators. When applied in appropriate order to certain ground states,
higher-dimensional analogues of Legendre polynomials, these operators generate all matrix
elements. The present section carries out this construction.

3.2 Matrix elements and spherical functions

Let π be an irreducible representation of G and ρ, σ irreducible representations of K. Denote
by V the carrier space of π and its basis by {ei}. We will be studying particular classes of
matrix elements of π, i.e. the complex-valued functions on the group

πij(g) = ⟨ei|π(g)|ej⟩ . (3.13)

Let Wl and Wr be the carrier spaces of ρ and σ and denote their bases by {ea} and {eα},
respectively.16 We will use the Dirac notation and write basis elements of Wl ⊗W ∗

r as
|ea⟩⟨eα|. Functions we are interested in are

F aα(θ) = ⟨ea|π(eθL12)|eα⟩ . (3.14)

The definition only makes sense if π, when restricted to K, contains representations ρ and
σ. Then Wl,Wr ⊂ V and vectors ea, eα are elements of V . This will be assumed in the rest
of the text. It is important to notice that if ρ appears in π|K , it does so with multiplicity
one. This is a general property of restrictions between consecutive orthogonal groups,
encapsulated by saying that the restriction from SO(d− 1) to SO(d− 2) is multiplicity-free.

15By using the expression for the d-function in terms of Jacobi polynomials, acting with q and q̄ leads to
certain identities satisfied by these polynomials. Concretely, see equations (6) and (7) on page 335 of [55].

16In general, representations ρ and σ are non-isomorphic, so we use two types of indices.
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We now wish to establish covariance properties of πaα under left and right multiplication
of its argument by elements of K. We have

πaα(klgkr) = ⟨ea|π(kl)|ei⟩⟨ei|π(g)|ej⟩⟨ej |π(kr)|eα⟩ .

By the orthogonality of matrix elements of K, we get non-zero contributions only from
i = b and j = β (multiplicity-freeness means that this notion is well-defined, i.e. there is
only one eb among ei-s)

πaα(klgkr) = ρab(kl)πbβ(g)σβα(kr) . (3.15)

Functions satisfying (3.15) are called spherical. We will call πaα or faα a spherical function,
but it should be understood that this is a vector-valued function, with two indices. The
space of spherical functions depends on the two representations ρ, σ — it will be denoted
by Γρ,σ

Γρ,σ = {f : G→ Hom(Wr,Wl) | f(klgkr) = ρ(kl)f(g)σ(kr)} . (3.16)

We now specialise the preceding abstract discussion to cases of interest. There are in
total three representations that play a role. These are external representations ρ and σ of
SO(d − 2) and the internal representation π of SO(d − 1). The three are not completely
independent — upon restriction to SO(d− 2), π contains both ρ and σ.

Synopsis of SO(n) representations. Before continuing, we briefly review elements of
representation theory of SO(n). Let us denote the rank of this group by r, thus n = 2r or
n = 2r + 1. Irreducible representations of SO(n) can be labelled by sequences (l1, . . . , lr)
satisfying

SO(2r + 1) : l1 ≥ l2 ≥ · · · ≥ lr ≥ 0 , (3.17)
SO(2r) : l1 ≥ · · · ≥ lr−1 ≥ |lr| . (3.18)

In addition, either all of li are integers (for bosonic representations), or they are all half-
integers (for fermionic representations of the double cover Spin(n)). In the integer case, li
are the lengths of rows in the associated Young diagram.

The Gelfand-Tsetlin (GT) patterns are a particular choice of basis vectors for an SO(n)
representation. The labelling scheme is based on the fact that restrictions from SO(n)
to SO(n − 1) are multiplicity free. Indeed, upon restriction to SO(2r), the representa-
tion (l1, . . . , lr) of SO(2r + 1) contains the representation (m1, . . . ,mr) if and only if the
betweenness conditions hold

l1 ≥ m1 ≥ l2 ≥ · · · ≥ lr ≥ |mr| , (3.19)

and each of the allowed representations (m1, . . . ,mr) appears with multiplicity one. A similar
rule applies to restrictions from SO(2r) to SO(2r − 1), see e.g. [56]. Proceeding inductively,
one can describe a unique vector (up to normalisation) in the representation space (l1, . . . , lr)
of SO(n) by its transformation properties under SO(n − 1), SO(n − 2), . . . , SO(2). The
associated sets of labels taken together form a GT pattern.
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For the remainder of this section, we shall assume that ρ and σ are symmetric traceless
tensors of spin l and l′, respectively (see appendices C and D for the analysis when ρ and σ are
two-row MSTs). This means that intermediate representations have only two non-vanishing
Gelfand-Tsetlin labels, denoted (J, q). Furthermore, the labels are constrained as

J ≥ l, l′ ≥ q . (3.20)

The quadratic Casimir value in this representation is, [56],

C2(πJ,q) = −J(J + d− 3)− q(q + d− 5) . (3.21)

Now assume that l, l′, J and q are fixed. We ask over which sets the vectors {ea} and
{eα} run to produce a non-zero matrix element (3.14). First of all, ea is represented by an
SO(d− 1) Gelfand-Tsetlin pattern whose first row is fixed at (J, q, 0, . . . , 0) and the second
row at (l, 0, . . . , 0). All the remaining rows have at most one non-zero element. We denote
these by

l ≥ md−3 ≥ md−4 ≥ · · · ≥ m2 ≥ 0 . (3.22)
Similar comments apply to the vector eα, which is specified by a sequence m′

d−3, . . . ,m
′
2.

Since eθL12 commutes with M , non-zero matrix elements have m′
i = mi. Thus, we are

left with
f = ⟨l;md−3 . . .m2|πJ,q(eθL12)|l′;md−3 . . .m2⟩ . (3.23)

However, not all of these matrix elements are independent. In fact, they depend only on
md−3. The proof is a version of Schur’s lemma. Consider two matrix elements, (3.23) and

f̃ = ⟨l;md−3m̃d−4 . . . m̃2|πJ,q(eθL12)|l′;md−3m̃d−4 . . . m̃2⟩ . (3.24)

The label md−3 specifies an irreducible representation of SO(d− 3). The remaining labels
define two vectors in this representation, v = |md−4 . . .m2⟩ and ṽ = |m̃d−4 . . . m̃2⟩. Since
the representation is irreducible, there is an element γ ∈ SO(d − 3) such that ṽ = γv.
Therefore, we get

f̃ = ⟨l,md−3, ṽ|πJ,q(eθL12)|l′,md−3, ṽ⟩ = ⟨l,md−3, v|πJ,q(γ−1eθL12γ)|l′,md−3, v⟩ = f .

In the last step, we have used that γ commutes with eθL12 . In conclusion, we may label the
independent matrix elements as

F d−1,J,q
l,l′,j (θ) = ⟨l, j, v|πJ,q(eθL12)|l′, j, v⟩ . (3.25)

For most of our discussion, the dimension d is fixed, and we will drop the corresponding
label on F . The label j runs from 0 to min(l, l′), i.e. over representations of SO(d − 3)
that are contained in both (l) and (l′) of SO(d − 2). Thus, the number of independent
functions is

N(l, l′) = min(l, l′) + 1 . (3.26)
If either l or l′ vanishes, matrix elements (3.25) are called associated spherical functions.
If q = 0, they are called spherical functions of class I. Integral representations for matrix
elements of class I can be found in [55]. The remainder of this section is devoted to the
computation of (3.25). The extension to cases where ρ, σ are two-row mixed symmetry
tensors is given in appendices C and D.
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3.3 Differential equations from the radial component map

Matrix elements πij of unitary irreducible representations are eigenfunctions of the Laplacian
and higher Casimir operators. The eigenvalues are equal to values of Casimirs in the
representation π, e.g.

∆πij = C2(π)πij . (3.27)

We wish to use this equation to compute spherical functions. However, as it stands, ∆ is a
complicated differential operator in the dim(G) coordinates that parametrise the group.

Because it commutes with left and right invariant vector fields, the Laplacian preserves
each space of spherical functions Γρ,σ. Functions in Γρ,σ may be regarded as depending on a
single variable, due to the so-called Cartan decomposition of G. This is a higher-dimensional
generalisation of the Euler angle decomposition for SO(3) and states that any element
g ∈ G can be factorised as

g = kl e
θL12 kr, kl, kr ∈ K . (3.28)

It is customary to denote the middle factor by a = eθL12 . The one-dimensional subgroup
generated by L12 will be denoted by Ap. The Cartan decomposition of an element g is far
from unique. Let m ∈M and notice that M consists of those elements in K that commute
with eθL12 . Given one factorisation (3.28), we can produce another of the same form

g = (klm) eθL12 (m−1kr) . (3.29)

If πaα is a spherical function, once we know πaα(eθL12), left and right covariance properties
allow us to extend it to the whole of G. However, not any function on Ap can be extended
to a spherical function on G. Indeed

π(a) = π(mam−1) = ρ(m)π(a)σ(m−1) . (3.30)

Thus, F = π|Ap takes values in the subspace of vectors of Wl ⊗ W ∗
r which satisfy the

invariance condition (3.30). We will exhibit this condition in more concrete terms in
examples below.

We now come to the main point of the present section, namely that the Laplacian
eigenvalue problem can be written as an explicit differential equation for the restriction F

of π to Ap. As we mentioned above if f ∈ Γρ,σ, also ∆f ∈ Γρ,σ. This means that ∆ can be
reduced to a single-variable differential operator ∆ρ,σ, which depends on choices of ρ and σ.
The operator is explicitly given by

∆ρ,σ = ∂2
θ + (d− 3) cot θ ∂θ +

d−1∑
i=3

ρ(L2
2i) + 2 cos θ ρ(L2i)σ∗(L2i) + σ∗(L2

2i)
sin2 θ

+ 1
2σ

∗(LijLij) .

(3.31)
Notice that arguments of ρ and σ∗ in this expressions are polynomials in elements of
the Lie algebra of K, k, and thus the formula (3.31) is well-defined. The object on the
right hand side is a differential operator in θ with coefficients in End(Wl ⊗W ∗

r ). E.g. if
representations ρ and σ are realised by matrices, ∆ρ,σ becomes a differential operator with
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a matrix potential term. The proof of (3.31) follows from the existence of Harish-Chandra’s
radial component map. The result of Harish-Chandra, a special case of which we discussed
in section 3.1, states that reductions of any Casimir operator to spaces of spherical functions
can be performed universally in spin ρ and σ once the Casimir is radially decomposed in the
universal enveloping algebra of g. We give some more details about the radial component
map and how it leads to (3.31) in appendix B.

We will now assume that both ρ and σ are STTs of SO(d− 2). These representations
are conveniently realised on the space of polynomials in variables xa of degree ≤ l, where
a = 4, . . . , d− 1

ρ(L23) = −i(xa∂a − l), ρ(L2a) = −1
2
(
(1− x2)∂a + 2xa(xb∂b − l)

)
, (3.32)

ρ(L3a) =
i

2
(
(1 + x2)∂a − 2xa(xb∂b − l)

)
, ρ(Lab) = xa∂b − xb∂a . (3.33)

Similarly, σ∗ is realised in terms of operators in coordinates x′a and has spin l′. Invariance
condition related to the stabiliser M written in (3.30) implies that the differential operator
∆ρ,σ is applied to functions F (xa, x′a) that satisfy

(xa∂b − xb∂a + x′a∂
′
b − x′b∂

′
a)F (xa, x′a) = 0 . (3.34)

The condition is satisfied precisely by functions of scalar products

F = F (xaxa, x′ax′a, xax′a) ≡ F (X,X ′,W ) . (3.35)

While these conditions are the simplest ones to implement, (3.30) additionally requires

(ρ(L3a) + σ∗(L3a))F = 0 . (3.36)

The general solution to all the constraints reads

F = (1−X)l(1−X ′)l′f(y), y = (X + 1)(X ′ + 1)− 4W
(X − 1)(X ′ − 1) . (3.37)

The operators ρ(L2iL2i), σ∗(L2iL2i) and ρ(L2i)σ∗(L′
2i) all commute with the constraints (3.34),

(3.36) and therefore reduce to well-defined operators in y. To write the final result, put

D(d)
y = (y2 − 1)∂2

y + (d− 4)y∂y . (3.38)

Notice that this is the Gegenbauer differential operator, i.e. Gegenbauer polynomials satisfy
the differential equation

D(d)
y C

( d−5
2 )

n (y) = n(n+ d− 5)C(
d−5

2 )
n (y) . (3.39)

The reduced Laplacian reads

∆(d)
l,l′ = ∂2

θ + (d− 3) cot θ ∂θ −D(d)
y + 2D(d)

y − l(l + d− 4)− l′(l′ + d− 4)
sin2 θ

(3.40)

− 2 cos θ yD
(d)
y − (l + l′ + d− 5)(y2 − 1)∂y + ll′y

sin2 θ
.
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Equation (3.40) is one of the main results of the present section and we shall often return
to it. In summary, the family of operators (3.40) are all possible reductions of the group
Laplacian to spaces of spherical functions with symmetric traceless left-right covariance
laws, Γ(l),(l′). The appropriate generalisation of (3.40) that includes covariance laws for
mixed symmetry tensors is written in (C.18).

If we go back and regard F as a vector valued function of θ, its number of components
is equal to the number of M -invariants in ρ⊗ σ∗. Without loss of generality, assume that
l′ ≥ l. Let us see how (3.26) appears in the differential operator ∆(d)

l,l′ . Clearly, this operator
maps polynomials in y again to polynomials and increases their degree by at most one. The
term that increases the degree is the one multiplied by cos θ/ sin2 θ. However, one checks
explicitly that

∆(d)
l,l′

(
f(θ)yl

)
= f1(θ)yl + f2(θ)yl−1 . (3.41)

Therefore, ∆(d)
l,l′ preserves the space of functions f(θ, y) which are polynomials in y of

degree less than or equal to l. By expanding in y, we get a function of θ with l + 1 =
N(l, l′) components.

Remark. Invariance conditions (3.30) correspond to four-point invariance of partial
waves (F.1) and powers of y give a particular choice of four-point tensor structures.

3.4 Weight-shifting operators

To construct spherical functions with complicated internal and external representations, it
is often useful to start with ones with simpler representations, and apply to them weight-
shifting operators. In the following subsections, we shall explore two constructions of such
shifting operators, which, depending on the representations they change, shall be referred
to external and internal.

3.4.1 External weight-shifting operators

Before going on, let us make a few remarks about invariant vector fields. Any element X ∈ g

gives rise to left- and right-invariant vector fields on G, LX and RX , the generators of right
and left regular actions, respectively. Given a local coordinate system (xi) on the group
and a basis {Xj} of its Lie algebra, the vector fields are written as differential operators

LXi = CikL (x)∂xk , RXi = CikR (x)∂xk . (3.42)

The coefficient functions may be computed from the left and right Maurer-Cartan forms
g−1dg and dgg−1. However, the only property of vector fields that is of interest for the
present discussion is that they form two representations of the Lie algebra g, and commute
with one another. More precisely, in accord with conventions of [50], left-invariant fields
satisfy the same brackets as Lie algebra generators, while right-invariant vector fields satisfy
the opposite brackets.

Vector fields act on spherical functions component-wise. Infinitesimally, the covariance
conditions (3.15) read

Rkf
a
α = ρab(k)f bα, Lkfaα = faβσ

β
α(k), k ∈ k . (3.43)
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Unlike Casimir operators, vector fields do not commute with generators of K, and therefore
do not preserve spaces Γρ,σ. Our idea is not to apply these operators to spherical functions
individually. Rather, the vector fields are first collected according to their transformation
properties under K and then applied “collectively”. In this way, while the K-covariance
properties of the original function are altered, they are so in a definite way and we end up
with a spherical function from a different space Γρ′,σ′ .

Let us now be more precise. Generators L1µ of G form the vector representation of K
under the adjoint action. Let us denote the vector representation by v. Then

[k, L1µ] = v(k)µνL1ν , k ∈ k . (3.44)

Properties of invariant vector fields that we just described now directly imply

LkLL1µfaα = (v(k)µνδβα + δµνσ
β
α(k))LL1νfaβ , RkLL1µfaα = ρab(k)LL1µf bα . (3.45)

Therefore, {LL1µf} belongs to the space Γρ,σ⊗v. Similarly, {RL1µf} is an element of the
space Γρ⊗v,σ. So, Lie derivatives LL1µ ,RL1µ are shifting-operators in the sense that they
change covariance properties of f in a definite way. Since invariant vector fields commute
with the Laplacian, they map eigenfunctions of ∆ to eigenfunctions of ∆.

By applying the radial component map to linear elements L1µ in U(g), we get inter-
twiners between different Laplace operators ∆ρ,σ. For symmetric traceless tensors ρ = (l),
σ∗ = (l′), the reduced Laplacian∆(d)

l,l′ admits two weight shifting operators that change l
and l′ by one

∆(d)
l+1,l′ql,l′ = ql,l′∆(d)

l,l′ , ∆(d)
l,l′+1q̄l,l′ = q̄l,l′∆(d)

l,l′ . (3.46)

Note that these relations imply that if f is an eigenfunction of ∆(d)
l,l′ with the eigenvalue λ,

then ql,l′f is an eigenfunction of ∆(d)
l+1,l′ with the same eigenvalue

∆(d)
l+1,l′ql,l′f = ql,l′∆(d)

l,l′ f = λql,l′f . (3.47)

An analogous statement holds for q̄l,l′ . Explicitly, ql,l′ and q̄l,l′ are given by

ql,l′ = ∂θ − l cot θ + (y2 − 1)∂y − l′y

sin θ , q̄l,l′ = ∂θ − l′ cot θ + (y2 − 1)∂y − ly

sin θ . (3.48)

One readily verifies equations (3.46). To arrive at expressions (3.48), one uses the radial
decompositions of L1i written in (B.5). While the construction of operators (3.48) was
motivated by considerations of vector fields, their applications rely almost solely on the
exchange relations (3.46).17 In fact, the latter show that ql,l′ is an intertwiner between
“irreducible” spaces Γ(l),(l′) → Γ(l+1),(l′) rather than Γ(l)⊗(1),(l′) (and similarly for q̄). This
additional projection that is entailed in q, q̄ is a significant property in applications.

17Indeed, demanding the relations (3.46) was used to fix the final form of operators (3.48).
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3.4.2 Internal weight-shifting

We will now supplement the above operators that shift ρ, σ by ones that shift π. For the
above examples, this corresponds to changing (J, q) while keeping (l, l′) constant. The fact
underlying the construction of internal shifting operators is that any space Γρ,σ is a module
over the zonal spherical functions Γ0,0. That is, if f0 ∈ Γ0,0 is zonal and faα ∈ Γρ,σ, their
product is again an element of Γρ,σ

(f0f)aα(klgkr) = f0(klgkr)faα(klgkr) = f0(g)ρab(kl)f bα(g)σβα(kr) =
= ρab(kl)(f0f)bα(g)σβα(kr) .

Therefore, starting from a single function in Γρ,σ, we may multiply it by zonal spherical
functions to generate other elements of the same space. This is also clear by looking at
matrix elements

π1(g)aαπ2(g)0
0 =

∑
π∈π1⊗π2

cππ(g)aα . (3.49)

After reduction to functions f(θ, y), we obtain relations

fJ
′,0

0,0 (θ)fJ,0l,l′ (θ, y) =
∑

π∈(J)⊗(J ′)
cπf

π
l,l′(θ, y) . (3.50)

The first factor on the left hand side is a zonal spherical function and thus known. The
second factor is also known, being obtained from the zonal spherical function fJ,00,0 (θ) by
repeated applications of external weight-shifting operators. Thus, our task is to isolate in the
product the different terms appearing on the right. The set of irreducible representations
π appearing in (J) ⊗ (J ′) is of course finite and well known — we shall denote it by
{π1, . . . , πn}. Since the functions on the right hand side of (3.50) differ only in the upper
index π and not the lower ones, they are eigenfunctions of the same differential operator
∆(d)
l,l′ . Assume for the moment that all representations πi have different Casimir eigenvalues

C2(πi). If we act by ∆(d)
l,l′ − C2(πj) on the right for some fixed j, one term in the sum will

drop out and other will get multiplied by numbers C2(πi)− C2(πj). Thus, to compute a
single term in the sum, we make n− 1 subtractions, i.e.

fπn
l,l′ (θ, y) ∼ (∆(d)

l,l′ − C2(πn−1)) . . . (∆(d)
l,l′ − C2(π1))

(
fJ

′,0
0,0 (θ)fJ,0l,l′ (θ, y)

)
. (3.51)

If some representations from {π1, . . . , πn} are not distinguished by the values of the quadratic
Casimir C2, one should also apply similar projections with higher Casimirs (in practise,
we generally do not need to do this — see however discussions below, especially in d = 5).
Notice that both external (3.48) and internal (3.51) weight-shifting operators require only
are expressed in terms of reduced operators only (i.e. depending only on θ and y). Using
them, all spherical functions are computed by the sequence of steps that we shall now detail.

3.5 Solution theory

In this subsection, we explain how to use the previously define tools to obtain a general
solution to the Laplacian.
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3.5.1 Zonal spherical functions

As we have said, zonal spherical functions are matrix elements with trivial ρ and σ. They
are obtained by solving the differential equation

∆(d)
0,0f = −J(J + d− 3)f, ∆(d)

0,0 = (1− t2)∂2
t − (d− 2)t∂t . (3.52)

We have written t = cos θ. The solutions with correct boundary conditions are Gegen-
bauer polynomials

fJ,00,0 = C
( d−3

2 )
J (t) . (3.53)

These agree with the scalar partial waves, as mentioned already in (2.26). In four and five
dimensions, they reduce Legendre and Chebyshev polynomials

d = 4 : fJ,00,0 = PJ(t), d = 5 : fJ,00,0 = UJ(t) =
sin((n+ 1)θ)

sin θ . (3.54)

3.5.2 Higher solutions

Let us now describe the method to obtain admissible eigenfunctions of the Laplacian (3.40).18

While we focus on the case of external symmetric traceless representations, the general
idea is the same in more involved cases as well — we give details of the procedure for
MST-STT and MST-MST systems in appendix C. One always starts from certain solvable
boundary cases, characterised by a very particular choice of quantum numbers, and shows
that any admissible solution is obtained from them by acting with weight-shifting operators.
The steps are summarised by the following diagram and explained in more details in the
next paragraph,

fJ,00,0 fJ,0l,0 fJ,0l,l′ fJ,ql,l′ .
(q)l (q̄)l′ internal

w.s.

Strategy. The process of constructing solutions is divided in three steps:19

1. The starting point is the zonal spherical function, the eigenfunction of ∆(d)
0,0 with the

eigenvalue C2((J, 0)), computed in the previous subsection, (3.53).

2. The next step involves the external weight-shifting. We wish to arrive to the eigen-
function of ∆(d)

l,l′ with the eigenvalue C2((J, 0)). This is done by repeatedly acting
with q or q̄ until we reach the desired values of l, l′.

3. Finally, we use the internal weight-shifting to get the solution we want, the eigenfunc-
tion of ∆(d)

l,l′ with the eigenvalue C2((J, q)). The result of the previous step is multiplied
by the zonal spherical function f q,00,0 , where we have put the index q because we need to
move our solution ‘by q steps’ to go from (J, 0) to (J, q). After the multiplication, one

18There is a distinction between eigenfunctions of (3.40) and matrix elements — namely, ∆(d)
l,l′ admits

eigenfunctions which do not correspond to any matrix elements. We reserve the adjective ‘admissible’ for
the ones that do.

19Here we describe the procedure for d > 5. The case d = 5 is describe in section 4.
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gets a linear combinations of solutions corresponding to all irreducible representations
in the tensor decomposition of (J, 0)⊗ (q), one of which is (J, q). We get rid of the
other representations πi by projecting them out with ∆(d)

l,l′ − C2(πi), where C2(πi) is
the Casimir value in the representation πi.

The Mathematica function that carries out the above procedure is
Generate$STTSTT$yBasis[d,l,l’,J,q][t,y].

Example. Let us now get for instance the solution to ∆(d=7)
2,1 with the eigenvalue C2((3, 1))

and d > 5, following the described procedure. We start from the zonal with J = 3,
f3,0

0,0 = 4t(8t2 − 3), and then act with external weight shifting operators to arrive to l = 2
and l′ = 1, e.g.

f3,0
2,1 (θ) = q̄2,0(q1,0(q0,0(f3,0

0,0 (θ)))) ∝ (1− t2)
1
2 (3t2 − 2ty − 1) . (3.55)

In the previous equation we drop the numerical prefactor (which is not important since the
function will be normalised only at the very end) and we put the proportionality sign ∝. The
next step is to change the internal representation (3, 0) → (3, 1). We need to shift q by one
and so we multiply f3,0

2,1 (t, y) by f1,0
0,0 (t). The relevant tensor product decomposition reads

(3, 0)⊗ (1, 0) = (2, 0)⊕ (3, 1)⊕ (4, 0) . (3.56)

The last thing we need to do is to project to the internal representation we want, that is (3, 1),

f3,1
2,1 (t, y) = (∆(d)

2,1 − C2(2, 0))(∆(d)
2,1 − C2(4, 0))

(
f3,0

2,1 (t, y)f
1,0
0,0 (t)

)
∝ (1− t2)(6t2y − 5t− y) .

(3.57)

3.6 Matrix elements in the Gelfand-Tsetlin basis and checks

The procedure we have given computes non-normalised matrix elements in the function
space basis for carrier spaces of ρ and σ, (3.32)–(3.33). To normalise them, it is useful to go
to the Gelfand-Tsetlin (GT) basis, which is often used in the literature. Furthermore, using
the GT basis allows to compare a subset of our matrix elements to known results, [49]. Here
we only state how to obtain normalised matrix elements (3.25) from the function f(θ, y).
More details and the general picture are given in appendix D.

To Gelfand-Tsetlin basis. Fix l and l′. Given a function fJ,ql,l′ (θ, y) = a0(θ)+a1(θ)y+ . . . ,
representing πJ,q in the function space basis, the corresponding matrix elements in the
Gelfand-Tsetlin basis F J,ql,l′,j(θ) are obtain from the following relation,

fJ,ql,l′ (θ, y) =
∑
j

F J,ql,l′,j(θ)C
( d−5

2 )
j (y) , (3.58)

where j runs from 0 to min(l, l′) for d > 5.20 The Mathematica command that gives the
map fro the change of basis is toGTbasis$STTSTT[d][y][f], more details in appendix E.

20The case d = 5 is describe in section 4.
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Normalisation. We compute the normalisation of the matrix elements using orthonor-
mality of the Gelfand-Tsetlin basis and the action of infinitesimal generators defined
in (A.3). We expand F J,ql,l′,j(θ) in θ, and we impose that the |l − l′|-th coefficient of the
expansion has to be equal to ⟨l, j|L|l−l′|

12 |l′, j⟩. The Mathematica command to normalise is
normaliseSTTSTTinGT[d,l,l’,J,q][θ][f], and the one that gives the normalised matrix
element in the GT basis is Generate$STTSTT$GTBasis[d,l,l’,J,q][θ], see appendix E.

Check. Matrix elements for external and internal symmetric traceless tensor, i.e. for
q = 0, admit the integral representation, [49], section 9.5,

F d−1,J
l,l′,j (θ)= (3.59)

Bd−1,J
l,l′,j

∫ π

0
dϕ (sinϕ)2j+d−4(cosθ−icosϕsinθ)J−jC

(
j+

d−4
2

)
l−j (cosϕ)C

(
j+

d−4
2

)
l′−j

( cosϕcosθ−isinθ
cosθ−icosϕsinθ

)
,

where

Bd−1,J
l,l′,j = il−l′

√
(J + l + d− 4)!(J − l)!
(J + l′ + d− 4)!(J − l′)!

22j+d−6Γ
(
j + d−4

2
)2

π
×

×

√
(l − j)!(l′ − j)!(2l + d− 4)(2l′ + d− 4)

(l + j + d− 5)!(l′ + j + d− 5)! .

We checked our results for q = 0 exchange against (3.59) in a number of examples and
observed perfect agreement. It might be worth mentioning that, at least for Mathematica,
doing the integral is considerably more time-consuming than constructing solutions through
weight-shifting. For q ̸= 0, our method goes beyond [49].

Remark: conformal to S-matrix limit. The framework of spherical functions also
applies to conformal partial waves. Indeed, the latter may be viewed as spherical functions
for a rank-two Gelfand pair, with G = SO(d + 1, 1) being the conformal group and
K = SO(1, 1)× SO(d) the group of dilations and rotations, [42, 50]. The reduced Laplacian
acting on these functions reads, [50],

H = ∂2
t1
+ ∂2

t2
+

1−D′2
+ + 2 cosh(t1 + t2)D′

+D+ −D2
+

2 sinh2(t1 + t2)
+

1−D′2
− + 2 cosh(t1 − t2)D′

−D− −D2
−

2 sinh2(t1 − t2)

+
M ′

2aM
′
2a − 2 cosh t1M ′

2aM2a +M2aM2a − 1
4 (d− 2)(d− 4)

sinh2 t1
(3.60)

+
M ′

3aM
′
3a − 2 cosh t2M ′

3aM3a +M3aM3a − 1
4 (d− 2)(d− 4)

sinh2 t2
− 1

2L
abLab −

d2 − 2d+ 2
2 .

Here, D and Mij are the usual dilation and rotation generators of the conformal algebra
and D± = D ± iM23 (for the range of indices and commutation relations, see [50]). The
objects D±,Mij and D′

±,M
′
ij in (3.60) are to be interpreted as operators representing

abstract generators D±,Mij in two representations of K. The latter are essentially the
tensor products of field representations at points {3, 4} and {1, 2}, respectively.21 On the

21This is a somewhat imprecise description. Details about the two representations of K are given in [50].
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other hand, the two variables t1, t2 are closely related to the radial coordinates of [57]

r = −e−t2 , η = cos(it1) . (3.61)

The S-matrix limit is given by r → 0, i.e. t2 → ∞ and relates conformal correlators in d
dimensions to amplitudes in d+1 dimensions. Indeed, taking this limit in (3.60) and acting
on functions of the form f(t1)e∆t2 , we get

H = −∂2
θ −

M ′
2aM

′
2a − 2 cos θM ′

2aM2a +M2aM2a − 1
4 (d− 2)(d− 4)

sin2 θ
+

− 1
2L

abLab −
d2 − 2d+ 2

2 +∆2 .

We have introduced θ = it1, in accord with (3.61). The last operator is, up to the
conventional overall minus sign and an additive constant, the Schrödinger form of the
Laplacian (3.31) in d+ 1 dimensions (by the “Schrödinger form of ∆”, we mean the unique
operator related to ∆ by conjugation, ω(θ)∆ω(θ)−1, that does not contain the term linear
in the derivative ∂θ). The representations ρ and σ∗ are restrictions to SO(d− 1) of ρ1 ⊗ ρw2
and ρ3 ⊗ ρw4 , where ρi are the representations of SO(d) characterising the four conformal
fields that enter the correlator.

4 Exceptions in five dimensions

The general theory we developed has to be adjusted if the spacetime dimension is low. The
critical dimension for which the theory becomes generic depends on the depth, i.e. the
number of non-trivial GT labels, of representations ρ and σ. When ρ and σ are symmetric
traceless tensors, the theory as written in the last section applies for d > 5. Since the matrix
elements for d = 4 were reviewed in section 3.1, it remains to treat the case d = 5. This is
the purpose of the present section.

In five spacetime dimensions, the groups entering the discussion are

G = SO(4), K = SO(3), M = SO(2) . (4.1)

As before, we will be imprecise about the global structure of the groups. The reader can
assume that we are working with universal covering groups Spin(4) and SU(2) of the above,
or equivalently with projective representations. Representations of G will be labelled either
by Gelfand-Tsetlin labels (J, q) or by two SU(2)-spins [j1, j2]. The relation between two
sets of labels reads

J = j1 + j2, q = j1 − j2 . (4.2)

In the remainder of the section, we will compute spherical functions on G with definite
covariance properties under left and right actions of K.

4.1 Enumeration of matrix elements

Let as before ρ = (l), σ = (l′) and π = (J, q). Contrary to the higher-dimensional cases,
the label q is allowed to be negative, with |q| ≤ J . Representations ρ and σ appear in the
restriction of π to K if and only if

J ≥ l, l′ ≥ |q| . (4.3)
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The Lie algebra g is not simple and has two independent quadratic Casimir elements.
We denote by C

(i)
2 , i = 1, 2, the Casimirs of two commuting su(2) subalgebras. These

are normalised to take values −2ji(ji + 1) in the representation [j1, j2]. We denote C2 =
C

(1)
2 + C

(2)
2 and C̃2 = C

(1)
2 − C

(2)
2 . With these conventions,

C2(πJ,q) = −J(J + 2)− q2 , C̃2(πJ,q) = −2q(J + 1) , (4.4)

so, in particular, the normalisation of C2 is coherent with (3.21).
Now assume that l, l′, J and q are fixed. Vectors ea and eα may be written as

ea = |J, q; l; j⟩, eα = |J, q; l′; j′⟩ ,

where we have separated rows of the Gelfand-Tsetlin patterns by semicolons. Unlike in
higher dimensions, j can be negative — it runs over {−l,−l + 1, . . . , l}. Non-zero matrix
elements have j + j′ = 0 and we put

F 4,J,q
l,l′,j (θ) = ⟨l, j|πJ,q(eθL12)|l′,−j⟩ . (4.5)

This is the analogue of the set of higher-dimensional independent matrix elements (3.25).
Due to the modified range for j, the number of independent functions is now

N(l, l′) = 2min(l, l′) + 1 . (4.6)

4.2 Reduced Casimir operators and solution theory

The function space realisation of spin-l representation of K reads

ρ(L23) = −i(x∂x−l), ρ(L24) = −1
2
(
(1+x2)∂x−2lx

)
, ρ(L34) =

i

2
(
(1−x2)∂x+2lx

)
.

(4.7)
These operators act on the space of polynomials in x of degree less than or equal to

2l. Similarly, representation σ∗ is realised in terms of operators in coordinates x′ and has
spin l′. These expressions are special cases of the general ones written above when the
index a runs over the one-element set {4}. The same is true for solutions to M -invariance
conditions (3.30), which still take the form (3.37). We again denote the single invariant
variable by y. The reduced Laplacian is given by (3.40). However, now the space on which
it is to be considered is that of functions of θ and y, whose dependence on y is of the form

P (y) +Q(y)
√
y2 − 1, with deg(P ) ≤ min(l, l′), deg(Q) ≤ min(l, l′)− 1 . (4.8)

Here, P and Q are polynomials. We see that ∆(5)
l,l′ preserves this space. The other Casimir

reduces to
∆̃l,l′ = ∂θ∂ϕ +

sinϕ∂2
ϕ + (cos θ − (l + l′) cosϕ)∂ϕ − ll′ sinϕ

sin θ . (4.9)

We have displayed the second Casimir using the variable ϕ related to y by y = sinϕ. It
appears that expressed in this variable ∆̃l,l′ takes the simplest form.

Since the reduced Laplacian in d = 5 coincides with its higher-dimensional coun-
terpart, it also admits external weight-shifting operators (3.48) satisfying the exchange

– 27 –



J
H
E
P
1
0
(
2
0
2
3
)
0
9
0

relations (3.46). The principal difference in the solution theory compared to previous
cases follows from the fact that there are many pairs of representations π of G with
equal values for the Casimir C2. Namely, C2(πJ,q) = C2(πJ,−q). We account for this by
using both ∆l,l′ and ∆̃l,l′ to project out representations in the algorithm described in
section 3.5. The implementation in Mathematica of the algorithm is given by the function
Generate$STTSTT$yBasis[5,l,l’,J,q][t,y], more details are given in appendix E.

4.3 Eigenfunctions in the Gelfand-Tsetlin basis

To express spherical functions in the GT basis, the only thing we need is write the usual
vectors |l, j⟩ of an SO(3)-irreducible representation in the realisation (4.7). The relation
between the two reads

|l, j⟩ = cl,j

(1 + x

1− x

)j
, cl,j =

1
ij
√
2l(l + j)!(l − j)!

(4.10)

Given a function f(θ, y) = an(θ)yn + ibm(θ)ym
√
y2 − 1 that represents the matrix elements

πJ,q in the differential basis, we expand it as

f(θ, y) = Kmn(θ)χmχ′n, χ = 1 + x

1− x
, χ′ = 1 + x′

1− x′
. (4.11)

The corresponding matrix elements in the Gelfand-Tsetlin basis read

F 4,J,q
l,l′,j (θ) = cl,jcl′,jKjj(θ) . (4.12)

The Mathematica function that gives matrix elements in the GT basis is given in (E.1).
Compared to (4.12), the function includes a further normalisation, see appendix D. We
have checked our results against integral representations from [55] in a number of cases
where the comparison is possible and observed perfect agreement.

4.4 An example: photon scattering in five dimensions

In this subsection, we illustrate the theory developed in previous sections on the example of
photon scattering in d = 5 dimensions. Our results for this case agree with [48].

As we mentioned, in order to define partial waves, a choice is needed for spaces of three-
and four-point tensor structures. Let us adopt the notation of [33] for this and the following
paragraph. Then, three-point structures are encoded by vertices vj(n, e1, e2), which are
polynomials in components of vectors e1, e2, n, w1 and w2. The first three vectors are
constructed out of momenta pi and polarisations ϵi, whereas the last two characterise the
spin of the exchanged particle (the authors of [33] give vertices relevant for scattering of
gravitons. In the case of photons, they provided us with their choice of vertices to allow for
comparison). On the other hand, four-point tensor structures may be chosen as22

H14H23, H13H24, H12H34, X1243, X1234, X1324, S . (4.13)
22We use the same definition and notation of [52].
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These four-point structures are referred to as generators of the ‘local module’, in the
terminology of [52] (where they are contrasted with the generators of the ‘bare module’).
We shall denote these structures by T I , I = 1, . . . , 7. They are polynomials in momenta
pi and polarisations ϵi of the four particles. Given an internal representation π and a pair
of vertices vi, vj , the partial wave gijπ can be expanded in the above structures and is thus
encoded in seven scalar functions gijπI of the scattering angle θ. In conclusion, the partial
waves are given by the data {vi, T I , gijπI(θ)}.

Now we revert back to our notation. Since we use wi to denote spin states of external
particles, the wi of [33] shall be renamed to ri. To compare the above to our partial waves,
we first fix particles to the frame as explained in section 2.2

p1 =
√
s

2 (1, 1, 0, 0, 0), p3 = −
√
s

2 (1, cos θ, sin θ, 0, 0) , (4.14)

p2 =
√
s

2 (1,−1, 0, 0, 0), p4 = −
√
s

2 (1,− cos θ,− sin θ, 0, 0) . (4.15)

Secondly, polarisations ϵi are expressed in terms of spin vectors wi by ϵi = Λpi(0, 0, wi).
Recall from section 2.1, where this relation was established, that wi is a vector in the spin-1
representation of SO(3), and Λpi is the standard boost (2.6). By these substitutions, vertices
vi(n, e1, e2) are turned into polynomials in components of w1, w2, r1 and r2, SO(3)-invariant
elements of (1) ⊗ (1) ⊗ π. Further, the structures (4.13) become elements of the carrier
space of (1)⊗4 of SO(3), whose coefficients are functions of θ, namely

T I → T Iαβγδ(θ)wα1w
β
2w

γ
3w

δ
4 = T Iρµσν(θ)w

ρµ
12w

σν
34 , I = 1, . . . 7 α, β, γ, δ = 2, 3, 4 .

In the second equality, we used the SO(3) Clebsch-Gordan coefficients to go from the tensor
product basis of (1)⊗ (1) = (0)⊕ (1)⊕ (2) to the irreducible-components basis. The same
was done for pairs of particles {1, 2} and {3, 4}. In the usual SO(3) notation

wρµ = |j,m⟩, with ρ = (j), µ = m, j = 0, 1, 2, m = −j, . . . , j .

To compare gijπI to matrix elements π(eθL12)ρµσν , one is required to relate vertices vi in the
frame to (2.15). Consider for concreteness the symmetric traceless exchange. Then r2 = 0
and we write r1 = r. The vertices vi of [48] (first three of them) become

v0 → kJ√
3
rJ1

(
w2

1w
2
2 + w3

1w
3
2 + w4

1w
4
2

)
, (4.16)

v2 → kJ

√
J(J − 1)

6(J + 2)(J + 3)r
J
1

(
−2w2

1w
2
2 + w3

1w
3
2 + w4

1w
4
2

)
, (4.17)

v1 → ikJ

√
J

2(J + 2)r
J
1 (w4

1w
3
2 − w3

1w
4
2) . (4.18)

The following remark is in order. We first verify that vi obtained by substitutions are SO(3)-
invariant. Then without loss of generality we display results ‘in the frame’ r = (r1, r2, 0, 0).
It is immediately verified that (4.16)–(4.18) project to (0), (2) and (1) external subspaces,
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respectively. Therefore, vertices vi agree precisely with our tensor structures (2.15), up to
normalisation. The same comments apply to all other vertices from [48]. Therefore, our
theory should imply the relation23

gρσπI (θ)T
I
ρµσν(θ) = C(ρ, σ, π)Π(eθL12)ρµσν , (4.19)

and the latter was explicitly verified. The coefficients C(ρ, σ, π) are obtained by comparison
of normalisations of vertices in the two approaches.

5 Summary and outlook

In our study, we have developed a comprehensive approach to compute partial waves
for 2 → 2 scattering involving spinning particles. Our findings have broad applicability
to various processes with four particles, whether they are massive or massless, of spins
J1, . . . , J4. Importantly, this approach is applicable in any spacetime dimension d. After
establishing a connection between partial waves and specific matrix elements of the rotation
group SO(d − 1), we employed a novel algebra of weight-shifting operators to compute
the latter. We have included a valuable Mathematica code that effectively implements
our method and generates the aforementioned matrix elements. In the remaining few
paragraphs, we discuss some of the possible applications and extensions of our results.

The identification of partial waves with spherical functions may lead to new insights
into analytic properties of the S-matrix. Among the goals in this direction would be a
spinning generalisation of the Froissart-Gribov formula [31, 58] as previously done in four
dimensions, see for instance [59]. It is an appealing idea that the ‘Q-functions’ appearing in
this tentative formula are obtained from the scalar Q-functions by the same sequence of
weight-shifting operators that produces spinning waves from the scalar ones. Another regime
for which the known results about spherical functions and their asymptotic properties may
have implications is the Regge behaviour of spinning amplitudes, [60].

More directly, our results allow to bootstrap previously unavailable systems, for example
the scattering of particles of different type. While our focus has been on bosonic matrix
elements, it is noteworthy that these are the only ones that appear as partial waves in
the scattering of four fermions. On the other hand, the computation of fermionic matrix
elements that would appear in scattering involving both bosons and fermions is certainly
within reach of our methods. Since we treat particles of arbitrary spin, another natural
avenue for applications are theories involving strings [61, 62], or string-like objects. Perhaps
more interestingly, it is noted that partial waves for spinning 2 → 2 scattering are sufficient
to construct multi-particle partial waves for scalars — the latter are simply the products of
the former (see [63] for a recent review and references to original literature). Therefore, the
present work paves the way for analysis of processes involving more than four particles.

There are several directions of generalisation of the above constructions. A very
natural completion would be to study massless exchanges, in analogy to what has been
done for conserved currents in the CFT bootstrap. At present, these exchanges are

23Recall from appendix F that Πρµ
σν = πρµ

σν + (π∗)ρµ
σν , where (J, q)∗ = (J,−q).
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usually forbidden by the assumptions made on the S-matrix, but they may become more
relevant in future studies. Another extension is to consider supersymmetric theories.
The supersymmetric waves are expected to admit a description within harmonic analysis,
similarly to superconformal blocks [64]. Spherical functions on supergroups in general carry
an action of additional invariant differential operators. It is an interesting question to
determine how these enrich the algebra of Laplacians and weight-shifting operators. Finally,
the framework of spherical functions is by no means limited to S-matrix partial waves
and extends to conformal blocks and specific classes of defect-channel and bulk-channel
conformal blocks in dCFTs. In all these cases, there exists a universality in spin, enabling
the construction of the weight-shifting algebra. We believe that many other physical systems
of interest can be encompassed by this framework, including certain de Sitter/cosmological
correlators [65, 66]. Determining whether a given problem is described by spherical functions
is a straightforward kinematical question.

Consequently, we conclude with a brief discussion of the place of our constructions
within the broader context of representation theory. The provided code represents the first
systematic implementation of the idea proposed in [50] for computing spherical functions
through an algebra of differential operators obtained via Harish-Chandra’s radial component
map, specifically ∆, q, q̄. Our analysis focused on rank-one systems with a compact group
G, however these restrictions can be relaxed without significant difficulty.

As we have mentioned on multiple occasions, the radial component map, which computes
the reduction of differential operators to spaces of spherical functions, is defined in the
general context of Gelfand pairs (G,K). Zonal spherical functions within this more general
framework are (up to a prefactor) the Heckman-Opdam hypergeometric functions associated
with root systems [67], and they have been extensively studied. The results from [50]
for rank-two Gelfand pairs indicate that the construction of the weight-shifting algebra
can be carried out independently of the rank in essentially the same way. However, the
corresponding spinning higher-rank spherical functions remain largely unexplored, except for
the rank-two case where examples from the CFT literature provide valuable insights, [45, 46].
Furthermore, the transition from compact to non-compact groups does not appear to present
significant difficulties and is mainly reflected in the set of zonal spherical functions [50]. It
might be worth mentioning that the spherical functions we computed in this study, in the
special cases where ρ = σ, correspond to matrix hypergeometric functions (see [68, 69] and
references therein). We believe that the presented method and code can be useful resources
for researchers studying these special functions.

In addition to viewing weight-shifting as an efficient computational tool, it is intriguing
to investigate the algebraic structure formed by these operators in greater detail. From a
speculative standpoint, one might investigate the possibility of finding a set of operators
that would replace the internal weight-shifting procedure with a more efficient alternative.
The resulting algebra, containing Laplacians, external shifting operators, and these new
internal shifting operators, would be of considerable importance for the representation
theory of (G,K). With this goal in mind, it could be useful to view the Laplacians ∆ρ,σ as
spinning Calogero-Sutherland Hamiltonians, [50], and search for potential dual models of
Ruijsenaars-Schneider type [70, 71]. However, this program is still in very early stages and
requires further investigation.
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A Some group theory background

In this appendix, we give a review of certain statements and constructions from represen-
tation theory that are used in the main text. For more details, the reader is referred to
e.g. [54, 55].

A.1 Spherical functions

Let G be a simple Lie group and K ⊂ G a Lie subgroup. Given two finite-dimensional
representations ρ, σ of K, let Γρ,σ be the space of vector-valued functions on G

Γρ,σ = {f :G→Hom(Wr,Wl) |f(klgkr)= ρ(kl)f(g)σ(kr)}, kl,kr ∈K, g ∈G. (A.1)

Here, Wl and Wr are the carrier spaces of ρ and σ, respectively. It can be shown that the
space Γ0,0 specified by trivial representations ρ and σ is closed under convolutions. If this
convolution algebra is commutative, K is said to be a spherical subgroup of G and (G,K)
is called a Gelfand pair. There are several criteria for determining if two groups G,K form
a Gelfand pair, [54]. A particularly simple one states, under appropriate assumptions on G

and K: if θ is an involutive automorphism of G and K its fixed point set, then (G,K) is a
Gelfand pair.

Given a Gelfand pair (G,K), the group G admits, at least locally, a Cartan
decomposition

G = KApK . (A.2)

By this we mean that almost all elements of G,24 may be factorised as g = klakr with
kl,r ∈ K and a ∈ Ap. Here, Ap ⊂ G is a certain abelian group, whose dimension is called the
real (or spilt) rank of (G,K) and denoted rank(G,K). Due to covariance properties (A.1),
spherical functions f ∈ Γρ,σ are uniquely determined by their restrictions to the subgroup Ap

— for this reason, they may be regarded as vector-valued functions of rank(G,K) variables.

A.2 Gelfand-Tsetlin formulas

Besides being a useful labelling scheme for states, the Gelfand-Tsetlin patterns allow for an
explicit description of the action of Lie algebra generators in any irreducible representations
of SO(n), [47]. Since we use these GT formulas to normalise matrix elements, we shall spell

24Up to a subset of measure zero.
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them out, following [72], chapter 18.1.2. Adapted to our conventions, and putting n = d− 1,
we have

Ld−p,d−p+1v(M) =
∑
j

Ajp(M)v(M+j
p )−

∑
j

Ajp(M−j
p )v(M−j

p ) . (A.3)

Here v(M) denotes a GT pattern and v(M±j
p ) are patterns with shifted labels as defined

in [72]. Both sums are running from 1 to [(p+ 1)/2]. Moreover, if p is even

Ajp(M) = 1
2

∣∣∣∣∣∣∣∣∣∣∣

p/2−1∏
r=1

(
(lr,p−1 − 1/2)2 − (lj,p − 1/2)2

) p/2∏
r=1

(
(lr,p+1 − 1/2)2 − (lj,p − 1/2)2

)
∏
r ̸=j

(l2r,p − l2j,p)(l2r,p − (lj,p − 1)2)

∣∣∣∣∣∣∣∣∣∣∣

1
2

,

lj,p = mj,p +
p

2 − j , (A.4)

and if it is odd,

Ajp(M) =

∣∣∣∣∣∣∣∣∣∣∣

(p−1)/2∏
r=1

(
l2r,p−1 − l2j,p

) (p+1)/2∏
r=1

(
l2r,p+1 − l2j,p

)
l2j,p(4l2j,p − 1)

∏
r ̸=j

(l2r,p − l2j,p)(l2r,p − (lj,p − 1)2)

∣∣∣∣∣∣∣∣∣∣∣

1
2

, (A.5)

lj,p = mj,p +
p+ 1
2 − j . (A.6)

The Gelfand-Tsetlin patterns and formulas for the action of generators on them provide
a particular model for irreducible representations of SO(n). In some applications, other
models seem to be more useful, as was also the case in the present work. See [73] for recent
review of function space models.

A.3 Tensor product decomposition of SO(n) representations

All tensor products that we use as a part of procedure to generate matrix elements are of
the type

(k)⊗ µ =
∑
i

νi , (A.7)

where µ, νi are general irreducible representations of SO(n) and (k) an STT. These
decompositions are governed by the following Pieri-type rule: remove k+|µ|−|ν|

2 boxes from
the Young diagram of µ, and then add k−|µ|+|ν|

2 boxes to different columns to make ν. Here,
we are only interested in which representations appear in the decomposition, and not in
their multiplicities.

A.4 Representations of O(n)

Here, we discuss the relation between irreducible representations of SO(n) and O(n). Our
treatment follows the accounts of [74, 75].
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The analysis proceeds differently depending on whether n is even or odd. Assume first
that n = 2r + 1. In this case, the orthogonal group is of direct product form

O(2r + 1) ∼= SO(2r + 1)× Z2 . (A.8)

Therefore, irreducible representations of O(2r + 1) are tensor products of irreducible
representations of the two factors, (l1, . . . , lr)⊗±, conventionally denoted (l1, . . . , lr)±.

Consider now the case of even n. Let π = (l1, . . . , lr) be an irreducible representation of
SO(2r). We say that π is of type I if lr = 0. Every representation of type I is the restriction
of either of two non-isomorphic representations of O(2r). These two representations will be
denoted by π± = (l1, . . . , lr)±

IndO(2r)
SO(2r)π = π+ ⊕ π−, ResO(2r)

SO(2r)π
+ = ResO(2r)

SO(2r)π
− = π . (A.9)

Representations with lr ̸= 0 are said to be of type II. Consider two such modules,
π± = (l1, . . . , lr−1,±lr). Then they induce the same irreducible of O(2r)

π = IndO(2r)
SO(2r)π

+ = IndO(2r)
SO(2r)π

−, ResO(2r)
SO(2r)π = π+ ⊕ π− . (A.10)

The above discussion can be extended to include for double covers of SO(n) and O(n) and
spinorial representations. Restrictions between consecutive groups in all these cases are
known, see the Proposition 10.1 of [75].

Example. Representations of O(4) are labelled either as (J)± or as (J, q), with J ≥ q > 0
integers. Their restrictions to SO(4) read

ResO(4)
SO(4)(J)

+ = ResO(4)
SO(4)(J)

− = (J), ResO(4)
SO(4)(J, q) = (J, q)⊕ (J,−q) . (A.11)

Representations of O(3) are labelled as (l)±, where l is a non-negative integer. Branching
rules for STTs deoend on the sign label as

ResO(4)
O(3)(J)

+ = (J)+ ⊕ (J − 1)− ⊕ · · · ⊕ (0)(−)J
, (A.12)

ResO(4)
O(3)(J)

− = (J)− ⊕ (J − 1)+ ⊕ · · · ⊕ (0)(−)(J+1)
. (A.13)

B Radial component map

In this appendix, we define Harish-Chandra’s radial component map and state Harish-
Chandra’s theorem related to it, [40, 76–78]. Let G be a simple Lie group and K ⊂ G a
spherical subgroup. Consider a Cartan decomposition G = KApK and let h ∈ Ap be a
generic element of Ap.25 The universal enveloping algebra U(gc) admits a factorisation

U(g) ∼= U(apc)⊗U(kc)⊗U(mc) U(kc) ≡ U(apc)⊗K2 . (B.1)

25More precisely, h should be in the regular part of Ap, see e.g. [78]. As it does not affect our discussion,
we will not distinguish between Ap and its regular part.
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Here, M denotes the centraliser of Ap in K and the subscript c signifies complexification.
We regard (B.1) as a family of vector space isomorphisms parametrised by elements h.
Explicitly, the isomorphisms read

Λh : U(apc)⊗K2 → U(gc) , Λh(H,x, y) = (h−1xh) H y, H ∈ U(apc), x, y ∈ U(kc) .

The preimage Λ−1
h (u) of some element u from U(gc) is referred to as its radial decomposition

with respect to h. By letting h vary over Ap and collecting all radial decompositions, one
obtains a map

Π : U(gc) → Fun(Ap)⊗U(apc)⊗K2 ∼= D(Ap)⊗K2 , (B.2)
referred to as the Harish-Chandra’s radial component map. In the second step, we used the
fact that Ap is abelian to identify U(apc) with the algebra of differential operators on Ap
with constant coefficients. Consequently, the right-hand side is identified with (arbitrary)
differential operators on Ap with coefficients in K2. The significance of the map Π for the
theory of spherical functions lies in the following property. Let u be an invariant differential
operator on the group G and f a spherical function belonging to the space Γρ,σ. We may
regard u as an element of the algebra U(gc). Then we have

(uf)|Ap = (ρ⊗ σ∗) ◦Π(u)
(
f |Ap

)
. (B.3)

Let us elaborate on this formula. The element on the left-hand side is a vector-valued
function on Ap, obtained by acting with u on a spherical function and then restricting the
result to the abelian subgroup Ap. The map on the right consists of two steps. Firstly, the
element u is radially decomposed in U(gc). Following the discussion below (B.2), we think
of the result as a differential operator on Ap with coefficients in K2. Secondly, abstract
elements of the two copies of U(kc) that comprise K2 are evaluated in representations ρ
and σ∗. Therefore, Π(u) may be regarded as the “universal restriction” of u to Ap. If u
preserves a certain space of spherical functions Γρ,σ, its reduction to this space is found by
evaluating the universal restriction in the appropriate representations. However, (B.3) is
meaningful and holds true regardless of whether u(Γρ,σ) ⊂ Γρ,σ or not. The statement (B.3)
is Harish-Chandra’s theorem.

Example. In the main text, we worked with the Gelfand pair G = SO(d − 1), K =
SO(d− 2). Using the notation of section 3, the quadratic Casimir of G can be written as

C2 = 1
2LABL

AB = L12L
12 + L1iL

1i + L2iL
2i + 1

2LijL
ij . (B.4)

Using the relations

L1i = cot θL2i −
L′

2i
sin θ , [L2i, L

′
2i] = − sin θL12 , (B.5)

one finds the radial decomposition of the Casimir

C2 = L2
12 + (d− 3) cot θL12 +

L′
2iL

′
2i − 2 cos θL′

2iL2i + L2iL2i
sin2 θ

+ 1
2L

ijLij . (B.6)

The last relation and the theorem (B.3) tell us that the reduction of the Laplacian to
the space Γρ,σ is (3.31). Meanwhile, the first equation in (B.5) forms the basis for the
construction of external weight-shifting operators.
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C External mixed symmetry tensors

In this appendix, we extend the solution theory to cases when representations ρ and σ are
mixed symmetry tensors that have Young diagrams with two rows. This is the most general
class of matrix elements that appear for 2 → 2 scattering of particles that are traceless
symmetric tensors. We write ρ = (l, ℓ) and σ = (l′, ℓ′). The intermediate representation π

then has up to three non-vanishing GT labels (J, q, s), which obey inequalities

J ≥ l, l′ ≥ q ≥ ℓ, ℓ′ ≥ s ≥ 0 . (C.1)

The value of the quadratic Casimir in this representation is

C2(J, q, s) = −J(J + d− 3)− q(d+ d− 5)− s(s+ d− 7) . (C.2)

Vectors ea and eα can be labelled by Gelfand-Tsetlin patterns in the familiar way, which
will now have pairs of potentially non-zero labels in each row — m

(1)
d−3, m(2)

d−3, m(1)
d−4, m(2)

d−4,
etc. By the same argument that we gave in section 3, in order to give a non-zero matrix
element, ea and eα have to have the same SO(d − 3) labels and furthermore the matrix
element depends only on the labels j1 = m

(1)
d−3 and j2 = m

(2)
d−3

F d−1,J,q,s
l,ℓ,l′,ℓ′,j1,j2

(θ) = ⟨l, ℓ; j1, j2; v|πJ,q,s(eθL12)|l′, ℓ′; j1, j2; v⟩ . (C.3)

Here, v denotes the SO(d − 4)-part of the pattern. Inequalities l, l′ ≥ j1 ≥ ℓ, ℓ′ ≥ j2 ≥ 0
give the number of independent matrix elements

N =
(
min(l, l′)− max(ℓ, ℓ′) + 1

) (
min(ℓ, ℓ′) + 1

)
. (C.4)

If ℓ = ℓ′ = 0, the above analysis reduces to the STT-STT case considered in the main
text. The form of (C.4) suggests that in the differential basis, the Laplacian assumes the
form of a differential operator in one spacetime and two spin variables. If either of the
representations ρ, σ is a symmetric traceless tensor, the label j2 disappears and one is
left with a single spinning variable, a problem similar to the one with two STTs. These
expectations are confirmed in the following.

C.1 MST-STT system

In this subsection we treat the particular case when one of the two external representations
reduces to an STT. First we construct the reduced Laplacian and then describe its
solution theory.

Laplacian. Let us assume that σ = (l′) is an STT. We realise σ by differential operators
in the same way as was done in the main text. On the other hand, the representation
ρ = (l, ℓ) is realised by

ρ(L23) = −i(xa∂xa − l), ρ(Lab) = xa∂xb − xb∂xa + za∂zb − zb∂za , (C.5)

ρ(L2a) = −1
2
(
(1− x2)∂xa + 2xa(xb∂xb − l) + 2xb(za∂zb − zb∂za)

)
, (C.6)

ρ(L3a) =
i

2
(
(1 + x2)∂xa − 2xa(xb∂xb − l)− 2xb(za∂zb − zb∂za)

)
. (C.7)
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These operators act on polynomials F (xa, za) which are of degree ≤ l in xa and degree
ℓ in za. Furthermore, F (xa, za) are required to be harmonic in za, i.e. ∂za∂zaF = 0. In
practise, we first impose the condition za∂zaF = ℓF and then restrict to the lightcone
zaza = 0, as any homogeneous harmonic polynomial is uniquely determined by its values on
the lightcone. For details, the reader is referred to [49, 79]. Similarly as for the STT-STT
case, the SO(d− 3)-invariance allows to reduce the Laplacian to an operator in variables t
and y. Since we go through all the steps in the more general MST-MST case below, here
we only give the final result — when acting on functions of the form

F = (1−X)l(1−X ′)l′yℓ2f(t, y) , (C.8)

the Laplacian is given by

∆(d)
l,ℓ,l′ = ∆(d)

l,l′ + ℓ
2(1 + t2 − 2ty)y∂y + (d+ ℓ− 5)t2 + 2(l + l′ − ℓ)ty + 1

1− t2
. (C.9)

We remind the reader that t = cos θ and the variable y2 appearing in the prefactor in (C.8)
is defined below in (C.14).

Solution theory. Eigenfunctions fJ,ql,ℓ,l′(t = cos θ, y) of (C.9) are constructed in a similar
way as the ones for ∆(d)

l,l′ in section 3.5. We can follow the same strategy, but we need to
change appropriately the seed function and the external weight-shifting. The steps are
summarised by the following diagram,

fJ,ℓℓ,ℓ,ℓ fJ,ℓl,ℓ,ℓ fJ,ℓl,ℓ,l′ fJ,ql,ℓ,l′ .
(q)l−ℓ (q̄)l′−ℓ internal

w.s.

More specifically:

• To obtain the seed function, we solve the differential equation in the boundary case
∆(d)
ℓ,ℓ,ℓ with the eigenvalue (J, ℓ). This function is independent of y,

fJ,ℓℓ,ℓ,ℓ(t) = (1− t2)ℓ/2C
( d−3+2ℓ

2 )
J−ℓ (t) . (C.10)

• Then, as before, we need to act with external weight-shifting operators, which depend
additionally on ℓ,

ql,ℓ,l′ = ∂θ−lcotθ+
(y2−1)∂y+(ℓ−l′)y

sinθ , q̄l,ℓ,l′ = ∂θ−l′ cotθ+
(y2−1)∂y+(l−ℓ)y

sinθ .

(C.11)
The exchange relations (3.46) hold for operators ∆(d)

l,ℓ,l′ , ql,ℓ,l′ , ql,ℓ,l′ as well — one should
simply add the same label ℓ to all operators appearing in (3.46) (this quantum number
is not shifted by commuting q, q̄ past ∆). After the action of external weight-shifting
operators, we get solution for ∆(d)

l,ℓ,l′ with eigenvalues (J, ℓ), fJ,ℓl,ℓ,l′(t).
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• The last step involves the action of internal weight-shifting operators (see subsec-
tion 3.4.2), which is the same as the STT-STT case with ∆(d)

l,ℓ,l′ instead of ∆(d)
l,l′ . This

will get us the general solution for ∆(d)
l,ℓ,l′ with eigenvalues (J, q), fJ,ql,ℓ,l′(t). In the rest

of the example, we will not care about normalisation, but only about the dependence
on (t, y). Hence, we have a proportionality sign ‘∝’, instead of an equality. We can
do this without lost of generality, because we can deal with the normalisation of the
matrix elements only at the very end.

Example. Let us now compute a particular eigenfunction of the Laplacian as an illustration
of the above method. Suppose we want to know f3,2

3,1,2(t, y),26 (notice that the quantum
numbers should satisfy (C.1) to obtain a non-zero value).

• Let us start from the seed function (C.10), f3,1
1,1,1(t) ∝

√
1− t2

(
(d+ 1)t2 − 1

)
.

• We act twice with q and once with q̄, (C.11), in order to get to l = 3 and l′ = 2,

f3,1
3,1,2(t, y) = q2,1,2 q1,1,2 q̄1,1,1 f

3,1
1,1,1(t) ∝ (t2 − 1)(t− y) . (C.12)

• The last step is to do the internal weight-shifting in order to obtain q = 2. We need
to multiply the previous result with the zonal spherical function f1

0,0(t), (3.53), and
compute the tensor decomposition (3, 1)⊗ (1) = (3)⊕ (2, 1)⊕ (4, 1)⊕ (3, 2). Then,
we project out the ‘unwanted’ representations to obtain the non-normalised matrix
element,

f3,2
3,1,2(t, y) =

(
∆(d)

3,1,2 − C2(4, 1)
)(

(∆(d)
3,1,2 − C2(2, 1)

)(
∆(d)

3,1,2 − C2(3, 0)
)
(f1

0,0(t) f
3,1
3,1,2(t, y))

∝ (t2 − 1)(ty − 1) .

C.2 MST-MST system

Now we deal with the general case where both external representations are mixed symmetry
tensors that have Young diagrams with two rows. This is quite different with respect to
previous cases, since the Laplacian depends on an extra spin variable. Hence, both the
reduction and the solution theory for this system will be more involved.

Laplacian. To derive the reduced Laplacian when ρ = (l, ℓ) and σ = (l′, ℓ′), we use (3.31),
substitute (C.5)–(C.7) for the representation ρ, and similarly for σ. Then the condition (3.36)
requires functions to depend only on scalar products

X = x2, X ′ = x′2, Z = z2, Z ′ = z′2, Y = x · z ,
Y ′ = x′ · z′, U = x · z′, U ′ = x′ · z, W = x · x′, T = z · z′ .

Imposing the full M -invariance (3.30) further restricts to functions of the form

F = (1−X)l(1−X ′)l′F
(
y, y1, y2, y

′
2
)
.

26In principle we could decide not to fix J .
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Here, y is the same variable as introduced in section 3, the y1,2 read

y1 = −T − 2(U ′ − Y )(U − Y ′)
X +X ′ − 2W ≡ Θ1

X +X ′ − 2W , (C.13)

y2 = 2WY −X ′Y −XU ′ − Y + U ′

(1−X)(1−X ′) ≡ Θ2
(1−X)(1−X ′) , (C.14)

and y′2 is obtained from y2 by exchanging the roles of primed and unprimed coordinates
(with W ′ = W and T ′ = T ). Sometimes, instead of y it will be more convenient to use
the variable y0 related to it by y = 2y0 + 1. Finally, we impose conditions za∂zaF = ℓF ,
z′a∂z′aF = ℓ′F and restrict to lightcones zaza = z′az′a = 0 — recall that these conditions are
a part of the function space description for the MST representation. In the end, one is left
with functions of the form27

F = (1−X)l(1−X ′)l′ yℓ2 y′ℓ
′

2 (x− y)−ℓ f (x, y) , x = 1 + 2y0y
2
1

y0y1 + 2y2y′2
. (C.15)

The function F must be a polynomial of polarisation vectors za and z′a — the space of
allowed functions is thus finite-dimensional and spanned by monomials xmyn with

m ≤ min(ℓ, ℓ′) , n ≤ min(l, l′)− max(ℓ, ℓ′) . (C.16)

In the Mathematica notebook, we give the Laplacian ∆(d)
l,ℓ,l′,ℓ′ . In writing it, it is useful

to introduce

D(d)
x,y = D(d−2)

x +D(d+2ℓ′)
y + 2(x2 − 1)∂x∂y − 2ℓx∂y + ℓ(ℓ+ d− 5) . (C.17)

This operator generalises the Gegenbauer differential operator (3.38) to two variables and
will play an important role below. In terms of D(d)

x,y, the Laplacian assumes the form

∆(d)
l,ℓ,l′,ℓ′ = ∂2

θ +(d−3)cotθ∂θ−D(d)
x,y

+2D(d)
x,y−l(l+d−4)−l′(l′+d−4)−ℓ(ℓ+d−6)−ℓ′(ℓ′+d−6)

sin2 θ
(C.18)

−2cosθxD
(d−2)
x +yD(d+2ℓ)

y −(l+ℓ+l′−ℓ′+d−6)(x2−1)∂x−(l+l′+d−5)(y2−1)∂y

sin2 θ

−2cosθ2(x
2−1)y∂x∂y−2ℓxy∂y+ℓ(l+l′−ℓ′+1)x+(l−ℓ′)(l′−ℓ′)y

sin2 θ
.

It preserves the space of functions f(t, x, y) polynomial in x and y as above. Moreover,
notice that ∆(d)

l,ℓ,l′,ℓ′ is consistent with the previous MST-STT result when ℓ′ = 0, acting on
functions f(t, y),

∆l,ℓ,l′,0f(θ, y) = ∆MST−STT
l,ℓ,l′ f(θ, y) . (C.19)

27Without loss of generality, in the following formulas we assume ℓ ≤ ℓ′.
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Solution theory. In this case we are dealing with a differential equation in three variables
(t, x, y), which makes the strategy more difficult. Nevertheless, we want to proceed in
the usual way: we solve for a boundary case to obtain a seed function, and then use
weight-shifting operators. We summarise the steps by the following diagram,

fJ,ℓ
′,0

l,0,ℓ′,ℓ′ fJ,ℓ
′,0

l,ℓ,ℓ′,ℓ′ fJ,ℓ
′,0

l,ℓ,l′,ℓ′ fJ,q,sl,ℓ,l′,ℓ′ .
(qMST−ST T )ℓ (q̄)l′−ℓ′ internal

w.s.

More precisely:

• The first problem is that we cannot go the same way as before in order to obtain the
seed function. Now we are not able to identify any particular case with no dependence
on both x and y. The way to proceed is to notice that in the boundary case l′ = ℓ′,
the operator (C.18) is well-defined on functions f(t, x) and assumes the form

∆l,ℓ,ℓ′,ℓ′f(θ, x) =
(
∆MST−STT
l,−1,ℓ−1 − (ℓ′ + 1)(ℓ′ + d− 6)

)
f(θ, x) . (C.20)

This is the crucial new ingredient that allows for a complete solution theory.

• The next step is to solve the right hand side of (C.20). The strategy is to look for a
boundary solution for the MST-STT system, which is similar to the previous case in
section C.1, but with a different constant term. This suggests us to use as the seed
function the boundary case where ℓ− 1 = −1, q = ℓ′ and s = 0, whose solution is

fJ,ℓ
′,0

l,0,ℓ′,ℓ′(cos θ) = (1− cos2 θ)l/2C
( d−3+2l

2 )
J−l (cos θ) . (C.21)

At this point, we can raise the value ℓ by the action of MST-STT external weight-
shifting operators (C.11).28 This is easy to understand if you remember that this
is an eigenfunction for the right hand side of (C.20), which has the appropriate
commutation relations with (C.11). Hence, at this point, we have a solution for
∆l,ℓ,ℓ′,ℓ′ with eigenvalues (J, ℓ′, 0), fJ,ℓ

′,0
l,ℓ,ℓ′,ℓ′(cos θ, y).

• The action of external and internal weight-shifting operators is as in section 3.4, with
the difference that now they depend on x, too,

ql,ℓ,l′,ℓ′ = ∂θ − l cot θ + (x2 − 1)∂x + (y2 − 1)∂y − ℓx+ (ℓ′ − l′)y
sin θ , (C.22)

q̄l,ℓ,l′,ℓ′ = ∂θ − l′ cot θ + (x2 − 1)∂x + (y2 − 1)∂y − ℓx+ (ℓ′ − l)y
sin θ . (C.23)

Laplacians and weight shifting operators satisfy the same exchange relations as before
— the labels ℓ and ℓ′ are just added to both sides of (3.46) and ‘go along for the ride’

ql,ℓ,l′,ℓ′∆(d)
l,ℓ,l′,ℓ′ = ∆(d)

l+1,ℓ,l′,ℓ′ql,ℓ,l′,ℓ′ , q̄l,ℓ,l′,ℓ′∆(d)
l,ℓ,l′,ℓ′ = ∆(d)

l,ℓ,l′+1,ℓ′ q̄l,ℓ,l′,ℓ′ . (C.24)

In practice, we use the two types weight-shifting in turn, first for fJ,ℓ
′,0

l,ℓ,ℓ′,ℓ′(t, y) →
fJ,ℓ

′,0
l,ℓ,l′,ℓ′(t, y, x), and then to get to the general solution fJ,q,sl,ℓ,l′,ℓ′(t, y, x).

28Differently from the MST-STT case, these weight-shifting operators depends on (t, x) and not (t, y).
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Example. Let us now do an example of the previous method computing f4,2,1
4,1,3,2(t =

cos θ, x, y).29

• The seed function (C.21) for our case is f4,2,0
4,0,2,2(t) ∝ (t2 − 1)2. Then, we act with

MST-STT external weight-shifting to obtain f4,2,0
4,1,2,2(t, x) ∝ (1− t2) 3

2 (t− x).

• At this point, we act with MST-MST external weight-shifting operators (C.23) to
get to f4,2,0

4,1,3,2(t, x, y) ∝ (t2 − 1)(t− x)(t− y). Finally, we use exactly as in previous
Example C.1 internal weight-shifting to obtain the non-normalised f4,2,1

4,1,3,2(t, x, y) ∝
(t2 − 1)(tx− 1)(t− y).

D From polynomials to the Gelfand-Tsetlin basis

In this appendix, we show how to change between differential basis used for most of our
computations and the more usual Gelfand-Tsetlin basis. Assume the dimension d, as well
as the external and internal labels have been fixed and that we have computed the matrix
element in the form of the function f(θ, x, y) as explained in the previous sections. Upon
reinstating the prefactor as in (C.15), we obtain the function

F (θ, x, z, x′, z′) = πa
α(eθL12)ea ⊗ eα =

∑
j1,j2;v

⟨j1, j2, v|π(eθL12)|j1, j2; v⟩gj1,j2,v(x, z)g′j1,j2,v(x′, z′) .

We have suppressed parts of GT patterns that are fixed by the choice of external and
internal quantum numbers, (l, ℓ, l′, ℓ′) and (J, q, s). Functions gj1,j2,v(x, z) are the vectors
|j1, j2; v⟩ written in the function-space realisation of the representation (l, ℓ) that we have
given above. A similar comment applies to g′j1,j2,v(x

′, z′). Since the matrix elements are
independent of v, we can split the above sum to obtain

F (θ, x, z, x′, z′) =
∑
j1,j2

Fj1,j2(θ)
∑
v

gj1,j2,v(x, z)g′j1,j2,v(x
′, z′) . (D.1)

The matrix elements we are interested in are functions Fj1,j2(θ). The last sum runs over
all states v in the representation (j1, j2) of SO(d− 3). It produces an SO(d− 3)-invariant
vector in the tensor product ρ ⊗ σ∗. This vector is of the functional form (C.15), but of
course independent of θ. From these remarks, the solution f(θ, x, y) obtained through
weight-shifting decomposes as

f(θ, x, y) =
∑
j1,j2

Fj1,j2(θ)Pj1,j2(x, y) , (D.2)

where Pj1,j2(x, y) are appropriate polynomials. The latter form a basis for the space of
polynomials in x and y, with degrees up to min(l, l′)−max(ℓ, ℓ′) and max(ℓ, ℓ′), respectively.
They are eigenfunctions of the quadratic Casimir of SO(d − 3) in the representation ρ.
This operator was in fact computed above — it is (minus) D(d)

x,y of (C.17). Thus, Pj1,j2 are
determined by solving

D(d)
x,yPj1,j2(x, y) = −CSO(d−3)

2 (j1, j2)Pj1,j2(x, y) . (D.3)
29As in previous Example C.1, here we will only deal with non-normalised matrix elements. Hence, we

drop eventual numerical factors.
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In the case of symmetric traceless tensors the equation (D.3) specialises to the Gegenbauer
differential equation

D(d)
y Pj(y) = j(j + d− 5)Pj(y) =⇒ Pj(y) = C

( d−5
2 )

j (y) . (D.4)

In the mixed MST-STT case, we have j2 = 0 and independent matrix elements are written
as Fj(θ). Polynomials Pj are again solutions to the Gegenbauer equation, now with
shifted parameters

D(d+2ℓ)
y Pj(y) = (j(j + d− 5)− ℓ(ℓ+ d− 5))Pj(y) =⇒ Pj(y) = C

( d+2ℓ−5
2 )

j−ℓ (y) . (D.5)

In the general MST-MST, we do not provide a closed-form expressions for polynomials
Pj1,j2(x, y), but rather compute them on case-by-case basis. For purposes of applications,
this is a simple matter, as the dimension (C.4) of the space of these polynomials is quite small.

D.1 Normalisation

The method described above computes functions F J,q,sl,ℓ,l′,ℓ′,j1,j2
(θ) up to normalisation. In

this section, we explain how the functions are normalised. With this in mind, let

fJ,q,sl,ℓ,l′,ℓ′,j1,j2
(θ) = cJ,q,sl,ℓ,l′,ℓ′,j1,j2

F J,q,sl,ℓ,l′,ℓ′,j1,j2
(θ) , (D.6)

be a function proportional to the matrix element (C.3), with some arbitrary proportionality
coefficient c that depends on all internal and external quantum numbers, as well as the
dimension d. Our idea is very simple — we expand the function f in θ and pick the first
non-vanishing term. The corresponding term of F is calculated from the Gelfand-Tsetlin
formulas, [72]. Indeed, upon expanding (C.3), we obtain

F J,q,s
l,ℓ,l′,ℓ′,j1,j2

(θ)= ⟨l, ℓ;j1, j2;v|1+θL12+. . . |l′, ℓ′;j1, j2;v⟩ (D.7)

= δll′δℓℓ′+θ⟨l, ℓ;j1, j2;v|L12|l′, ℓ′;j1, j2;v⟩+
θ2

2 ⟨l, ℓ;j1, j2;v|L2
12|l′, ℓ′;j1, j2;v⟩+. . . .

If the left and right representations are the same, (l, ℓ) = (l′, ℓ′), the expansion starts
at the zeroth order and the coefficient c is computed as c = f(θ = 0). In general, the
power of θ at which the expansion starts is the “distance” between representations (l, ℓ)
and (l′, ℓ′), namely

d(l,ℓ),(l′,ℓ′) = |l − l′|+ |ℓ− ℓ′| . (D.8)
This follows inductively from the fact that L12(l, ℓ) has non-zero overlaps with only the four
vectors (l ± 1, ℓ), (l, ℓ± 1), (A.3). If the distance is one, the linear term in (D.7) is directly
computed by the GT formula. For distances d(l,ℓ),(l′,ℓ′) > 1, one sums over all “admissible
paths” from (l, ℓ) to (l′, ℓ′). We give one example. Let l′ = l + 1 and ℓ′ = ℓ + 1. Then,
suppressing indices j1, j2, v on the right,

F J,q,s
l,ℓ,l+1,ℓ+1,j1,j2

(θ) = θ2

2
∑
int

⟨l, ℓ|L12|int⟩⟨int|L12|l + 1, ℓ+ 1⟩+ . . .

= θ2

2

(
⟨l, ℓ|L12|l, ℓ+ 1⟩⟨l, ℓ+ 1|L12|l + 1, ℓ+ 1⟩+ ⟨l, ℓ|L12|l + 1, ℓ⟩⟨l + 1, ℓ|L12|l + 1, ℓ+ 1⟩

)
+ . . . .

Clearly, no other intermediate states int contribute to the sum. All expressions in the
last line are determined by GT formulas (A.3). For higher values of d(l,ℓ),(l′,ℓ′) one continues
in the obvious way with the help of some elementary combinatorics.
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E Practical implementation of the algorithm

We have prepared a file gitlab.com/russofrancesco1995/partial_waves where all the con-
structions discussed above are implemented. In this appendix we explain in detail how to
use the most important functions. For readers interested only in using the final results, we
point to section E.1. The others subsections describe the functions for each different case.

E.1 Functions to generate matrix elements

In practice, we can divide the process to obtain partial waves into two steps. At first, we
need to understand which external irreducible representations appear in the scattering.
Then, compute the matrix elements with those representations. The first step is easily done,
since it consists in a tensor decomposition,30 while we give here the solution on how to
obtain the matrix elements,

STT-STT case: F J,q
l,l′ (θ)= Generate$STTSTT$GTBasis[d,l,l’,J,q][θ] , (E.1)

MST-STT case: F J,q
l,ℓ,l′(θ)= Generate$MSTSTT$GTBasis[d,l,l’,ℓ,J,q][θ] , (E.2)

MST-MST case: F J,q,s
l,ℓ,l′,ℓ′(θ)= Generate$MSTMST$GTBasis[d,l,l’,ℓ,ℓ′,J,q,s][θ] . (E.3)

To run this functions, one needs to fix the dimension d and all quantum numbers, while
θ is the scattering angle and can be left as a variable. These functions give the normalised
matrix elements in the Gelfand-Tsetlin basis, as described in appendix D. Notice that in
the first two cases the result is a vector, while in the MST-MST one we have a matrix. This
is explained by the fact that in the last case the external states have an extra label, which
is 0 when one of the state is a STT. Moreover, the function for generating matrix elements
for the MST-MST case in (E.1), without lost of generality is well-defined only if ℓ′ ≥ ℓ. We
can always recover the opposite scenario by doing a complex conjugation of the result.

E.2 STT-STT functions

In the case of external STT-STT representations, the solution theory for matrix elements
is different in the two cases, d = 5 and d > 5 .31 However, this difference is automatically
implemented in the functions in the choice of the dimension.32 Hence, even if they do
different things, the user will be able to treat in mostly the same way the two cases.

Definitions. The first function is the reduced quadratic Casimir (3.40) acting on a general
function f(t = cos θ, y),

∆(d)
l,l′ f(t, y) = ReducedLaplacian$STTSTT[d,l,l’][t,y][f] .

In d = 5, we need to compute the second Casimir (4.4) for the action of the internal weight-
shifting operators. Hence, in a similar way we have that the reduced second Casimir mi-
nus the eigenvalue is ReducedSecondCasimirEigenvalue$STTSTT$5d[l,l’,J,q][t,y][f].
The external weight-shifting operators (3.48) are defined as

ql,l′f(t, y) = qExternalWeightShifting$STTSTT[l,l’][t,y][f] ,

q̄l,l′f(t, y) = qbExternalWeightShifting$STTSTT[l,l’][t,y][f] .
30See sections 2.4 and A.3 for more details.
31See section 3.5 and section 4 for details on the theory.
32This is not the case when the function is defined in only one of the cases, e.g. the function for the second

Casimir is defined only in d = 5.

– 43 –

https://gitlab.com/russofrancesco1995/partial_waves


J
H
E
P
1
0
(
2
0
2
3
)
0
9
0

Solution theory in differential basis. In this paragraph, we describe the functions
to find non-normalised matrix elements in the differential basis. This means that we find
a solution to the Laplacian, and one can always check to have the correct one by acting
with (E.2) minus the correct eigenvalue. We have defined the action of the external and
internal weight-shifting operators (section 3.4) as

fJ,0l,l′ (t, y) = ActionExternalWeightShifting$STTSTT[d,l,l’,J][t,y] ,

fJ,ql,l′ (t, y) = ActionInternalWeightShifting$STTSTT[d,l,l’,J,q][t,y][fJ,0l,l′ (t, y)] ,

and the two actions together as fJ,ql,l′ (t, y) = Generate$STTSTT$yBasis[d,l,l’,J,q][t,y].

Map to Gelfand-Tsetlin basis and normalisation. We want to take the previous
result and express it in the Gelfand-Tsetlin basis, section 3.6. The map differential basis →
Gelfand-Tsetlin basis is implemented as toGTbasis$STTSTT[d][y][f(t,y)], where f(t, y)
is a polynomial in y, with functions of t as coefficients. Now, we are able to normalise our
matrix elements with normaliseSTTSTTinGT[d,l,l’,J,q][θ][f], and we put these two
steps together in the function previously introduced in (E.1). Notice that the result is a
vector of length

• min(l, l′) + 1, if d > 5 ,

• 2min(l, l′) + 1, if d = 5 .

E.3 MST-STT functions

The functions which we will describe in this subsection are defined only for d ≥ 8, since the
exceptional cases have not been implemented yet. Recall that in d = 5 we have no MST-
representations, while in d = 6, 7 one should make slight modifications in our computations,
analogous to what was done in section 4 for d = 5 STT-STT matrix elements. We remind
to appendix C.1 for details on the theory.

Definitions. The names of the functions are the same as in the STT-STT case, with the
replacement of STT-STT by MST-STT. The other difference with the previous case is that
we have an extra index, since MST-representations needs an extra one to be well-defined.

• The reduced quadratic Casimir (Laplacian) (C.9) is

∆(d)
l,ℓ,l′f(t, y) = ReducedLaplacian$MSTSTT[d,l,l’,ℓ][t,y][f] .

• The external weight-shifting operators (C.11) are

ql,ℓ,l′f(t, y) = qExternalWeightShifting$MSTSTT[l,l’,ℓ][t,y][f] ,

q̄l,ℓ,l′f(t, y) = qbExternalWeightShifting$MSTSTT[l,l’,ℓ][t,y][f] .

• The zonal spherical function is fJ,00,0 (t) = zonalSphericalFunction[d,J][t], and
the seed solution (C.10), fJ,ℓℓ,ℓ,ℓ(t) = boundarySolution$MSTSTT[d,J,ℓ][t].
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Solution theory. The functions are the same as in the STT-STT case, for completeness
we list them here:

• Action of external and internal weight-shifting operator in differential basis, respec-
tively,

fJ,ℓ
l,ℓ,l′(t, y) = ActionExternalWeightShifting$MSTSTT[d,l,l’,ℓ,J][t,y] ,

fJ,q
l,ℓ,l′(t, y) = ActionInternalWeightShifting$MSTSTT[d,l,l’,ℓ,J,q][t,y][fJ,ℓ

l,l′ (t, y)] .

• From polynomial in y, to Gelfand-Tsetlin basis, toGTbasis$MSTSTT[d,ℓ][y][f].

• Normalisation of matrix elements, normaliseMSTSTTinGT[d,l,l’,ℓ,J,q][θ][f].

Notice that the result is a vector with length min(l, l′)− ℓ+ 1.

E.4 MST-MST functions

As for the previous case, the functions for the MST-MST case are well-defined only for
d ≥ 8. Here, we only list them, since the strategy is the same and should be clear from the
previous subsections. Let us stress again the fact that some functions here are well-defined
only if ℓ′ ≥ ℓ. The opposite case can always be obtained by a complex conjugation.33

• The reduced quadratic Casimir (Laplacian) (C.18) is

∆(d)
l,ℓ,l′,ℓ′f(t, y, x) = ReducedLaplacian$MSTMST[d,l,l’,ℓ,ℓ′][t,y,x][f] .

• The external weight-shifting operators (C.22) are

ql,ℓ,l′,ℓ′f(t, y, x) = qExternalWeightShifting$MSTMST[l,l’,ℓ,ℓ′][t,y,x][f] ,

q̄l,ℓ,l′,ℓ′f(t, y, x) = qbExternalWeightShifting$MSTMST[l,l’,ℓ,ℓ′][t,y,x][f] .

• The zonal spherical function as before is
fJ,0,00,0,0,0(t) = zonalSphericalFunction[d,J][t], and the seed solution (C.21),
boundarySolution$MSTMST[d,J,l][t].

• Action of external and internal weight-shifting operator in differential basis, respec-
tively,

fJ,ℓ′,0
l,ℓ,l′,ℓ′(t, y, x) = ActionExternalWeightShifting$MSTMST[d,l,l’,ℓ,ℓ′,J][t,y,x] ,

fJ,q,s
l,ℓ,l′,ℓ′(t, y, x) =

ActionInternalWeightShifting$MSTMST[d,l,l’,ℓ,ℓ′,J,q,s][t,y,x][fJ,ℓ′,0
l,ℓ,l′,ℓ′(t, y, x)] .

• From polynomial in (y, x), to Gelfand-Tsetlin basis,34

toGTbasis$MSTMST[d,l,l’,ℓ,ℓ′][t,y,x][f] .

• Normalisation of matrix elements, normaliseMSTMSTinGT[d,l,l’,ℓ,ℓ′,J,q,s][θ][f].
Notice that the result is a (min(l, l′)− ℓ′ + 1)× (ℓ+ 1) matrix.

33More detail on the theory can be found in appendix C.2.
34Theoretical background for the map and the subsequent normalisation is given in appendix D.
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E.5 A comment about internal weight-shifting

Rarely, there may be cases where the output of one our functions (E.1) is zero. This is of
course wrong, and it is due to the nature of the internal weight-shifting procedure. Namely,
when we do the tensor decomposition by means of multiplying a function with the zonal
spherical function, e.g.

(J, q)⊗ (k) = (J + k, q)⊕ . . . ,

on the right hand side their may be different representations with the same value of
the quadratic Casimir. This creates a problem when we need to project one of these
representations out, since all the others are automatically also projected out, giving zero
as the final result. Hence, the problem is that the Laplacian cannot distinguish between
two functions with different internal representations with the same Casimir value. This is
exactly what is happening in the STT-STT case in d = 5, where fJ,ql,l′ (t, y) and fJ,−ql,l′ (t, y)
have the same eigenvalue. As in that case, a solution to this problem would be to use
another Casimir which can distinguish those representations (or alternatively, find another
tensor decomposition which does not exhibit the same problem).

F Discrete symmetries

In section 2 we provided a construction of three-point tensor structures. Similarly, the space
of four-point tensor structures admits a simple group-theoretic characterisation, [80]. For
external particles of spin π1, . . . , π4 and the exchanged one of spin π

T3(π1, π2, π) = (π1 ⊗ π2 ⊗ π∗)SO(d−2), T4(π1, . . . , π4) = (π1 ⊗ · · · ⊗ π4)SO(d−3) . (F.1)

Here, the notation V G stands for the space of G-invariants in V . Partial waves (2.21)
automatically satisfy kinematical constraints of a four-point function, i.e. can be expanded
in four-point tensor structures. In will become clear in the next section how the SO(d− 3)
invariance in manifest in the formula (2.27) for partial waves. Furthermore, we will make a
particular choice of basis for T4(π1, . . . , π4) for any arbitrary external spins. By that point,
we will have taken account of (F.1). Additional kinematic constraints on the scattering
amplitude are present in the case when some of the particles are identical or symmetry under
parity is imposed. The resulting partial waves are constructed out of non-symmetric matrix
elements (2.27) by means of some simple operators. Since this part of the theory does not
differ from other accounts, we only illustrate the salient points, following [52, 80, 81].

Permutations: four-point functions. Let S4 be the permutation group of the four
particles and consider the normal subgroup H ∼= Z2×Z2 generated by double transpositions35

H = ⟨(12)(34), (13)(24)⟩ . (F.2)

This subgroup preserves the Mandelstam variables. For identical particles, the space of
four-point tensor structures is(

(π1 ⊗ · · · ⊗ π1)Z2×Z2
)SO(d−3) ∼=

(
π⊗4

1 ⊖ 3(S2π1 ⊗ Λ2π1)
)SO(d−3)

, (F.3)
35We denote permutations using their presentation in terms of disjoint cycles.
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where S2 and Λ2 denote the symmetric and antisymmetric square, respectively. Any four-
point amplitude may be expanded in these structures and is further constrained by the
residual symmetry

S3 = S4
Z2 × Z2

. (F.4)

The residual symmetry group acts non-trivially both on the Mandelstam variables and on
four-point tensor structures.

Three-point functions. The simplest of permutation symmetries to impose for three-
point functions is under the transformation (12)(34). To this end, we consider two subspaces
of three-point structures

T even
3 (π1, π1, π) = (S2π1 ⊗ π∗)SO(d−2), T odd

3 (π1, π1, π) = (Λ2π1 ⊗ π∗)SO(d−2) . (F.5)

In cases where π⊗2
1 is multiplicity-free over SO(d− 2), our choice of three-point structures

made in section 2.1 is compatible with the above split. Assume that π⊗2
1 is not multiplicity-

free and that the irreducible representation π(1)
12 appears with multiplicity k. One can always

choose the labelling of different copies π(1)
12 , . . . , π

(k)
12 such that each of them is a subspace

of either S2π1 or Λ2π1. With such labelling, the choice of three-point structures is always
compatible with (F.5).

Example. Before imposing permutation symmetry, there are ten four-point structures for
scattering of photons in d ≥ 5. Indeed, two-particle spins read

(1)⊗ (1) = (2)⊕ (0)⊕ (1, 1) = (2)⊕ 2(1)⊕ 2(0)⊕ (1, 1) . (F.6)

In the last step, we have restricted the SO(d− 2) representation to SO(d− 3). Using the
fact that a singlet only appears (with multiplicity one) when an irreducible representation
is tensored with itself, the number of four-point structures is equal to the sum of squares of
multiplicities in the last expression, i.e. 10. To account for permutations, use

S2π1 = (0)⊕ (2), Λ2π1 = (1, 1) . (F.7)

Counting SO(d− 3)-invariants is the same as counting the number of STT components of
the expression inside the last bracket in (F.3). In the case at hand, the symmetric traceless
part is found to be (4) ⊕ 3(2) ⊕ 3(0). Thus, there are seven four-point structures. In
d = 5, (F.6) and (F.7) get modified, but the number of tensor structures is again seven.

Parity. So far, we have focused on the connected component of the identity in the
Lorentz group O(d− 1, 1). The full Lorentz group further includes parity and time-reversal
symmetries which we now briefly discuss. The subgroup of O(d − 1, 1) that stabilises a
pair of massless momenta is O(d − 2). Therefore, the SO(d − 2)-invariants are further
distinguished as either scalars of pseudo-scalars of O(d− 2). If parity is a symmetry of the
theory, only the former are allowed. Also, particles in a theory with O(d− 1, 1) symmetry
transform in representations of O(d − 1). These carry an additional label compared to
SO(d−1). Namely, representations of O(2r+1) are labelled by (l1, . . . , lr)±, where l1, . . . , lr
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are the usual Gelfand-Tsetlin labels for a representation of SO(2r + 1) and irreducible
representations of O(2r) are labelled in either of the following ways

(l1, . . . , lr ̸= 0), or (l1, . . . , lr = 0)± . (F.8)

The restrictions between consecutive orthogonal groups depend on additional labels. In the
end, we get further restrictions on quantum numbers of intermediate particles.

Example. Photons in d = 5 are characterised by the representation (1)+ of O(3). The
two-particle spins thus transform in

(1)+ ⊗ (1)+ = (2)+ ⊕ (1)+ ⊕ (0)+ . (F.9)

Without imposing parity, possible exchanged particles have spins (J), (J,±1) and (J,±2).
The SO(4) ↓ SO(3) branching rules imply that the number of three-point structures for these
exchanges are (for sufficiently large J) 3, 2 and 1, respectively. Taking parity into account,
the exchanged particles can have labels (J)± or (J, q), with q = 1, 2. We focus on the cases
(J)+ and (J, q). Written as SO(4) representations, these are (J) and (J, q)⊕ (J,−q).

Putting both parity and permutation symmetries together we arrive at the following.
The exchanged SO(4) representations and the numbers of three-point structures are

multiplicity two : (2k) → {(0), (2)} ,

multiplicity one : (0) → {(0)}, (2k + 1) → {(1)} ,
(2k,±1) → {(1)}, (2k + 1,±1) → {(2)}, (2k,±2) → {(2)} .

Next to each exchanged representation, we have written the corresponding three-point
structures. Partial waves in terms of SO(4) matrix elements read

Π(0)µ
(0)ν , Π(1)µ

(1)ν , Π(0)µ
(2)ν +Π(2)µ

(0)ν , Π(2)µ
(2)ν . (F.10)

Here Π denotes either the matrix element of the irreducible representation (J) or the sum
of matrix elements of the two representation (J, q) and (J,−q).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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