ELSEVIER
Review

The avian olfactory system and hippocampus:
Complementary roles in the olfactory and visual

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in

Neurobiology

Check for
Updates

guidance of homing pigeon navigation
Anna Gagliardo' and Verner P. Bingman®

Abstract

The homing pigeon is the foundational model species used to
investigate the neural control of avian navigation. The olfactory
system is critically involved in implementing the so-called ol-
factory map, used to locate position relative to home from
unfamiliar locations. The hippocampal formation supports a
complementary navigational system based on familiar visual
landmarks. Insight into the neural control of pigeon navigation
has been revolutionised by GPS-tracking technology, which
has been crucial for both detailing the critical role of environ-
mental odours for navigation over unfamiliar areas as well as
offering unprecedented insight into the role of the hippocampal
formation in visual landscape/landmark-based navigation,
including a possible, unexpected role in visual—spatial
perception.
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Introduction

Birds are nature’s supreme navigators and the behav-
ioural, sensory, and neural mechanisms that are used to
support their navigational ability have been most thor-
oughly studied in homing pigeons (Columba livia) [1—3].
The extraordinary ability of homing pigeons to find their
loft even when displaced to distant, unfamiliar locations
has always fascinated navigation researchers, and the
theoretical conceptualisation of this ability, a positional

or map sense combined with a directional or compass
sense as developed by Kramer [4], still shapes conver-
sations on bird navigation today.

Olfaction and the homing pigeon
navigational map

While there is a general agreement on the existence of
both sun and magnetic compasses in birds [5], under-
standing the sensory basis of the avian “navigational
map” was for years a source of often hostile debate
[6—9]. However, a large body of evidence collected over
the last fifty years has supported the critical role of
environmental odours as a source of spatial information
used to support the homing pigeon “navigational map”,
i.e., a representation of space that enables pigeons to
determine the direction home from unfamiliar, often
distant locations [1,9,10]. Homing pigeons can learn an
olfactory navigational map by associating wind-borne
odours with their direction of origin [11,12]. Pigeons
released at an unfamiliar location can then determine
the direction home by identifying the odour profile at
that location and recalling the direction of the wind that
carried that odour profile to the home loft [1,9,13,14].

Given the demonstrated importance of atmospheric
odours in shaping the navigational map, it is not sur-
prising that pigeons possess the sensory/neural ma-
chinery for odour processing: they have a well-developed
olfactory system [15]; odour stimulation induces elec-
trical responses in the olfactory nerve [16,17] and ol-
factory bulb neurons [18,19]. The olfactory mucosa,
olfactory nerves, and piriform cortex are involved in
pigeon navigation from unfamiliar locations [1,9]. It is
important to note that the effects of anosmia, an often-
used experimental procedure to investigate olfactory
navigation, is specific to a loss of navigational ability and
not a consequence of some non-specific effect on
behaviour, e.g., a loss of motivation or absence of suffi-
cient brain activation, as suggested by some authors
[20,21]. In fact, pigeons subjected to olfactory depri-
vation after being exposed specifically to the local
environmental air at a release site successfully flew in
the homeward direction, whereas pigeons exposed to
purified air enriched with artificial, non-sense odours
failed to orient homeward (Figure 1) [22,23].
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Figure 1
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Representative tracks of pigeons released from a distant, unfamiliar release site subjected to different olfactory manipulations. The C pigeon was released
without manipulation. The ZnC and ZnAO pigeons were exposed both during transportation to and at the release site to environmental air or artificial, non-
sense odours diluted in purified air, respectively, prior to being made anosmic and released. Circle: release site location. House symbol: the home loft

location. Data derived from Ref. [18].

The pigeon piriform cortex, homologous to the
mammalian piriform cortex [24,25], is the telence-
phalic region that has been most studied in the context
of olfactory navigation. Lesions to the piriform cortex
result in a deficit in olfactory map learning [1] as well
as the implementation of an already learnt olfactory
map when pigeons are challenged with homing from
unfamiliar locations [26]. Complementing the lesion
effects on homing, the piriform cortex also displays
upregulated neural activation, specifically an increase
in Zenk-immediate early gene—labelled neurons, when
pigeons are exposed to local odours at a distant,
release-site location compared to odours from the home
area near the loft [27]. Collectively, these observations
identify the piriform cortex as a crucial node in the
brain’s olfactory map-processing network. Interestingly,

Poo et al. [28] showed that the rat piriform cortex is
composed of neurons coding for odour identity/recog-
nition and neurons coding for allocentric space, ele-
ments that would need to be integrated during
olfactory map learning.

Visually guided familiar landmark/
landscape navigation and the hippocampus
When navigating in areas where they have been before,
particularly within the home area, homing pigeons can
rely on a second map-like mechanism based on familiar,
visual landmarks and landscape features [29,30]. At
familiar locations, lesions at any level of the olfactory
system do not disrupt homing [1,9] as familiar landscape
features are a sufficient source of naviga-
tional information.
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Figure 2
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Representative tracks of an example intact (C, blue) and hippocampal-lesioned (HF, red) pigeon when released from a site about 15 km from home. The
circle represents the 4-km buffer-radius around the home loft, where a landscape/landmark map is typically used to navigate to the home loft. Square:
release-site location. House symbol: the home-loft location. Data derived from Ref. [35].

The existence of a map-like representation of familiar
landmarks/landscapes immediately recalls the so-called
“cognitive map” [31], and by implication, the hippo-
campus [32]. As the hippocampus of birds and mam-
mals are homologous [33—35], it is not surprising that
the avian hippocampus continues to be the principal
target of research into the brain organisation of avian
spatial-cognitive maps for both laboratory [36,37] and
field research [33]. The early research on the rela-
tionship between hippocampus and pigeon navigation
demonstrated that hippocampal lesions had no impact
on their ability to fly off in the home direction from a
distant, unfamiliar location, i.e., had no effect on the
olfactory map, but it did result in pigeons being slower
to return home or not returning at all [33]. This sug-
gested an impairment occurring later during the
homing flight, specifically when pigeons would transi-
tion from using their olfactory map to their familiar
landmark/landscape map closer to home. However, it
was not until the development of miniaturised GPS-
tracking devices, which enable the reconstruction of a
pigeon’s entire flight home and are capable of remotely
transmitting flight-path data from pigeons that do not

return home, when the richness of hippocampal control
of wvisually guided navigation was fully appreci-
ated (Figure 2).

Flight path reconstructions have led researchers to
conceptualise a pigeon’s journey home as consisting of
three phases. Soon after release, a pigeon typically,
and more so from unfamiliar locations, displays a
circling behaviour around the release site until taking
off in a consistent, usually close-to-homeward direc-
tion (the so-called decision-making phase). A pigeon
then continues its flight path homeward (the so-
called en route phase) tending to follow its initial
directional decision but periodically adjusting its
flight direction based on newly encountered olfactory
and/or familiar landscape information [9]. The last
phase of a homing flight (the so-called local naviga-
tion phase) occurs when a pigeon arrives in the
familiar area within a few kilometres of its loft, where
the lower spatial resolution of the olfactory map
would render it ineffective for navigation and the
pigeon transitions to navigating by familiar, visual
landscape/landmark features [38,39].
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The GPS-tracking of hippocampal-lesioned pigeons
confirmed their ability to orient homeward and approach
the home area when released from a distant, unfamiliar
location. More importantly, the same tracking high-
lighted the often tortuous or confused flight paths taken
by the same pigeons as they transitioned to needing to
navigate by visual landmark/landscape features near
home [40], i.e., during the local navigation phase.
Moreover, hippocampal-lesioned pigeons displayed a
retrograde memory loss for the home area landscape
features experienced before being lesioned [41].
Consistent with this observation, a ZENK-immediate-
carly-gene study revealed upregulated neuronal activity
in the hippocampus when pigeons were released in the
vicinity of the loft, although a greater number of labelled
hippocampal neurons were found in pigeons homing
from a more distant, unfamiliar location [27]. This latter
finding supports the intuitive idea that when pigeons fly
over unfamiliar locations, the hippocampus is recruited
in learning the spatial properties of encountered land-
mark/landscape features—spatial learning that could
support navigation when a pigeon would find itself in
the same location in the future [33]. Shimizu et al. [42]
also observed upregulated hippocampal neuronal acti-
vation when pigeons homed from a familiar location. In
summary, GPS-tracking has enabled the robust
demonstration that the hippocampus is essential for
both the formation and implementation of a visual,
familiar landscape/landmark-based map. One conse-
quence of learning a familiar landscape map is that it
would support the development of a faithfulness to the
same route as pigeons repeatedly return home from the
same location [29,30]. It is not surprising then that
hippocampal-lesioned pigeons repeatedly released from
the same location are impaired in developing the typi-
cally observed route fidelity [43,44].

Among the different topographic features composing a
complex landscape, linear landmarks such as roads,
rivers, and the edges of wood lots and fields, are often
used by homing pigeons as “leading lines” to orient their
flights even if following such an environmental leading
line does not lead directly to home [45,46]. Similar to
intact homing pigeons, hippocampal-lesioned pigeons
can also follow leading lines as they are sometimes
observed to fly along landscape edges [43,44]. However,
GPS tracking has revealed notable differences between
intact and hippocampal-lesioned pigeons in how they
respond and use landscape leading lines while homing.
By contrast with intact birds, pigeons without a hippo-
campus fail to consistently follow the same linear fea-
tures when reaching the home area following repeated
releases from the same locations [44]. In other words,
while intact pigeons routinely incorporate leading-line
landscape features into their landscape map,
hippocampal-lesioned pigeons are impaired in doing so,
explaining in part their diminished capacity to develop
route fidelity. Even when released from unfamiliar

locations, hippocampal-lesioned pigeons can display
little tendency to have their flight paths altered by the
presence of landscape features such as roads and vil-
lages, environmental features that can attract or repel
intact pigeons. At one release location, GPS tracking
revealed that intact homing pigeons consistently
followed a road, which deviated from the direction
home, whereas hippocampal-lesioned pigeons typically
ignored that road and flew off directly towards home
[41]. The frequent unresponsiveness of hippocampal-
lesioned homing pigeons to visual environmental fea-
tures has led to the speculation that the hippocampus is
essential not only for supporting spatial cognition but is
similarly important in the visual—spatial perceptual
construction of a landscape scene.

A “site-specific compass orientation”
navigational strategy is not hippocampal-
dependent

Clock-shift procedures have provided important insight
into the function of the pigeon hippocampus in navi-
gation. Phase-shift manipulations, which alter the rela-
tionship between an animal’s circadian rhythm and the
environmental light—dark cycle, result in pigeons
misinterpreting the directional position of the sun azi-
muth, leading to predictable errors in the sun-compass
orientation [47]. In other words, clock-shifted pigeons
released at unfamiliar locations, and necessarily using
their olfactory map to fix their position relative to home,
typically display a predictable deviation in their flight
directions as they misinterpret the sun’s azimuth.

Things are more complicated at familiar locations as
phase-shift results in conflicting navigational informa-
tion: the alignment of familiar landmark/landscape in-
formation is no longer consistent with the direction
home indicated by the sun compass [48]. As such, pi-
geons relying directly on the familiar landscape for
orientation, a strategy often referred to as pilotage,
would be able to quickly reject the false directional in-
formation from the sun. By contrast, clock-shifted pi-
geons adopting a so-called “site-specific-compass-
orientation” navigational strategy [49] would rely on
their sun compass to orient their flight, displaying a
pronounced deviation from the home direction, and
indeed, when released from a familiar location, phase-
shifted, intact pigeons display the ability to correc-
tively re-orient homeward, presumably relying on their
learnt landscape map. By contrast, hippocampal-
lesioned homing pigeons fly off in the previously
associated but now erroneous direction as indicated by
their altered sun compass [50]. The importance of the
hippocampus in supporting corrective re-orientation was
dramatically highlighted when phase-shifted pigeons
were released from a familiar location near the Medi-
terranean coast [50]. While intact pigeons erroneously
flying towards the coast were able to reorient homeward
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before reaching the sea, several hippocampal-lesioned
pigeons crossed the boundary between land and water,
flying out over the open sea, sometimes for several kms.
The failure of some hippocampal-lesioned pigeons to
respect the landscape boundary between land and sea
offers further evidence for a role of the hippocampus in
visual—spatial perception [40].

A commonality between the olfactory and
landmark/landscape maps

In our review, we have treated the olfactory and land-
mark/landscape maps as independent sources of spatial
information with presumably different brain network
organisations. However, neuroanatomically, there are
reciprocal connections between the piriform cortex and
parahippocampal region of the hippocampus [24]. Some
evidence has suggested that, although not necessary for
the operation of the olfactory map, the hippocampus can
be involved in olfactory map learning. Homing pigeons
can learn an olfactory map even if they are never allowed
to fly freely around the loft as long as they are exposed to
wind-borne odours [51]. However, in this unusual situ-
ation of a “captive” learning environment, hippocampal
lesions block the learning of an olfactory map [1]. A
parallel result is that hippocampal lesions impair the
ability of homing pigeons trained in an outdoor arena to
use the sun compass to learn the direction of a food cup
[52]. We are not certain what this collection of findings
means for understanding the brain organisation of
homing pigeon navigation, but they do suggest some-
thing about the importance of the hippocampus in
learning to associate sun-compass-derived directions
with environmental stimuli, e.g., wind-borne odours or a
food cup, when unable to freely fly.

Future directions

Regarding the hippocampal/brain-network basis of avian
navigation, all the informative GPS-based research
relied on what some may consider crude surgical lesions,
and until recently, one could barely imagine recording
the spatial response properties of hippocampal neurons
in free-flying pigeons or behavioural procedures that
would allow one to sample the spatial response proper-
ties of the same hippocampal neuron as a pigeon
repeatedly flies over the same location. Simplistically
put, what might a “place cell” look like in the context of
a bird navigating an open field in a spatial scale of tens of
kms? Vyssotski et al. [53] already provided a proof of
concept for the possibility of “natural electrophysi-
ology” as they successfully recorded GPS-interfaced
EEG (electroencephalogram) in free-flying pigeons
approaching land after being released from the sea.
Although operating at a spatial scale of the size of a
room, Agarwal et al. [54] recently remotely recorded the
spatial-response properties of hippocampal neurons as
barn  owls (Dyro alba) flew between perches.

Acknowledging the substantial technical gap between
flying a few metres in a room and tens of kms in nature,
the barn owl work does offer a path for gaining insight
into the spatial characteristic of hippocampal neurons in
the natural, navigational context of homing pigeons
tracked with GPS. Furthermore, the tendency of homing
pigeons to fly close to the same route when repeatedly
released from the same location [30,43,44] can be
exploited to repeatedly sample from the same popula-
tion of neurons as pigeons fly over the same familiar
terrain, allowing one to assess the temporal stability of
any response characteristics.

There is substantial interest in understanding the
function of lifespan neurogenesis in the dentate gyrus of
the mammalian hippocampus [55,56]. Therefore, also
worthy of more investigation is the potential importance
of life-span neurogenesis in the avian hippocampus,
which may enable birds to continually update their
representations of space as new areas are explored
(worth noting here is that neurogenesis in the avian
hippocampus does #of occur in any equivalent of a
dentate gyrus [57]). Encouraging in this context, a
recent paper characterising neurogenesis in the brain of
adult, free-flying homing pigeons [58] specifically found
a considerable number of newborn neurons in the hip-
pocampal  formation. ~ What might be  the
spatial—cognitive consequences of blocking this neuro-
genesis? Also, a comparison of the patterns of neuro-
genesis in the hippocampal formation, piriform cortex,
and other candidate brain regions relevant for navigation
in pigeons subjected to different learning experiences/
conditions, e.g., the acquisition of route fidelity with
repeated releases from familiar locations or olfactory
map learning in confined compared to free flight con-
ditions, could reveal much about the importance of
integrating new-born neurons into existing neural net-
works in support of dynamic maps of space.
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